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Abstract

Kaluza’s 1921 theory of gravity and electromagnetism using a fifth
wrapped-up spatial dimension is inspiration for many modern attempts
to develop new physical theories. For a number of reasons the theory
is incomplete and often considered untenable. An alternative approach is
presented that more fully unifies gravity and electromagnetism. Emphasis
is placed on admitting important electromagnetic fields not present in
Kaluza’s original theory, and on deriving a Lorentz force law. This is
done by identifying 5D momentum with charge. By doing so the usual
assumption of Ricci flatness for sourceless electromagnetic fields is made
obsolete and replaced by the simple and physically intuitive assumption
that background 5D momentum is vanishing. An electromagnetic limit is
imposed by assuming a constant scalar field.

1 Introduction

Kaluza’s 1921 theory of gravity and electromagnetism [1][2][3][4] using a fifth
wrapped-up spatial dimension gives a taste of unification of electromagnetism
with gravity in a way that has problems and is often believed to be untenable.
However the underlying aim was particularly promising in terms of explana-
tory power. Modern works hold out hope for higher dimensional theories and
non-abelian gauges [25], and the consequent hope for unification with quantum
mechanics. Here an alternative approach is implemented that goes back to a
simpler (and in the author’s opinion more practical) root: fully unifying just
gravity and electromagnetism. Certain requirements are evident: a Lorentz
force law [6] must be explained, Maxwell’s laws [6] must be present, the Lorentz
transformation [6] must define inertial frames, general relativity [6] must be a
limit for gravitational physics. The Lorentz force law is the most conceptually
unsatisfying law within classical theory. It may not even be compatible with
n-dimensional Noether theorems [26] - all the more reason to construct it, or
an approximation, from first principles. Whilst it does come from the Einstein-
Maxwell stress-energy tensor [6], where does that come from? The Lorentz force
law is but the relativistic form of Coulomb’s law. Surely it should be as fun-
damental geometrically as the inverse square law of gravity? It may just as
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equally be approximate in a fully geometrised theory. It is in this straight for-
ward and relatively unambitious vein that search for a variant Kaluza theory is
undertaken.

The Lorentz force law here requires a constant scalar field, this places con-
straints on admissible solutions. The emphasis is then on eliminating the con-
straint in Kaluza theory that prevents the below-defined non-nullish electromag-
netic solutions when the scalar field is constant. This was done elsewhere by the
author using torsion once allowing symmetric components [24], the other im-
posing complete antisymmetry of torsion [28]. In both cases as many questions
as answers resulted, and the results perhaps not fully satisfactory.

It is sufficient to show that certain constraints that cause the problem for
the usual Kaluza and Kaluza-Klein theories have here been weakened. The
main constraint is the third field equation in [1], equation (2.0.4) here, and the
first field equation. When the scalar field is constant the third field equation
becomes one of two equations that characterize the null electromagnetic fields.
This equation is as follows, and fields that satisfy this will be called ‘nullish’:

Definition 1.0.1: ‘Nullish’ electromagnetic fields satisfy: FabF
ab = 0. Null

electromagnetic fields have the nullish property plus the following condition,
where the star is the Hodge star operator: Fab(∗F ab) = 0.

Kaluza’s original theory [1] prohibits non-nullish solutions (or even near
non-nullish solutions) for constant scalar field. Nullishness is too tight to admit
important electromagnetic fields, in particular the essential electrostatic fields.
That electrostatic or near-electrostatic fields are non-nullish and therefore a
problem in any theory that omits them can be seen by comparing definition
(1.0.1) with the following well-known fact from special relativity, that is by
considering a special relativistic limit: FabF

ab = 2(B ·B − E · E).
The research undertaken here has undergone a number of distinct phases.

A discussion of previous attempts is provided by [24] and [28] which used tor-
sion [11],[13],[14],[15],[19] to obtain the extra solutions. It was claimed that
the theories presented there were examples of Kaluza variant theories that bet-
ter satisfies the requirements of observable classical physics in having a wide
range of electromagnetic fields permitted whilst providing a Lorentz force law
by construction. Further, existing instability arguments [10] in current form
against other Kaluza theories do not necessarily apply to those theories without
additional assumptions. Similar issues, and potential resolutions, are briefly
discussed here when considering the general relatistic limit. In this paper the
emphasis, however, is on reimplementing the simplicity of Kaluza’s original idea:
by replacing the 5D Ricci flat condition for electromagnetic fields without charge
sources with the vanishing of the 5D momentum components in the 5D Einstein
tensor. That is, by relaxing the Ricci-flat construction of Kaluza in a way tu-
tored by the explorations undertaken in the torsion theories of [24] and [28]
and by reflecting on their interpretation and possible variation. Here, however,
torsion will not be used and a simpler construction made which then seems to
clarify the physical insight into Kaluza’s theory.
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Kinetic charge will be defined as the 5th-dimensional component of momen-
tum [8] and identified with Maxwellian charge. A Lorentz force law will then
follow. As momentum the kinetic charge has a divergence law via the 5D Ein-
stein tensor. Maxwellian charge also has a vector potential, see (3.4.1), and
thus local conservation, but the kinetic charge and corresponding divergence
law being covariant is taken to be the fundamental charge.

The simplicity of the presented model over previous works is a key benefit.

2 Conventions

The following conventions are adopted unless otherwise specified.
Five dimensional metrics, tensors and pseudo-tensors and operators are given

the hat symbol. Five dimensional indices, subscripts and superscripts are given
capital Roman letters. Lower case indices can either be 4D or generic for def-
initions depending on context. Index raising is referred to a metric ĝAB if
5-dimensional, and to gab if 4-dimensional. Terms that might repeat dummy
variables or are otherwise in need of clarification use additional brackets. The
domain of partial derivatives carries to the end of a term without need for brack-
ets, so for example we have ∂agdbAc + gdbgac = (∂a(gdbAc)) + (gdbgac). Terms
that might repeat dummy variables or are otherwise in need of clarification use
additional brackets. Square brackets can be used to make dummy variables lo-
cal in scope. Space-time is given signature (−, +, +, +), Kaluza space (−, +,
+, +, +) in keeping with [6]. Under the Wheeler et al [6] nomenclature the sign
conventions used here as a default are [+, +, +]. The first dimension (index
0) is time and the 5th dimension (index 4) is the topologically closed Kaluza
dimension. Time and distance are geometrized throughout such that c = 1.
G is the gravitational constant, which may also be set to 1 unless otherwise
specified. The scalar field component is labelled φ2. The matrix of gcd can
be written as |gcd|. The Einstein summation convention may be used without
special mention. � represents the 4D D’Alembertian [6].

The unique Levi-Civita connection can be specified with: Γcab, and the co-
variant Levi-Civita derivative operator: ∇a. Define:

Fab = ∂aAb − ∂bAa = ∇aAb −∇bAa
F = dA (2.0.1)

Some familiar defining equations consistent with [1] define the Ricci tensor
and Einstein tensors in terms of arbitrary connection coefficients (ie of any
connection) along usual lines:

We will define α = 1
8πG .

We also make reference to Kaluza’s original field equations [1] in the text:

Gab =
k2φ2

2

{
1

4
gabFcdF

cd − F caFbc
}
− 1

φ
{∇a(∂bφ)− gab�φ} (2.0.2)
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∇aFab = −3
∂aφ

φ
Fab (2.0.3)

�φ =
k2φ3

4
FabF

ab (2.0.4)

The following result from [24] and [28] will be rederived (5.3.8) and used
as required: that we must relate G and k to obtain the Lorentz force law in
acceptable terms:

d2xa

dτ ′2
+ Γ̂a(bc)

dxb

dτ ′
dxc

dτ ′
→ (QM/ρ0)F ab

dxb

dτ ′
and k = 2

√
G (2.0.5)

That is, when the Gravitational constant is set to unity, we can set by
convention k = 2 to make the units of this text consistent with other works,
in particular Wald [7]. This sheds some light on the tricky problem of units
in electromagnetism more generally. However, for calculation purposes setting
k = 1 is equally good, merely representing a change of how units are interpreted.
This will also be allowed here.

In this paper some of the working has been omitted as is usual. Some of
workings are however given in [24] for reference. It should however be noted
that the postulates are slightly different there. In particular the use of torsion
in [24] and [28] must be noted.

Orders of magnitude notation are used. Following [28], to indicate when
terms are of a certain order of magnitude: O(X) will be used. Further, when
rounding has occured by ignoring terms of O(X), ie “O(X) terms discounted”,
this will be denoted \O(X).

3 Overview Of Kaluza Theory With Vanishing
Einstein Tensor

3.1 Postulates

The following K1-K4 are the core postulates of the present Kaluza theory.

POSTULATE (K1): Geometry. The geometry, the Kaluza space, under
consideration is a 5D smooth Lorentzian manifold.

POSTULATE (K2): Well-behaved. Kaluza space is assumed globally hy-
perbolic in the sense that there exists at each point 4D spatial cauchy surface
plus time, such that the 4D hypersurface is a simply connected 3D space ex-
tended around a 1D loop. And Kaluza space is oriented and time-oriented.

POSTULATE (K3) Cylinder condition. One spatial dimension is topo-
logically closed and ‘small’, the Kaluza dimension. This is taken to mean that
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there are global unit vectors that define this direction, the Kaluza direction.
The partial derivatives of all tensors in this Kaluza direction are taken to be
zero in some coordinate system.

POSTULATE (K4): Geodesic Assumption. That any model of a charged
particle (or for that matter uncharged particle, noting the difference being the
presence of momentum in the Kaluza dimension) approximately follows 5D
geodesics.

LIMIT POSTULATE (B1): There is a Kaluza atlas, see definition (3.2.1),
possibly only over a region, such that φ2 = 1 at every point. The scalar field re-
sults from the the decomposition of the Kaluza metric into 4D metric, potential
vector and scalar field. It is contained within the metric explicitly in (3.4.1).
Thus B1 is a constraint on the 5D metric. This defines the electromagnetic
limit.

L1 below constitutes a weak field limit that will be applied by way of ap-
proximation for the classical limit of behaviour. The deviation from the 5D-
Minkowski metric is given by a tensor ĥAB . This tensor belongs to a set of
small tensors that we might label O(h). Whilst this uses a notation similar to
orders of magnitude, and is indeed analogous, the meaning here is a little dif-
ferent. This is the weak field approximation of general relativity using a more
flexible notation. Partial derivatives, to whatever order, of metric terms in a
particular set O(x) will be in that same set at the weak field limit. In prin-
ciple we are doing nothing more than following the weak field limit procedure
[6] of general relativity. In the weak field approximation of general relativity,
terms that consist of two O(h) terms multiplied together get discounted and are
treated as vanishing at the limit. We might use the notation O(h2) to signify
such terms. There is the weak field approximation given by discounting O(h2)
terms. But we might also have a less aggressive limit given by, say, discounting
O(h3) terms, and so on. We can talk about weak field limits (plural) that dis-
count O(hn) terms for n > 1 based on the same underlying construction. The
use of orders of magnitude in these axioms can be interpeted, in addition to
imposing geometric constraints, as essentially a choice of scale. That choice of
scale, even if mathematically arbitrary, is physically meaningful: the classical
scale.

LIMIT POSTULATE (L1): The metric can be written as follows in terms

of the 5D Minkowski tensor and ĥ ∈ O(h): ĝAB = µ̂AB + ĥAB .

In [24] and [28] further consideration was given to super-energy to deal with
causality and stability (requiring K2). The same arguments could be applied
here, but it is not necessary to do so in any detail to demonstrate the objectives
of this paper. Needless to say there are solutions to the complaint that stability
of Kaluza theory is a problem, or that causality in 5D is a problem, and these
issues are touched on in [24] and [28].

5



3.2 The Cylinder Condition And Charts

The cylinder condition by construction allows for an atlas of charts wherein the
Kaluza dimension is approximately presented by the fourth index. The atlases
that are compliant with this may be constructed by restricting them accordingly.
This means that the cylinder condition can be represented by a subatlas of the
maximal atlas. The set of local coordinate transformations that are compliant
with this atlas (called a Kaluza atlas) is non-maximal by construction. A further
reduction in how the atlas might be interpreted is also implied by setting c=1,
and constant G. The existence of a single unit for space and time can be
assumed, and this must be scaled in unison for all dimensions. Consistently with
cgs units we can choose either centimetres or seconds. This would leave velocities
(and other geometrically unitless quantities) unchanged in absolute magnitude.
This doesn’t prevent reflection of an axis however, and indeed reflection of the
Kaluza dimension is here equivalent to a (kinetic) charge inversion. However,
given orientability and an orientation we can remove even this ambiguity. We
can further reduce a Kaluza atlas by removing boosts in the Kaluza dimension.
Space-time is taken to be a subframe within a 5D frame within a Kaluza subatlas
of a region wherein uncharged matter can be given a rest frame via a 4D Lorentz
transformation. Boosting uncharged matter along the Kaluza axis will give it
kinetic charge. The Kaluza atlas represents the 4D view that kinetic charge
is 4D covariant. Rotations into the Kaluza axis can likewise be omitted. This
results in additional constraints on the connection coefficients associated with
charts of this subatlas, and enables certain geometrical objects to be more easily
interpreted in space-time. The use of this subatlas does not prevent the theory
being generally covariant, but simplifies the way in which we look at the Kaluza
space through a 4D physical limit.

Definition 3.2.1: AKaluza atlas is:
(i) A subatlas (possibly just over a region) of the maximal atlas of Kaluza

space where boosts and rotations into the Kaluza dimension (as defined by the
cylinder condition K3) are explicitly omitted.

(ii) All partial derivatives in the Kaluza direction are vanishing.
(iii) Inversion in the Kaluza direction and rescalings can also be omitted so

as to establish units and orientation.
(iv) For each point on the Kaluza atlas a chart exists with normal coordinates

where index 4 is the Kaluza dimension.

3.3 Kinetic Charge

Kinetic charge is defined as the 5D momentum component in terms of the 5D
Kaluza rest mass of a hypothesised particle: ie (i) its rest mass in the 5D Lorentz
manifold (mk0) and (ii) its proper Kaluza velocity (dx4/dτ

∗) with respect to
a frame in the maximal atlas that follows the particle. And equally it can be
defined in terms of (i) the relativistic rest mass (m0), relative to a projected
frame where the particle is stationary in space-time, but where non-charged
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particles are stationary in the Kaluza dimension, and in terms of (ii) coordinate
Kaluza velocity (dx4/dt0):

Prov. Definition 3.3.1: kinetic charge: Q∗ = mk0dx4/dτ
∗ = m0dx4/dt0

This provisional definition (refined below) makes sense because mass can be
written in fundamental units (i.e. in distance and time). And the velocities in
question defined relative to particular frames. It is not a generally covariant
definition but it is nevertheless mathematically meaningful. This kinetic charge
can be treated in 4D space-time and the Kaluza atlas as a scalar: the first equa-
tion above is covariant with respect to the Kaluza atlas. It can be generalized
to a 4-vector, and it is also conserved as shown. In general relativity at the
special relativistic Minkowski limit the conservation of momenergy can be given
in terms of the stress-energy tensor as follows [9], j 6= 0. This is approximately
true at a weak field limit and can be applied equally to Kaluza theory. We have
a description of conservation of momentum in the 5th dimension.

∂T̂ 00

∂t
+
∂T̂ i0

∂xi
= 0 ,

∂T̂ 0j

∂t
+
∂T̂ ij

∂xi
= 0 and

∂T̂ 04

∂t
+
∂T̂ i4

∂xi
= 0 (3.3.2)

We also have i=4 vanishing by the cylinder condition. Thus the conservation
of kinetic charge becomes (when generalized to different space-time frames)
the property of a 4-vector current, which we know to be locally conserved:
∂0T̂

04 + ∂1T̂
14 + ∂2T̂

24 + ∂3T̂
34 = 0.

To make sense of this in 5D we need to change the provisional definition
above and make it density-based as follows (imagine a ring rather than a par-
ticle). The alternative definition can be made in terms of the mass density ρ0,
coupled with the Kaluza dimension’s size or Kaluza length λ. In this way we
do not presuppose that the rest mass we observe in space-time is necessarily
the m0 above: what happens for example to the apparent rest mass in 4D if
the Kaluza distance changes and the density compressed or rarefacted? m0

makes most sense as a definition of rest mass in 4D when this does not happen.
Generalization demands the following definition, replacing m0 with a density:

Definition 3.3.3: 5D kinetic charge: Q∗ = λρk0dx4/dτ
∗ = λρ0dx4/dt0

This leads to a density-slice definition of 4D density-based kinetic charge as
follows (noting that it is not 4D-divergence free in the event that λ changes):

Definition 3.3.4: 4D kinetic charge density: Q∗∗ = ρk0dx4/dτ
∗ = ρ0dx4/dt0

Kinetic charge current density is the 4-vector, induced from 5D Kaluza space
as follows (using the Kaluza atlas to ensure it is well-defined as a 4-vector):

J∗∗a = −αĜa4 (3.3.5)

And a measure of the total current can be give as:
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J∗a = −αλĜa4 (3.3.6)

Using Wheeler et al [6] p.131, and the appropriate space-time (or Kaluza
atlas) frame, we have:

Q∗ = J∗a (1, 0, 0, 0)a (3.3.7)

So we have a scalar, then a vector representation of relativisitic invariant
charge current, and finally a 2-tensor unification with conserved mass-energy
via the Einstein tensor. It follows that the vanishing of the divergence of kinetic
charge in 4D is only approximate, in 5D it is exact.

Definition 3.3.8: Kinetic charge current is defined to be the 4-vector J∗a =
−αλĜa4, with respect to the Kaluza atlas that represents this total charge cur-
rent in 4D. Note the divergence of the Einstein tensor:

∇̂AĜAB = 0 and ∇̂AĜA4 = 0 ≈ ∇̂aĜa4

3.4 Two Types Of Geometrized Charge

Components used in [1] will be used here as the Kaluza metric. The vector po-
tential and electromagnetic fields formed via the metric are sourced in Maxwell
charge QM . Maxwell’s law are automatically satisfied, using (2.0.1) to define
F with respect to the potential: dF=0 follows from dd = 0. d*F= 4π*J can
be set by construction. d*J=0. Aa is to be identified with the electromagnetic
potential, φ2 is to be a scalar field, and gab the metric of 4D space-time:

Definition 3.4.1: The 5D Kaluza metric.

ĝAB =

[
gab + k2φ2AaAb kφ2Aa

kφ2Ab φ2

]
and ĝAB =

[
gab −kAa
−kAb 1

φ2 + k2AiA
i

]
(3.4.1)

This gives nullish solutions under the original Kaluza theory (cylinder condi-

tion, Rab = 0) and constant scalar field, such that Gab = −k
2

2 FacF
c
b . Compare

this with [7] where we have Gab = 2FacF
c
b in geometrized units for ostensibly

the same fields. The units need to be agreed between the two schemes. We
would need to set either k = 2 or k = −2 for compatibility of results and formu-
las. And this is particularly important as we wish to derive the Lorentz force
law with the same units as [7]. N.B. the sign change introduced by [1], which
is confusing. This makes no fundamental difference, but must be noted. It is a
confusion seemingly introduced by accident in [1].

The geometrized units, Wald [7] p470-471, define units of mass in terms of
fundamental units. This leads to an expression for kinetic charge in terms of
Kaluza momentum when k = 2 and G = 1. G and k are not independent
however. If we fix one, the other is fixed too: A consequence of requiring the
Lorentz force law written in familiar form and compatibility with the units
used in [7]. The relation between G and k is given in equation (5.3.8) via the
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derivation of the Lorentz force law. Simple compatibility with Wald [7] results
where k = 2 and G = 1. The sign of k is also fixed by (5.1.4). The result of
dimensional analysis gives kinetic charge, Q∗, in terms of a total 5D momentum
component P4 and its corresponding density P ∗4 :

Q∗ =
c√
G
λP ∗4 =

c√
G
P4 (3.4.2)

4 The Field Equations

As in [24] and [28] it is necessary to show that the three field equations that
derive from setting the 5D Einstein tensor vanishing do not unduly restrict the
possible range of electromagnetic solutions possible. Here the effort is less, the
results following simply by looking at each field equation in turn. It would of
course be expected that such loosening of Kaluza’s theory would also involve
the loss of the Lorentz force law derived for the torsion theories of [24] and [28].
This concern will be shown to be unfounded later.

4.1 The First Field Equation, k = 1

Looking at the Ricci tensor gives:

R̂ab = ∂cΓ̂
c
ba − ∂bΓ̂cca +

1

2
∂b(A

dFad) + Γ̂cbaΓ̂DDc − Γ̂CDaΓ̂DbC (4.1.1)

In the original Kaluza theory, where the electromagnetic fields are identified
with a Ricci flat Kaluza vacuum (ie R̂ab = 0), the Ricci flatness leads to a
constraint helping to impose nullish solutions when there is no scalar field. This
is the analagous equation to (2.0.2). Without sources the remaining significant
term is a nullish solution:

Rab = Rab − R̂ab

= −1

2
Ab∂cF

c
a −

1

2
Aa∂cF

c
b +

1

2
FacF

c
b

−1

2
(AbF

c
a +AaF

c
b )Γddc +

1

2
ΓcdaAbF

d
c +

1

2
AaF

c
b Γdbc

+
1

4
(AdF

c
a +AaF

c
d )(AbF

d
c +AcF

d
b ) +

1

4
AdFadA

cFbc (4.1.2)

In [24] and [28] redefining the theory by using torsion in the definition suf-
ficiently weakened this constraint. Here we take an alternative (and arguably
far simpler approach) of instead imposing only sourceless kinetic charge. This
has little bearing on R̂ab and so comparable field equations to either the orig-
inal Kaluza theory or other variants is simply not possible. There just isn’t a
constraint to elaborate.
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4.2 The Second Field Equation

Derivation of the second field equation gives:

R̂a4 =
1

2
∂cF

c
a +

1

2
F caΓddc +

1

4
F caA

dFcd −
1

2
(Γcda +

1

2
(AdF

c
a +AaF

c
d ))F dc

Looking at this at an \O(h2) L1 weak field limit (re-inserting general k):

R̂a4 →
k

2
∂cF

c
a (4.2.1)

This couldn’t be a clearer conception of Maxwell charge. This coincides with
the Einstein tensor at the same limit, thus providing an alternative conception
of the conservation of Maxwell charge locally (cf 5.1.1 and 5.1.2):

Ĝa4 → R̂a4 →
k

2
∂cF

c
a (4.2.2)

Unlike the previous works of [24] and [28] there are no further considerations.

This suggests the identification of Maxwell and kinetic charges at the L1
limit. A completed identification (with lowered indices) will be provided in the
sequel.

4.3 The Third Field Equation, k = 1

This section shows how the present theory releases the constraint of the third
torsionless field equation (2.0.4), thus allowing non-nullish solutions. As already
mentioned the constraint that the Ricci tensor be zero leads to no non-nullish
solutions in the original Kaluza theory if the scalar field is also constant (ie under
postulate B1). This is caused by setting R̂44 = 0 in that theory and observing
the terms. The result is that (when the scalar field is constant) 0 = FcdF

cd in
the original Kaluza theory. The traditional theory sets the following to vanishing
by postulate:

R̂44 = ∂C Γ̂C44 − ∂4Γ̂CC4 + Γ̂C44Γ̂DDC − Γ̂CD4Γ̂D4C = −Γ̂cd4Γ̂d4c = −1

4
F cdF

d
c (4.3.1)

This theory however loosens this constraint so that the Ricci tensor need
not be vanishing. This loosening follows from elementary considerations. As a
result the theory admits non-nullish solutions analogously to [24] and [28].

5 The Lorentz Force Law

5.1 Kinetic And Maxwell Charge

Toth [8] derives a Lorentz-like force for static scalar field in the original Kaluza
theory for a charge that is the momentum term in the fifth dimension. This was
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investigated using torsion terms in [24] and [28] by the current author. Here
we make use of K4 to investigate this further. To investigate the relationship
between kinetic charge and Maxwell charge we need the \O(h2) weak field limit
defined by L1 (cf equation 4.2.2). Discounting O(h2) terms:

Ĝa4 = R̂a4 − 1

2
ĝa4R̂ = R̂a4 − 1

2
(−Aa)R̂ → R̂a4

R̂a4 = ∂C Γ̂C4a − ∂4Γ̂C a
C + Γ̂CbaΓ̂DDC − Γ̂C a

D Γ̂DbC

Ĝa4 → R̂a4 = ∂cΓ̂
c4a (5.1.1)

Putting k back in, and then using (3.3.8), we get:

R̂a4 → 1

2
∂ckF

ac (5.1.2)

J∗a → −
αk

2
λ∂cF

c
a (5.1.3)

So kinetic and Maxwell charges are related by a simple formula. The right
hand side being Maxwell’s charge current (see p.81 of [6]), and has the correct
sign to identify a positive kinetic charge Q∗ with a positive Maxwell charge
source 4πQM , whenever αk > 0. In the appropriate space-time frame, and
Kaluza atlas frame, using (3.3.7), and approaching the \O(h2) limit given by
L1:

4πQM → +
2

αkλ
Q∗ (5.1.4)

This correlates the two definitions of charge at the required limit and differs
from [24] only due to the use of densities in the definition - allowing for the
possibility of varying Kaluza length. Nevertheless we use throughout the same
notation as [24], noting that mX ≡ pXλ.

5.2 A Lorentz-Like Force Law

Christoffel symbols will now be used to investigate the geodesic equation. We
will here initially use k = 1, a general k can be added in later.

Γ̂c(4b) = 1
2φ

2F cb − 1
2g
cdAbδdφ

2 (5.2.1)

Γ̂c44 = 1
2 ĝ

cD(δ4ĝ4D + δ4ĝ4D − δDĝ44) = - 1
2g

cdδdφ
2 (5.2.2)

Γ̂c(ab) = Γc(ab)+ 1
2g
cd(δa(φ2AdAb)+δb(φ

2AaAd)−δd(φ2AaAb))−Ac(δaφ2Ab+

δbφ
2Aa) (5.2.3)

So, for any coordinate system within the maximal atlas:

0 = d2xa

dτ2 + Γ̂a(BC)
dxB

dτ
dxC

dτ

= d2xa

dτ2 +Γ̂a(bc)
dxb

dτ
dxc

dτ +(φ2F ab −gadAbδdφ2)dx
b

dτ
dx4

dτ −
1
2g

adδdφ
2 dx4

dτ
dx4

dτ (5.2.4)
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Taking the charge-to-mass ratio to be:

Q′/mk0 =
dx4

dτ
(5.2.5)

We derive a Lorentz-like force law, putting k back in:

d2xa

dτ2
+ Γ̂a(bc)

dxb

dτ

dxc

dτ
= −(Q′/mk0)F ab

dxb

dτ
(5.2.6)

= −k(Q′/mk0)(φ2F ab − gadAbδdφ2)
dxb

dτ
− 1

2
gadδdφ

2 dx
4

dτ

dx4

dτ
(5.2.7)

5.3 Constant Kinetic Charge And The Lorentz Force Law

Having derived a Lorentz-like force law we look also at the momentum of the
charge in the Kaluza dimension. We look at this acceleration as with the Lorentz
force law. We have, with torsion (and k = 1):

0 =
d2x4

dτ2
+ Γ̂4

(BC)

dxB

dτ

dxC

dτ

=
d2x4

dτ2
+ Γ̂4

(bc)

dxb

dτ

dxc

dτ
+ 2Γ̂4

(4c)

dx4

dτ

dxc

dτ
+

1

2
Adδdφ

2 dx
4

dτ

dx4

dτ
(5.3.1)

The two equations (5.3.1),(5.2.7) under B1 become (for all k):

d2xa

dτ2
+ Γ̂a(bc)

dxb

dτ

dxc

dτ
= −k(Q′/mk0)F ab

dxb

dτ
(5.3.2)

d2x4

dτ2
+ Γ̂4

(bc)

dxb

dτ

dxc

dτ
= −k2(Q′/mk0)AcF

c
b

dxb

dτ
(5.3.3)

(5.3.3) shows that deviations from geodesic behaviour around the closed
Kaluza loops are small, which seems consistent with the conservation of charge
and the integrity of a charged particle.

Multiplying both sides of (5.3.2) by dτ
dτ ′

dτ
dτ ′ , where τ ′ is an alternative affine

coordinate frame, gives:

d2xa

dτ ′2
+ Γ̂a(bc)

dxb

dτ ′
dxc

dτ ′
= −k dτ

dτ ′
(Q′/mk0)F ab

dxb

dτ ′
(5.3.4)

Given Q∗ = Q′ dτdτ∗ and therefore mk0

m0
Q∗ = Q′ dτdt0 by definition, we can set

the frame such that τ ′ = t0 via the projected 4D space-time frame of the charge.
And the Lorentz force is derived:

d2xa

dτ ′2
+ Γ̂a(bc)

dxb

dτ ′
dxc

dτ ′
= −k(Q∗/m0)F ab

dxb

dτ ′
(5.3.5)

In order to ensure the correct Lorentz force law using the conventions of Wald
[7] p69, this can be rewritten as follows, using the antisymmetry of F ab = −F ab:
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= k(Q∗/m0)F ab
dxb

dτ ′
(5.3.6)

Using (5.1.4) - only here does the calculation vary from [24] - as its L1 weak
field limit is approached, this can be rewritten again in terms of the Maxwell
charge:

→ k(
αk

2
(4πQMλ)/m0)F ab

dxb

dτ ′
(5.3.7)

The result is that we must relate G and k to obtain the Lorentz force law
in acceptable terms:

d2xa

dτ ′2
+ Γ̂a(bc)

dxb

dτ ′
dxc

dτ ′
→ (QM/ρ0)F ab

dxb

dτ ′
and k = 2

√
G (5.3.8)

This shows that the Lorentz force law proper can be derived given (5.1.4)
and the required limit ([B1] and [L1]). This of course suggests that in this
variant of the theory the universality of Lorentz force law is dependent on the
constancy, or approximate constancy, or local constancy, of the Kaluza length.
This is in contrast to the analysis in [24] which did not make this apparent. It
is, however, essentially the same result as in [28], albeit using a different theory.

6 General Relativistic, Classical, And Empirical
Limits

A simple observation suffices to demonstrate the relativistic limit for geodesics:

Γ̂cab − Γcab is order O(h2)

At the more local classical level, usually taken to be mean the Newtonian
limit, we also need the approximate constancy of the Kaluza length to ensure an
experimentally valid Lorentz Force law. This follows from the geodesic deviation
equation and the fact that the Riemannian tensor is O(h), which is defined to
be small, meaning << 1, at the classical limit. The vector u at the classical
limit has, by construction, components of order O(1). Thus the changes in
vector n̂ = (0, 0, 0, 0, 1) that might represent a change in the Kaluza length, are
proportionately O(h) small relative to when n̂ has unit length. This scales down
for arbitrarily small Kaluza lengths: deviations at the classical scale always
being O(h) times smaller in significance than the reference vector. That is,
there is no significant change in Kaluza length until a more cosmological or
general relativistic scale is reached. Meaning when net metric variations cease
to be O(h) small. Or equally when L1 ceases to apply. The geodesic deviation
equation [6] is as follows:

∇̂u∇̂un̂+ R̂iemann(..., u, n̂, u) = 0 (6.0.1)
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Further, in general relativity, there are energy conditions and/or positivity
requirements on mass/energy. There is also causality. None of these things are
unambiguously defined in that there is no correct or definitive energy condi-
tion, but rather a number of choices. And sometimes negative mass/energy is
considered, so even positivity of mass/energy is not quite as secure as it might
usually be assumed. Further, quantum mechanics shows that causality can only
be a macroscopic result. And then there are such adjustments as are made
from time to time, such as inflation or the cosmological constant. Stability of
Kaluza solutions has also historically been a problem for Kaluza-type theories.
Further, adjustments to general relativity are required from time to time, such
as inflationary models or cosmological constants. These issues are all bound
up one with the other to some extent. For example we could change the en-
ergy condition used so as to allow for a cosmological constant, or under certain
conditions we might derive positivity from dominant energy. So providing a
definitive solution in any single paper is just not feasible. We can however show
that possible resolutions may exist by providing an example.

In [24] the idea that the super-energy tensor of the Riemann tensor (ie the
generalised Bel tensor) [17][18] could be conserved was posed. But the arbi-
trariness of the choice of connection (with or without torsion?) made any single
formulation somewhat arbitrary. This became a recurrent problem in [28]. The
same could be done here, however, without any ambiguity - there is only one
connection. The super-energy tensor of the Riemannian tensor could be hy-
pothesized to be conserved with respect to the only covariant derivative in sight
- the usual Levi-Civita one. This conservation law would ensure that the Rie-
mannian curvature developed causally, as described in [16]. This gives some
sort of analogous causality also for the metric in that the metric must develop
consistently with the curvature at least. Though causality of the metric does not
follow absolutely. Note that absolute causality of the metric may not even be
required, empirically, if quantum mechanics is to have any macroscopic effects.
To the extent that causality is present in the 4D metric, as a result of the 5D
causality of the Riemannian curvature thus hypothesised, we would then expect
many solutions to satisfy dominant energy due to the positivity theorems. Yet,
in addition, there might be just enough wiggle room to deal with issues of infla-
tion and the apparent dark energy. In particular the proofs used elsewhere to
argue for instability of Kaluza theories become invalidated as nobody has dealt
with this type of set-up.

Alternatively, if the above suggestion is unpalatable because it raises more
questions than answers (which it does), we could just impose 4D dominant en-
ergy and/or any required cosmological constant by the expedient method of
postulate, as required and when required. We could further add any analogous
constraints to the 5D metric as also required. This raises no questions, is evi-
dently valid, but has the contrary down-side that it would also raise no answers!
- stability remains an issue. Though one wonders if a well chosen cosmologi-
cal constant or variant energy condition might not impose equilibrium under
specific circumstances.

This paper does not seek to go further than offer possibilities for further
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research on this matter. The correct resolution, if such there is, may as yet be
unidentified.

7 Conclusion

Kaluza’s 1921 theory of gravity and electromagnetism using a fifth wrapped-up
spatial dimension is inspiration for many modern attempts to develop new phys-
ical theories. However for a number of reasons it is often considered untenable.
Here an alternative Kaluza theory is presented.

The Kaluza dimension (in the direction of which partial derivatives are
treated as vanishing) is identified with a cylinder condition as in Kaluza’s orig-
inal theory. The difference here is that electromagnetic fields without charge
source are not identified with Ricci flat 5D Kaluza space, but a more general con-
dition defined as the vanishing of 5D momentum in the background. When the
scalar field is set constant (and well-behaved assumptions are made about the
paths of charged particles), and a weak field limit defined, then an improved uni-
fication of gravity and electromagnetism results. Improved because the Lorentz
force law is derived from first principles, and because a more complete range of
electromagnetic fields (i.e. the non-nullish solutions) become possible without
making arbitrary assumptions or making too many constraints on a variable
scalar field. The constancy of the scalar field was here assumed in order to
obtain the electromagnetic limit. The current theory was in effect derived from
the need to allow for missing solutions (including electrostatic fields) and to
derive the Lorentz force law simultaneously; and by searching for the simplest
way to do it.

The physicality of the theory is that the original Ricci flat assumption of
Kaluza is too restrictive, but that what is necessary is the identification of
Maxwellian charge and 5D momentum. Simply replacing the Ricci flat assump-
tion with vanishing 5D momentum - referred to here as kinetic charge - leads
to the same results but with a larger set of solutions. Since 5D momentum is
identified with Maxwell charge, at a suitable limit, the physicality of defining
sourceless solutions by its vanishing is evident. Previous attempts to do the
same thing by the current author had used torsion and are more complex. The
simple expedient of replacing the Ricci flatness assumption with a sourceless as-
sumption works just as well, or better. In [24] and [28], equally, the broadening
of the Ricci flat assumption had been undertaken, but by using torsion instead.
Torsion, so it turns out, is not necessary!

Stability is a recurring objection to Kaluza theories. However a device such
as variant energy conditions, or even super-energy conditions, could be used:
requiring further investigation. Too many issues are raised for a single paper.
And indeed a correct resolution may involve empirical research. It is therefore
most likely impossible and probably undesirable to resolve in one paper.

Why go to the effort to unify electromagnetism and gravitation and to make
electromagnetism fully geometric? Because experimental differences could be
detectable given sufficient technology on the one hand, and, on the other, sim-
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ply because such an attempt at unification might be right or lead in the right
direction [22][23]. It may widen the search. This paper itself is the result of
the widening of the search suggested by [24][28]. This theory differs from both
general relativity and Einstein-Cartan theory, other Kaluza theories, as well as
the Kaluza-Cartan theories presented previously [24][28]. It constitutes an im-
provement of the original Kaluza theory, making a key adjustment to the usual
postulates: the relaxation of the 5D Ricci flat limit coupled with an alternative
notion of charge sources in 5D momentum.

With thanks to Viktor Toth, Philip Lishman, Maggie Norris, and to Ilaria.
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