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Theory of the Nuclear Binding Energy

Sylwester Kornowski

Abstract: Here, within the Scale-Symmetric Theory (SST), we present the mathematically 
very simple theory of nuclear binding energy. We start from the Newtonian dynamics. It leads 
to binding energy proportional to coupling constant (or running coupling) of interaction and 
inversely proportional to distance between interacting objects. Applying the new formula, as 
some examples, we calculated binding energy of electron in ground state in hydrogen atom 
(13.6 eV), mean binding energy per nucleon in the alpha particle (7.07 MeV), mean binding 
energy per nucleon in the nucleus of iron atom (8.79 MeV), in nucleus of nobelium atom 
(7.21 MeV), for nucleus of oxygen atom (7.91 MeV) and for nuclei containing more than 56 
nucleons. We present also the theory of deuteron. Obtained results are consistent with 
experimental data.

1. Introduction
Here, within the Scale-Symmetric Theory (SST), we present the mathematically very simple 

theory of nuclear binding energy and theory of deuteron.
The General Relativity leads to the non-gravitating Higgs field composed of tachyons [1A]. 

On the other hand, the Scale-Symmetric Theory (SST) shows that the succeeding phase 
transitions of such Higgs field lead to the different scales of sizes/energies [1A]. Due to the 
saturation of interactions via the Higgs field and due to the law of conservation of the half-
integral spin that is obligatory for all scales, there consequently appear the superluminal 
binary systems of closed strings (entanglons) responsible for the quantum entanglement (it is 
the quantum-entanglement scale), stable neutrinos and luminal neutrino-antineutrino pairs 
which are the components of the luminal Einstein spacetime (it is the Planck scale), cores of 
baryons (it is the electric-charges scale), and the cosmic structures (protoworlds; it is the 
cosmological scale) that evolution leads to the dark matter, dark energy and expanding 
universes (the “soft” big bangs) [1A], [1B]. The non-gravitating tachyons have infinitesimal 
spin so all listed structures have internal helicity (helicities) which distinguishes particles 
from their antiparticles [1A]. SST shows that a fundamental theory should start from infinite 
nothingness and pieces of space [1A]. Sizes of pieces of space depend on their velocities 
[1A]. The inflation field started as the liquid-like field composed of non-gravitating pieces of 
space [1A]. Cosmoses composed of universes are created because of collisions of big pieces 
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of space [1A], [1B]. During the inflation, the liquid-like inflation field (the non-gravitating 
superluminal Higgs field) transformed partially into the luminal Einstein spacetime (the big 
bang) [1A], [1B]. In our Cosmos, the two-component spacetime is surrounded by timeless 
wall – it causes that the fundamental constants are invariant [1A], [1B].

SST shows that to obtain results consistent with experimental data, the big piece of space 
that transformed into the inflation field had before the collision a rotational energy very low in 
comparison with kinetic energy [1A]. It leads to conclusion that there was low anisotropy of 
the inflation field i.e. of the expanding superluminal non-gravitating Higgs field. It means that 
to such field we can apply the Kasner metric, [2], that is a solution to the vacuum Einstein 
equations so the Ricci tensor always vanishes. The Kasner metric is for an anisotropic cosmos 
without matter so it is a vacuum solution for the Higgs field. The one of the two semi-
symmetrical Kasner solution, (2/3, 2/3 –1/3), we interpret as virtual Higgs cyclones with 
toroidal and poloidal motions. Such tori appear in the succeeding phase transitions of the 
Higgs field [1A].

Due to the symmetrical decays of bosons on the equator of the core of baryons, there 
appears the atom-like structure of baryons described by the Titius-Bode orbits for the nuclear 
strong interactions: Rd = A + dB, where A = 0.6974425 fm, A/B = 1.3898 and d = 0, 
1, 2, 4 [1A].

Applying 7 parameters only and a few new symmetries we calculated a thousand of basic 
physical (and mathematical) quantities (there are derived the physical and mathematical 
constants as well) consistent or very close to experimental data and observational facts 
(http://vixra.org/author/sylwester_kornowski ). In SST there do not appear approximations,
mathematical tricks, and free parameters which are characteristic for the mainstream particle 
physics and mainstream cosmology.

2. The four-shell model of atomic nucleus
Within the Scale-Symmetric Theory (SST) we can formulate the four-shell model of atomic 

nuclei.

2.1 Volumetric binding energy of a nucleus per nucleon
The sum of the masses of the relativistic charged and neutral pions Wd in the d = 1 state is 

424.403 MeV [1A]. The nucleons that an alpha particle is composed of, occupies the 
vertices of the square with the diagonal of the square equal to A + 4B. The exchanged pions 
are most frequently located in the centre of this square. As A / Rd = v2 / c2, mW(+-o),d =
mpion(+-o) / (1 – (v2 / c2))1/2, and the nucleon-pion distance is (A + 4B) / 2, the sum of the 
masses of the charged and neutral Wd pions is 394.499 MeV [1A]. The distance between 
the mass of the unbound and bound states is 29.904 MeV per two nucleons. We can see that 
when side of the square is

Side = (A + 4B) / 21/2 (1)

then the volumetric binding energy per nucleon is 14.952 MeV.

2.2 The magic numbers and radii of nuclei
Each nucleon occupies a cube which has a side equal to ac = (A + 4B) / 21/2 =

1.91258·10–15 m. We can assume that the nucleons inside a nucleus are placed on the 
concentric spheres where the distances between them equal ac. This means that the radius of 
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the first sphere is equal to ac/2. This, therefore, leads to the following formula for the radii of 
the spheres (they are not the radii of the nuclei because the spheres have a thickness)

rsn = (n – 0.5) ac , (2)

where n = 1, 2, 3, 4.
The maximum number of nucleons placed on a sphere is (one nucleon occupies square ac

2)

An = 4  rsn
2 / ac

2 = 4  (n – 0.5)2 (3)

i.e. A1 = 3.14, A2 = 28.27, A3 = 78.54 and A4 = 153.94.
If we round these numbers to the nearest even number (nuclei containing an even number of 

nucleons are more stable), we obtain the following series: 4, 28, 78, and 154. This means 
that on the first four wholly filled spheres there are 264 nucleons. As we see by the first two 
numbers, the sum of the first and third and the result of subtracting the third and second, and 
the fourth and second numbers, we can see that the result is the well-known magic numbers of 
4, 28, 82, 50, 126. This cannot be a coincidence which confirms that we are on the right 
path in order to build the correct theory of an atomic nucleus. When the number of neutrons 
becomes equal to one of the magic numbers then transitions of the protons between lower and 
higher spheres occurs. This increases the binding energy of a nucleus.

To calculate the electric radius of a nucleus (i.e. the radius of a nucleus obtained in 
experiments based on the bombardment of a nucleus by electrons) we have to add the electric 
radius of the nucleon to the radius of the last sphere. The charged pions in the nucleons are 
placed in the d = 1 state so due to the thermal motions of nucleons, we must add to radius of 
last sphere the radius of the d = 1 state i.e. A + B = 1.19927·10–15 m. Furthermore, the 
electric radius of the nucleus An = 110 is

rje(An=110) = 2.5ac + (A + B) = 5.98·10–15 m. (4)

If we define the electric radius by using the formula

rje = roe An
1/3,                  (5)

then for a nucleus containing An = 110 nucleons we obtain roe = 1.25 fm. The value roe
changes from 1.28 fm for An = 32 to 1.23 fm for An = 264.

The range of the nuclear strong interactions of a nucleon is A + 4B so the radius of a 
nucleus for strong interactions (i.e. the radius of a nucleus obtained during experiments based 
on the bombardment of a nucleus by nucleons having energy of approximately 20 MeV) is 
greater than the electric radius

rjj(An=110) = 2.5ac + (A + 4B) = 7.49·10–15 m. (6)

If we define such a radius by using the formula

rjj = roj An
1/3,             (7)
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then for a nucleus containing An = 110 nucleons we obtain roj = 1.56 fm. The value roj
changes from 1.76 fm for An = 32 to 1.47 fm for An = 264.

2.3 Model of dynamic supersymmetry for nuclei
From [3] results that the nucleons in a nuclei are grouped in following way

a = 2 protons and 2 neutrons,
b = 3 protons and 5 neutrons,
c = 3 protons and 4 neutrons,
d = 1 proton and 1 neutron.

The new theory explains the above as follows
a) A proton exists in two states with the probabilities [1A]:

y = 0.50838 and 1 – y = 0.49162.
If we multiply these probabilities by two (for a deuteron) or by four (for an alpha particle), 

we obtain the integers (approximately) because the probabilities are that y and 1 – y have 
almost the same values.

b) A neutron exists in two states with the probabilities [1A]:
x = 0.62554 and 1 – x = 0.37446.

If we multiply these probabilities by eight, we obtain in the integers approximately 5
(5.004) and 3 (2.996). The 8 is the smallest integer which leads to integers (in 
approximation).

c) For a system containing 50% of a) and 50% of b), we obtain the following probabilities
(x + y) / 2 = 0.56696 and (1 – x + 1 – y) / 2 = 0.43304.

This factor is equal to 7 – then we obtain 3.969 i.e. approximately 4, and 3.031 i.e. 
approximately 3.

A nucleus chooses a mixture of the states a, b, c and d in such a manner the binding energy 
was the greatest. The 2p2n groups appear when the interactions of protons dominate whereas 
the 3p5n groups appear when the interactions of neutrons dominate.

2.4 Theory of the deuteron that follows from SST [1A]
The magnetic moment of a deuteron is only slightly lower than the sum of the magnetic 

moments of a proton and a neutron. This suggests that the pn binary system is bound for short 
times in a region having a high negative pressure. We can assume that negative pressure 
appears due to the exchanges of the “free” neutral pions. The “free” neutral pions appear due 
to the weak interactions because then pions can run out from the nuclear strong field. Since in 
neutron is the resting neutral pion in the HoZoπo state (probability is 1 – x = 0.3744629) 
then emissions and absorptions of neutral pions do not change magnetic moment of neutron. 
Calculate probability of emission of the neutral pion by a proton. Due to the WoZoπo

transitions, the emission of neutral pion by proton changes its magnetic moment – it follows 
from the fact that such transition changes the probabilities y and y – 1 calculated for free 
protons. In such transition, the angular momentum of the relativistic Wo cannot change. This 
condition causes that during the emission of the pion πo, the electromagnetic loop Zo (spin 
speed of this loop is equal to the speed c) is in the d = 4 tunnel, i.e. in the last tunnel for 
strong interactions, because then the angular momentum of Wo

d=1 is close to the angular 
momentum of Zo (the ratio of these two angular momentums is u = 0.9575329 ≈ 1).

Probability of emission of the “free” neutral pion (it is the binary system of photon loops) is 
equal to the ratio of the fine-structure constant (it concerns the photon loops; (EM =
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1/137.036) and the coupling constant for the nuclear strong interactions of the neutral pion 
(s(pion) = 1) i.e. z = EM / s(pion) = 0.00729735. SST shows that probability of the 
H+Wo state is y = 0.5083856. Probability of the H+Wo and H+Zoπo states of proton in the 
neutron-proton bound state is w = y + z = 0.515683 whereas of the HoW+ state is 1 – w
= 0.484317.

Applying the formula for magnetic moment derived within SST, we obtain that the changed 
proton magnetic moment in the bound state in deuteron in the nuclear magneton is

proton* / o = mproton w / mH(+) + mproton (1 – w) / mW(+),d=1 = +2.77128.    (8)

The neutron magnetic moment in the nuclear magneton calculated within SST is

neutron / o = mproton x / mH(+) – mproton x / mW(-),d=1 = –1.91343. (9)

We can see that the sum, i.e. the deuteron magnetic moment in the nuclear magneton, is

deuteron / o = proton* / o + neutron / o = +0.85785.      (10)

Calculate the matter radius of deuteron. We can assume that it is a cylinder. The radius of 
the base of the cylinder is RCB = A + 4B ≈ 2.7048 fm. SST shows that the distance 
between the nucleons in deuteron is 2πA/3 and it is the height of the cylinder RCH = 2πA/3
≈ 1.4607 fm. To calculate the mean radius, we assume that volume of an abstract sphere 
with radius RSph,matter is the same as the cylinder

RSph,matter = (3 RCB
2 RCH / 4)1/3 ≈ 2.001 fm. (11)

To obtain the binding energy for a deuteron we must take into account the electric 
interactions.

The Wd
– and Wd

+ interact from distance equal to D = 2πA/3 = 1.46072 fm for a period 
equal to 1 – w.

The H+
proton and W– interact from L for a period equal to x – (1 – y), where

L = [(2 π A / 3)2 + (A + B)2]1/2 = 1.70266 fm. (12)

The H+
proton and H+

neutron interact from D for a period equal to x – (1 – y).
The H+

neutron and W+
proton interact from L for a period equal to 1 – w.

This leads to the proton-neutron electric attraction in a deuteron equal to

ΔEem / c2 = e2 (x + y + w – 2) (1/L – 1/D) / (107 f) = 0.0490819 MeV, (13)

where f = 1.7826617·10–30 kg/MeV.
Therefore, the binding energy of deuteron emitting two free neutral pions and bound due to 

the volumetric binding energy equal to ΔEvolumetric = 29.903738 MeV and electromagnetic 
energy ΔEem / c2 = 0.0490819 MeV is

ΔEnp = (2mpion(o) + ΔEvolumetric) z + ΔEem = 2.22372 MeV. (14)
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2.5 The path of stability
Applying the model of dynamic supersymmetry for nuclei (see Paragraph 2.3), in Table 1 

we showed the abundances of the structures a, b, c and d in most stable nuclei.

Table 1 Main path of stability of nuclei
ZXA a b c d ZXA a b c d ZXA a b c d

1H1 36Kr84 9 6 71Lu175 10 16 1
2He4m 1 37Rb85 9 5 1 1 72Hf180 9 18
3Li7 1 38Sr88m 10 6 73Ta181 9 17 1 1
4Be9 1 1 39Y89 10 5 1 1 74W184 10 18
5B11 1 1 40Zr90m 12 5 1 75Re187 9 18 1
6C12 3 41Nb93 11 5 1 1 76Os192 8 20
7N14 3 1 42Mo98 10 7 1 77Ir193 8 19 1 1
8O16m 4 43Tc97 12 5 1 1 78Pt194? 10 19 1
9F19 3 1 44Ru102 11 7 1 79Au197 9 19 1 1
10Ne20 5 45Rh103 12 6 1 80Hg202 8 21 1
11Na23 4 1 46Pd106 12 7 1 81Tl205 7 21 1 1
12Mg24 6 47Ag107 13 6 1 82Pb208m 8 22
13Al27 5 1 48Cd114 10 9 1 83Bi209 8 21 1 1
14Si28 7 49In115 11 8 1 84Po209 10 20 1 1
15P31 6 1 50Sn120m 10 10 85At210 12 20 1
16S32 8 51Sb121 10 9 1 1 86Rn222 5 25 1
17Cl35 7 1 52Te130 6 13 1 87Fr223 6 24 1
18Ar40 6 2 53I127 10 10 1 88Ra226 6 25 1
19K39 8 1 54Xe132 9 12 89Ac227 7 24 1
20Ca40m 10 55Cs133 9 11 1 1 90Th232 6 26
21Sc45 7 1 1 1 56Ba138 8 13 1 91Pa231 8 24 1
22Ti48 8 2 57La139 9 12 1 92U238 5 27 1
23V51m 7 2 1 58Ce140 11 12 93Np237 7 25 1 1
24Cr52m 9 2 59Pr141 11 11 1 1 94Pu244 5 28
25Mn55 8 2 1 60Nd142 13 11 1 95Am243 7 26 1
26Fe56 10 2 61Pm147 11 12 1 96Cm247 6 27 1
27Co59 9 2 1 62Sm152 10 14 97Bk247 8 26 1
28Ni58m 12 1 1 63Eu153 10 13 1 1 98Cf251 7 27 1
29Cu63 10 2 1 64Gd158 9 15 1 99Es254 7 28 1
30Zn64 10 2 1 1 65Tb159 10 14 1 100Fm253 9 26 1 1
31Ga69 9 3 1 1 66Dy164 9 16 101Md258 8 28 1
32Ge74 8 5 1 67Ho165 9 15 1 1 102No256 12 26
33As75 9 4 1 68Er166 11 15 1 103Lr256 14 25
34Se80 8 6 69Tm169 10 15 1 1 104Ku260 13 26
35Br79 10 4 1 70Yb174 9 17 1
ZXA – denotes the atomic-number/symbol-of-element/mass-number
a = 2p + 2n = 2He4; b = 3p + 5n; c = 3p + 4n = 3Li7; d = p + n = 1D2
? - denotes the discrepancy with the results in the periodic table of elements
m – denotes magic-number nucleus

The consistency with the experimental data is very high – only one result is inconsistent 
with experimental data. SST shows that the abundance of the 78Pt194 should be slightly 
higher than the 78Pt195.
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3. Coupling constants
According to SST, the spacetime as a whole is flat. According to Newton’s second law, in 

the regular 3-dimensional Euclidean space is

Fi = d pi / d t. (15)

According to SST, constants of interactions Gi are directly proportional to the inertial mass 
densities of fields carrying the interactions [1A]. The following formula defines the coupling 
constants (or running couplings), i, of all interactions [1A] (notice that mi can be both mass 
or massless energy responsible for interactions)

i = Gi Mi mi / (c h),                    (16)

where Mi defines the sum of the mass of the sources of interaction plus the mass of the 
component of the field, whereas mi defines the mass/energy of the carrier of interactions.

The strong coupling constant for pions exchanging the large loop (its mass is a little higher 
than a half of the mass of neutral pion, 67.5444 MeV) is S

 = 1 [1A]. Coupling constant 
for strongly interacting protons, at low energies (as it is in the atomic nuclei), is S

pp = 
14.4038 whereas for strongly interacting neutrons is S

nn = 14.4230 [1A]. To the alpha 
particle, we can apply the mean value S

NN = 14.4134. When we accelerate a baryon, then 
there decreases the spin speed of the large loop so mass of it decreases as well – it leads to the 
running coupling for the nuclear strong interactions [1A], [4].

Assume that a carrier of interactions interacts simultaneously, for example, strongly and 
electromagnetically. Then, strong mass is S m whereas electromagnetic mass of the strong 
mass is em S m. It leads to conclusion that resultant coupling constant, , is the product, Π, 
of coupling constants involved in the interactions

 = Π i.                                  (17)

When a carrier is a binary system then there appears the factor 2 i.e.  = 2 Π i.

4. Calculations
4.1 Derivation of the main formula
Due to the radial emissions of carriers of interactions or radial polarization of virtual pairs, 

there is the inverse square law

Fi = Gi Mi mi / r2.                        (18)

Applying formulae (15) – (18), we obtain

∫ dpi = Π i c h ∫ (1 / r2) dt.                                            (19a)

p v = Π i c h ∫ (1 / r2) dr. (19b)



8

The radial kinetic energy, Ekin, transforms into radiation energy, Eradiation, so into binding 
energy, Ebinding, as well i.e. Ekin = p v / 2 = Eradiation = – Ebinding. We can rewrite formula 
(19b) as follows

Ebinding = – Π i c h / (2 r). (20)

When we express this energy in MeV then there appears the factor f

Ebinding [MeV] = mbinding c2 = – Π i c h / (2 r f), (21)

where f = 1.7826617·10–30 kg/MeV.
Introduce symbol k

k = h / (2 c f) = 9.86635·10-14 [MeV m].     (22)

Formulae (21) and (22) lead to

mbinding [MeV] = – k Π i / r. (23)

It is the main formula.

4.2 Hydrogen atom
Calculate binding energy of electron in the ground state in hydrogen atom i.e. Π i = em

= 1/137.036 and r = 0.529177·10–10 m. Applying formula (23), we obtain

mbinding [MeV] = – 13.6 ·10–6 MeV.              (24)

This value is consistent with experimental data.

4.3 Alpha particle
Calculate the mean binding energy per nucleon in the alpha particle.
According to the SST, the two protons and two neutrons are placed in vertices of square 

which diagonal is D = A + 4B, where A = 0.6974425 fm is the radius of the core of 
baryons, whereas B = 0.5018395 fm [1A]. The D = 2.7048 fm defines radius of the last 
shell in baryons for strongly interacting pions [1A]. There are 6 directions of strong 
interactions i.e. the 4 sides of the square and its two diagonal directions. It leads to conclusion 
that mean distance of strong interactions is

R = [2 D + 4 D / sqrt(2)] / 6 = 2.176655 fm. (25)

The strong interactions of the four nucleons follow from the exchanges of the charged 
pions. It means that they interact strongly, S

NN = 14.4134, and electromagnetically em = 
1/137.036 i.e.

Π i = em S
NN = 0.105180.               (26)
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From formulae (23), (25) and (26) we obtain the total strong binding energy for the alpha 
particle

mbinding,S,total [MeV] = – 6 k em S / R = – 28.606 MeV. (27)

From the obtained absolute value 28.606 MeV, we must subtract the energy Eem which 
follows from the electrostatic repulsion of the protons. They can occupy two arbitrary vertices 
of the square so we obtain (there are the six different directions but simultaneously is only one 
direction of electrostatic repulsion contrary to the previous six simultaneous directions of 
strong attraction)

Eem = k em / R = 0.33077 MeV.           (28)

The mean binding energy per nucleon, ΔE, in the alpha particle is

ΔE = (mbinding,S,total + Eem) / 4 = – 7.069 MeV ≈ – 7.07 MeV.      (29)

From experimental data follows that mass of alpha particle is 3727.379240(82) MeV
[5]. Mass of two protons and two neutrons is 3755.67485(84) MeV [6]. It leads to the 
mean binding energy per nucleon about –7.074 MeV. We can see that the theoretical result, 
–7.069 MeV, is very close to experimental data.

4.4 Nucleus of iron atom
According to the extension of supersymmetry in nuclear structure, [3], Paragraph 2.3, in 

atomic nuclei there are groups of nucleons containing following number of protons, p, and 
neutrons, n: A*(2p2n) – it is the alpha particle, B*(3p5n), C*(3p4n) – it is the nucleus of 
lithium, D*(1p1n) – it is the deuteron.

Here, within SST we proved that there dominate the groups A*(2p2n) and B*(3p5n).
Nucleus of iron contains 10 A*(2p2n) alpha-particles/squares and 2 Type B*(3p5n)

groups/rectangular-prisms. As the bases of the rectangular-prisms are the alpha particles (the 
Type 2A* = 4p + 4n prism) or one alpha particle and one group containing one proton and 
three neutrons (Type B* prism). The strong interactions between the bases should not destroy 
the bases so the strong fields of the bases should be tangent only i.e. the centre-to-centre 
distance between the bases should be D = A + 4B. It leads to conclusion that there appear 
only four additional directions of strong interactions with mean distance equal to D.

In the nucleus of iron atom there are 7 rectangular prisms. In the vertices of each 
rectangular prism are placed 8 nucleons. Calculate the total strong binding energy of such 
nuclear structure.

There are 6 + 6 + 4 = 16 directions of strong interactions i.e. the 8 interactions on 
distance D/sqrt(2) and 8 on distance D. The mean range of strong interactions is

RRP = [8 D + 8 D / sqrt(2)] / 16 = 2.308691 fm. (30)
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The strong interactions of the 8 nucleons follow from the exchanges of the charged pions. It 
means that they interact strongly, S,2A*

NN = 14.4134, S,B*
NN = (3S

pp + 5S
nn)/8

= 14.4158, and electromagnetically em = 1/137.036 i.e.

(Π i )2A* = em S,2A*
NN = 0.105180, (31a)

(Π i )B* = em S,B*
NN = 0.105197.                                  (31b)

The total strong binding energy for the Type 2A* and B* rectangular prisms are

mbinding,S,2A* [MeV] = – 16 k em S,2A* / RRP = – 71.919 MeV,   (32a)

mbinding,S,B* [MeV] = – 16 k em S,B* / RRP = – 71.931 MeV. (32b)

The total strong binding energy of nucleus of iron atom is mbinding,S,Fe = –503.456 MeV
(i.e. 5(–71.919) + 2(–71.931) MeV).

From the obtained absolute value +503.456 MeV, we must subtract the energy Eem which 
follows from the electrostatic repulsion of the protons. They can occupy arbitrary vertices so 
we obtain (there are 6 different directions of electrostatic repulsion in 2A* and 3 in B*)

Eem,2A* = 6 k em / RRP = 1.8711 MeV,   (33a)

Eem,B* = 3 k em / RRP = 0.9356 MeV.   (33b)

In nucleus of iron atom, the heights of the prisms are perfectly parallel and their bases lie on 
the same two parallel planes. It causes that there is high screening of the electric charges 
(protons) by neutrons placed between them. It leads to conclusion that practically we can 
neglect in nucleus of iron atom and nuclei with low number of prisms, the electrostatic 
repulsion between the prisms. When number of the prisms increases then there appears higher 
and higher chaos in their orientation. We can assume that in nuclei containing about 256
nucleons there is no electrostatic screening.

The strong interactions between the prisms are in the cost of their inner binding energy.
The mean binding energy per nucleon, ΔEFe, in the nucleus of iron atom is

ΔEFe = (mbinding,S,Fe + 5 Eem,2A* + 2 Eem,B*) / 56 =
= – 8.790 MeV = – 8.79 MeV.               (34)

4.5 Nucleus of nobelium atom
Here, applying the same method, we calculate the mean binding energy per nucleon in the 

nucleus of the nobelium atom.
According to the SST, nucleus of nobelium atom (main path of stability) consists of 12

alpha-particles/squares and 26 the Type B*(3p5n) groups/rectangular-prisms i.e. there are 6
Type 2A* and 26 Type B* rectangular prisms. It leads to conclusion that the total strong 
binding energy of nucleus of nobelium atom is mbinding,S,No = – 2301.720 MeV (i.e. we 
have 6(–71.919) + 26(–71.931) MeV).
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Number of rectangular prisms in nobelium is about 32 / 7 ≈ 4.57 times greater than in iron 
so we should not neglect the higher orders concerning the electrostatic repulsion of the 
rectangular prisms. Assume that mean distance between the 32 rectangular prisms is D so the 
strong interactions between them cannot destroy them. There are N = 496 (i.e. 31 + 30 + 
29 + … + 3 + 2 + 1 = 496) directions between the rectangular prisms associated with their 
electrostatic repulsion. Mean relative electric charge of a rectangular prism is Q/e = (6·4 + 
26·3) / 32 = 3.1875 (notice that the charged pions carry elementary electric charge). The 
second order concerning the electrostatic repulsion leads to

Eem,second = N (Q / e) k em / D = 420.842 MeV. (35)

The mean binding energy per nucleon, ΔENo, in the nucleus of nobelium atom is

ΔENo = (mbinding,S,No + 6 Eem,2A* + 26 Eem,B* + Eem,second ) / 256 =
= – 7.208 MeV ≈ – 7.21 MeV.                             (36)

This result is consistent with experimental data.

4.6 Nuclei containing more than 56 nucleons
In the nuclei containing 1 + 6 = 7 prisms (one prism in centre and six satellite prisms – it is 

the nucleus of iron; it looks as two parallel H letters in distance D) or 2 + 6 = 8 prisms (two 
prisms in centre and six satellite prisms) or 2 + (2 + 6) = 10 prisms which are some analog 
to electrons in n = 1 and n = 2 states in atoms, the prisms should be parallel. It leads to 
conclusion that we can neglect the electrostatic repulsion of prisms for atomic nuclei 
composed of about 56 to 80 nucleons. Average nuclear binding energy per nucleon for such 
nuclei should be close to 8.8 MeV.

For nuclei with atomic number, AN, greater than 80, the electrostatic repulsive energy 
between the prisms should increase from zero for AN = 80 to Eem,second = 420.842 MeV
for AN = 256 (formula (35)). It leads to following formula

Eem,second(AN ≥ 80) = X (AN – 80) / 8 [MeV], (37)

where X = 19.1292 MeV (notice that similar value, 19.367 MeV, appears in the theory of 
hyperons [1A].

The mean binding energy per nucleon for nuclei AN ≥ 80 is

ΔE(AN ≥ 80) = (mbinding,S + x Eem,2A* + y Eem,B* + Eem,second(AN ≥ 80)) / AN. (38)

4.7 Nucleus of oxygen atom
In nucleus of oxygen atom there should be two Type 2A* prisms. But there is one Type 

2A* prism and two satellite alpha particles and both alpha particles lie on one of the two 
planes associated with the two bases of the Type 2A* prism. The nucleus of oxygen looks as 
letter T. For such structure, the screening of electrostatic repulsions between the Type 2A*
prism and the two satellite alpha particles are more effective than for structure composed of 
two Type 2A* prisms.
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Applying formulae (27), (28), (32a) and (33a), for average binding energy per nucleon, 
ΔEO, in the nucleus of oxygen, we obtain

ΔEO = (2mbinding,S,total + 2Eem + mbinding,S,2A* + Eem,2A*) / 16 =
= – 7.912 MeV ≈ – 7.91 MeV.               (39)

Generally, in the nuclei for which AN < 50, there is less the prisms and more the alpha 
particles.

5. Summary
Here, within the Scale-Symmetric Theory (SST), we present the mathematically very simple 

theory of nuclear binding energy. We start from the Newtonian dynamics. It leads to binding 
energy proportional to coupling constant (or running coupling) of interaction and inversely 
proportional to distance between interacting objects. Applying the new formula, as some 
examples, we calculated binding energy of electron in ground state in hydrogen atom (13.6 
eV), mean binding energy per nucleon in the alpha particle (7.07 MeV), mean binding energy 
per nucleon in the nucleus of iron atom (8.79 MeV), in nucleus of nobelium atom (7.21 
MeV), for nucleus of oxygen atom (7.91 MeV) and for nuclei containing more than 56 
nucleons.

We present also the theory of deuteron.
Obtained results are consistent with experimental data.
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