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Abstract

In the present work new analytical results for the 3-cycles of the logistic
map are obtained.

1 Introduction

The logistic map:

xn+1 = fr (xn) , fr (x)
df
= rx (1− x) , (1)

where r is a parameter, is perhaps the most famous example of one-dimensional
discrete-time dynamical system. This simple system has very complicated dy-
namics, for example period doubling route to chaos, intermittent chaos near
periodic windows, and crises [1, 2]. These dynamical modes, universal for some
classes of mappings of form xn+1 = f (xn) [3, 4], were observed in several ex-
periments [1, 5].

In this short note we attempt to obtain new analytical results for the 3-cycles
of the map (1); see [6] for a survey of rigorous results for the logistic map.

2 Solving equations for the 3-cycles

Values of the 3-cycle are given by [6]:

pr (x)
df
=

fr (fr (fr (x)))− x

fr (x)− x
= 0, (2)

where

pr (x) = r6x6 + c5x
5 + c4x

4 + c3x
3 + c2x

2 + c1x + c0, (3)

c5 = −3r6 − r5, c4 = 3r6 + 4r5 + r4, c3 = −r6 − 5r5 − 3r4 − r3,

c2 = 2r5 + 3r4 + 3r3 + r2, c1 = −r4 − 2r3 − 2r2 − r, c0 = r2 + r + 1.
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We shall solve the sextic equation pr (x) = 0, with coefficients depending on
parameter r (note that in [6] there is wrong sign in the second term in c5).

Of course, due to the Galois theory, there are no general solutions by radicals
of an arbitrary sextic equation. However, numerical and analytical computa-
tions show that for r ≥ 1 + 2

√
2 there is a stable 3-cycle, subject to period

doubling bifurcations (this cascade of period doubling ends at r ∼= 3.8496), and
an unstable 3-cycle, both cycles coinciding at r = 1 + 2

√
2. Therefore, six roots

of the polynomial (3) split into two 3-cycles and this means additional symme-
try. Hence, we shall try to factorize the polynomial pr (x) into product of two
cubic polynomials.

We thus write:

pr (x) =
(
r3x3 + a2x

2 + a1x + a0
) (

r3x3 + b2x
2 + b1x + b0

)
, (4)

with pr (x) given by (3).
The coefficients a2, a1, a0, b2, b1, b0 were computed, using Maple from

Scientific WorkPlace 5.5, as:

a2 = −r2
(

3
2r + 1

2 −
1
2

√
∆
)
,

a1 = 1
2r
(
r2 + 2r − 1

)
− 1

2r (r + 1)
√

∆,

a0 = − 1
2r

2 + 1
2r + 1 + 1

2r
√

∆,

b2 = −r2
(

3
2r + 1

2 + 1
2

√
∆
)
,

b1 = 1
2r
(
r2 + 2r − 1

)
+ 1

2r (r + 1)
√

∆,

b0 = − 1
2r

2 + 1
2r + 1− 1

2r
√

∆,


(5)

where ∆ = r2 − 2r − 7.
It follows that, for real r, the coefficients a2, a1, a0, b2, b1, b0 are real for

∆ ≥ 0, i.e. for r ≥ 1 + 2
√

2 or r ≤ 1 − 2
√

2. These necessary conditions for
existence of 3-cycles are also sufficient. Accordingly, one pair of 3-cycles (one

stable and another unstable) is born at r = r
(1)
cr = 1 + 2

√
2 and another pair at

r = r
(2)
cr = 1− 2

√
2.

There are thus two cubic equations for values of 3-cycles:

r3x3 + a2x
2 + a1x + a0 = 0, (6a)

r3x3 + b2x
2 + b1x + b0 = 0, (6b)

which can be easily solved via, for example, Cardano formulae. Numerical
computations show that the stable 3-cycle is given by (6a) while (6b) yields the
unstable 3-cycle.
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Bifurcations diagrams displaying both stable 3-cycles are shown in Fig. 1.

Figure 1: Bifurcation diagrams. Left figure: r ∈ [−1.860, −1.828], right figure:
r ∈ [3.828, 3.860].

3 Closing remarks

Several generalizations come to mind. First of all, equations for 3-cycles can
be solved for other quadratic maps. Secondly, equations for other n-cycles of
quadratic maps should factorize into products of polynomials of order n. Finally,
equations for n-cycles should factorize as well for higher-order polynomial maps.

Similar method was used by Kulkarni [7] who solved the sextic equation
by factorizing it into two cubic equations as in the present report (it was, of
course, necessary to add one condition for the coefficients, not fulfilled by the
coefficients of polynomial (3)).

After publishing this report I have come across very interesting and far reach-
ing paper [8] where the sextic equation pr (x) = 0 was solved by factorization
into two cubic polynomials, in close analogy to the method applied in this work.
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