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Abstract

Introducing a special quaternionic vector calculus on the tangent bundle of a 4-dimensional
space, and by forcing a condition of holomorphism, a Minkowski -type spacetime emerges,
from which gravitation and also the whole Maxwell theory of electromagnetic fields arises.
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1 Introduction

Classical field theories are described by scalar/vector/tensor fields, either in an euclidean flat
space with a continuous time or in a Minkowski -flat spacetime. In both cases, space and time
are simplified to forming a flat manifold, which makes it easy to translate from one position to
another.

In general relativity, flat spacetime is substituted for a spacetime manifold, of which the gravita-
tional field is located on the tangent bundle, so the manifold is thus distorted by the gravitational
field itself. The price to pay is having to integrate along geodesics when constructing even most
simple geometric primitives, like lines of translation.

Electromagnetic fields were still separated in a vector bundle on the spacetime manifold. Ein-
stein, Hilbert, Weyl, Lanczos, and others sought for a solution to identify electromagnetic field
theory on the tangent bundle.

The present text aims to provide a solution to the problem of unifying gravitation with electro-
magnetic field theory in a context of differential geometry which is related to general relativity.
It is shown, that the basic entities of classical (non-quantized) electromagnetic field theory can
be identified with components of the tangent bundle of the spacetime manifold.
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1.1 Overview

We know from special relativity, that the spacetime manifold should have 3 spatial and one time
dimension, and from general relativity, that it needs not be euclidean.

To investigate the structure of a general 4-dimensional tangent bundle, the special viewpoint of
a local viewer is taken. Locally, the tangent space is flat and described by an embedding matrix
which is locally always unity, but its derivatives need not vanish.

Then the matrix logarithm of that embedding matrix is locally always the zero matrix, but again
her derivatives need not vanish. These logarithmic derivative tensors shall be at the center of
our investigation.

Now make two reasonable assumptions, which restrict the system,

1. All functions on the tangent bundle shall be harmonic and all components of the derivatives
describe holomorphic fields,

2. The logarithmic embedding matrix and all its derivatives are derivatives of a scalar ‘master
potential’.

This still allows the introduction of imaginary units in the base vectors, and among trivial cases,
exactly the choice of a quaternionic vector/tensor algebra induces a space with a behaviour
suspectively similar to our physical spacetime.

We can, then without loss of generality, observe the 4-dimensional Taylor expansion of a single
quaternionic potential, where the mixed-power monomials of some power together determine
the derivatives of corresponding tensor rank.

Finally, again without loss of generality, that single potential can be constructed from products
of quaternionic differential forms, which allows for encoding quaternionic vectors and thus in a
‘generating vector picture’ gives rise to well-known geometrical operations like scalar and vector
product, gradient, divergence and rotational derivative.

This gives a special-relativistic picture with the Lorentz transform and a spatial rotation, and
also lets us in a generally-relativistic way identify the fields of gravitation as well as of electro-
magnetic field theory, that is, the electromagnetic tensor together with vector potential, gauge
potential and charge/current density.

1.2 Conventions

Where tensors are written in index notation,
the Einstein summation convention is always active, unless noted otherwise.

More unusually1, contraction indices may be doubled when unambiguous
and named in a suggestive way, like for example in

Γa
δδ δδδ or Γaaaδ

aa ,

1It should be clear that introducing new conventions or modifying existing ones should be justified by them 1.
being unambiguous and 2. actually enhancing readability.
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since at least one of the involved tensors is symmetric in the involved index pair(s).

Index instances are printed in bold, for example

(Tt, Tx, Ty, Tz) when in Ta, a ∈ {t,x,y,z} .

In matrices, zero elements may be left blank or replaced by a dot (·), the eye may be guided by
separation lines, and +, − might be used for +1, −1 respectively, for example

0ab :=


·
·
·
·

 , δab :=


1

1
1

1

 , ηab :=


+
−
−
−

 .

The Minkowski metric will come out with a signature (+−−−), as shown above.

The Nabla operator and the Laplace operator are defined as usual in three dimensions,

∇ :=


0

∂/∂x
∂/∂y
∂/∂z

 , ∇Φ = gradΦ ,

∆ :=
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
, ∆Φ = div gradΦ ,

and the d’Alembert operator in four dimensions,

� :=
(

∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2

)
, �Φ =

∂2

∂t2
Φ−∆Φ .

2 Provisions

2.1 Scale Invariance

Let us warm up with a one-dimensional toy model. A function

g : R→ R; x 7→ g(x)

be differentiable at least once,

g′(x) = ∂
∂xg .

Another function takes the first one to the exponent,

f : R→ R+; x 7→ f(x) = eg(x) ,

and the overall derivative is proportional to the latter,

f ′(x) = g′(x) eg(x) = g′(x)f(x) ,
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so that the derivative of the inner function is the quotient

g′(x) = f ′(x)/f(x) .

Additionally scaling af(x) by a constant factor a ∈ R, we can run through a cycle
of exponentiation, derivation, division and integration,

g + c
exp−−−−→ af = eg+c = aeg (with a = ec)R

∂x+c

x y∂x

g′ = af ′/af ←−−−−
1/af

af ′ = g′ aeg ,

(1)

and observe, that g′ does not contain the scale factor a = ec anymore, which is as arbitrary as
the integration constant c. This is the notion of ‘scale invariance’ which will be employed here.

In another view, g′ = f ′/f is the derivative of log(f), and lives in a ‘logarithmic space’, so
multiplication in f can be represented by addition of the logarithms, f1 · f2 = exp( g1 + g2).

Additionally, f and f ′ contain f to a power, or ‘f–weight’, of f1, but in g′ and g the corresponding
f–weight is f0, which is equivalent to saying that the latter expressions are scale-invariant.

2.2 Infinitesimal Embedding

Generalize from the one-dimensional function f to the Jacobi matrix of an automorphic embed-
ding of 4-space into 4-space,

Jµ
b : R4 → R4 ,

where the metric tensor comes out of the Jacobi matrix by kind of ‘squaring’ her through
multiplication with her transpose, involving an outer metric, which shall be the flat Minkowski
metric,

gab := ηηη Jη
aJ

η
b . (2)

Specify a ‘Jacobi logarithm’,

Γa
b = log(Jµ

b) ,

so that the Jacobi matrix can be seen as the matrix exponential,

exp(Γa
b) =: Jµ

b .

But to represent matrix multiplication through addition of logarithmic matrices,

1
Jµ

b ·
2
Jµ

b = exp(
1
Γa

b +
2
Γa

b) ,

matrix multiplication has to commute like addition of the logarithms does, which is true only
if the Jacobi logarithm is infinitesimally near zero, Γa

b → 0, so that the Jacobi matrix is
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infinitesimally near identity, Ja
b → δa

b. This is the notion of an ‘infinitesimal embedding’ which
will be employed here.

The infinitesimal embedding is an embedding of ‘my’ local tangent spacetime into my infinites-
imal neighbourhood, where my tangent spacetime is always orthonormal and my local metric
tensor is the flat Minkowski metric, gab → ηab.

Though these entities have been fixed at one position (event) in spacetime, their derivatives at
that point are still allowed to have any magnitude.

2.3 A Derivative Tensor Picture

Let there be some scalar potential function in 4 dimensions (t, x, y, z),

Γ(t, x, y, z) : R4 → K ,

at first leaving open what space K is, but finally employing K = H,
the space of quaternionic hypercomplex numbers.

Partial derivation gives a gradient vector,

Γa := ∂a Γ(t, x, y, z) ,

and at the second partial derivation a matrix,
which is symmetric from the Schwarz rule that partial derivation commutes,

Γab := ∂b Γa = ∂a Γb ,

of which the trace is the 4-dimensional Laplacian of the original potential,
which in foresight be defined with a d’Alembert operator,

Γδδ δδδ =: � Γ .

The third derivation results in a tensor of rank 3, which is again symmetric in all three possible
index pairings,

Γabc := ∂c Γab ,

which can be contracted to a vector in three ways, these are

Γaδδ δδδ = Γδbδ δδδ = Γδδc δδδ = � Γa .

And so on deriving n times gives a tensor of rank n, and all derivative tensors are symmetric
in all possible index pairings. They can successively be contracted by an even number of ranks,
ending with either a scalar (when n is even) or a vector (when n is odd).



2 PROVISIONS 7

2.4 Analyticity

We are interested in holomorphic functions, and a necessary condition is that all contractions of
any derivative tensor vanish identically. Stating the contractions explicitly up to the 5th-rank
tensors, these are

� Γ = Γδδ δδδ ≡ 0 (rank 2 to rank 0) ,

� Γa = Γa δδ δδδ ≡ 0 (rank 3 to rank 1) ,

� Γab = Γab δδ δδδ ≡ 0 (rank 4 to rank 2) ,

� Γabc = Γabc δδ δδδ ≡ 0 (rank 5 to rank 3) ,

�� Γab = Γδδδδ δδδ δδδ ≡ 0 (rank 4 to rank 0) ,

�� Γa = Γaδδδδ δδδδδδ ≡ 0 (rank 5 to rank 1) .

This also means that all entities are source-free in a 4-dimensional sense, but not necessarily
in the 3 spatial subdimensions. Thus the following time-only contractions give corresponding
observables, which reveal their respective meanings in the investigations further below,

Γtt δtt (logarithmic gravitational potential, electromagnetic gauge potential) ,

Γa tt δtt (electromagnetic vector potential) ,

Γab tt δtt (electromagnetic Faraday tensor) ,

Γtttt δttδtt (logarithmic gravitational source density) ,

Γa tttt δttδtt (electromagnetic charge/current density) .

Forcing all components of the trace vector to zero makes the components of the 1st-rank gradient
vector be harmonic functions, and in general, forcing all possible traces of the k + 2-th rank
derivative tensor makes the components of the k-th rank derivative tensor be harmonic functions.
Thus all components of all logarithmic tensors have to be harmonic, and the master potential
holomorphic.

2.5 A Taylor Series Picture

When the master potential with all its derivatives is holomorphic, then without loss of generality
that potential function can be represented by an n-dimensional Taylor series expanded at local
coordinate zero, where all terms of mixed n-th power arise in exactly the n-th derivative.

In a 2-dimensional example,

Γ(x, y) :=



a00 + a10 x +1
2 a20 x2 +1

6 a30 x3 . . .

+ a01 iy + a11 x iy +1
2 a21 x2 iy +1

6 a31 x3 iy . . .

+1
2 a02 i2y2 +1

2 a12 x i2y2 +1
4 a22 x2i2y2 . . . . . .

+1
6 a03 i3y3 +1

6 a13 x i3y3 . . . . . .
...

...
. . .

,
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where the constant i is not fixed yet.
Defining i := 1 gives an R2 case, and i2 := −1 gives a construction in complex numbers.

Since we are always at point zero, all powers vanish except the one at the tip,

0
Γ|0 = a00 .

Then, of a k-th mixed-order monomial, exactly the k-th derivative is non-vanishing. Terms of
power k < n vanish because the higher derivatives are identically zero, and terms of power k > n
vanish because we are at point zero, of which all powers vanish.

2.6 A Vector Form Picture

Again without loss of generality, any Taylor series can be represented by a linear combination
of products of 1st-power functions, for example in 2 dimensions.

A scalar function of 1st order be defined as

1
Γ :=

1
Π :=

(
a
ib

)
·
(

∂x
∂y

)
=
(
a ∂x + ib ∂y

)
,

and the 1st derivative only unpacks the vector with which we started,

1
Γa =

1
Πa := ∂a

1
Π =

(
a
ib

)
=:

a
Πa .

Note, that the 2-dimensional 1st-rank tensor has 2 different components out of 2.

From a scalar function of 2nd order, defined as the product of two vector forms,

2
Γ =

2
Π :=

((
a
ib

)
·
(

∂x
∂y

))((
α
iβ

)
·
(

∂x
∂y

))
= aα x2 + i (aβ + bα) xy + i2 bβ y2 ,

the 2nd derivative gives a matrix,

2
Γab := ∂b∂a

2
Γ =

[
2 aα i(aβ + bα)

i(aβ + bα) 2 i2bβ

]
,

which can be obtained in an easy way from the outer product of the separate first derivatives,

2
Πab := ∂a

a
Π ∂b

b
Π =

[
aα iaβ
ibα i2bβ

]
.

using the Leibniz rule by adding to the outer product matrix its transpose,

2
Γab := ∂b∂a

2
Γ =

2
Πab +

2
Πba =

a
Πa

b
Πb +

a
Πb

b
Πa =

[
2 aα i(aβ + bα)

i(aβ + bα) 2 i2bβ

]
.

It is symmetric and thus establishes the Schwarz rule of commuting partial derivatives. Note,
that the 2-dimensional 2nd-rank tensor has only 3 different components out of 4.



2 PROVISIONS 9

From a scalar function of 3rd order, defined as the product of three vector forms,

3
Γ =

3
Π :=

((
a
ib

)
·
(

∂x
∂y

))((
α
iβ

)
·
(

∂x
∂y

))((
A
iB

)
·
(

∂x
∂y

))
= aαA x3 + i (bαA + aβA + aαB) x2y + i2 (aβB + bαB + bβA) xy2 + i3 bβB y3 ,

the outer derivative product is

3
Πabc := ∂a

a
Π ∂b

c
Π ∂c

c
Π =

[[
aαA iaβA
ibαA i2bβA

] [
iaαB i2aβB
i2bαB i3bβB

]]
,

and from the Leibniz rule follows the derivative tensor
as the sum over all permutations of all indices,

3
Γabc =

3
Πabc +

3
Πbac +

3
Πbca +

3
Πcba +

3
Πcab +

3
Πacb

=
a
Πa

b
Πb

c
Πc +

a
Πb

b
Πa

c
Πc +

a
Πb

b
Πc

c
Πa +

a
Πc

b
Πb

c
Πa +

a
Πc

b
Πa

c
Πb +

a
Πa

b
Πc

c
Πb

=
[[

2 aαA i(aβ + bα)A
i(aβ + bα)A 2 i2bβA

] [
2 iaαB i2(aβ + bα)B

i2(aβ + bα)B 2 i3bβB

]]
+
[[

2 aαA i(aβ + bα)A
2 iaαB i2(aβ + bα)B

] [
i(aβ + bα)A 2 i2bβA
i2(aβ + bα)B 2 i3bβB

]]
+
[[

2 aαA 2 iaαB
i(aβ + bα)A i2(aβ + bα)B

] [
i(aβ + bα)A i2(aβ + bα)B

2 i2bβA 2 i3bβB

]]
= 2

[[
3 aαA i(aαB + aβA + bαA)

i(aαB + aβA + bαA) i2(bβA + bαB + aβB)

] [
i(aαB + aβA + bαA) i2(bβA + bαB + aβB)
i2(bβA + bαB + aβB) 3 i3bβB

]]
.

Note, that the 2-dimensional 3rd-rank tensor has only 4 different components out of 8.

And so on the further derivatives of functions of further order are formed from all permutations
over all indices of the outer products of the single derivatives.
They are symmetrical in all possible index pairings, conforming to the Schwarz rule.

In the 2-dimensional case, the k-th rank derivative tensor contains at most k + 1 different
components.

2.7 Vector Bases and Flat Metrics

From the previous 2-dimensional example, formulate an orthonormal base vector matrix with
an at first arbitrary constant i,

B = Bab =
[
1

i

]
,

and recognize a metric tensor,

N = Nηη = BT B = Bηδ δδδ Bδη =
[
1

i2

]
.
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When i := ±1, then the metric tensor is the identity,

N =
[
1

1

]
= δδδ ,

and the Laplace condition, when contracting a tensor, requires the diagonal components to
vanish identically and thus forces the underlying manifold to be flat and the generating vectors
to be perpendicular.

When i2 := −1, then the metric tensor is a small Minkowski metric,

N =
[
+1

−1

]
= ηηη ,

and the Laplace condition, when contracting a tensor, still allows the diagonal components to
move and the generating vectors to be arbitrary, with parallel vectors distorting the underlying
manifold.

Promote to 4 dimensions.
A purely real vector signature again forces the underlying manifold to be flat and does not result
in a Minkowski metric,

Bab =


±1

±1
±1

±1

 ⇒ Nηη =


1

1
1

1

 = δδδ ,

so it is not of any use for a description of physical reality.

A complex signature with i2 := −1 does give a Minkowski metric in either convention,
but still no possibility to represent spatial rotation,

Bab =


±i

±1
±1

±1

 ⇒ Nηη =


−1

1
1

1

 = −ηηη ,

Bab =


±1

±i
±i

±i

 ⇒ Nηη =


1
−1

−1
−1

 = ηηη .

Finally, a set of quaternionic base vectors gives indeed both a Minkowski metric
and a representation of spatial rotations,

Bab =


±1

±i

±j

±k

 ⇒ Nηη =


1
−1

−1
−1

 = ηηη ,

so the algebra and analytics of that signature shall now be investigated further.
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2.8 Reviewing Quaternions

Quaternions, or Hamilton numbers, are a generalization of complex numbers to 4 dimensions.
Instead of one real and one imaginary part, with the imaginary unit i2 := −1, and the base
vectors {1, i}, quaternions have three imaginary units and a base {1, i, j, k},
with definitions

i2 = j2 = k2 = −1 , ij = k , jk = i , ki = j ,

and corollaries

ijk = jki = kij = −1 , kji = jik = ikj = +1
iki = +k , iik = kii = −k .

Multiplication of quaternions is associative, but neither strictly commutative nor strictly anti-
commutative, The so defined algebra forms a non-abelian field over R4.

Quaternions are typically either written as hypercomplex scalars,

r + ia + jb + kc .

or expressed as a matrix algebra, with base

1 7→


+ · · ·
· +
· +
· +

 , i 7→


· − · ·
+ ·
· · −
· + ·

 , j 7→


· · − ·
· · +
+ ·
· − ·

 , k 7→


· · · −
· · −
· + ·
+ ·

 .

A quaternion can be seen as composed from a real scalar part and an imaginary vector part,

Q :=


1 i

j

k


 ·

(
d
~q

)
=


1
i

j

k

 ·


d
a
b
c

 = d + a i + b j + c k

R :=


1 i

j

k


 ·

(
δ
~r

)
=


1
i

j

k

 ·


δ
α
β
γ

 = δ + α i + β j + γ k ,

so that the quaternion product contains both dot product and cross product of the vectors,
intermixed with the products from the scalar parts,

Q ·R =


1
i

j

k

 ·
(

dδ + (~q · ~r)
d~r + δ~q + (~q × ~r)

)
.

All in all, this kind of a quaternion algebra is not well suited for representations of 4-vectors.
Tensor algebras are more flexible, but the introduction of special multiplication rules like the
cross product needs artificial introductions.

In the next sections, the best of both worlds shall be combined, that is, a tensor algebra with
built-in quaternionic rules.
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2.9 Quaternionic Base and the Minkowski Metric

Define a quaternionic base vector matrix and its inverse,

B := Bab =


1

i

j

k

 , B̄ := B−1 = Bab =


1

ı̄

̄

k̄

 ,

BB̄ = B̄B = Ba
b = B b

a = Id4 =


1

1
1

1

 ,

of which the 2nd power gives a Minkowski metric,

N = N̄ := BB = B̄B̄ =


1
−1

−1
−1

 = ηηη = ηηη ,

and the 4th power is the identity,

B4 = B̄4 = N2 = N̄2 = Id4 =


1

1
1

1

 ,

B3 = NB = BN = B̄ , B̄3 = NB̄ = B̄N = B .

Applying the base vector matrix to the quaternionic Jacobi logarithm matrix from both sides
makes it real-valued,

Γab ∼


+ i j k

i − k j

j k − i

k j i −

 ⇒ B Γab B ∼


+ − − −
− + + −
− − + +
− + − +

 .
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2.10 A Quaternionic Vector Algebra

In the present context, quaternions will be represented by vectors, but each component ‘blessed’
with a particular real or imaginary signature,

~s :=

a
b
c

 , ~r :=

α
β
γ

 ,

Sa := B ·
(

d
~s

)
=


d
i a

j b

k c

 , Ra := B ·
(

δ
~r

)
=


δ

i α

j β

k γ

 ,

with a common signature

Πa ∼
[
+ i j k

]
,

and introducing the convention

ı̄ := −i , ̄ := −j , k̄ := −k .

Then the outer product of two such vectors is a matrix,

Πsr := Ss Rr =


dδ i dα j dβ k dγ

i aδ −aα k aβ ̄ aγ

j bδ k̄ bα −bβ i bγ

k cδ j cα ı̄ cβ −cγ

 , (3)

where each component is blessed by a particular signature,

Πab ∼


+ i j k

i − k ̄

j k̄ − i

k j ı̄ −

 .

The first column and first row of (3) now contains the quaternion vectors d~r and δ~s, the upper
left element is the product dδ, and the trace forms a sum of that with the dot product, dδ−(~s·~r).
The cross product is not yet clear.
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But forming the sum of the outer product with its transpose, giving a purely symmetrical (but
not self-adjunct) matrix,

Γab := Πab + Πba =


2dδ i (dα + δa) j (dβ + δb) k (dγ + δc)

i (dα + δa) −2aα k (aβ − bα) j (cα− aγ)
j (dβ + δb) k (aβ − bα) −2bβ i (bγ − cβ)
k (dγ + δc) j (cα− aγ) i (bγ − cβ) −2cγ



=


· ivx jvy kvz

ivx ·
jvy ·
kvz ·

 +


· · · ·
· · k %z j %y

· k %z · i %x

· j %y i %x ·

 + 2


dδ · · ·
· −sxrx

· −syry

· −szrz

 .

(4)

the single vectors are mixed to a cross-wise linear combination,

~ν := δ~s + d~r ,

the cross product is

~% := ~s× ~r ,

and the trace is just doubled,

Γδδ δδδ = 2(dδ − ~s · ~r) .

The operation of adding the transpose was at first an ad-hoc decision. We should find a jus-
tification for that, that is, a situation where this operation occurs in a ‘natural’ way, and we
will.

2.11 Quaternionic Forms

Define an integral operator and a differential operator,

∫ a

=
~∫

:=


dt
dx
dy
dz

 , ∂a = ~∂ :=


∂/∂t
∂/∂x
∂/∂y
∂/∂z

 ,

to formally compose a hypercomplex scalar function from a quaternionic vector, like

1
Γ :=

∫ δ

Sδ =
(

d
~s

)
·B ·

~∫
=


d
a
b
c

 ·


dt
idx

j dy

k dz

 = d dt + a idx + b j dy + c k dz ,
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(which some may call a ‘differential form’)
and unpack that quaternionic vector again through derivation,

1
Γa := ∂a

1
Γ =


d
i a
j b
k c

 = Sa .

Next take the product of two such integrals,

2
Γ : =

∫ δ

Sδ

∫ δ

Rδ =

((
d
~s

)
·B ·

~∫ )((δ
~r

)
·B ·

~∫ )

=




d
a
b
c

 ·


dt
idx

j dy

k dz






δ
α
β
γ

 ·


dt
idx

j dy

k dz




= (d dt + a idx + b j dy + c k dz) (δ dt + α idx + β j dy + γ k dz) ,

derive a first time, according to the Leibniz product rule,

⇒
2
Γa = Sa

∫ δ

Rδ +
∫ δ

Sδ Ra

=


d
i a

j b

k c

 (δ dt + iα dx + jβ dy + kγ dz) + (d dt + iadx + jb dy + kc dz)


δ

i α

j β

k γ

 ,

derive a second time,

⇒
2
Γab =


d
i a

j b

k c

(δ iα jβ kγ
)

+
(
d ia jb kc

)
δ

i α

j β

k γ



= Sa Rb + Sb Ra =


dδ iνx jνy kνz

iνx −aα k %z j %y

jνy k %z −bβ i %x

kνz j %y i %x −cγ

 , (5)

where ~ν := δ~s + d~r, ~% := ~s× ~r, Γδδ δδδ = 2(dδ + ~s · ~r).
This is enough to arrive at (4). The Leibniz product rule introduces the ‘add transpose’ op-
eration. So differentiation of quaternionic vectors, rather than simple multiplication, gives the
known vector cross product by introducing the rotational derivative.

This algebra is commutative with regard to the Schwarz rule of partial differentiation, and it is
also non-commutative enough to allow for the emergence of a rotational derivative.
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2.12 Exponentiation of the Jacobi logarithm

Lorentz Transforms

As representatives of the Lorentz group, assume a hyperbolic rotation with parameter νx in the
(t,x) plane, together with a circular rotation about x with parameter %x.

The corresponding Jacobi logarithm matrix can be represented either in a quaternionic or a
real-valued form,

H
Γab =


· i νx · ·

i νx ·
· · i %x

· i %x ·

 ⇔ B
H
Γab B =


· −νx · ·
−νx ·
· · +%x

· −%x ·

 =:
R
Γab ,

both of which exponentiation gives a valid Jacobi matrix, respectively either quaternionic or
real-valued. Note, that the quaternionic Jacobi logarithm is strictly symmetric (but not self-
adjunct), since partial derivatives commute.

Quaternionic Exponential

In the quaternionic case, first an index should be raised using the flat Minkowski metric N = BB,
to get a quaternionic Jacobi matrix,

H
J :=

H
Ja

b =


exp
(
BB

H
Γab

)
=

B exp
(
B

H
Γab B

)
B̄ =


cosh(νx) i sinh(νx) · ·
ı̄ sinh(νx) cosh(νx)
· cos(%) i sin(%)
· i sin(%) cos(%)

 ,

which at a first glance seems to have the wrong symmetries. But notice, that the hyperbolic
rotation, though anti-symmetric, is still self-adjunct and the circular transform is, though pro-
symmetric, still anti-self-adjunct, so the transforms of a (quaternionic) vector come out correctly
in a quaternionic context, for instance,

(cosh(ϕ) d− sinh(ϕ) a)
i (− sinh(ϕ) d + cosh(ϕ) a)

j (cos(%) b− sin(%) c)
k (sin(%) b + cos(%) c)

 =


cosh(ϕ) i sinh(ϕ) · ·
ı̄ sinh(ϕ) cosh(ϕ)
· cos(%) i sin(%)
· i sin(%) cos(%)




d
i a

j b

k c

 .

Real-Valued Exponential

The real-valued Jacobi matrix,

R
J :=

R
Ja

b =


B̄ exp

(
BB

H
Γab

)
B =

exp
(
B

H
Γab B

)
=


cosh(νx) − sinh(νx) · ·
− sinh(νx) cosh(νx)

· cos(%) + sin(%)
· − sin(%) cos(%)

 ,
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shows the usual symmetries and gives the usual transformation of a (real-valued) vector in a
real-valued context, for instance,

cosh(ϕ) d− sinh(ϕ) a
− sinh(ϕ) d + cosh(ϕ) a

cos(%) b + sin(%) c
− sin(%) b + cos(%) c

 =


cosh(ϕ) − sinh(ϕ) · ·
− sinh(ϕ) cosh(ϕ)
· cos(%) + sin(%)
· − sin(%) cos(%)




d
a
b
c

 .

Finally,
R
J = B̄

H
J B ,

H
J = B

R
J B̄ .

Metric Tensors

The metric tensor from the quaternionic Jacobi matrix is formed with twice the base matrix,

gab = (
H
JB)T (

H
JB) = B

H
JT

H
J B = Baα

H
Jα

δ δδδ
H
Jβ

δ Bβb .

The corresponding metric tensor from the real-valued Jacobi matrix is formed with the Minkowski
metric,

gab = (B
R
J)T (B

R
J) =

R
JT BB

R
J =

R
JT N

R
J =

R
Jη

aηηη

R
Jη

b .

The metric tensor of pure Lorentz transformations, like those above, is always identically the
flat Minkowski metric.

Spatial Stretch

A purely diagonal Jacobi logarithm is always real-valued,

H
Γab =


τ · · ·
· −a2

· −b2

· −c2

 ⇒


B

H
Γab B =

B B
H
Γab =


τ · · ·
· a2

· b2

· c2

 ,

which is constrained by the d’Alembert condition, τ = a2 + b2 + c2.

Exponentiation in either way gives an anisotropic stretch,

H
J :=

H
Ja

b =


exp
(
BB

H
Γab

)
=

exp
(
B

H
Γab B

)
=


exp(τ) · · ·
· exp(−a2)
· exp(−b2)
· exp(−c2)

 ,

Forming the metric tensor in either way,

gab =


(
H
JB)T (

H
JB) =

(B
H
J)T (B

H
J) =


+exp(2τ) · · ·

· − exp(−2a2)
· − exp(−2b2)
· − exp(−2c2)

 ,
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spatial stretch is the only case in which the metric tensor is not flat, but still symmetric and
real-valued.

Lemma. The metric tensor from a scalar master potential is always purely diagonal, since the
Jacobi logarithm is always symmetric,2 since partial derivation commutes. Thus the metric
tensor is also purely real-valued.

Corollary. From vital components of the embedding not showing up in the metric tensor at all,
it appears futile to look for the whole picture of spacetime in terms of the metric tensor alone.

Convention. Without explicitly specifying a Jacobi logarithm or a Jacobi matrix as being
quaternionic or real-valued, in the following they shall be understood as quaternionic,

Γab :=
H
Γab , Ja

b :=
H
Ja

b , J :=
H
J .

3 Decomposing Spacetime

With the d’Alembert operator,

� := ∂t
2 − div grad ,

each and every scalar component C of the logarithmic tensors is subject to

�C ≡ 0 ⇔ ∂t
2C ≡ div∇C .

3.1 2nd-Rank Functions and Special Relativity

From the complete 2nd derivative tensor in (5), identify distinct components and relate them
to physical interpretations.

A Vector with Time, Giving Rapidity

Defining

~s :=

a
b
c

 , Sa := B

(
·
~s

)
, Ta :=


1
·
·
·

 ,

form the master potential as a product of a pure spatial and a pure timely differential form,

~ν
Γ =

(
·

i a
j b
k c

 ·


dt
dx
dy
dz


)(

1
·
·
·

 ·


dt
dx
dy
dz


)

= (a idx + b j dy + c k dz) · dt ,

2The metric tensor being always purely diagonal contradicts the current understanding of ‘gravitational waves’.
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derive once,

⇒
~ν
Γa =


·

i a
j b
k c

 dt + (a idx + b j dy + c k dz)


1
·
·
·

 ,

derive a second time,

⇒
~ν
Γab =


·

i a

j b

k c

( 1 | · | · | ·
)

+
(
· | i a | j b | k c

)
1
·
·
·



=


· i a j b k c

i a ·
j b ·
k c ·

 , (6)

with a rapidity, which is logarithmic velocity, Rapidity,
~ν

~ν :=
~ν
Γst =

a i
b j
c k

 ,

and is trace-free anyway, thus not constrained by the Laplace condition.

Two Perpendicular Vectors

Defining two perpendicular vectors,

~s :=

a
b
c

 , ~r :=

α
β
γ

 , ~s ⊥ ~r ,

Sa := B ·
(
·
~s

)
=


·

i a

j b

k c

 , Ra := B ·
(
·
~r

)
=


·

i α

j β

k γ

 ,

~%

Γ :=

((
·
~s

)
·B ·


dt
dx
dy
dz


)((

·
~r

)
·B ·


dt
dx
dy
dz


)

.
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The derivative is oriented, that is, it swaps sign when the generating vectors ~s, ~r are swapped,

~%

Πsr = ∂r ∂s

~%

Γ = Ss Rr =


·

a i

b j

c k



·

α i

β j

γ k

 =


· · · ·
· · k aβ ̄ aγ

· k̄ bα · i bγ

· j cα ı̄ cβ ·

 ⇒

~%

Γab =


· · · ·
· · k (aβ − bα) j (cα− aγ)
· k (aβ − bα) · i (bγ − cβ)
· j (cα− aγ) i (bγ − cβ) ·

 =


· · · ·
· · k %z j %y

· k %z · i %x

· j %y i %x ·

 , (7)

again trace-free, with an orientational time-independent rotation about an axis Rotation,
~%

~% := ~s× ~r =

a
b
c

×
α

β
γ

 =

bγ − cβ
cα− aγ
aβ − bα

 .

Two Parallel Vectors

The outer product of two vectors gives a non-oriented product tensor,

Πab =


·

a i

b j

c k



·

a i

b j

c k

 =


· · · ·
· −a2 k ab ̄ ac

· k̄ ba −b2 i bc

· j ca ı̄ cb −c2

 ,

and the corresponding tensor of all 2nd derivatives is, from the Leibniz rule,
the sum of that product matrix with its transpose,

⇒ Γab = (Πab + Πba)
?=


· · · ·
· −2a2

· −2b2

· −2c2

 ,

where in the trace, a2 + b2 + c2 is the 3D dot product of the generating vectors,

Γδδ δδδ = −2

a
b
c

 ·
a

b
c

 = −2

∣∣∣∣∣∣
a

b
c

∣∣∣∣∣∣
2

,

which alone can not fulfil the condition of a vanishing trace, and needs a further compensation.

Time Squared

A pure logarithmic Time dilation,

χ

Πab =


d
·
·
·




d
·
·
·

 =


d2 · · ·
· ·
· ·
· ·

 ⇒
χ

Γab = 2


d2 · · ·
· ·
· ·
· ·

 ,
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with

χ := 2d2 = Γtt ,

which alone does not compensate.

Combining time squared with two parallel vectors,

χ

Πab =


·

a i

b j

c k



·

a i

b j

c k

 +


d
·
·
·




d
·
·
·

 ⇒
χ

Γab = 2


d2 · · ·
· −a2

· −b2

· −c2

 , (8)

the d’Alembert trace condition is met by

d2 = ~s · ~s ,

and we get

χ :=
χ

Γtt = 2 d2 = 2~s · ~s ,

which is the logarithmic gravitational potential, and also a logarithmic measure of time-shift,
where χ > 0 means a redshift, and χ < 0 a blueshift.

The popular redshift number z, with λ1 the wavelength at the emitter (there) and λ0 the
wavelength at the receiver (here), or the respective frequencies f1, f0,

z =
λ0

λ1
− 1 =

f1

f0
− 1 ,

can in this context be expressed

z = exp ( χ− 1) , χ = ln( z + 1) .

Below (15), the logarithmic time shift will also be identified with an electromagnetic gauge
potential, of which the 4-gradient gives the electromagnetic vector potential,(

∂t

∇

)
χ =

(
Φel
~Amag

)
.

3.2 Summary of the 2nd-Rank Components

From the trace condition follows a continuity equation for the logarithmic time and space coor-
dinates, for which Γ is a gauge potential,

Γδδ δδδ ≡ 0 = �Γ = ∂tτ − div ~ξ ⇔ ∂tτ ≡ div ~ξ ,

with the slice

χ := ∂tτ = Γtt δtt ∼


+
·
·
·


 logarithmic time shift

logarithmic gravitational potential
electromagnetic gauge potential

 ,
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which compensates a non-euclidean

div ~ξ = −χ = Γss δss ∼


·
−
−
−

 (logarithmic gravitational space squeeze) .

Further the euclidean entities,

~ν = grad τ = ∂t
~ξ = Γts ∼


· i j k

i ·
j ·
k ·

 (rapidity, logarithmic velocity) ,

~% = rot ~ξ ∼


·
· k j

k · i

j i ·

 (time-independent static rotation) .

Derivative Chart

Summarizing the derivatives up to the 2nd rank in an overwiew chart,

1st rank:

2nd rank:

Γ quaternionic ‘master potential’

τ log’time

χ log’timeshift

∂t

∂t

~ξ log’pos’

~ν rapidity

∂t

grad
graddiv

~% rotation

rot

CC-by-nd-sa 2015, C.S.P.Spanheimer .

3.3 3rd-Rank Functions and Gravitation

Time Derivatives of the 2nd-Rank Components

Taking the former 2nd-rank derivatives and just deriving over/multiplying by time gives the
easier part of the 3rd-rank derivative components.
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One Vector, Twice Time

Defining

~s :=

a
b
c

 , Sa := B

(
·
~s

)
, Ta :=


1
·
·
·

 ,

assume a master potential

~α
Γ =

(
·

i a
j b
k c

 ·


dt
dx
dy
dz


)(

1
·
·
·

 ·


dt
dx
dy
dz


)2

= (a idx + b j dy + c k dz) · dt2 ,

and from the outer product

~α
Πabc = Sa Tb Tc =


·

i a

j b

k c




1
·
·
·




1
·
·
·


find the third derivative,

⇒
~a
Γabc =

~α
Πabc +

~α
Πbac +

~α
Πbca +

~α
Πcba +

~α
Πcab +

~α
Πacb

= 2



· i a j b k c

i a ·
j b ·
k c ·




i a · · ·
· ·
· ·
· ·




j b · · ·
· ·
· ·
· ·




k c · · ·
· ·
· ·
· ·


 , (9)

containing a celerity field ~α, which is a logarithmic acceleration, Celerity,
~α

~a
Γa tt = t2 ~s = 2


·

i a

j b

k c

 =: 2 ~α .

which can be seen as either the time derivative of rapidity,
or the gradient of the logarithmic gravitational potential, ~α = ∂t ~ν = ∇χ.

Two Perpendicular Vectors with Time

Defining two perpendicular generating vectors,

~s :=

a
b
c

 , ~r :=

α
β
γ

 , ~s ⊥ ~r , Sa := B

(
·
~s

)
, Ra := B

(
·
~r

)
, Ta :=


1
·
·
·

 ,
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the outer product and the third derivative,

~ω
Πabc = Sa Rb Tc =


·

i a

j b

k c



·

i α

j β

k γ




1
·
·
·

 ⇒
~ω
Γabc =



· · · ·
· · k ωz j ωy

· k ωz · i ωx

· j ωy i ωx ·



· · k ωz j ωy

· ·
k ωz ·
j ωy ·



· k ωz · i ωx

k ωz ·
· ·

i ωx ·



· j ωy i ωx ·

j ωy ·
i ωx ·
· ·


 ,

with an angular velocity about an axis Angular
velocity,
~ω

~ω := (~s× ~r) t =

a
b
c

×
α

β
γ

 t =

bγ − cβ
cα− aγ
aβ − bα

 t ,

that lives in logarithmic space, rather than in the exponential.

Triple Time

With T := (d| · | · |·), we get a pure time dilation,

Φel

Π TTT =


d
·
·
·




d
·
·
·




d
·
·
·

 =


d3 · · ·
· ·
· ·
· ·

 ⇒
Φel

Γ abc = 6


d3 · · ·
· ·
· ·
· ·

 = 6


Φel · · ·
· ·
· ·
· ·

 ,

which will below be identified with electric potential,

Φel = 1
6Γttt ,

and is observable in the trace, but alone does not compensate according to the d’Alembert
condition, unless it vanishes identically.

Two Parallel Vectors with Time

Again with

~s :=

a
b
c

 , Sa := B

(
·
~s

)
, Ta :=


1
·
·
·

 ,
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the outer product and the third derivative,

Πabc = Sa Sb Tc =


·

i a

j b

k c



·

i a

j b

k c




1
·
·
·

 ⇒

Γabc = −2



· · · ·
· a2

· b2

· c2



· a2 · ·

a2 ·
· ·
· ·



· · b2 ·
· ·
b2 ·
· ·



· · · c2

· ·
· ·
c2 ·


 ,

of which contraction yields a time-dependent squeeze of space,

Γaaaδ
aa = −2 (~s · ~s) t = −2


|~s|2
·
·
·

 = −2


3 Φel

·
·
·

 ,

which compensates with electric potential.

3.4 Purely Spatial Derivatives

Deriving the 2nd-rank space derivatives again over space gives new entities with their own rules.

Three Arbitrary Vectors

Given three arbitrary generating vectors,

~s :=


·
a
b
c

 , ~r :=


·
α
β
γ

 , ~q :=


·
A
B
C

 ⇒ Sa :=


·

i a

j b

k c

 , Ra :=


·

i α

j β

k γ

 , Qa :=


·

i A

j B

k C

 ,

calculate their outer product,

Πsrq = Sa Rb Qc =[·]

· · · ·
· ı̄ aαA j aβA k̄ aγA

· ̄ bαA ı̄ bβA −bγA

· k cαA +cβA ı̄ cγA



· · · ·
· ̄ aαB ı̄ aβB +aγB

· i bαB ̄ bβB k bγB

· −cαB k̄ cβB ̄ cγB



· · · ·
· k̄ aαC −aβC ı̄ aγC

· +bαC k̄ bβC ̄ bγC

· i cαC j cβC k̄ cγC


 ,
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introducing 2-symmetry in the first index pair,

Πsrq + Πrsq =

=

[·]

· · · ·
· · j A%z k̄ A%y

· j A%z · −A%x

· k̄ A%y −A%x ·



· · · ·
· · ı̄ B%z −B%y

· ı̄ B%z · k B%x

· −B%y k B%x ·



· · · ·
· · −C%z i C%y

· −C%z · ̄ C%x

· i C%y ̄ C%x ·




− 2

[·]

· · · ·
· i aαA
· i bβA
· i cγA



· · · ·
· j aαB

· j bβB

· j cγB



· · · ·
· k aαC

· k bβC

· k cγC


 ,

using

~% :=

a
b
c

×
α

β
γ

 =

bγ − cβ
cα− aγ
aβ − bα

 .

The full 6-symmetry,

Γabc = Πsrq + Πrsq + Πqsr + Πqrs + Πsqr + Πrqs =

− 2



· · · ·
· · ̄ A%z k A%y

· ̄ A%z ı̄ B%z V

· k A%y V iC%y



· · · ·
· j A%z i B%z V

· i B%z · k̄ B%x

· V k̄ B%x ̄ C%x



· · · ·
· k̄ A%y V ı̄ C%y

· V k B%x j C%x

· ı̄ C%y j C%x ·




(10)

− 2

[·]

· · · ·
· ·
· · V
· V ·



· · · ·
· · V
· ·
· V ·



· · · ·
· · V
· V ·
· ·


 (11)

− 2

[·]

· · · ·
· i aαA j aαB k aαC

· j aαB i bβA

· k aαC i cγA



· · · ·
· j aαB i bβA

· i bβA j bβB k bβC

· k bβC j cγB



· · · ·
· k aαC i cγA

· k bβC j cγB

· i cγA j cγB k cγC




(12)

− 4

[·]

· · · ·
· i aαA
· ·
· ·



· · · ·
· ·
· j bβB
· ·



· · · ·
· ·
· ·
· k cγC


 , (13)
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with (10) containing, up to the sign, 6 different components and each possible contraction gives
the same vector triple product,

Γaaaδ
aa + = 2


·

B%z − C%y

C%x −A%z

A%y −B%x

 = 2



·
a
b
c

×

·
α
β
γ


×


·
A
B
C


= 2 (~s× ~r) × ~q = 2 (~q · ~s)~r − 2 (~q · ~r)~s ,

then (11) contains, in 6 identical instances, the scalar triple product of the generating vectors,

V :=



·
a
b
c

×

·
α
β
γ


 ·


·
A
B
C

 =
(
%xA + %yB + %zC

)
= ~% · ~q

= (~s× ~r) · ~q = (~r × ~q) · ~s = (~q × ~s) · ~r .

Then (12) contains 6 different components and each possible contraction gives the same

Γaaaδ
aa + = −2



·
a
b
c

 ·

·
α
β
γ




·

A i

B j

C k

 = −2 (~s · ~r) ~q .

Finally, the contractions of (13) are anisotropic and not rotationally invariant,

Γaaaδ
aa + = − 4


·

i aαA

j bβB

k cγC

 .

So the total contraction is

Γaaaδ
aa = −2 ~S(~r · ~q) + 2 ~R(~q · ~s) − 2 ~Q(~s · ~r) − 4


·

i aαA

j bβB

k cγC

 .

Three Perpendicular Vectors

With three perpendicular vectors, ~s ⊥ ~r ⊥ ~q ⊥ ~s,
the scalar triple product is at maximum,

|V | = |~s| |~r| |~q| ,

and the total contraction vanishes,

Γaaaδ
aa = ~0 .
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Two Parallel Vectors, One Perpendicular

With any two of the three generating vectors being parallel, the scalar triple product vanishes,

|V | = ~0 ,

and the contraction depends on which two of the vectors being parallel.

With the outer two, ~s and ~q, being parallel,

Γaaaδ
aa = −2

2


·

i αa2

j βb2

k γc2

− ~R |~s|2

 = −2


·

i α (+a2 − b2 − c2)
j β (−a2 + b2 − c2)
k γ (−a2 − b2 + c2)

 .

With an outer and the middle, ~s and ~r, being parallel,

Γrrrδ
rr = −2

2


·

i Aa2

j Bb2

k Cc2

+ ~Q |~r|2

 = −2


·

i A (3a2 + b2 + c2)
j B (a2 + 3b2 + c2)
k C (a2 + b2 + 3c2)

 .

Three Parallel Vectors

With three parallel vectors, ~s = ~r = ~q, again the scalar triple product vanishes,

|V | = ~0 ,

and the contraction is

Γrrrδ
rr = −2

2


·

i a3

j b3

k c3

+ ~R |~r|2

 = −2


·

i a (3a2 + b2 + c2)
j b (a2 + 3b2 + c2)
k c (a2 + b2 + 3c2)

 .

3.5 Summarizing the Components of 3rd-Rank Derivatives

NOTE: From here on, not everything is clear yet.

All 3 possible contractions of the 3rd-rank derivative tensor,

Γa δδ δδδ = Γδ b δ δδδ = Γδδ c δδδ != 0 (14)
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induce a 4-vector which contains the electromagnetic vector potential,

Γa δδ δδδ = − 2 B t2
(

t
~s + ~r + ~q

)
(triple time)
(celerity)

+ 2 B

(
t (~s · ~r + ~r · ~q + ~q · ~s)

−~s (~r · ~q) + ~r (~q · ~s)− ~q (~s · ~r)

)
(squeeze over time)
(isotropic squeeze over space)

− 4 B


·

aαA
bβB
cγC

 (anisotropic squeeze over space, gravity) .

Defining

~α := grad χ = ∂t ~ν = t2 (~s + ~r + ~q) (celerity) ,

~g := 2


·

aαA
bβB
cγC

 (gravity) ,

from the trace condition follow two continuity equations,

Γt δδ δδδ ≡ 0 = 2
(
∂tχ− div ~ν

)
⇔ ∂tχ ≡ div ~ν ,

Γs δδ δδδ ≡ 0 = 2
(
~α− ~g − ~Amag

)
⇔ ~Amag = ~α− ~g (?) ,

with the slices

Φel := Γt tt δtt = ∂tχ = div ~ν ,

~Amag := Γs tt δtt = ~α− ~g (?) .

In electromagnetic gauge theory, the electromagnetic vector potential is the 4-gradient of a gauge
potential, which can be identified here with logarithmic gravitational potential, χ, Φel,

~Amag(
Φel
~Amag

)
=
(

∂t

∇

)
χ . (15)

Components hidden from the trace are

~ω := ∂t~% = (~s× ~r + ~r × ~q + ~q × ~s) t (rotation over time) ,

V := (~s× ~r) · ~q = (~r × ~q) · ~s = (~q × ~s) · ~r (volume span) .
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Derivative Chart

1st-rank:

2nd-rank:

3rd-rank:

τ log’time

χ log’timeshift
CC-by-nd-sa 2015, C.S.P.Spanheimer

Φel el’pot’

∂t

∂t

~ξ log’pos’

~ν rapidity

~Amag mag’pot’

∂t

∂t

grad

grad

div

div

~% rotation

~ω rot’speed

∂t

rot
rot? r

ot

Decomposing the 3rd-rank derivative tensor into purely 3-symmetric parts,

(euclidean, occuring in no trace)

~ω
Γabc ∼



·
· k j

k · i

j i ·



· · k j

· ·
k ·
j ·



· k · i

k ·
· ·
i ·



· j i ·
j ·
i ·
· ·


 (rotation over time, ~ω) ,

(non-euclidean, occuring in the time trace)

Φel

Γ abc ∼




+
−
−
−



· −
− ·

·
·



· −
·

− ·
·



· −
·
·

− ·


 (electric potential, Φel) ,

(non-euclidean, occuring in the space traces)

~α
Γabc ∼



· i j k

i ·
j ·
k ·




i

·
·
·




j

·
·
·




k

·
·
·


 (celerity, ~α) ,

~g

Γabc ∼



·
·
·
·



·

ı̄
·
·



·
·

̄
·



·
·
·

k̄


 (gravitation) ,
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Γabc ∼



·
·
·
·



·
· k̄

ı̄

k̄ ·



·
· ı̄

ı̄ ·
̄



·

k̄

· ̄

̄ ·




+



·
·
·
·



·
· ̄

̄ ·
ı̄



·

̄

· k̄

k̄ ·



·
· ı̄

k̄

ı̄ ·


 (rot ~%) .

3.6 4th-Rank Functions and Electromagnetism

NOTE: From here on, not everything is clear yet.

Of the 4th-rank tensor, we investigate contractions with no more than rank 2.
The total contraction condition,

Γδδδδδ
δδδδδ ≡ 0 = �χ = �~ν = � ~% ,

is equivalent to the Lorenz gauge, Lorenz
gauge

�χ ≡ 0 = ∂tΦel − div ~Amag ⇒ ∂tΦel ≡ div ~Amag .

The non-euclidean part of the total contraction induces
the source of logarithmic timeshift and thus a logarithmic mass/energy density, %grav

Γ ttttδ
ttδtt = ρgr = ∂t

2χ =

− Γttssδ
ttδss = −8 (~s · ~r) (~q · ~p) − 8 (~s · ~q) (~r · ~p) − 8 (~s · ~p) (~r · ~q) .

The lesser condition Γab δδ δδδ != 0 induces a matrix
which is equivalent to the electromagnetic Faraday tensor, Fab

Fab := Γab ttδ
tt =


· iEx jEy kEz

iEx · k Bz j By

jEy k Bz · iBx

kEz j By iBx ·

 ,

with an electric field, ~E

~E = ∇Φel = ∇∂tχ

= ∂t
~Amag = ∂t∇χ ,

and a magnetic field, ~B

~B = rot ~Amag = rot∇χ .
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Derivative Chart

2nd-rank:

3rd-rank:

4th-rank:

χ log’timeshift
CC-by-nd-sa 2015, C.S.P.Spanheimer

Φel el’pot’

ρgr log’mass dens’
CC-by-nd-sa 2015, C.S.P.Spanheimer

∂t

∂t

~ν rapidity

~Amag mag’pot’

~E el’field

∂t

∂t

grad

grad

div

div

~% rotation

~ω rot’speed

~B mag’field

∂t

∂t

rot
rot

? r
ot

? r
ot

3.7 5th-Rank Functions and Maxwell ’s Equations

Maxwell ’s homogeneous ‘rot ~E’ equation follows immediately, up to a sign, rot ~E
≡ ∂t

~B
rot ~E = rot∇Φel = rot∇∂tχ

= rot ∂t
~Amag = rot ∂t∇χ

= ∂t rot∇χ = ∂t rot ~Amag

= ∂t
~B ,

and Maxwell ’s ‘div ~B’ equation, div ~B

div ~B = div rot ~Amag
?≡ 0 ,

TODO: is there a proof that div ~B vanishes identically ? From div rot ≡ 0 ?

The maximum contraction gives a 4-vector of electrical charge/current density,

Γa tttt δttδtt = 1
ε0

(
ρel

~

)
=
(

∂t

∇

)(
∂t

2 ≡ ∆
)
χ ,

of which the inhomogeneous equations follow.

First Maxwell ’s ‘div ~E’ equation (with a different sign),
which actually defines an electric source density, div ~E

=: ρel /ε0
div ~E = Γt tttt δttδtt =: ρel /ε0 ,
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and then Maxwell ’s ‘rot ~B’ equation (with a different sign),
which actually defines an electric current density, ~ /ε0

Γs tttt δttδtt = ∂t
~E

?= rot ~B

= ∇∆χ = ∂t
2∇χ =: ~ /ε0 ,

with ∂t
~E

∂t
~E = ∂t∇Φel = ∂t∇∂tχ

= ∂t
2 ~A = ∂t

2∇χ ,

and (TODO: not yet clear) rot ~B

rot ~B = rot rot ~Amag = ∇ div ~Amag −∆ ~Amag (?)

= rot rot∇χ = ∇∆χ−∆∇χ (?) .

Derivative Chart

3rd-rank:

4th-rank:

5th-rank:

Φel el’pot’

ρgr log’mass dens’
CC-by-nd-sa 2015, C.S.P.Spanheimer

ρel el’charge’dens’

∂t

∂t

~Amag mag’pot’

~E el’field

~ el’curr’dens’

∂t

∂t

grad
grad

div

div

~ω rot’speed

~B mag’field

∂t

∂t

rot
rot

? r
ot

? r
ot

3.8 6th-Rank Functions and Electromagnetic Waves

From

ρel = div ~E , ~ = ∂t
~E ,

and since

∂t ρel = ∂t div ~E ≡ div ∂t
~E = div~ ,
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follows continuity of electric charge density,

� (∂t
2 ≡ ∆) χ ≡ 0 ⇒ ∂t ρel ≡ div~ .

Finally the electromagnetic ‘wave equations’

� ~E ≡ ~0 ⇔ (∂t
2 ≡ ∆) ~E ,

� ~B ≡ ~0 ⇔ (∂t
2 ≡ ∆) ~B ,

summarized by

�

(
∂t

rot

)
~Amag ≡ ~0 ,

are no more than the d’Alembert condition which holds true for each component of each deriva-
tive tensor and tells nothing more than a dispersion relation.

3.9 Summarizing Electromagnetism

Mathematical Definition Here Usual Physical Definition

Gauged Potentials

Φ := ∂tχ = div ~ν Φ = Φ0 + ∂tχ

~A := ∇χ = ∂t ~ν ~A = ~A0 +∇χ

Lorenz Gauge

�χ ≡ 0 ∂tΦ− div ~A ≡ 0

Fields

~E := ∂t
~A = ∇Φ ~E := ∂t

~A−∇Φ

~B := rot ~A ~B := rot ~A

Maxwell ’s Equations

rot ~E ≡ ∂t
~B rot ~E + ∂t

~B ≡ ~0

div ~B ≡ 0 div ~B ≡ 0

∂t
~E

?= rot ~B =: ~/ε0 rot ~B − ∂t
~E =: ~/ε0

div ~E =: ρel/ε0 div ~E =: ρel/ε0

Continuity of Charge

�∆χ ≡ 0 ∂t ρel ≡ div~

Wave Equations

� ~E ≡ 0 � ~E = 0

� ~B ≡ 0 � ~B = 0
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3.10 Complete Derivative Chart

1st-rank:

2nd-rank:

3rd-rank:

4th-rank:

5th-rank:

6th-rank:

Γ quaternionic ‘master potential’

τ log’time

χ log’timeshift
CC-by-nd-sa 2015, C.S.P.Spanheimer

Φel el’pot’

ρgr log’mass dens’
CC-by-nd-sa 2015, C.S.P.Spanheimer

ρel el’charge’dens’

Continuity

∂t

∂t

∂t

∂t

∂t

∂t

~ξ log’pos’

~ν rapidity

~Amag mag’pot’

~E el’field

~ el’curr’dens’

E–Waves

∂t

∂t

∂t

∂t

∂t

grad
grad

grad

grad
grad

grad

div

div

div

div

div

~% rotation

~ω rot’speed

~B mag’field

B–Waves

∂t

∂t

∂t

∂t

rot
rot

rot
rot

rot

? r
ot

? r
ot

? r
ot

? r
ot
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4 Conclusion

4.1 What’s Been Shown

In the logarithmic derivative tensors, parallels to the most fundamental physical fields have been
identified,

in the 2nd rank,
a logarithmic Lorentz boost from rapidity, together with a static rotation,
and a logarithmic gravitational potential,
which is equivalent to a possible electromagnetic gauge potential,

in the 3rd rank,
a logarithmic celerity and a logarithmic gravitational field, a rotation over time,
possibly electric and magnetic vector potentials,

in the 4th rank,
a logarithmic gravitational source density,
a possible electromagnetic field tensor and the Lorenz gauge,

in the 5th rank,
possibly Maxwell ’s equations,
together with an electromagnetic charge and current density.

Further, an infinite series of gauge potentials occurs, of which the topmost one is the ‘master
potential’ function.

4.2 What’s Essential

• Working on the tangent bundle of a spacetime manifold
similar to Einstein’s general relativity.

• More fundamental than the metric tensor, gµν ,
is the Jacobi matrix, Jµ

b, from which the metric results.

• For an infinitesimal embedding, the logarithm of the Jacobi matrix, Γab,
is yet more fundamental and introduces a notion of ‘scale invariance’,
which was an objective of Weyl ’s.

• Requiring all possible contractions of all logarithmic derivative tensors to vanish identi-
cally enforces holomorphism and also results in the functional determinant being at unity
everywhere, as Einstein required.

• Assuming a ‘master potential’, all derivative tensors are symmetrical in all index pairs.
and the metric tensor is always purely diagonal.

• ‘Blessing’ the space coordinates with a signature of quaternionic units
introduces an algebra with torsion, which is essential to yielding rotation and magnetism,
but is different from Cartan’s torsion.
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• Most essential is a philosophy of detection instead of engineering,
of investigation rather than invention.

4.3 What’s the Gain

From such a quaternionic derivative tensor framework, the concepts of analytic geometry and
3D vector calculus emerge in a natural way, that is dot product, cross product, Grassmann’s
identity, triple scalar and vector product, as well as divergence, gradient, rotational derivative,
time derivative, and the operators of d’Alembert and Laplace.

It would not work as a vector calculus pasted on a flat euclidean or any arbitrary space, since
some of the entities are not rotationally invariant or Lorentz -covariant with respect to a flat
euclidean or Minkowski metric.

But on the tangent space of its own manifold, Lorentz covariance is fulfilled by definition, on
the other hand distorting spacetime and giving rise to topological questions.

4.4 Epilog

Mathematics has often been used to deductively engineer models of physical observations.

Contrary to that, in the present context mathematics herself is asked to reveal her own nature
and the most reasonable behavior to create in an inductive way a mathematical reality which
might, at deeper inspection, actually resemble our physical universe.

This introduces a philosophy of detection instead of engineering, of investigation rather than
invention.

Any addition which adds to the freedom of a given model will spoil further investigation to ‘hear,
what mathematics itself speaks’. If at all, then additions which restrict a model are acceptable.

Mathematicians have investigated plenty of mathematically insane situations, like functions
being not continuous and thus not differentiable, spaces being incomplete or not compact.

From that, mathematics can tell us in reverse, what is a sane environment to possibly induce
a vivid reality: Functions being differentiable infinitely often, being holomorphic on a complete
compact space, which might even be a general manifold with a tangent bundle.

Additional restricting assumptions made here are that any fields shall be living on the tangent
bundle alone and that the tangent bundle is governed by a single ‘master potential’.

In 3+1 dimensions, mandating the possibility of spatial rotations induces a quaternonic algebra
and allows exactly for a gravitational, an electric, and a magnetic field, and some electromagnetic
waves.

Still open is the freedom of a manifold to form different topologies, where supposedly phenomena
of stable particles (or ‘topological centers’) as well as of topological adhesive (‘nuclear’) forces
might be found.
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In 2.5 added missing factors to the Taylor series.
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