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1 Introduction

The conventional description of the axial anomaly is as follows:

Step 1: A massless, non-interacting Dirac field satisfies the equation1:

∂µν̇ην̇ = 0

∂µν̇ξ
µ = 0

(1.1)

Due to symmetries of the field, both vector current P µ and axial current P µ
A obey conti-

nuity equations (i.e. both currents are conserved):

∂µP
µ = 0

∂µPA
µ = 0

(1.2)

Then a coupling to a vector gauge field is introduced, and both symmetries continue to
hold.

Step 2: The second step is to apply quantization, necessarily followed by regulariza-
tion and renormalization. That makes preservation of both symmetries impossible. It
apperas that it is possible to preserve conservation of the vector current or axial current
(or a linear combination of the two) but not both.

Since the preservation of both symmetries is impossible, a choice is made to presevre
vector current only

∂µP
µ = 0 (1.3)

while the divergence of the axial current is required by quantum perturbation theory to
be proportional to the well known electromagnetic field invariant:

∂µPA
µ ∼ εµναβFµνFαβ ∼ E ·B (1.4)

The results agree with experiment in a sense that only vector current is actually conserved
in nature.

1We extensively use spinorial form of equations here, see Annex I: Spinor calculus for details.
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The concept of axial anomaly is fully accepted by modern physics, but nearly all physi-
cists find it weird.

Once we know from experiment that axial current is not conserved, why do we start
with equation (1.1) that preserves axial symmetry? Do we intentionally ”make even
number of mistakes” to obtain the correct result?

Is there a field equation (other than (1.1)) allowing to directly derive the correct ex-
pression for the divergence of the axial current (1.4)? In this paper we will find such
equation and describe some amazing consequences emerging from it.

2 Eliminating anomaly

Our strategy will be based on finding the new field equation that will directly lead us to
(1.4).

Since (1.4) contains electromagnetic filed invariant, it is obvious that the field equation
shall include electromagnetic fields. The simplest Lorentz invariant equation that meets
this requirement is as follows2:

∂µν̇ην̇ + ifµν ξ
ν = 0

∂µν̇ξ
µ + iḟ µ̇ν̇ ηµ̇ = 0

(2.1)

In this equation the spinor and co-spinor fields are coupled via second rank electromagnetic
field spinors (see Section 4.5). The conjugate equations can be written as follows:

∂µν̇ηµ − iḟ ν̇µ̇ ξ
µ̇ = 0

∂µν̇ξ
ν̇ − if νµ ην = 0

(2.2)

2.1 Conservation of the vector current

The momentum density vector of the spinorial matter field can be defined as a sum of left
and right spinorial (chiral) currents (see Section 4.4)

{Pµ = pµ + p̂µ} → P µν̇ = pµν̇ + p̂µν̇ (2.3)

where
pµν̇ = ξµξν̇

p̂µν̇ = ηµην̇
(2.4)

2In literature it is known as Pauli coupling.
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Accordingly the divergence of the momentum density vector Pµ

∂µP
µ = ∂µν̇P

µν̇ = ∂µν̇p
µν̇ + ∂µν̇ p̂

µν̇ (2.5)

Using field equations (2.1 - 2.2) we can find that

∂µν̇p
µν̇ = ∂µν̇

[
ξµξν̇

]
=
(
[∂µν̇ξ

µ] ξν̇ + ξµ
[
∂µν̇ξ

ν̇
])

= − i
(
ḟ µ̇ν̇ ηµ̇ξ

ν̇ − ξµf νµην
)

∂µν̇ p̂
µν̇ = ∂µν̇

[
ηµην̇

]
=
([
∂µν̇ηµ

]
ην̇ + ηµ

[
∂µν̇ην̇

])
= + i

(
ḟ ν̇µ̇ξ

µ̇ην̇ − ηµfµν ξν
) (2.6)

from what we conclude that momentum of the spinorial field is conserved due to field
equations:

∂µP
µ = 0 (2.7)

and hence, (1.3) is satisfied.

2.2 Reducing spinor space

Axial vector current PA
µ is defined, as usual, as a difference of spinorial (chiral) currents

pµ and p̂µ

PA
µ = pµ − p̂µ (2.8)

From (2.6) we can derive expression for divergence of the axial current:

∂µPA
µ = ∂µν̇PA

µν̇ = ∂µν̇p
µν̇ − ∂µν̇ p̂µν̇ = − 2i

(
ḟ µ̇ν̇ ηµ̇ξ

ν̇ − ξµf νµην
)

(2.9)

Our next step would be aiming at making (2.9) consistent with (1.4).

This can be achieved by reducing the total space of (4-component) spinors to the subspace
of spinors satisfying certain Lorentz invariant condition.

This can be done in the way similar to allocating the subspaces of Dirac and/or Ma-
jorana spinors.

For instance, the subspace of Majorana spinors is allocated by requiring that all spinors
of this subspace are eigenvectors of the charge conjugation operator.

Dirac spinors are also defined as eigenvectors of 4-momentum operator in spinor space:

γµP
µ u(p) = m u(p) (2.10)
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Similarly, we will demand that spinorial matter fields ξ and η̇ are eigenvectors of the
second rank electromagnetic field spinors fµν and ḟ µ̇ν̇ correspondingly:

fµν ξ
ν = λ ξµ

ḟ µ̇ν̇ ηµ̇ = λ̄ ην̇

(2.11)

With the condition (2.11) our matter field equations (2.1) become very simple

∂µν̇ην̇ + iλ ξµ = 0

∂µν̇ξ
µ + iλ̄ ην̇ = 0

(2.12)

and replicate the structure of the free Dirac equation (see (6.2)) where constant mass
term m is replaced by the variable “mass density” terms λ and λ̄.

Taking account the explicit form of electromagnetic field spinors fµν and ḟ µ̇ν̇ (see (4.42) -
(4.43)) one can see that eigenvalues λ and λ̄ are well known electromagnetic field invari-
ants:

λ± = ±
√

(F 1)2 + (F 2)2 + (F 3)2 λ±
2 = E2 −B2 − 2i E ·B

λ± = ±
√(

F̄ 1
)2

+
(
F̄ 2
)2

+
(
F̄ 3
)2

λ±
2

= E2 −B2 + 2i E ·B
(2.13)

Hence, from the analogy with free Dirac equation we can say that in our model elec-
tromagnetic field invariants play the roles of mass densities3. These mass densities are
variable and complex valued, but we will show that it does not lead to any inconsistencies
and/or non-physical solutions.

The Lorentz invariant condition (2.11) establish strong connection between electromag-
netic and spinorial (matter) fields. One of the consequences is that the momentum 4-vector
Pµ (i.e. vector current (2.3)) becomes an eigenvector of the stress-energy tensor of the
electromagnetic field (5.10):

tµρ̇νσ̇ p
νσ̇ = (ḟ ρ̇σ̇ ξ

σ̇) (fµν ξ
ν) = |λ| 2 pµρ̇

tµρ̇νσ̇ p̂
νσ̇ = (ḟ ρ̇σ̇ η

σ̇) (fµν η
ν) = |λ| 2 p̂µρ̇

(2.14)

3We do not claim that we discovered the mass origin other than Higgs boson. But at least we’ve found
the application of electromagnetic field invariants (2.13) in physics.
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tµρ̇νσ̇ P
νσ̇ = |λ| 2 P µρ̇ (2.15)

The eigenvalue of the stress-energy tensor is real valued and, of course, expressed via
electromagnetic field invariants (2.13).

2.3 Eigenvectors

Let us now derive the expressions for the eigenvectors of the electromagnetic field spinors
fµν and ḟ µ̇ν̇ .

Consider arbitrary point Q at the space-time. For the sake of convenience we can choose
the reference frame (denoted as M⊥) in such a way that the fields E, B at the point Q
will be orthogonal to the axis e3.

Figure 1: Spatial dimensions of the frame M⊥

There is, of course, infinite number of such frames, but all the considerations presented
in this section are valid for any of these frames.

In the reference frame M⊥ the expression for spinor fµν at the point Q will be (see (4.42)):

fµν =

[
0 F 1 − iF 2

F 1 + iF 2 0

]
(2.16)

because F 3 = 0 at the point Q.
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One can easily check now that two spinors ξ+ and ξ− defined as

ξ± =

 ξ1±

ξ2±

 =

 ±√F 1 − iF 2

√
F 1 + iF 2

 (2.17)

will be eigenvectors of the matrix (2.16) at the point Q:

fµν ξ
ν
± = λ± ξ

µ
± (2.18)

Hence, with the special choice of the reference frame we can write an explicit expression
for the components of the spinorial field ξ satisfying condition (2.11). The expressions
for the field components in all other frames can be obtained by the appropriate Lorentz
transformations.

Similarly one can show that at the reference frame M⊥ two co-spinors η̇+ and η̇− de-
fined as

η̇± =

 η±1̇

η±2̇

 =

 ±
√
F̄ 1 − iF̄ 2

√
F̄ 1 + iF̄ 2

 (2.19)

will satisfy the condition
ḟ µ̇ν̇ η±µ̇ = λ̄± η±ν̇ (2.20)

at the point Q.

Using (2.17) and (2.19) one can find that in the frame M⊥

ξ1±ξ
1̇
± =

√
(F 1 − iF 2) (F̄ 1 + iF̄ 2) = η1±η

1̇
±

ξ2±ξ
2̇
± =

√
(F 1 + iF 2) (F̄ 1 − iF̄ 2) = η2±η

2̇
±

ξ1±ξ
2̇
± = ±

√
(F 1 − iF 2) (F̄ 1 − iF̄ 2) = −η1±η2̇±

ξ2±ξ
1̇
± = ±

√
(F 1 + iF 2) (F̄ 1 + iF̄ 2) = −η2±η1̇±

(2.21)

at the point Q. From this we can see that in the frame M⊥ the components of the spinorial
(chiral) currents pµ and p̂µ (see (2.4)) satisfy the relationships

p±0 = p̂0±, p±1 = p̂1±

p±2 = p̂2±, p±3 = −p̂3±
(2.22)
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and the total momentum density Pµ (vector current) has only two non-zero components
in the frame M⊥

P±0 = 2 p±0 = 2 p̂0±, P±1 = 0

P±2 = 0, P±3 = 2 p±3 = −2 p̂3±

(2.23)

From (2.21) we can derive the “mass square” of the momentum density 4-vector Pµ, which
is invariant under Lorentz transformations and hence has the same value in all reference
frames:

P µPµ = 4|λ| 2 (2.24)

It is worth noting that the momentum density vector Pµ is always time-like, and its time-
like component P0 is always positive, hence no solutions with negative energies are allowed.

From (2.21) we can find the values of the following Lorentz invariants:

ξµ± η±µ = ±2 λ±

ξµ̇± η±µ̇ = ±2 λ̄±

(2.25)

In further sections we will also use the following identities:

ξµ− η+µ = 0

ξµ̇− η+µ̇ = 0
(2.26)

2.4 Divergence of axial current

Let us now assume that fields ξ and η̇ are the eigenvectors of the electromagnetic field
spinors fµν and ḟ µ̇ν̇ , i.e. condition (2.11) is satisfied. Then using (2.11) and (2.25) the
expressions (2.6) can be written as

∂ρp
ρ
± = −i

(
λ±ξ

µ
±η±µ − λ±ηµ̇ξ

µ̇
)

= ∓ 2i (λ±
2 − λ±

2
) = ∓ 8 E ·B

∂ρp̂
ρ
± = +i

(
λ±ξ

µ
±η±µ − λ±ηµ̇ξ

µ̇
)

= ± 2i (λ±
2 − λ±

2
) = ± 8 E ·B

(2.27)

From (2.27) we conclude that spinorial (chiral) currents pµ and p̂µ are conserved indepen-
dently when E · B = 0, i.e. when imaginary parts of the squared electromagnetic field
invariants λ2 and λ̄

2
are zero. Particularly, this is the case of orthogonal (E ⊥ B) electric

and magnetic fields (see Annex IV for details).
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From (2.27) one can see that the 4-divergence of the axial vector current equals to

∂ρPA±
ρ = ∂ρp

ρ
± − ∂ρp̂

ρ
± = ∓ 4i

(
λ±

2 − λ±
2
)

= ∓ 16 E ·B (2.28)

This makes our model fully consistent with (1.4).

3 Physical applications

Let’s have another look at our new equation

∂µν̇ην̇ = − ifµν ξ
ν

∂µν̇ξ
µ = − iḟ µ̇ν̇ ηµ̇

(3.1)

and eigenvector condition
fµν ξ

ν = λ ξµ

ḟ µ̇ν̇ ηµ̇ = λ̄ ην̇

(3.2)

Particle physicists hate equations of this sort because they don’t know how to quan-
tize them. Or maybe some physicists know, but anyway it requires tremendous effort.

Why quantizing everything? Let us first see what we can do with the equation (3.1)
as it is.

3.1 Approach to solving self-action problem

In this paper we will consider the well known particle’s self-action problem in electrody-
namics. The electromagnetic field produced by the charged particle is acting on particle
itself. This action on the source impacts the electromagnetic field, and so on, and so on.

The major difficulty is in finding the balance between the two equations responsible for
evolutions of the electromagnetic field and it’s source: the Maxwell equations and the
(spinorial) matter field equations correspondingly.

This balance can be achieved due to strong connection between spinorial matter fields
and electromagnetic field (3.2). Using the approach developed by Belinfante and Oha-
nian [7] we will demonstrate that with (3.2) the matter field equation (3.1) can be reduced
to Maxwell equations, so that evolutions of the electromagnetic field and it’s source will
be synchronized.
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We will consider three field configurations with different symmetries:

• Transverse plane waves corresponding to plane electromagnetic waves in vacuum
(photons),

• Fields with axial symmetry that can be associated with stable charged fermions
(such as electron)

• Longitudinal plane waves. Such fields can be associated with neutrino since they
satisfy Majorana condition.

In all cases we will use the same matter field equation (3.1), and will make no assumptions
other than symmetry properties listed above.

Due to chosen symmetries of the field configurations, at every point of the space-time
the electric and magnetic field vectors E, B are orthogonal to one of the basis vectors.

This enables us to use in our calculations the explicit expressions for spinorial filed com-
ponents (2.17) and (2.19) derived in Section 2.3.

We will use them to write down the explicit expressions for the matter field equation
(3.1) and Maxwell equations for each symmetry type, and then we will require the equiv-
alence of Maxwell and matter field equations.

This would enable us to express charge densities of the spinorial matter fields via elec-
tromagnetic fields, similarly to expressions of their mass densities derived in previous
sections (see e.g. (2.24)).

3.2 Transverse plane waves

Consider transverse plane waves propagating in the direction of the axis e3. In each point
the electric and magnetic field vectors E, B are orthogonal to the axis e3:

E,B ⊥ e3

F 3 = F̄ 3 ≡ 0
(3.3)

As shown in the Annex V, the matter wave equations (3.1) will have the following form:

(∂1 − i∂2) (F 1 + iF 2) = + 2 i λ̄
√
F 1 + iF 2

√
F̄ 1 − iF̄ 2

(∂0 − ∂3) (F 1 − iF 2) = 0

(∂0 + ∂3) (F 1 + iF 2) = 0

(∂1 + i∂2) (F 1 − iF 2) = + 2 i λ̄
√
F 1 − iF 2

√
F̄ 1 + iF̄ 2

(3.4)
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With expressions (2.21 - 2.23) for the momentum density of the matter field Pµ in the
frame M⊥ we can rewrite (3.4) in the following form:

(∂1 − i∂2) (F 1 + iF 2) = i λ̄ (P 0 + P 3)

(∂0 − ∂3) (F 1 − iF 2) = 0

(∂0 + ∂3) (F 1 + iF 2) = 0

(∂1 + i∂2) (F 1 − iF 2) = i λ̄ (P 0 − P 3)

(3.5)

At the same time, the Maxwell equations for transverse plane waves are as follows (see
Section 5.2.2):

(∂1 − i∂2) (F 1 + iF 2) = J0 + J3

(∂0 − ∂3) (F 1 − iF 2) = 0

(∂0 + ∂3) (F 1 + iF 2) = 0

(∂1 + i∂2) (F 1 − iF 2) = J0 − J3

(3.6)

From comparison of (3.5) and (3.6) we conclude that in the case of the transverse plane
waves there can be established the following relationship between the charge density
current Jµ and the momentum density P µ:

Jµ = i λ̄ P µ (3.7)

In this expression the electromagnetic field invariant (iλ̄) plays the role of the electromag-
netic charge density scalar 4.

Generally λ̄ is complex valued, hence allowing for both non-zero electric and magnetic
charge densities.

The expression for the Lorentz force density (5.12) acting on matter fields is also de-
rived in the Annex V:

Λµν̇ = −i
(
λ2 − λ̄2

)
PAµν̇ (3.8)

It is interesting that the Lorentz force Fµ is proportional to the axial vector current PA
µ.

4It is clear that (−iλ) plays the same role for anti-particles. Again, we do not claim that we’ve
discovered the origin of electric charge, but at least we’ve found another application of electromagnetic
field invariants (2.13) in physics.

10



From (3.8) we can see that Lorentz force vanishes when E · B = 0, i.e. when imaginary

parts of the squared electromagnetic field invariants λ2 and λ̄
2

are zero.

Particularly, this is the case of electromagnetic waves “in vacuum” (photons, see below).
When Lorentz force is zero, the momentum density of the matter field remains constant
in the course of particle’s motion, hence allowing for uniform motion of the particle.

In the case of plane electromagnetic waves “in vacuum” (E ⊥ B, E = B) we have
λ = λ̄ = 0, and matter field equations (3.5) coincide with the “source-free” Maxwell
equations (see 5.16). In this case the momentum density P µ of the matter field is non-
zero, while the charge density current Jµ is zero.

In this sense the electromagnetic wave in vacuum is not actually “source-free”, i.e. de-
spite of zero charge density there exist a spinorial matter field which is the source of
electromagnetic field.

3.3 Axial symmetry

Unlike free Dirac equation, our equation (3.1) allows for configuration with axial symme-
try.

Indeed, as shown by Erwin Schrödinger in 1930, the free Dirac equation (see (6.2)) only
allows for trembling motion, also known as Zitterbewegung. The difference between axial
symmetry and Zitterbewegung is illustrated on Figure 2.

Figure 2: Axial symmetry vs Zitterbewegung

Due to constant mass terms in free Dirac equation, the field oscillates with the same
amplitude at every point.

In our model the ”mass terms” are variable, hence allowing for axial symmetry where
the oscillation amplitude depends on a distance to the symmetry axis.
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As shown in the Annex VI, by introducing polar cylindrical coordinates

x2 = ρ cosϕ
x3 = ρ sinϕ
x1 = x1

(3.9)

our axially symmetric matter field equation (3.1) can be written in the following form:

1
ρ
F ρ + (∂1 − i∂ρ) (F 1 + iF ρ) = + 2 i λ̄

√
F̄ 1 − iF̄ ρ

√
F 1 + iF ρ + i

ρ
F 1

(
∂0 − 1

ρ
∂ϕ

)
(F 1 − iF ρ) = 0

(
∂0 + 1

ρ
∂ϕ

)
(F 1 + iF ρ) = 0

1
ρ
F ρ + (∂1 + i∂ρ) (F 1 − iF ρ) = + 2 i λ̄

√
F̄ 1 + iF̄ ρ

√
F 1 − iF ρ − i

ρ
F 1

(3.10)

The Maxwell equations in cylindrical coordinates can be written as follows (see Section
5.2.2):

1
ρ
F ρ + (∂1 − i∂ρ) (F 1 + iF ρ) = J0 + Jϕ(

∂0 − 1
ρ
∂ϕ

)
(F 1 − iF ρ) = 0

(
∂0 + 1

ρ
∂ϕ

)
(F 1 + iF ρ) = 0

1
ρ
F ρ + (∂1 + i∂ρ) (F 1 − iF ρ) = J0 − Jϕ

(3.11)

From comparison with (3.11) we conclude that (3.10) will coincide with Maxwell equations
if we define:

J0 − Jϕ = i λ̄ (P 0 − Pϕ)− i1
ρ
F 1

J0 + Jϕ = i λ̄ (P 0 + Pϕ) + i1
ρ
F 1

(3.12)

where J0, Jϕ and P 0, Pϕ are non-zero components of charge density and momentum
density correspondingly.

It is interesting that in axially symmetric case

J0 = i λ̄ P 0

Jϕ = i λ̄ Pϕ + 2i 1
ρ
F 1

(3.13)
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and hence the ratio Jϕ

J0 is not equal to the ratio Pϕ

P 0 . Consequently, the “velocity of charge”
is not the same as “velocity of mass” anymore5.

3.4 Neutrino model

3.4.1 General considerations

So far we have always been considering the matter field equations in the following forms:

∂µν̇η±ν̇ = − i λ± ξ±
µ

∂µν̇ξ±
µ = − i λ̄± η±ν̇

(3.14)

In (3.14) spinor ξ+ is coupled with co-spinor η̇+, and spinor ξ− is coupled with co-spinor
η̇−.

Let us now consider a field configuration where spinor ξ− is coupled with co-spinor η̇+.
The matter field equations will be written as

∂µν̇η+ν̇ = − i λ− ξ−
µ

∂µν̇ξ−
µ = − i λ̄+ η+ν̇

(3.15)

or, taking account that λ± = −λ∓ (see (2.13))

∂µν̇η+ν̇ = − i λ− ξ−
µ

∂µν̇ξ−
µ = + i λ̄− η+ν̇

(3.16)

According to (2.17) and (2.19) the components of the spinor and co-spinor fields will be

ξ1− = −
√
F 1 − iF 2 η+1̇

= +
√
F 1 − iF 2

ξ2− = +
√
F 1 + iF 2 η+2̇

= +
√
F 1 + iF 2

(3.17)

and hence the Lorentz invariant Majorana condition will be satisfied:

ξ1 = − η2

ξ2 = + η1

(3.18)

5In our model the charge is not nailed to mass.
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We put (3.17) in the matter field equations (3.16) ∂0 + ∂3 ∂1 − i∂2

∂1 + i∂2 ∂0 − ∂3

 ξ̄
2

−ξ̄1

 = − i λ−

 ξ1

ξ2


 ∂0 − ∂3 −∂1 + i∂2

−∂1 − i∂2 ∂0 + ∂3

 ξ1

ξ2

 = + i λ̄−

 ξ̄
2

−ξ̄1


(3.19)

and after expansion of the formulas and complex conjugation of the first pair of equations
we obtain

(∂0 + ∂3) ξ
2 − (∂1 + i∂2) ξ

1 = + i λ̄− ξ̄
1

(∂1 − i∂2) ξ2 − (∂0 − ∂3) ξ1 = + i λ̄− ξ̄
2

}

(∂0 − ∂3) ξ1 − (∂1 − i∂2) ξ2 = + i λ̄− ξ̄
2

− (∂1 + i∂2) ξ
1 + (∂0 + ∂3) ξ

2 = + i λ̄− ξ̄
1

} (3.20)

From (3.20) it is clear that, due to Majorana condition, the two matter field equations
(3.15) become equivalent to each other, hence only one of these equations is independent.

Let us now find the expressions for divergences of spinorial currents and momentum
density.

With matter field equations (3.16) one can easily find that

∂µν̇p
µν̇ = ∂µν̇

[
ξµξν̇

]
=
(

[∂µν̇ξ
µ] ξν̇ + ξµ

[
∂µν̇ξ

ν̇
])

= − i
(
λ̄+ η+ν̇ξ−

ν̇ − λ+η+µξ−
µ
)

= 0

∂µν̇ p̂
µν̇ = ∂µν̇

[
ηµην̇

]
=
([
∂µν̇ηµ

]
ην̇ + ηµ

[
∂µν̇ην̇

])
= − i

(
λ̄− η+ν̇ξ−

ν̇ − λ− ξ−
µη+µ

)
= 0

(3.21)

In (3.21) we used the invariant properties (2.26).

Consequently we conclude that both spinorial currents pµ and p̂µ, as well as momentum
density current Pµ are conserved.

3.4.2 Longitudinal plane waves

It is known (see [6]) that if E ·B 6= 0, i.e. electric and magnetic fields vectors E, B are not
orthogonal to each other, there exist a reference frame where these vectors are parallel to
each other: E ‖ B.
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Let’s denote this frame as M‖ and assume for simplicity that both E and B are directed
along the axis e1:

F 1 6= 0 F 2 = F 3 = 0 (3.22)

In the frame M‖ the components of the spinors (3.17) will have the form:

ξ1− = −
√
F 1 η+1̇

= +
√
F̄ 1

ξ2− = +
√
F 1 η+2̇

= +
√
F̄ 1

(3.23)

If we denote
ζ =
√
F 1 (3.24)

then spinorial currents (2.4) can be written as

p0 = + ζζ̄ p1 = − ζζ̄

p2 = 0 p3 = 0
(3.25)

and
p̂0 = + ζζ̄ p̂1 = + ζζ̄

p̂2 = 0 p̂3 = 0
(3.26)

Consequently, spatial parts of both spinorial currents pµ and p̂µ, as well as momentum
density vector Pµ, are opposite in direction to the axis e1, while the momentum density
4-vector is isotropic: P µPµ = 0. This is the first indication that, in spite of non-zero
“mass term” λ in the matter field equations, the neutrino field is “moving” at the speed
of light.

Let us now rewrite the matter field equations (3.20) in the frame M‖.

(∂0 + ∂3) ζ + (∂1 + i∂2) ζ = − i λ̄− ζ̄

(∂1 − i∂2) ζ + (∂0 − ∂3) ζ = + i λ̄− ζ̄
(3.27)

By adding and subtracting these equations we obtain:

(∂0 + ∂1) ζ = 0

(∂3 + i∂2) ζ = −2 i λ̄− ζ̄
(3.28)

The first equationin (3.28) means that the field ζ is “moving” at the speed of light in the
direction opposite to the axis e1. That means that in the frame M‖ the neutrino field
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is a longitudinal wave, i.e. the wave propagating parallel to the direction of the fields E, B.

The second equation in (3.28) can be further expressed in terms of the field ζ taking

account that λ̄− = −
(
ζ̄
)2

:

(∂3 + i∂2) ζ = + 2 i
(
ζ̄
)3

(3.29)

The Maxwell equations in the chosen frame M‖ will have the form

(∂1 + i∂2)F
1 = J0 − J3 (i)

(∂0 − ∂3)F 1 = −J1 + iJ2 (ii)

(∂0 + ∂3)F
1 = −J1 − iJ2 (ii)

(∂1 − i∂2)F 1 = J0 + J3 (iv)

(3.30)

By adding all equations we will obtain:

(∂0 + ∂1)F
1 = J0 − J1 (3.31)

By adding and subtracting equations [(i)− (ii) + (iii)− (iv)] we obtain

(∂3 + i∂2)F
1 = −J3 − iJ2 (3.32)

Hence the Maxwell equations will be consistent with matter field equations if the following
relationships are satisfied:

J0 − J1 = 0

−J3 − iJ2 = 4 i ζ
(
ζ̄
)3 (3.33)

In Section 3.2 we have demonstrated that in the case of the ”source-free” transverse plane
electromagnetic waves the charge density was zero while the momentum density of the
matter field was non-zero.

From (3.33) we conclude that in our model of neutrino the components of the charge
density J2 and J3 might be non-zero while the components of the momentum density P 2

and P 3 are both zero.

4 Annex I: Spinor calculus

4.1 Basic notations

In this paper we use the spinor calculus developed by B. van der Waerden, G.E. Uhlen-
beck and O. Laporte. This is because many spinorial equations are much simpler than the
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corresponding tensorial equations. This applies equally to Maxwell and Dirac equations.

Below we describe the basic notations used in this paper.

The metric of the Minkowski space-time is defined as following:

gαβ = gαβ = diag (+,−,−,−) , α, β = 0, 1, 2, 3 (4.1)

We use the following representations for Pauli matrices

σ0 =

[
1 0
0 1

]
σ1 =

[
0 1
1 0

]
σ2 =

[
0 −i
i 0

]
σ3 =

[
1 0
0 −1

]
(4.2)

σ́0 =

[
1 0
0 1

]
σ́1 =

[
0 −1
−1 0

]
σ́2 =

[
0 i
−i 0

]
σ́3 =

[
−1 0
0 1

]
(4.3)

and Dirac’s gamma matrices:

γ0 =


0 0 −i 0
0 0 0 −i
−i 0 0 0
0 −i 0 0

 γ1 =


0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0



γ2 =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 γ3 =


0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0


(4.4)

4.2 Spinors and co-spinors

In spinor notation the (four-component) wave function of the fermion field ψ is considered
as a formal sum of first rank spinor and first rank co-spinor fields:

ψ(x) = {ξ, η̇} = {ξ, 0}+ {0, η̇} =


ξ1(x)
ξ2(x)
η1̇(x)
η2̇(x)

 (4.5)

where
ψ ∈ C2 ⊕ Ċ2; ξ ∈ C2; η̇ ∈ Ċ2 (4.6)
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Under Lorentz transformation first rank spinors and co-spinors are transformed as follows:

ξ′µ = uµν ξ
ν

η′µ̇ = ( u−1)
ν̇
µ̇ ην̇

(4.7)

where matrix u ∈ SL (2, C) can be presented in the following form:

u =

[
u11 u12
u21 u22

]
= exp [ (−bk + i rk)σk], rk, bk ∈ R, k = 1, 2, 3 (4.8)

Any quantities transforming like the products ξµξν , ηµ̇ην̇ , ξ
µην̇ are called second rank

spinors and denoted by aµν , bµ̇ν̇ , c
µ
ν̇ correspondingly. Analogously one can define the

spinors of higher ranks.

Transition from subscript to superscript spinor indices is established by means of Lorentz-
invariant spinors εµν and εµ̇ν̇ :

εµν =

[
0 +1
−1 0

]
εµ̇ν̇ =

[
0 −1

+1 0

]
(4.9)

ξµ = εµνξ
ν , ηµ̇ = εµ̇ν̇ην̇ (4.10)

ξ1 = ξ2, ξ2 = − ξ1

η1̇ = − η2̇, η2̇ = η1̇

(4.11)

One can show easily that complex conjugates of spinors transform as co-spinors, and vice
versa, so that we can denote

ξµ̇ = ξ̄µ

ην = η̄ν̇

(4.12)

As in the usual tensor algebra, the only covariant operations are multiplication and con-
traction. For instance, from the spinors aρµ̇ν̇ and bσ̇αβ we can form the spinor of the 6th

rank
cρσ̇µ̇ν̇αβ = aρµ̇ν̇ b

σ̇
αβ (4.13)

or the spinor of the 4th rank
cρµ̇αβ = aρµ̇ν̇ b

ν̇
αβ (4.14)
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or the spinor of the 2nd rank
cµ̇β = aαµ̇ν̇ b

ν̇
αβ (4.15)

The following two rules are essential for calculations:

aµb
µ = −aµbµ (4.16)

and
aµbµcν + aµbνc

µ + aνb
µcµ = 0 (4.17)

An immediate consequence of (4.16) is that any spinor of odd rank has absolute value
zero:

aµa
µ = 0 aλµνa

λµν = 0 (4.18)

4.3 World vectors and tensors

Any vector and/or tensor of the Minkowski space-time can be expressed in a spinor form:

{xα} → {Sµν̇} : (Sµν̇) = xασTα = xασ
α T (4.19)

{xα} →
{
Sµν̇
}

:
(
Sµν̇
)

= xασ́α = xασ́
α (4.20)

or, equivalently

(
Sµν̇
)

=

(
S11̇ S12̇

S21̇ S22̇

)
=

(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)
(4.21)

(Sµν̇) =

(
S11̇ S12̇

S21̇ S22

)
=

(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3
)

=

(
S22̇ −S21̇

−S12̇ S11̇

)
(4.22)

The determinants of the matrices Sµν̇ and Sµν̇ are equal to xµxµ and remain invariant
under SL(2, C) transformations. The following rule is also essential for calculations:

Sσν̇S
λν̇ = δλσ (xµxµ) Sσν̇S

σλ̇ = δλ̇ν̇ (xµxµ) (4.23)

In the spinor notation the gradient co-vector (∂µ = ∂
∂xµ

) is transformed into the following
matrices: (

∂µν̇
)

=

[
∂0 + ∂3 ∂1 − i∂2
∂1 + i∂2 ∂0 − ∂3

]
= ∂0 + ∂1σ1 + ∂2σ2 + ∂3σ3 (4.24)
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(∂µν̇) =

[
∂0 − ∂3 −∂1 − i∂2
−∂1 + i∂2 ∂0 + ∂3

]
= ∂0 − ∂1σT1 − ∂2σT2 − ∂3σT3 (4.25)

From (4.23) we immediately conclude that

∂µν̇∂
λν̇ = δλµ (∂µ∂µ) ∂µν̇∂

µλ̇ = δλ̇ν̇ (∂µ∂µ) (4.26)

and for any 4-vector V µ represented (according to (4.21 - 4.22)) by second rank spinor
Sµν̇ the 4-divergence is written in the following form:

∂µν̇S
µν̇ = ∂µV

µ (4.27)

4.4 Spinorial currents

Alternatively, any spinor and co-spinor can be used to construct the world vector. We
will call such vectors spinorial currents.

Consider arbitrary spinor ξ that can be expressed as a matrix with one column and
two rows. We denote Hermitian conjugate matrix as ξ+. Then we can construct the
following world vector:

pµ =
1

2

(
ξ+σµξ

)
(4.28)

p0 = 1
2

(
ξ+ξ
)

= 1
2

(
ξ1ξ1 + ξ2ξ2

)
p1 = 1

2

(
ξ+σ1ξ

)
= 1

2

(
ξ2ξ1 + ξ1ξ2

)
p2 = 1

2

(
ξ+σ2ξ

)
= i

2
(ξ2ξ1 − ξ1ξ2) p3 = 1

2

(
ξ+σ3ξ

)
= 1

2

(
ξ1ξ1 − ξ2ξ2

) (4.29)

One can easily check that pµp
µ ≡ 0, and using (4.7 - 4.8) we can see that vector

pµ = 1
2

(
ξ+σµξ

)
transforms as covariant vector.

Following the general rule (4.21) the spinor current pµ can be expressed as

pµν̇ =

[
p0 + p3 p1 − ip2
p1 + ip2 p0 − p3

]
=

[
ξ1ξ1 ξ1ξ2

ξ2ξ1 ξ2ξ2

]
=

[
ξ1ξ1̇ ξ1ξ2̇

ξ2ξ1̇ ξ2ξ2̇

]
(4.30)

Similarly, we can construct contravariant vector from co-spinor η̇:

p̂µ =
1

2

(
η̇+σ́µη̇

)
(4.31)
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p̂0 = 1
2

(η̇+η̇) = 1
2

(η1̇η1̇ + η2̇η2̇) p̂1 = 1
2

(
η̇+σ́1η̇

)
= 1

2
(η2̇η1̇ + η1̇η2̇)

p̂2 = 1
2

(
η̇+σ́2η̇

)
= i

2
(η2̇η1̇ − η1̇η2̇) p̂3 = 1

2

(
η̇+σ́3η̇

)
= 1

2
(η1̇η1̇ − η2̇η2̇)

(4.32)

Vector p̂µ is also isotropic: p̂µp̂µ ≡ 0. Using (4.21) it can be expressed in spinor form:

p̂µν̇ =

[
p̂0 − p̂3 −p̂1 + ip̂2

−p̂1 − ip̂2 p̂0 + p̂3

]
=

[
η2̇η2̇ −η2̇η1̇
−η1̇η2̇ η1̇η1̇

]
=

[
η1η1̇ η1η2̇

η2η1̇ η2η2̇

]
(4.33)

Using vectors constructed from spinor and co-spinor, one can form a new vector that will
not be isotropic. Such vector is usually defined as a bilinear form of the four-component
wave function of the fermion field ψ (Dirac current):

Pµ = −1

2

(
ψ+γ0γµψ

)
(4.34)

where field ψ+ is a Hermitian conjugate of ψ:

ψ =


ξ1

ξ2

η1̇
η2̇

 , ψ+ =
[
ξ1 ξ2 η1̇ η2̇

]
(4.35)

Using (4.34) and Dirac’s gamma matrices (4.4) one can easily check that

P0 = 1
2

(
ξ1ξ1 + ξ2ξ2

)
+ 1

2
(η1̇η1̇ + η2̇η2̇) = p0 + p̂0

P1 = 1
2

(
ξ2ξ1 + ξ1ξ2

)
− 1

2
(η2̇η1̇ + η1̇η2̇) = p1 − p̂1

P2 = i
2

(
ξ2ξ1 − ξ1ξ2

)
− i

2
(η2̇η1̇ − η1̇η2̇) = p2 − p̂2

P3 = 1
2

(
ξ1ξ1 − ξ2ξ2

)
− 1

2
(η1̇η1̇ − η2̇η2̇) = p3 − p̂3

(4.36)

or
Pµ = pµ + gµν p̂

ν (4.37)

According to (4.21), world vector Pµ can be expressed as second rank spinor P µν̇ :

{Pµ} → P µν̇ = pµν̇ + p̂µν̇ (4.38)
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4.5 Electromagnetic fields

In tensor algebra electromagnetic field strengths are expressed in the form of antisymmet-
ric second rank electromagnetic field tensor Fµν .

Similarly, in spinor calculus electromagnetic field strengths are expressed in the form
of two complex conjugated symmetric second rank spinors fµν and ḟµ̇ν̇ that realize irre-
ducible representation of the SL(2, C) group (see [2, 3, 4]):

fµν = fνµ

ḟµ̇ν̇ = ḟν̇µ̇

 symmetry condition

ḟ µ̇ν̇ = fµν neutrality condition

(4.39)

In the expression above we used (4.10) to transform symmetric spinors fµν and fµ̇ν̇ to
traceless spinors fµν and ḟ µ̇ν̇ :

fµν = εµρfρν , fµµ = 0 (4.40)

Due to symmetry of the spinors the field has only 3 complex components

f11, f12 = f21, f22 (4.41)

This property enables us to introduce the structure of 3-dimentional complex space for
electromagnetic field spinors

fµν =

[
f 1
1 f 1

2

f 2
1 f 2

2

]
=

[
F 3 F 1 − iF 2

F 1 + iF 2 −F 3

]
= F kσk, k = 1, 2, 3 (4.42)

where “coordinates” F k can be decomposed into real and imaginary parts

F = E− iB (4.43)

From (4.42) one can see that matrices fµν belong to the Lie algebra of the group SL(2, C).

5 Annex II: Maxwell equations in spinor form

Many spinorial equations are much simpler than the corresponding tensorial equations.
This applies equally to Maxwell and Dirac equations, as we will demonstrate in the fur-
ther sections.

Maxwell equations have the following spinor form:
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∂νρ̇fµν = Sµρ̇, ∂µρ̇ḟ λ̇ρ̇ = Ṡµλ̇ (5.1)

Here we use two spinorial forms of the electromagnetic current density : Sµρ̇ and Ṡµλ̇

Sµν̇ =

[
S11̇ S12̇

S21̇ S22̇

]
=

[
J0 + J3 J1 + iJ2

J1 − iJ2 J0 − J3

]

Ṡµν̇ =

[
Ṡ11̇ Ṡ12̇

Ṡ21̇ Ṡ22̇

]
=

[
J̇0 + J̇3 J̇1 + iJ̇2

J̇1 − iJ̇2 J̇0 − J̇3

] (5.2)

These two spinors are Hermitian conjugates of each other[
Ṡ11̇ Ṡ12̇

Ṡ21̇ Ṡ22̇

]
=

[
S̄11̇ S̄21̇

S̄12̇ S̄22̇

]
(5.3)

Complex vectors Jk and J̇k corresponding to spinors Sµρ̇ and Ṡµλ̇ are complex conjugated
to each other and can be decomposed into electric and magnetic current densities

Jk = Je
k − iJmk

J̇k = J̇ke − iJ̇km = J̄k
k = 0, 1, 2, 3 (5.4)

To be convinced that any of the complex conjugated spinorial equations (5.1) explicitly
correspond to Maxwell equations, we can rewrite, e.g. the first equation (using (4.10) and
(4.16)) in the form

Sµν̇ = − ∂ρν̇f
ρ
µ (5.5)

represent it in matrix form[
∂11̇ ∂21̇
∂12̇ ∂22̇

] [
f 1
1 f 1

2

f 2
1 f 2

2

]
= −

[
S11̇ S21̇

S12̇ S22̇

]
(5.6)

and then expand this expression using (4.25), (4.42), (4.43), (5.2) and (5.4):

(∂0 − ∂3)
(
E3 − iB3

)
+ (−∂1 + i∂2)

(
E1 − iB1 + iE2 +B2

)
= −

(
Je

0 − iJm
0 + Je

3 − iJm
3
)

(∂0 − ∂3)
(
E1 − iB1 − iE2 −B2

)
− (−∂1 + i∂2)

(
E3 − iB3

)
= −

(
Je

1 − iJm
1 − iJe

2 − Jm
2
)

(−∂1 − i∂2)
(
E3 − iB3

)
+ (∂0 + ∂3)

(
E1 − iB1 + iE2 +B2

)
= −

(
Je

1 − iJm
1 + iJe

2 + Jm
2
)

(−∂1 − i∂2)
(
E1 − iB1 − iE2 −B2

)
− (∂0 + ∂3)

(
E3 − iB3

)
= −

(
Je

0 − iJm
0 − Je

3 + iJm
3
) (5.7)

By separating real and imaginary parts of the equations (5.7), we obtain Maxwell equa-
tions in vector form
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div E = Je
0 curl B− Ė = Je

div B = Jm
0 −curl E− Ḃ = Jm

(5.8)

The conservation of charge is a consequence of the Maxwell equations. The continuity
equation for the current density reads (see (4.27) and (4.26))

∂k J
k = ∂µν̇S

µν̇ = ∂µν̇∂
λν̇fµλ = δλµ (∂ρ∂ρ) f

µ
λ = (∂ρ∂ρ) f

µ
µ = 0 (5.9)

since fµν is a traceless matrix: fµµ = 0.

5.1 Lorentz force density

Now we can use Maxwell equations (5.1) to derive the expression for the Lorentz force
spinor. We first introduce the stress-energy density spinor of the electromagnetic field

T δρ̇µν̇ = f δµ ḟ
ρ̇
ν̇ (5.10)

and then consider the expression

∂δρ̇ T
δρ̇
µν̇ = ∂δρ̇

[
f δµ ḟ

ρ̇
ν̇

]
= ḟ ρ̇ν̇

[
∂δρ̇ f

δ
µ

]
+ f δµ

[
∂δρ̇ ḟ

ρ̇
ν̇

]
= Λµν̇ (5.11)

where the force density spinor

Λµν̇ = −
[
ḟ ρ̇ν̇ Sµρ̇ + f δµ Ṡδν̇

]
(5.12)

Of course, the force density spinor Λµν̇ corresponds to the Lorentz force density 4-vector
Fµ:

Λµν̇ =

[
Λ11̇ Λ12̇

Λ21̇ Λ22̇

]
=

[
F0 + F3 F1 + iF2

F1 − iF2 F0 −F3

]
(5.13)

5.2 Electromagnetic fields with special symmetries

In further sections we will need the expressions for Maxwell equations for the systems
with special symmetries. Particularly we will need such expressions for:

• Transverse plane electromagnetic waves, and

• Stationary fields with axial symmetry
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5.2.1 Transverse plane waves

By definition, in transverse plane waves the directions of vectors E, B are orthogonal to
the direction of wave propagation. For simplicity we can choose axis e3 parallel to the
direction of the wave propagation. In this case we will have:

F 3 ≡ 0

J1 = J2 ≡ 0
(5.14)

at all times and all points in space.

The Maxwell equations will be reduced to the following expressions:

(∂1 − i∂2) (F 1 + iF 2) = J0 + J3

(∂0 − ∂3) (F 1 − iF 2) = 0

(∂0 + ∂3) (F 1 + iF 2) = 0

(∂1 + i∂2) (F 1 − iF 2) = J0 − J3

(5.15)

In absence of charged currents the right hand sides of all the equations vanish, and we
obtain

(∂1 − i∂2) (F 1 + iF 2) = 0

(∂0 − ∂3) (F 1 − iF 2) = 0

(∂0 + ∂3) (F 1 + iF 2) = 0

(∂1 + i∂2) (F 1 − iF 2) = 0

(5.16)

5.2.2 Stationary field configurations with axial symmetry

Now we consider the stationary field configurations with axial symmetry. We introduce
the polar cylindrical coordinate system {e1, e2, e3} → {e1, eρ, eϕ } (see Figure 3):
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x2 = ρ cosϕ
x3 = ρ sinϕ
x1 = x1

Figure 3. Axially symmetric field configuration

and require that
∂0 ≡ 0 stationarity
∂ϕ ≡ 0 axial symmetry

(5.17)

This ensures that field configuration is symmetric w.r.t. rotations around axis e1 and is
not changing over time.

Due to axial symmetry, electric and magnetic fields E, B in each point belong to the
plane ϕ = const (i.e. Fϕ ≡ 0), and charge density current is parallel to direction of eϕ
(i.e. Jρ = J1 ≡ 0).

Then Maxwell equations in cylindrical coordinates can be written as follows:

1
ρ
F ρ + (∂1 − i∂ρ) (F 1 + iF ρ) = J0 + Jϕ(

∂0 − 1
ρ
∂ϕ

)
(F 1 − iF ρ) = 0

(
∂0 + 1

ρ
∂ϕ

)
(F 1 + iF ρ) = 0

1
ρ
F ρ + (∂1 + i∂ρ) (F 1 − iF ρ) = J0 − Jϕ

(5.18)
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6 Annex III: Dirac equations in spinor form

The Dirac equations were first written in spinor form by G.E. Uhlenbeck and O. Laporte
in 1931 [2]. According to (4.5) the four wave functions of Dirac correspond to spinor of
the first rank ξµ and co-spinor of the first rank ην̇ , and Dirac equations become(

∂µν̇ + ie Φµν̇
)
ην̇ + im ξµ = 0

(∂µν̇ + ie Φµν̇) ξ
µ + im ην̇ = 0

m ∈ R (6.1)

where Φµν̇ is a spinor obtained from electromagnetic potential four-vector Aµ using gen-
eral rule (4.21).

The free Dirac equation in spinorial form can be written as

∂µν̇ην̇ + im ξµ = 0

∂µν̇ξ
µ + im ην̇ = 0

(6.2)

7 Annex IV: Transition to the rest frame

Let us briefly discuss the properties of the momentum densities P µ in the special cases
of orthogonal (E ⊥ B) electromagnetic fields. The case of parallel (E ‖ B, E = B)
electromagnetic fields is considered in connection with neutrino model in the Section 3.4.

Let us first consider the case E ⊥ B, E > B.

In this case the squares of invariants of the electromagnetic fields are positive real num-
bers:

λ±
2 = E2 −B2 > 0

λ±
2

= E2 −B2 > 0

(7.1)

It is easy to check that in the frame M⊥ the non-zero components of the momentum
density 4-vector Pµ will be

P0 = + 4E

P3 = − 4B
(7.2)

if the pair of vectors {E, B} has the same orientation as basis vectors {e1, e2}, and

P0 = + 4E

P3 = + 4B
(7.3)
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for inverse orientation of the pair of vectors {E, B}.

It is well known that if E ⊥ B, E > B, there is a reference frame where magnetic
field B vanish [6]. Let’s denote this frame as ME.

From (7.2 - 7.3) we can see that only time-like component P0 of the momentum den-
sity has non-zero value in the frame ME. In this sense frame ME might be considered as
a “rest frame” of the momentum density Pµ.

Similarly we can show that in the case of E ⊥ B, E < B the squares of invariants
of the electromagnetic fields are negative real numbers:

λ±
2 = E2 −B2 < 0

λ±
2

= E2 −B2 < 0

(7.4)

and in the frame M⊥ the non-zero components of the momentum 4-vector Pµ will be

P0 = + 4B

P3 = − 4E
(7.5)

if the pair of vectors {E, B} has the same orientation as basis vectors {e1, e2}, and

P0 = + 4B

P3 = + 4E
(7.6)

for inverse orientation of the pair of vectors {E, B}.

Similarly, in the reference frame MB where electric field E vanish, only time-like compo-
nent P0 of the momentum density has non-zero value.

In the case of E ⊥ B, E = B we have λ = λ̄ = 0, and the momentum density is
isotropic in all reference frames: P µPµ = 4|λ| 2 = 0.

8 Annex V: Transverse plane waves

As mentioned above, we choose the coordinates system in such a way that in each point

E,B ⊥ e3

F 3 = F̄ 3 ≡ 0
(8.1)
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Let us now consider the matter wave equations (2.12) written in the form

∂µν̇ην̇ = − i λ ξµ

∂µν̇ξ
ν̇ = + i λ ηµ

(8.2)

We expand these equations using (4.24), (4.25), (2.17) and (2.19)

(∂0 + ∂3)
√
F̄ 1 − iF̄ 2 + (∂1 − i∂2)

√
F̄ 1 + iF̄ 2 = − i λ

√
F 1 − iF 2 (i)

(∂1 + i∂2)
√
F̄ 1 − iF̄ 2 + (∂0 − ∂3)

√
F̄ 1 + iF̄ 2 = − i λ

√
F 1 + iF 2 (ii)

(∂0 − ∂3)
√
F̄ 1 + iF̄ 2 + (−∂1 − i∂2)

√
F̄ 1 − iF̄ 2 = + i λ

√
F 1 + iF 2 (iii)

(−∂1 + i∂2)
√
F̄ 1 + iF̄ 2 + (∂0 + ∂3)

√
F̄ 1 − iF̄ 2 = + i λ

√
F 1 − iF 2 (iv)

(8.3)

By adding (i) and (iv) we obtain

(∂0 + ∂3)
(
F̄ 1 − iF̄ 2

)
= 0 (8.4)

Similarly, by adding (ii) and (iii) we obtain

(∂0 − ∂3)
(
F̄ 1 + iF̄ 2

)
= 0 (8.5)

With the two remaining equations the whole system can be written as

(∂1 + i∂2)
(
F̄ 1 − iF̄ 2

)
= − 2 i λ

√
F 1 + iF 2

√
F̄ 1 − iF̄ 2

(∂0 − ∂3)
(
F̄ 1 + iF̄ 2

)
= 0

(∂0 + ∂3)
(
F̄ 1 − iF̄ 2

)
= 0

(∂1 − i∂2)
(
F̄ 1 + iF̄ 2

)
= − 2 i λ

√
F 1 − iF 2

√
F̄ 1 + iF̄ 2

(8.6)

and complex conjugated equations will have the form

(∂1 − i∂2) (F 1 + iF 2) = + 2 i λ̄
√
F 1 + iF 2

√
F̄ 1 − iF̄ 2

(∂0 − ∂3) (F 1 − iF 2) = 0

(∂0 + ∂3) (F 1 + iF 2) = 0

(∂1 + i∂2) (F 1 − iF 2) = + 2 i λ̄
√
F 1 − iF 2

√
F̄ 1 + iF̄ 2

(8.7)
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With expressions (2.21 - 2.23) for the momentum density of the matter field Pµ in the
frame M⊥ we can rewrite (8.7) in the following form:

(∂1 − i∂2) (F 1 + iF 2) = i λ̄ (P 0 + P 3)

(∂0 − ∂3) (F 1 − iF 2) = 0

(∂0 + ∂3) (F 1 + iF 2) = 0

(∂1 + i∂2) (F 1 − iF 2) = i λ̄ (P 0 − P 3)

(8.8)

From comparison of (8.7) and (5.15) we conclude that in the case of the transverse plane
waves:

• Matter field equations are reduced to the Maxwell equations, and

• The charge density current Jµ is expressed via electromagnetic field invariant λ̄ and
momentum density P µ in the following way:

Jµ = i λ̄ P µ (8.9)

Hence we conclude that, in the case of the transverse plane waves, electromagnetic field
invariant (iλ̄) plays the role of the electromagnetic charge density scalar (it is clear that
(−iλ) plays the same role for anti-particles). Generally λ̄ is complex valued, hence allow-
ing for both non-zero electric and magnetic charge densities.

Now we can find the expression for the Lorentz force density (5.12) acting on matter
fields.

(8.9) can be written as

Sµν̇ = iλ̄ Pµν̇ = iλ̄ (pµν̇ + p̂µν̇) = iλ̄
(
ξµξν̇ + ηµην̇

)
Ṡµν̇ = −iλ Pµν̇ = −iλ (pµν̇ + p̂µν̇) = −iλ

(
ξµξν̇ + ηµην̇

) (8.10)

Using (2.11) we find that

f δµṠδν̇ = −iλ (f δµξδξν̇ + f δµηδην̇) = −iλ2
(
−ξµξν̇ + ηµην̇

)
ḟ ρ̇ν̇Sµρ̇ = iλ̄ (ξµḟ

ρ̇
ν̇ ξρ̇ + ηµḟ

ρ̇
ν̇ ηρ̇) = iλ̄

2 (−ξµξν̇ + ηµην̇
) (8.11)

and the Lorentz force density becomes

Λµν̇ = −
[
ḟ ρ̇ν̇Sµρ̇ + f δµṠδν̇

]
= −i

(
λ2 − λ̄2

) (
ξµξν̇ − ηµην̇

)
= −i

(
λ2 − λ̄2

)
PAµν̇ (8.12)

30



It is interesting that the Lorentz force Fµ is proportional to the axial vector current PA
µ

(see Section 5.5). From (8.12) we can see that Lorentz force vanishes when E · B = 0,

i.e. when imaginary parts of the squared electromagnetic field invariants λ2 and λ̄
2

are
zero. Particularly, this is the case of electromagnetic waves “in vacuum” (i.e. photons,
see below. When Lorentz force is zero, the momentum density of the matter field remains
constant in the course of particle’s motion, hence allowing for uniform motion of the par-
ticle.

In the case of plane electromagnetic waves “in vacuum” (E ⊥ B, E = B) we have
λ = λ̄ = 0, and matter field equations (8.8) coincide with the “source-free” Maxwell
equations (5.16). In this case the momentum density P µ of the matter field is non-zero,
while the charge density Jµ is zero. In this sense the electromagnetic wave is not actually
“source-free”.

9 Annex VI: Stationary field configurations with ax-

ial symmetry

In Cartesian basis matter field equations (2.1)

∂µν̇ην̇ = − i λ ξµ

∂µν̇ξ
µ = − i λ̄ ην̇

(9.1)

can be written in the following matrix form

(∂0 + ∂1σ1 + ∂2σ2 + ∂3σ3) η̇ = − i λ ξ

(∂0 − ∂1σ1 − ∂2σ2 − ∂3σ3) ξ = − i λ̄ η̇
(9.2)

where

ξ =

 ξ1

ξ2

 η̇ =

 η1̇

η2̇

 (9.3)

By introducing polar cylindrical coordinates (see Figure 3, Section 3.2.2)

x2 = ρ cosϕ
x3 = ρ sinϕ
x1 = x1

(9.4)
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we will have the following expressions for partial derivatives

∂0 = ∂0

∂2 = cosϕ ∂ρ − sinϕ
ρ

∂ϕ

∂3 = sinϕ ∂ρ + cosϕ
ρ

∂ϕ

∂1 = ∂1

(9.5)

By using (9.5) we obtain

∂2σ2 + ∂3σ3 = (σ2 cosϕ+ σ3 sinϕ) ∂ρ +
1

ρ
(−σ2 sinϕ+ σ3 cosϕ) ∂ϕ (9.6)

with consequent expressions for matter field equations (9.2) in the new coordinate system.

To complete the transition to the polar coordinate system, we need to account for change
of spinor components due to change of basis vectors in each point: {e2, e3} → { eρ, eϕ }.

The pair of vectors {eρ, eϕ} can be obtained by rotating the pair of Cartesian basis vec-
tors {e2, e3} by the angle ϕ around the axis e1 at every point with coordinates (ρ, ϕ, x1).
This rotation results in the following transformation of the spinor components:

ξ
′
= exp

[
iϕ
2
σ1

]
ξ =

[
cos ϕ

2
+ iσ1 sin ϕ

2

]
ξ = Sξ

η̇
′
= exp

[
iϕ
2
σ1

]
η̇ =

[
cos ϕ

2
+ iσ1 sin ϕ

2

]
η̇ = Sη̇

(9.7)

with the following transition operators

S = exp
[
iϕ
2
σ1

]
S−1 = exp

[
−iϕ

2
σ1

] (9.8)

By applying operators S and S−1 to the equations (9.2) we obtain

S (∂0 + ∂1σ1 + ∂2σ2 + ∂3σ3)S
−1Sη̇ = − i λ Sξ

S (∂0 − ∂1σ1 − ∂2σ2 − ∂3σ3)S
−1Sξ = − i λ̄ Sη̇

(9.9)

or
S (∂0 + ∂1σ1 + ∂2σ2 + ∂3σ3)S

−1η̇
′
= − i λ ξ

′

S (∂0 − ∂1σ1 − ∂2σ2 − ∂3σ3)S
−1ξ

′
= − i λ̄ η̇

′
(9.10)
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Since operator S commutes with σ0 and σ1, we will have

S (∂0 + ∂1σ1 + ∂2σ2 + ∂3σ3)S
−1 = ∂0 + ∂1σ1 + S (∂2σ2 + ∂3σ3)S

−1

S (∂0 − ∂1σ1 − ∂2σ2 − ∂3σ3)S
−1 = ∂0 − ∂1σ1 − S (∂2σ2 + ∂3σ3)S

−1
(9.11)

It is now easy to check that

S (∂2σ2 + ∂3σ3)S
−1 = σ2∂ρ +

1

ρ
σ3∂ϕ +

1

2ρ
σ2 (9.12)

and we complete transition of the matter field equations (9.2) to polar cylindrical coordi-
nates: [

∂0 + σ1∂1 + σ2∂ρ + 1
ρ
σ3∂ϕ + 1

2ρ
σ2

]
η̇

′
= − i λ ξ

′

[
∂0 − σ1∂1 − σ2∂ρ − 1

ρ
σ3∂ϕ − 1

2ρ
σ2

]
ξ
′
= − i λ̄ η̇

′

(9.13)

Now we can use (2.17) and (2.19) to express components of the spinors ξ
′

and η̇
′

via
components of the fields E, B in cylindrical coordinates (i.e. in the basis) {eρ, eϕ, e1}:

ξ
′
=

 ξ
′1

ξ
′2

 =

 √F 1 − iF ρ

√
F 1 + iF ρ



η̇
′
=

 η′1̇

η′2̇

 =


√
F̄ 1 − iF̄ ρ

√
F̄ 1 + iF̄ ρ


(9.14)

and write matter field equations as follows:

 ∂0 + 1
ρ∂ϕ ∂1 − i∂ρ − i 1

2ρ

∂1 + i∂ρ + i 1
2ρ ∂0 − 1

ρ∂ϕ

  √F̄ 1 − iF̄ ρ

√
F̄ 1 + iF̄ ρ

 = − i λ

 √F 1 − iF ρ

√
F 1 + iF ρ


 ∂0 − 1

ρ∂ϕ −∂1 + i∂ρ + i 1
2ρ

−∂1 − i∂ρ − i 1
2ρ ∂0 + 1

ρ∂ϕ

  √F 1 − iF ρ

√
F 1 + iF ρ

 = − i λ̄

 √F̄ 1 − iF̄ ρ

√
F̄ 1 + iF̄ ρ


(9.15)

After expanding expressions (9.15) and applying complex conjugation to the first two
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equations, we obtain(
∂0 + 1

ρ∂ϕ

)√
F 1 + iF ρ +

(
∂1 + i∂ρ + i 1

2ρ

)√
F 1 − iF ρ = + i λ̄

√
F̄ 1 + iF̄ ρ (i)

(
∂1 − i∂ρ − i 1

2ρ

)√
F 1 + iF ρ +

(
∂0 − 1

ρ∂ϕ

)√
F 1 − iF ρ = + i λ̄

√
F̄ 1 − iF̄ ρ (ii)

(
∂0 − 1

ρ∂ϕ

)√
F 1 − iF ρ +

(
−∂1 + i∂ρ + i 1

2ρ

)√
F 1 + iF ρ = − i λ̄

√
F̄ 1 − iF̄ ρ (iii)

(
−∂1 − i∂ρ − i 1

2ρ

)√
F 1 − iF ρ +

(
∂0 + 1

ρ∂ϕ

)√
F 1 + iF ρ = − i λ̄

√
F̄ 1 + iF̄ ρ (iv)

(9.16)

By adding (i) and (iv) we obtain(
∂0 +

1

ρ
∂ϕ

)(
F 1 + iF ρ

)
= 0 (9.17)

Similarly, by adding (ii) and (iii) we obtain(
∂0 −

1

ρ
∂ϕ

)(
F 1 − iF ρ

)
= 0 (9.18)

Naturally, (9.17) and (9.18) are consistent with assumed stationarity and axial symmetry
of the field configuration:

∂0 ≡ 0 stationarity

∂ϕ ≡ 0 axial symmetry
(9.19)

With the two remaining equations the whole system can be written as

(∂1 − i∂ρ) (F 1 + iF ρ)− i1
ρ

(F 1 + iF ρ) = + 2 i λ̄
√
F̄ 1 − iF̄ ρ

√
F 1 + iF ρ

(
∂0 − 1

ρ
∂ϕ

)
(F 1 − iF ρ) = 0

(
∂0 + 1

ρ
∂ϕ

)
(F 1 + iF ρ) = 0

(∂1 + i∂ρ) (F 1 − iF ρ) + i1
ρ

(F 1 − iF ρ) = + 2 i λ̄
√
F̄ 1 + iF̄ ρ

√
F 1 − iF ρ

(9.20)
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or

1
ρ
F ρ + (∂1 − i∂ρ) (F 1 + iF ρ) = + 2 i λ̄

√
F̄ 1 − iF̄ ρ

√
F 1 + iF ρ + i

ρ
F 1

(
∂0 − 1

ρ
∂ϕ

)
(F 1 − iF ρ) = 0

(
∂0 + 1

ρ
∂ϕ

)
(F 1 + iF ρ) = 0

1
ρ
F ρ + (∂1 + i∂ρ) (F 1 − iF ρ) = + 2 i λ̄

√
F̄ 1 + iF̄ ρ

√
F 1 − iF ρ − i

ρ
F 1

(9.21)

From comparison with (5.18) we conclude that (9.21) will coincide with Maxwell equations
if we define:

J0 − Jϕ = i λ̄ (P 0 − Pϕ)− i1
ρ
F 1

J0 + Jϕ = i λ̄ (P 0 + Pϕ) + i1
ρ
F 1

(9.22)

where J0, Jϕ and P 0, Pϕ are non-zero components of charge density and momentum
density correspondingly.

It is interesting that in axially symmetric case

J0 = i λ̄ P 0

Jϕ = i λ̄ Pϕ + 2i 1
ρ
F 1

(9.23)

and hence the ratio Jϕ

J0 is not equal to the ratio Pϕ

P 0 . Consequently, the “velocity of charge”
is not the same as “velocity of mass” any more.
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