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Abstract. In this paper, with optimal normalized constants, the asymptotic expansions
of the distribution and density of the normalized maxima from generalized Maxwell
distribution are derived. For the distributional expansion, it shows that the convergence
rate of the normalized maxima to the Gumbel extreme value distribution is proportional
to 1/logn. For the density expansion, on the one hand, the main result is applied to
establish the convergence rate of the density of extreme to its limit. On the other
hand, the main result is applied to obtain the asymptotic expansion of the moment of
maximum.
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1 Introduction

Let (X,, n > 1) be a sequence of independent and identically distributed (iid) random variables
with common cumulative distribution function (cdf) Fj which obeying the generalized Maxwell
distribution (denote by Fy ~ GMD(k)). Let M, = max(Xy, 1 < k < n) denote the partial
maximum of (X,, n > 1).

As the generalization of the classic Maxwell distribution, the generalized Maxwell distribution
was introduced by Voda (2009). The probability density function (pdf) of GMD(k) is given by

fi(z) = : oxp (<27 ) 2 >0
WO = g1+ kj2)" P\ 2020 T

where k, o is positive and I'(-) represents the Gamma function. For £ = 1, GMD(1) reduces to the
classic Maxwell distribution.

Recently, several properties associated with GMD(k) have been investigated in the literature.
Huang and Chen (2016) established the Mills inequality, the Mills type ratio and distributional
tail representation of GMD(k), and showed that Fj belongs to the domain of attraction A of the
Gumbel extreme value distribution, i.e., there exist normalizing constants a,, > 0 and b, € R, such
that

lim P((M, —by)/an < z) = nl;n;o Fi'(apz + by) = A(z),

n—oo
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where A(xz) = exp{—e~*}. Liu and Liu (2013) established the uniform convergence rate of nor-
malized maxima for GMD(1), i.e., the classic Maxwell distribution (MD for short). Kumar and
Chandra (2011) developed Sequential probability ratio test for testing the hypothesis concerning
the parameter of the GMD(k). Plucinska (1998) considered the properties of Hermite polynomials
from sample having GMD(k), which have applications in various statistical problems connected
with expansions in series.

Besides, the generalized Maxwell distribution has recently been a popular model in Chemical
Engineering Science, Engineering Technology and Physics and so on fields, for example, as model for
computing fluid flows using the lattice Boltzmann method and deriving a different class of multiple
relaxation-time LB models (Asinari and Karlin, 2009), the diffusion of mixtures of hydrocarbons
in zeolites (Kapteijn et al., 2000), polymorphic friction Simulation and compensation and quick
simulation and control purposes, being both easy to implement and of high fidelity (Al-Bender et
al., 2005), control purpose, based on a physically motivated friction model, i.e. a generic friction
model which simulates the contact physics at asperity level (Lampaert et al., 2003) and so on.

The aim of this paper is to establish the asymptotic expansion for the distribution and density
of normalized maxima of GMD(k) random variables. As byproduct, we derive the high-order
expansion of the moment of extreme. The uniform convergence rates and asymptotic expansions
of the distribution and density of normalized M,, the maximum of independent and identically
distributed random variables for some given cdf F', have been of considerable interest. Hall (1979)
derived optimal rates of uniform convergence for the cdf of M,, as F follows the standard normal
cdf. Nair (1981) obtained asymptotic expansions for the distribution and moments of M,, as F' is
the standard normal cdf. Omey (1988) given the rate of convergence for the density of normalized
sample maxima to the appropriate limit density. Peng et al. (2010) established optimal uniform
convergence rates for the cdf of M, as F' obeys the general error distribution. For other works,
see Liao and Peng (2012) for the log-normal distribution, Liao et al. (2013, 2014), respectively,
for logarithmic skew-normal distribution and for skew-normal distribution that extended Nair’s
results, Jia and Li (2014), Jia et al. (2015), Li and Li (2015), Peng et al. (2016) and Du and Chen
(2016a, 2016b).

In order to gain the asymptotic expansions of normalized maxima from GMD(k), we cite some
results from Huang and Chen (2016). They gave the Mills type ratio of GMD(k) as follows: for
k>0,

1-F 2
L= Filx) ~ U—xl_%, as r — oo. (1.1)

It also follows from Huang and Chen (2016) that

1 — Fi(z) = c(z) exp <— /1 ’ ?8 dt) (1.2)

for large =, where
exp (—1/(202))

A®) = g 1 Ry ST
f($) — kflo_Z‘,L,lka7
glx) =1—k o222 (1.3)



Note that f/(z) — 0 and g(z) — 1, as * — oo and we can choose the appropriate norming constants
an and b, in such way that b,, satisfies the equation

1— Fp(b,) =n""! (1.4)
with
an = f(by) = k™o b2 (1.5)

such that
lim F}'(apz + by) = A(z).
n—oo
The remainder of this paper is organized as follows. Section 2 gives the main result on asymp-
totic expansions for the distribution, density and moment of partial maxima of the GMD(k). Some
auxiliary lemmas needed to prove the main results and related proofs including the proofs of main
results are given in Section 3.

2 Main results

Next, we derive an asymptotic expansion for the distribution of normalized maxima from the
GMD (k). The distributional expansion could be used to show that the convergence rate of M, to
the Gumbel extreme value distribution is of the order of O((logn)™!).

Theorem 2.1. Let Fy(z) represent the cdf of GMD(k). For normalizing constants a, and b, given,
respectively, by (1.4) and (1.5), we have

2 x
B2 (52 (o + 02) = )~ o)A @)] = (st + 52 ) 2o

as n — 0o, where li(x) and wi(x) are, respectively, given by
Ii(z) = klo? [(Qk: —1)z? — 2$:| e /2

and

wy(z) = —k%0* [3(% — )22t — 42k +1)(2k — 1)z + 242% — 48kx|e ™7 /24.

Remark 2.1. By the definition of by, it is easy to check that b;** = O(1/logn). Hence, Theorem
2.1 shows that the convergence rate of F}!(anx+by,) tending to its extreme value limit is proportional
to 1/logn. Further, the convergence rate of b2F(F(anx + by,) — A(x)) tending to its limit is also
proportional to 1/logn.

Remark 2.2. As the mentioned in the Introduction, we get classic Mazwell pdf when k = 1,
and then Theorem 2.1 shows also that the asymptotic expansion of the distribution of normalized
mazimum from classic Mazwell distribution is

B 52 (F (@ +B) = Aw) - h@A@)] — (o) + 350 A



as n — 0o, with norming constants @, and b, determined by
1— Fi(b,) = n~ ' and a, = 0'2(_),;1,

where 11 (x) and wi(x) are, respectively, given by

li(x) = %JQ(xz —2zx)e” "
and 1
wy(z) = —§a4 (z* — 42% + 82% — 162) e .
In the sequel, provided
Ba(w) = W — 1y F " (an + by) fi(ana + by)

stand for the distribution density of (M,, — b,)/a,, and
On(Bn, A's2) = Bp(a) — ().

By using Proposition 2.5 in Resnick(1987), we have ©,,(8,,A’;z) — 0 as n — oo.
In the following, we show the high-order expansion of density of maxima from the GMD(k) and

its application to the asymptotic of the moments of maximum.

Theorem 2.2. Let Fi(x) denote the cdf of GMD(k), then with the normalizing constants a, and
by, defined by (1.4) and (1.5), we have

/ /

(z)) = Q(z)A (x) (2.1)

as n — oo, where P(z) and Q(x) are respectively determined by

b2 02k (F (ana + by) — A(z))" — P(x)A

P(z) =k~'o” (; ((2k —1)2® —2z) ™" + (—;(214 — D)a? + (2k — 3)z — 1)) (2.2)

and
Q(z) —%k_Q Y2k — 1)2? — 2:5)2 e 2
ik*%“ (9(2k — 1)%2* — 16(2k — 1)(2k + 1)2® + 6(12k + 1)2® — 24(k + 1)z) e *
+ k20 (;(% —1)%* - %(% —1)(4k — 1)z + %(zug2 + 1D)a? — 2kx + 2k> : (2.3)

Noting that b 2% ~ 1/(20%logn), it follows Theorem 2.2 that we easily get the rate of conver-
gence of the density of maxima to its limit below.

Corollary 2.1. Let a, and b, be given by (1.4) and (1.5) and for x > 0, then

e "A(z)P(x)

m 1A -~
(Ff (o + b)) = M) ~ 55T

for large n.



Remark 2.3. When the parameter k = 1, i.e. the classic Maxwell case, we obtain the associated
expansion of density for normalized maxima.

Remark 2.4. Since b;%¢ ~ 1/(20%logn), by Theorem 2.2, we could obtain the convergence speed
of b2F (F,’:(anm +by) — A(m)), converging to its appropriate limit is proportional to 1/logn.

In the end of the section, we utilize the asymptotic expansion of density to obtain the high-order
expansion of the moment of normalized maxima.

In the sequel, for r > 0 let

my(n) = E(M”_b") - /ﬁo 2" Bo(z) da

an oo
and
“+oo
m, = EX" = / "N (z)dz

respectively represent the rth moments of (M,, —b,)/a, and X ~ A(x) = exp(—exp(—=x)), and the
norming constans a, and b,, are defined by (1.4) and (1.5).

Theorem 2.3. For k > %, we have
b2k (bfﬁ (me(n) — my) + 27 0% (2k — V)imyq — 2mr)>
1 1 1
—— rk—2o4{ <8(2k —12(r +3) + g(k; —1)(2k — 1)) Mgz + 5 (26 = 1)(r+2) = 1)mpy

+ <2k: - %(r + 1)) m}

as n — oo, where the normalizing constants a, and b, are defined by (1.4) and (1.5).

Remark 2.5. For the case of k =1, i.e., the classic Mazwell distribution case, the corresponding
result is stated as follow:

b2 [Z)i(mr(n) —my) + 27 % (myy — QmT)}
— rot [21(7" —3)my — 27 + VDmypyr + 871 (r + 3)mr+2}

as n — 0o, where the normalizing constants a, and by, are determined by Remark 2.2.

3 Auxiliary results and related proofs

In order to obtain expansions for the distribution of the normalized extreme of GMD (k) random
varibles, we provide the following distributional tail decomposition of GMD (k).

Lemma 3.1. Let Fy(x) represent the cdf of GMD(k). For large x, we have
2
1 — Fi(x) :fk(a;)%mlf% (1 + k7 to2e 2k L k721 — 2k) ot 4 O(a:*6k)>
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_ exp(—1/(20?))
2K/261/kD (1 + k/2)

+ O(z7%)) exp (— /136 }qu dt) (3.1)
with f(t) and g(t) given by (1.3).

(1+ &k to%™ 2 + k721 — 2k)o*z

Proof. By integration by parts, we have

o’ o _ 1—2k)ot _ 1—2k)(1 — 4k)o® _
1= Fi(z) fk() z'” 2k<1+kx 2k+(k2)x 4k+( )23 ) . 61<;>

(1 —2k)(1 — 4k)(1 — 6k) /°° ok t2k
— —— ] dt. 2
kg (1 k) f, ¢ CP\ T ) (3:2)

It is easy to show by utilizing L’Hospital’s rule that

2k

i f =6 exp(— 22)dt

T—00 xl- 6k exp( z k)

= 0. (3.3)

Thus, by (1.1), (1.2), (3.2) and (3.3), for large x, we can have

2 2 _ 4
1— Fi(x) = fk(a:)ixlf% <1 + %af% + 7(1 k22k:)o x4 O(ka)>

_exp(—g7) <1+02$—2k+ (1 —]32/47)04:6—41@

Q
=
E
—_
Z'?‘

5

o) (- 55).

The desired result follows. O

_l’_

In order to prove Theorem 2.1, the following auxiliary result is needed.

Lemma 3.2. Let vg(by;x) = nlog Fi(anz + by) + e~ *. For normalizing constants a,, and by, given,
respectively, by (1.4) and (1.5), we have

lim b2* [bikvk(bn;:v) — lk(ac)} = wi(x), (3.4)

n—oo
where ly(z) and w(z) are given by Theorem 2.1.

Proof. Obviously, b, — oo if and only if n — oo since 1 — F(b,) = n~!. The following facts can
be gained by (1.1):

1— Fi(ay n _
lim £(n + bn) =e 7 (3.5)

n—oo ’n,_l

and

n—oo b;LQj

=0, j=1,2 (3.6)



Set , ot
1+%b52k+%b;4k+o(b;6k)

Bi(n,z) = .
1+ %(anx +by) "2k + (17275)04(&”1' +b,)" %%+ 0 ((anx + bn)—6k>

It is easy to check that lim,,_,. Bg(n,z) =1 and

20 o a® 9 6k —6k
Bi(n,z) —1= <l<:b” x— ﬁ((Qk: + 1)z* — 4(1 — 2k)x)b, "z + O(b,, )) (14 o0(1)).

Then
. Bp(n,z)—1
nango (b% =0 (3.7)
and
Bi(n,z)—1 20%
R 35

By (3.1), we have

1— Fp(by)  _ /m k 2%k—1 n
*=B "o lUn\tn bn —-——1]d
1—Fk(an$+bn)e k(n’w)exp< 0 02a (Cl S ) Gn8+bn °

ok 2k—1 On
:Bk(n,I){l +/0 <02an(an8 —+ bn) — m — 1 dS

+ ;( /0 ’ (j< et 1) ds>2<1 + o<1>>}. (3.9)

Combining with (3.5), (3.6), (3.7), (3.8) and (3.9), we have
lim b2*vy(by; z)

_ i 198 Fr(ane +ba) + (1 = Fy(bn))e

n—oo n_lb;Qk
—(1 = Fy(anw +b,)) — (1 — Fi(anz + by))%(1 + o(1 1 — Fy(by))e™@

~ i OB T 30 Flanr P02 o) |y, (=l

n—oo n— n n—oo n— n

1-Fi(bn) -z

o 1 — Fyp(anw + by) W%e —1
- n1—>120 n—t b;2k

—x g Tk _ an Bi(n,x) —1
= tim { Bt ([ (Gpontons b0 L 1) as )1 ot + HOR

v k a

—e T [ b?k) ~anlan bn 2k—1 n —114d

R 0o " (aQa (ans +bn) ans + by i

2
= ;—k <(2k: —1)z% - 2x> e ”
=: ly(x), (3.10)

where the last step follows by the dominated convergence theorem and

2k —1
=" 0%

k
72k 2%k—1
lim b <02 an(ans + by) - 1) z

n—oo

7
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and

By arguments similar to (3.10), we have

lim b2 | b2 vy, (by; ) — I ()

n—oo

log Fi(an® + by) +n~te™ — n=1o 2], (2)

:nli_)rglo Ly
. log Fr(anx + by) + (1 — Fi(by))e (1 — lk(x)e‘”b;%)
= lim
n—oo n_lb;4k
. —(1 = Fglapnx +by)) + (1 — Fg(by))e (1 — lk(m’)ewb;?k)
= lim
n—o0 n_lbg4k

1—F(bn . o
1 — Fy(an® + by) W%e (1=l (z)e"b, ) — 1

N0 n—1 b774k
xX k n
=™ lim_ {Bk(n,x)bi’“ UO ((ﬂan(ans + )2t - rir b 1) ds — lk(w)exbﬁ%]
. 2
T L By(n, 2 / b (s + bt = — 1) ds
2 ’ " 0 o2 ans + by
Tk _ a Bi(n,z) — 1
x12k 2k—1 n kN,
— Bk(n,l‘)lk(fﬂ)e bn /0 (Uzan(ans + bn) — m - ].> ds + bn4k}
4
— 2Z/<;2 [3(% —1)%" — 42k +1)(2k — 1)a® + 242° — 48kx] e "
=wi(z).
The proof is complete. O

Lemma 3.3. Let Fi(z) stand for the cdf of GMD(k), then with norming constants a, and by,
determined by (1.4) and (1.5), for large n we have

FP Yanz + by) = Cp(2)A(z) (3.11)

here
Cali) = 1+ 0202 + 0, (o) + 312(0) ) (L4 o(),

l(x) and wi(z) are given by Theorem 2.1.

Proof. By using Theorem 2.1, we have
EM(anz 4 by) = A(z) + b, 2l (2)A(z) + b, * <wk(x) + ;zﬁm) A(z)(1 + o(1))
= 12000 + % (o) + 50 ) 1+ o(1)] A (3.12)

Observing that
Fi'(apx + by) — exp(—e™®),



as n — oo, then we have
n(l — Frp(apnx +by)) — e %,

hence,
1 — Fy(anx +b,) = O(n™1),

which implies

Fk(analc by 1-(1- Fkl(ana: Ty LT O(n™"). (3:.13)

Combining (3.12) and (3.13) together, we derive the desired result. O
Lemma 3.4. Let fx(x) denote the pdf of GMD(k), then

fi(@) = (1 = Fy(a)) Da(x) (3.14)

for large x, and with norming constants a,, and b, determined by (1.4) and (1.5), we have

an fr(anx + by)
1-— Fk(anx + bn)

=14 Ay (2)b;%F 4+ Ay(2)b; % + O(b;; ) (3.15)
for large n, where
Dy (x) = ko 222kt (1 — k7 lo?z %k p ok~ Loty 4 O(:):_Gk)> ,

Ay(z) =k 1o%((2k — 1)z — 1)

and

Ag(z) = k726 ((2k — 1)(k — 1)2? + z + 2k).
Proof. By Lemma 3.1, we have
-1
fe(z) =(1 — Fj(x))ko 2221 (1 + k0% L E72(1 - 2k)ota R 4 O(xiﬁk)>

=(1
=:(1

=

— F(z))ko 22261 (1 k22 4 o lad 4k O(m—ﬁk)>
— Fi(z))

for large x. Therefore, by (1.5), for large n we have

>
=

z),

anflc(anm + bn)
1-— Fk(anx + bn)

=ay, Dy (anx + by)
=anko 2 (anx + by )?F 1 (1 — k0% (anz + bp) " 4+ 2k Lot anx + by) T 4+ O((anz + bn)_Gk)>
:(1 + k_102b;2k$)2k_1 o k‘_10'2b;2k(1 + k—102bT—L2kx)—1
+ 2k_104b;4k(1 + k_102b;2k1‘)_2k_1 4 O(bgﬁk)
=1+ k7 o?((2k — D) — )b, 2 + k7204 ((2k — 1) (k — 1)2? + = + 2k)b,** + O (b, %)
= 1+ Ay (z)b, 2 4 Ay(2)b,* + O(b;,%%).

The wanted result is deduced. O



Lemma 3.5. Let Cy(z) and Dy (z) respectively be defined by (5.11) and (5.14). Then, for k > 3,

2
—clogb, <z < dbﬁk and large n, we have
|anCh () Dy (anz + by)| < 2,

b2* (4, Cro () Dy (@ + by) — 1)) <1+k1o? ((Qk —1)|z| + %((% —1Da? + 2|x)ez> ,

and

b2k (bik(ancn(x)pn(anx by) — 1) — lkl(a:)) ‘

1/1 4
<1+ k%04 <(2k: — Dk — 1z? + |z + 2k + 3 <4(2k —1)%zt + 32k = 1)[k - 1||z|?
1
+ |6k — 5|2 + 2|1 — 2ka|>em + 52k - Da? + 2|x\)262x>,
with 0 < ¢,d < 1, here the norming constants a,, and b, given by (1.4) and (1.5),

1
iy = ko2 (2 ((2k — 1)2® —2z) e " + (2k — 1)z — 1) .

Proof. These results are directly from Lemmas 3.3 and 3.4. The details are omitted. O
In order to derive later lemmas, we need the following result.

It follows from Huang and Chen (2016), we have the Mills type inequality of the GMD(k) as
follows:
2 2 2 -1
0% tok _ 1= Fi(x) o7 g <U 2k >
—x < —F < —z 14+ (—2" -1 , 3.16
k fr(x) k (3.16)

for all x > 0 and k > %, where o is positive.

Lemma 3.6. For any constants 0 < ¢,d < 1 and arbitrary nonnegative integers i, j, we have

lim b;/ o |zl exp(—ipz)A(z)dz =0, ip = 1,2,3,-- -, (3.17)
n—oo dbg
lim b;/ o |zl Bu(x)dz =0, (3.18)
n—oo dbg

) —clogbn, )
lim b;/ |z|? exp(—ipx)A(z)dz =0, i9g =1,2,3,- -, (3.19)
and

) —clogbn, )
lim b;/ |z|? By (x)dx = 0, (3.20)

with the norming constant by, determined by (1.4).

Proof. Firstly, we consider the eq.(3.17). Noting that the inequalities 1 —z < e™® < 1 for x > 0,
we have

b%/ 2, |z} exp(—igx)A(z)dx
db2

n

10



[e.e]
<b%/2 |z|” exp(—iox)dx
3"

n

. 1 2L o0 . 1
<b}, exp (—Qiodbﬁ > /db%k |x|? exp (—21'033) dz

—0,

as n — oo. The eq. (3.17) is complete.
Secondly, we consider the eq.(3.18). By (3.16) and Lemma 3.5, we have
bjl/ 2, |x|Jﬁn($)da@
dbj

e / (2P an(l = Fo(bn)) ER (an + by) fio(an + by)da:
d 3

n

S , (1 — Fx(anx 4+ by))
I J
=b;, /db;g;k |x)? an,Cr () Dy (anx + by) = Fy(by) A(x)dx

o[ (1= Fr(anx +by))
i J
<2b;, /db;g{k || 1= Fi(bn) A(x)dz

<4bf1/ 2, |z|? exp(—x)A(z)dx
db}

—0,

as n — oo. The eq. (3.18) is finished.
Next, we consider eq.(3.19).

] —clogby, )
by, / |x|? exp(—igz)A(z)dx

—00

=b / tJ exp(igt) exp(— exp(t))dt
clog by,

. 1 . 1
<bj, exp <—2bfl> / t) exp(ipt) exp (—2 exp(t)) dt
1

—0

as n — oo by methods similar to the eq. (3.18). The eq. (3.19) is proved.

Last, we consider eq. (3.20). Observing that the fact 1 —azr < (1 —z)* <1 —ax + @ﬁ,
as 0 <z < 1, a > 2, then for —oo < z < —clogby, by (3.16) we have

nan fr(anz + bn)
_anfk(awT +bp)

1 — Fy(bn)

b2k
< exp <—%:2 ((1 + kL%, %k x)?k — 1))

—T

<e

and

1 — Fy(by)

11



0-2 -1 b2k
(o 2 (1 (T 1) e (< (0 ko220 1) )
g

2 —1
>(1+ ko2, )t =2 (1 + (262’“ - 1) ) exp <—x - %(2 - k-l)a%,;%?)

>_—e 7

for large n. Thus,

) —clogby, ]
b el

o0

) —clog by, ]
=b, / |2 an(1 = Fi(bn)) " F (ana + bn) fr(ane + by )da

o0

) —clogbn, )
<b;, / |z[7an (1 — Fi(bp)) "L fru(anx + by) exp [—(n —1)(1 — Fx(apx + by))] dz

) _—clogbn ) 1
<b;/ |z|? exp(—x) exp <—2 exp(—x)) dx

—0,

as n — 00. The eq. (3.20) is derived.

Combining those results above, we complete the proof. ]
2
Lemma 3.7. Set Hy(b,;z) = %}W@m — 1. For large n and —clogb, < z < db{%k, some

integrable functions independent of n dominate x"b*©,(8,,N';z) and x"b% (280, (8,, N;z) —
P(z)N (x)) with r > 0 and 0 < ¢,d < 1, here a,, and by, are defined by (1.4) and (1.5), and P(z)
is determined by (2.2).

Proof. Rescript
b2*0,,(Bn, N ) = b2¥ (a0 Cro(2) Dy (ana + by) — DA () + b2 a,Cp (2) Dy (anz + by) Hy, (by; 2)A ().

Easily check that [* ' exp(—sy) exp(—exp(—y))dy = (—1)T@(s) < oo for s € Rt and nonneg-
ative integers 7. Lemma 3.5 proves that b2%(a,,C,,(z) Dy (anx + b,) — 1)A/(z) is bounded by some
integrable function independent of n. Next we show that b2* Hy(by; z) is bounded by p(z), here p(z)
is a polynomial on .

Rescript
b Hig(bn; )
:bflk(Ek(n,x) —1)—b*E(n, z) /(f On(s)ds(1+0(1))
—:A() — Ba(2), (3.21)
here

2%k—1 an 1

k
on(z) = ;an(anx+bn) e

2
For —clogb, <z < dbﬁk, by Lemma 3.2 and (1.5) we have
|An(z)] < 1 (3.22)

12



and

1 2
1B (2)| < 1+§(2—k_1)02x2+§(2—k‘_1) 1=k otz + |2] (3.23)

ko? — ¢
for large n.
By (3.22) and (3.23), b2¥ Hy(b,; ) is bounded by one integrable function independent of n.
Resript
b2 (630, (B, A 2) — P(a) () )
=2 (b?f (an(1 = Fio(bp)) T FP (an® + by) fr(ana + by) — A (7)) — P(a:)A'(x))

—p2k <bi’f ((“ _1F’f(;:sz$ b)) o _q 4 1> anCy (%) Dy (an + byp) — 1) — (Il (z) + zm(x))> N (z)

_p2k (b?f“an(}’n ) Dy (ana: + by) (Hk(bn; ) — b;lekQ(x)>
it

(x
+0% (4, Cp(2) Dy (anz + by) — 1 — b;lekl(ib)) + (anCr(z) Dy (anz + by) — 1) lkg(il?))A,(IE),

here 1
lpa(x) = —ik_laQ((Qk — D)a? +2z2).

It follows from Lemma 3.5 that only need to calculate the bound of
b2k <b%kan()’n(x)Dn(anx +bn) (Hi(bn; z) — by o (2)) ) :

Rescript
b2k (bﬁkancn(x)pn(anx +by) (Hk(bn; ) — b;%zkg(x)) >
=0 (B (n,z) — 1) — b2* <Ek(n,x)b,%k/ 0(s)ds + b;zklkg(m)>
0

+ %Ek(n,x)bik </0 5(s)ds>2 (1+0(1))
= To(2) — Tn(2) + Kn(2).
As to the case of 0 < z < dbi", we have
1T, (2)| < 4k 20 (k + 4(2k — 1)0?)z (3.24)

for large n, by Lemma 3.2 and 1 —azx < (1+ )" <1 for « > 0 and = > 0.
As to the case of —clogb,, < x < 0, we have

T, (2)| < 4k 204 (k + 4(2k — 1)0?)|z| (3.25)

for large n, by Lemma 3.2 and 1 +az < (1+2)* <1lfora >1and —1 <z <0.
Similarly, as for the bound of J,(z) and K, (x), we have

2 1 -
| Tn(2)] < g(2 — kY =k otz + 51(102 |ko™? — ¢ ' 2 (3.26)
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and

1
Kn(@) <1+ 5

2
5 (1 (2- k1) o%a? + % =k )1 =k oo + ko2 =] \xy> (3.27)

2

for large n, as —clogb, < z < db,%k.
Combining (3.24)-(3.27) together, the desired result is gained. The proof is finished. O

Proof of Theorem 2.1. By (3.10), we have vy (b,; ) — 0 and

i v (bni 2)

i

< exp <|Uk(bn,:v)]> — 1

=3

as n — oo. By applying Lemma 3.2, we have
b2k [bfﬁ (Fg(anx + by) — A(x)) — lk(:n)A(m)]
=p2k [b%k(exp (vk(bn;x)> — 1> — lk(x)]A(x)

= [b?f <b3fuk(bn; z) — lk(x)> + 0302 (by; ) <1 + v (bp; ) i W)} A(z)

2 — i!
— (o) + Y aio),
as n — 0o.
We obtain the desired result. O
Proof of Theorem 2.2. Let Ej(n,x) =1/By(n,x), by (3.7) and (3.8), we have

lim b2*(Ep(n,z) — 1) =0 (3.28)
and
lim b2 (Ep(n,z) — 1) = 2k Lotz (3.29)

It follows from (3.9) that

! _1Ff(;:fb$ bu) o _ Ek(n,x){l - /0 5,(s)ds + % </: 5u(s) ds>2 (1+ 0(1))}. (3.30)

where
2%k—1 an 1

k
dn(z) = ﬁan(anx—i—bn) waxn b

By (3.11) and (3.14), we have
anCr () Dy(anz + by,)
- <1 + b, 2kl () + by, 4 (wk(m) + ;zz(:c)> (1+ 0(1))>

< (14 Ar@)b? + Ao()b ™ + 0(0;%))
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1
=1+ (le(@) + Ar(2))b, > + <wk($) + Sl (@) + (@) Ar () + A2($)> b, +0(b,%). (3.31)
By Lemmas 3.3 and 3.4 and combining (3.28)-(3.31)together, we have

O (B, N )
=0n(x) — N (2)
=(1- Fk(bn))_laanfl(anm + b)) fr(anx + by) — A (x)
=(1 = F(bp)) tanCh(z)A(2)(1 — Fy(anz + bp))Dplanz + by) — A (2)

= (Ek(n, z)(Ip(z) + Ay (2))b, %k + Ep(n, z) <wk(:z:) + %l,%(ac) + lp(z) A1 () + AQ((L‘)) b,k
— Ex(n,x) [1 + (le(z) + Al(a:))b;% + (wk(x) + %li(x) + g () A1 (z) + Ag(m)) bn4k]

X /OI dn(s)ds + %Ek(n,x) {1 + (In(x) + Ay ()b, 2

+ (wk(x) + 5B @) + @) A(e) + AQ(x)) btk ¢ O(b;6k>] ( /0 " 5n(s) ds>2 (1+0(1))
+ By(n,z) — 1) N(z). (3.32)
Thus, by applying (3.32) we have
lim v2*0,, (B, N 2)
= lim <lk(x) + A (z) — /0 ’ b2k5,,(s) ds) A (z)
S G ((2k — 1)2* —22) e + (—;(% — 1)z + (2k — 3)z — 1)) A (z)
= P(2)N (). (3.33)
Combining (3.32) and (3.33) together, we have
Tim 82 (1240, (B, '3 ) — P(@)A () )

= nth;o b2k <(Ek(n, z) — 1)(lk(z) + A1 (x)) + Ex(n,z) (wk(a?) + %lz(az) + lp(x)Aq(2) + Ag(m)) b, 2

— b2k /Ox <5n(s) - (2’“; L ‘i) b;2k> ds
~ By(n,z) [lk(m)+A1(:c)+ <wk(x)+;zz(x)+zk( ) A1 (2) + As(a >b 2k]/ o

+ ;Ekm )b [1+(zk( ) A ()b 2

+ <wk(:v) + %l%(x) + l(2) As () +A2(x)> b 4 O(b-0k) ] (/ 5 s> (1+0(1))

T (By(n, ) 1>)A'<x>
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:T}Lnolo (Ex(n,z) — 1) + wi(x) + %li(az) + lp(z)Ar(x) + Az(x)

(bﬁk ke (
— bk /Om <5n(s) - (2]“]; L ‘i) b;%) ds
= )+ e [“ants)as o ([ oo ds)2 (1+0(1) ) N(2)

1
:gk_204 ((2k — 1)a? — 2$)2 e

1
- ﬂk*%‘* (9(2k — 1)%z" — 16(2k — 1)(2k + 1)2® + 6(12k + 1)z® — 24(k + 1)z) e *
1 1
+ k20" (8(2k —1)%t - 52k = 1)(4k — Do + (41<;2 + 1)a? — 2kx + 2/<;> N (z)

=: Q)N (z).

The proof is complete.
Proof of Theorem 2.3. By Lemmas 3.5 — 3.7 and the dominated convergence theorem, we have

O

bik(mr(n) —my)
:/ 2"b2%0,, (B, N'; 2)da

k

Scono

—clog by, db
= / 2"b2%0,,(Bp, N'; x)dx + b2* / 2"b2%0,,(Bn, N; 2)da

— oo —clogby,

+ / o, 2760, (B, N 2)d
db3

. /_ I P@N (@)da
— 9

“ko?r ((2k — Dmyyq — 2m,)

and

b28 (b2 (my (n) — my) + 27 kLo ((2k — 1)myyr — 2m7«)>

n

/ T b%@ (B, A7) — (x)A/(a:)) dz

/2 rbZk b2k@ (ﬁ?mA/ ) (:E)A’(:L‘)) dx
dby}

:w\w

+ / b2k (bfﬁ@n(gn,A';x) - P(:p)A’(m)) da
—clog by,

/ R gk (12500 (0, A5 ) = P@)A (@) )

H/ x)dz

— rk_204{ <—8(2k —12(r+3)+ é(k —1)(2k — 1)) Mypo + % (2k —1)(r+2) — 1) myqy
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+ <2k: - %(r + 1)> mr},

as m — oo with fj;o e 2A(x)dr = —(r + 1)m, + my41 and fj;o 2" le 3TN (z)dr =
r(r+ 1)my—1 —3(r + 1)m, + 2my,4;.

The proof is complete. O
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