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I.Introduction.

The real history of non-Aristotelian logic begins on May 18,1910 when N.A. Vasiliev
presented to the Kazan University faculty a lecture "On Partial Judgements, the Triangle
of Opposition, the Law of Excluded Fourth" [Vasiliev 1910] to satisfy the requirements for
obtaining the title of privat-dozent. In this lecture Vasiliev expounded for the first time the
key principles of non-Aristotelian, imaginary, logic. In this work he likewise constructed
his "imaginary" logic free of the laws of contradiction and excluded middle in the
informal, so-to-speak Aristotelian, manner (although imaginary logic is in essense non-
Aristotelian).Thus the birthday of new logic was exactly fixed in the annals of history.
Vasiliev’s reform of logic was radical, and he did his best to determine whether it was
possible for the new logic with new laws and new subject to imply a new logical
Universe. Vasiliev began the modern non-classical revolution in logic, but he certainly
did not complete it. The founder of paraconsistent logic, N.A. Vasiliev, stated as a
characteristic feature of his logic, three kinds of sentence, i.e. "S is A", "S is not A", "S is
and is not A". Thus Vasiliev logic rejected the law of non-contradiction: A  A and
the law of excluded middle: A  A.However Vasiliev’s logic preserve the law of
excluded fourth: A  A A  A. Possible formalized versions of Vasiliev’s logic with
one level of contradiction LP1

# was proposed by A.I.Arruda [1]. In this paper we proposed
paraconsistent first-order logic LP

# with infinite hierarchy levels of contradiction.
Corresponding paraconsistent set theory KSth

# is discussed.
The postulates (or their axioms schemata) of Vasiliev-Amida propositional

paraconsistent logic VA1 are the following:
The language 1 of paraconsistent logic VA1  VA1V has as
primitive symbols (i) countable set of a clalassical propositional variables, (ii)

countable set V  P ii of a non clalassical propositional variables,(iii) the connectives
, ,,, and (iv) the parentheses (,).
I. Logical postulates:
1 A  B  A,
2 A  B  A  B  C  A  C,
3 A  B  A  B,
4 A  B  A,
5 A  B  B,



6 A  A  B,
7 B  A  B,
6 A  A  B,
7 B  A  B,
8 A  C  B  C  A  B  C,

9 A  A,
10 B  B  A if B  V.
II.Rules of a conclusion:
Anrestricted Modus Ponens ruleMP : A,A  B  B.

Theorem 1.1.[1]. (1) If B  V, then B,B  A; (2) A  A iff A  V;
(3) A  A.

The postulates (or their axioms schemata) of Vasiliev-Amida propositional
paraconsistent logic VA2 are the following:
The language 2 of paraconsistent logic VA2  VA2V has as
primitive symbols (i) countable set of a clalassical propositional variables, (ii)

countable set V  P ii of a non clalassical propositional variables,(iii) the connectives
, ,,, and (iv) the parentheses (,).
I. Logical postulates:
1 A  B  A,
2 A  B  A  B  C  A  C,
3 A  B  A  B,
4 A  B  A,
5 A  B  B,
6 A  A  B,
7 B  A  B,
6 A  A  B,
7 B  A  B,
8 A  C  B  C  A  B  C,

9 A  A,
10 B  B  A if B  V,

11 P i  P i iff P i V, i  1,2, . . . .
II.Rules of a conclusion:
Anrestricted Modus Ponens ruleMP : A,A  B  B.

II.Paraconsistent Logic with n levels of contradiction LPn
#.

Modern formalized versions of Vasiliev’s logic with one level of contradiction may be
found in Amida [1980], [Puga and Da Costa 1988], Smimov [Smirnov 1987], and



[Smimov 1987a, 161-169]. There is also the presentation Smimov given at the
International Congress of Logic, Methodology and Philosophy of Science in Uppsala in
1991.
.

Paraconsistent Logic with one levels of a contradiction
LP1

#.

Let us consider now Vasiliev-Arruda type paraconsistent logic LP1
#  LP1

#V, with
one level of contradiction.
The postulates (or their axioms schemata) of propositional paraconsistent logic
LP1

# are the following:
The language 1

# of paraconsistent logic LP1
#  LP1

#V, has as
primitive symbols (i) countable set of a clalassical propositional variables, (ii)

countable set V  P ii of a non clalassical propositional variables, (iii) the
connectives w,s,,, and (iv) the parentheses (,).
Remark.2.1.We distinguish a weak negation w and a strong negation s.
The definition of formula is the usual. We denote the set of the all formulae of
LP1

#V1, by 1
#, where V1  V0  V1 and  is a given subset of 1

#. Here we
used the following definitions: V0  V,V1  1 |  V,1    w. A,B,C, ...
will be used as metalanguage variables which indicate formulas of LP1

#V,. We
assume through that V1   1

#.
I. Logical postulates:

1 A  B  A,
2 A  B  A  B  C  A  C,
3 A  B  A  B,
4 A  B  A,
5 A  B  B,
6 A  A  B,
7 B  A  B,
8 A  C  B  C  A  B  C,

9 P i  wP i iff P i V, i  1,2, . . .
10 A  wA iff A  V,
11 B  wB  A if B  V1,

12 A  wA A wA iff A  V1,
13 A  sA if A  1

#,
14 B  sB  A if A,B  1

#.

II.Rules of a conclusion:
Restricted Modus Ponens ruleMPR :



A,A  B  B iff A  .

Unrestricted Modus Tollens rules: P  Q,wQ  wP;P  Q,sQ  sP.

The rule of a strong contradiction: A  sA  B.

III.Quantification

Corresponding to the propositional paraconsistent relevant logic LP1
#V, we

construct the corresponding paraconsistent relevant first-order predicate calculus LP1
# 

LP1
# V , . The language of the paraconsistent predicate calculus LP1

#, denoted by 1
#
,

is an extension of the language 1
# introduced above, by adding, as usually,for every m,

denumerable families of m-ary predicate symbols R1
m,R2

m, . . . ,Rn
m, . . . ,and m-ary function

symbols f1
m, f2

m, . . . , fnm, . . . , and the universal  and existential  quantifiers.

We assume throughout that: the language 1
#
contains also

(i) the classical numerals 0,1, ;
(ii) countable set  of the classical consistent set variables   x,y, z, . . . ;
(iii) countable set  of the non classical inconsistent set variables   x,y, z, . . . ;
(iv) countable set  of the classical non-logical constants   a,b,c. . . ;
(iv) countable set  of the non classical non-logical constants   ă,b ,c. . . ;

Definition 2.1. An LP1
# wff  (well-formed formula ) is a LP1

#- sentence iff it hasn’t
free variables; a wff Ψ is open if it has free variables. We’ll use the slang ‘k – place
open wff’ to mean a wff with k distinct free variables.

Definition 2.2. An LP1
# wff  is a classical iff it hasn’t non classical variables and

non classical constants.

Definition 2.3. An LP1
# wff  is a non classical iff it has an non classical variables

or non classical constants.We denote the set of the all formulae of LP1
# V , by

1
#
, where V  V1 and    is a given subsets of 1

#
.We assume through that

V    1
#
.

The postulates of LP1
# V , are those of LP1

# V , (suitably adapted) plus the

following:

(I)
  x

  xx
,

(II) xx  y,

(III) x  xx,

(IV)
x  
xx  

,

(V) xx1  xx1,
(VI) xx1  xx1,
(VII) xx1  xx  xwx,
(VIII) xx1  xx  xwx,
where we used the following definitions:
0  ,1  w  w and
0  ,1    w



and where the variables x and y and the formulas  and  satisfy the usual definition.

From the calculi LP1
# V , ,one can construct the following predicate calculus with

equality. This is done by adding to their languages the binary predicates symbol of
strong equality    or  s  and weak equality w  with suitable modifications in
the concept of formula, and by adding the following postulates:
(IX) xx s x,
(X) xy x s y1  B ,

(XI) xyx s y  x  y,
(XII) xyzx s y  y s z  x s z,

(XIII) yxy w x,
(XIV) yxy w x1,
(XV) xyx w y  x  y
(XVI) xy x w y1  1x  1y ,

(XVII) xyzx w y  y w z  x w z,
(XVIII) xyz x w y1  y w z1  x w z1 ,

(XIX) xyzx w y  y s z  x w z,
(XX) xyz x w y1  y s z  x w z1 ,

(XXI) xyzx s y  y w z  x w z,

(XXII) xyz x s y  y w z1  x w z1 .

II.Rules of a conclusion:
Restricted Modus Ponens ruleMPR :

A,A  B  B iff A   .

Unrestricted Modus Tollens rules: P  Q,wQ  wP;P  Q,sQ  sP.

The rule of a strong contradiction: A  sA  B.

Definition 2.4. Classical V-object Cl  Cl V , is the object such that from any

classical formula of the form PCl  wPCl,where PNCl   by using principles

as in paraconsistent logical calculas LP1
# V , using Restricted Modus Ponens rule,

one can deduce any formula i.e., classical object Cl is the object which hasn’t any
inconsistent property with respect to a weak negation w.
Definition 2.5. Non classical V-object NCl  NCl V , of the 1-degree of

inconsistency is the object NCl such that: from any non classical formula of the form
PNCl  wPNCl,where PNCl   by using principles as in paraconsistent logical

calculas LP1
# V , using Restricted Modus Ponens rule one can’t deduce any formula

whatsoever i.e., non classical object of the 1-degree of inconsistency is the object NCl

which has at least one inconsistent property of the 1-degree with respect to a weak
negation w.
The simplest example of non classical objects 1-degree inconsistency is inconsistent

numbers ă such that



ă w 1  wă w 1, 2.1

or

b w 1  b w 2 . 2.2

Remark.2.2. Note that: (i) formula (2.1) meant that ă w 1  V and (ii) formula

(2.2) meant that b w 1   and b w 2   .

Paraconsistent Logic with n levels of contradiction LPn
#.

Let us consider now paraconsistent logic LPn
#  LPn

#V, with n levels of
contradiction.
The postulates (or their axioms schemata) of propositional paraconsistent logic
LPn

#  LPn
# V , are the following:

The language n
# of paraconsistent logic LPn

# has as primitive symbols (i) countable
set of a clalassical propositional variables, (ii) countable set V  P ii of a non
clalassical propositional variables, (iii) the connectives w,s,,, and (iv) the
parentheses (,).
Remark 2.3.We distinguish a weak negation w and a strong negation s.
The definition of formula is the usual. We denote the set of the all formulae of
LPn

# V , by n
# where V and  is a given subsets of n

#. We assume through

that V    n
#.

A,B,C, ... will be used as metalanguage variables which indicate formulas of
LPn

# V , .

Definition 2.6. (i) k stands for k1  k11, where 0  ,
1  w  w, 0  k  n.
(ii) the (finite) k-order of the level of a weak consistency (w-consistency) is:
k, 0  k  n.
Definition 2.7. (i) k stands for k1  k11, where 0  ,
1    w, 0  k  n.
(ii) the (finite) k-order of the level of a weak inconsistency (w-inconsistency) is:
n, 1  k  n.

I. Logical postulates:

1 A  B  A,

2 A  B  A  B  C  A  C,
3 A  B  A  B,



4 A  B  A,

5 A  B  B,
6 A  A  B,
7 B  A  B,
8 A  C  B  C  A  B  C,

9 P  wP iff P  V,
10 Pk iff P  V,

11 A  wA if A  V 
k0

n

Vk. ,

12 A  sA if A  n
#,

13 B  sB  A if A,B  n
#,

14 A  wAA  wA  A2

n1

. . .Ak . . . An if A  n
#,

15 B  wB  A if B  V 
k0

n

Vk.

II.Rules of a conclusion:

Restricted Modus Ponens ruleMPR :

A,A  B  B iff A  V .
Unrestricted Modus Tollens rule: P  Q,wQ  wP;P  Q,sQ  sP.

The rule of a strong contradiction: A  sA  B.

III.Quantification

Corresponding to the propositional paraconsistent relevant logic LPn
# V we construct

the corresponding paraconsistent relevant first-order predicate calculus. These new

calculus will be denoted by LPn
# V .

The postulates of LPn
# V are those of LPn

# V (suitably adapted)

plus the following:

(I)
  x

  xx
,

(II) xx  y,

(III) x  xx,

(IV)
x  
xx  

,

(V) xxk  xxk,k  1,2, . . . ,n,
(VI) xxk  xxk,k  1,2. . . ,n,
(VII) xxk  xxk,k  1,2. . . ,n.

From the calculus LPn
# V ,we can construct the following predicate calculus with



equality.This is done by adding to their languages the binary predicates symbol of
strong equality    or  s  and weak equality w  with suitable
modifications in the concept of formula, and by adding the following postulates:
(IX) xx s x,
(X) x x s x1  B ,

(XI) xyx s y  x  y,
(XII) xyzx s y  y s z  x s z,

(XIII) yxx w xk,k  0,1, 2, . . . ,n,

(XIV) xy x w yk  kx  ky ,k  1,2, . . . ,n,

(XV) xyz x w yk  y w zk  x w zk ,k  0,1, 2, . . . ,n,

(XVI xyz x w yk  y s z  x w zk ,k  0,1, 2, . . . ,n,

(XVII) xyz x s y  y w zk  x w zk ,k  0,1, 2, . . . ,n,

(XVIII) yxy w xk,k  0,1, 2, . . . ,n.

III. Paraconsistent Logic with infinite hierarchy levels of
contradiction LP

# .

The postulates (or their axioms schemata) of propositional paraconsistent logic
LP

#  LP
# V , are the following:

The language 
# of paraconsistent logic LP

# has as primitive symbols (i) countable
set of a clalassical propositional variables, (ii) countable set V  P ii of a non
clalassical propositional variables, (iii) the connectives w,s,,, and (iv) the
parentheses (,).
Remark.3.1.We distinguish a weak negation w and a strong negation s.
The definition of formula is the usual. We denote the set of the all formulae of
LP

# V , by 
# where V and  is a given subsets of 

# . We assume through

that V    
# .

A,B,C, ... will be used as metalanguage variables which indicate formulas of
LP

# V , .

Definition 3.1. (i) n stands for n1  n11, where
0  ,1  w  w, 1  n  .
(ii)  stands for nn .
(iii) the finite n-order of the level of a weak consistency (w-consistency) is:
0  ,n, 1  n  .
(iv) the ifinite -order of level of a weak consistency (w-consistency) is : .



Definition 3.2. (i) n stands for n1  n10,
where 0    w, 1  n  .
(ii)  stands for nn .
(iii) the finite n-order of the level of a weak inconsistency (w-inconsistency) is:
n, 1  n  .
(iv) the ifinite -order of the level of a weak inconsistency (w-inconsistency) is: .
I. Logical postulates:

1 A  B  A,
2 A  B  A  B  C  A  C,
3 A  B  A  B,
4 A  B  A,
5 A  B  B,
6 A  A  B,
7 B  A  B,
8 A  C  B  C  A  B  C,

9 P i  wP i iff P i V, i  1,2, . . . ,

10 P i
n iff P i V, i  1,2, . . . ; 1  n  ,

11 A  wA if A  V 
k

Vk,

12 A  sA if A 
# ,

14 B  sB  A if A,B  
# ,

15 A  wA  A1  A2

n

. . . An if A  
# , 1  n  ,

16 B  wB  A if B  V  
k

Vk.

II.Rules of a conclusion:

Restricted Modus Ponens ruleMPR :

A,A  B  B iff A  V .
Unrestricted Modus Tollens rule: P  Q,wQ  wP;P  Q,sQ  sP.

The rule of a strong contradiction: A  sA  B.

III.Quantification

Corresponding to the propositional paraconsistent relevant logic LP
# V we construct

the corresponding paraconsistent relevant first-order predicate calculus. These new

calculus will be denoted by LP
# V .

The postulates of LP
# V are those of LP

# V (suitably adapted)

plus the following:

(I)
  x

  xx
,



(II) xx  y,

(III) x  xx,

(IV)
x  
xx  

,

(V) xxn  xxn, 1  n  ,
(VI) xxn  xxn, 1  n  ,
(VII) xxn  xxn, 1  n  , . .

From the calculus LP
# V ,we can construct the following predicate calculus with

equality.This is done by adding to their languages the binary predicates symbol of
strong equality    or  s  and weak equality w  with suitable
modifications in the concept of formula, and by adding the following postulates:
(IX) xx s x,

(X) x x s x1  B ,

(XI) xyx s y  x  y,
(XII) xyzx s y  y s z  x s z,

(XIII) yxx w xn, 0  n  ,

(XIV) xy x w yn  nx  ny , 1  n  ,

(XV) xyz x w yn  y w zn  x w zn , 0  n  ,

(XVI) xyz x w yn  y s z  x w zn , 0  n  ,

(XVII) xyz x s y  y w zn  x w zn , 0  n  ,

(XVIII) yxy w xn, 0  n  .

IV. Paraconsistent Set Theory ZFC
# .

IV.1. Paraconsistent set theory KSth
#

Cantor’s "naive" set theory KSth was based mainly on two fundamental principles: the
postulate of extensionality (if the sets x and y have the same elements, then they are
equal), and the postulate of comprehension or separation (every property determines a
set, composed of the objects that have this property). The latter postulate, in the
standard (first-order) language of set theory, becomes the following schema of formulas:

yxx  y  Fx,y. 4.1. 1

Now, it is enough to replaces the formula Fx,y in (4.1) by x  x to derive Russell’s
paradox. That is, the principle of comprehension (4.1) entails an inconsistency. Thus, if
one adds (4.1) to classical first-order logic, conceived as the logic of a set-theoretic
language, a trivial theory is obtained.
Remark.4.1.We distinguish a weakly inconsisten membership relation  w  and



a strongly consisten membership relation s .
Definition 4.1. (i) the minimal order of the level of a weak
consistency (w-consistency) is: 1  0  w0  w0,0    x w y;
(ii) the minimal order of the level of a weak inconsistency (w -inconsistency) is:
1  0  w0,0    x w y.
Definition 4.2.(i) x w,n y is to stands for x w yn and is to
mean "x is a weakly consistent member of y of the n-order (of the n-level) of
w-consistency ".
(ii) x w,n y is to stands for x w yn and is to mean "x is a weakly
inconsistent member of y of the n-order (of the n-level) of w-inconsistency ".

Definition 4.1. An LP1
# wff  is a w-wff iff it does not contain the connective: w.

We now replace the formula (4.1) by formulae

yxx w,n y  Fx,y ,

n  0,1, 2, . . .

4.1. 2

and

yxx w,n y  Fx,y,

n  0,1, 2, . . . .

4.1. 3

Theorem 4.1. (1) The collections n  xx w,n nwx w,n x is
contradictory of the n  1-order of w-inconsistency.
(2) The collections n  xx w,n nwx w,n x is
contradictory of the n  1-order of w-inconsistency.
Theorem 4.2. (1) The collection   xnx w,n wx w,n x is
contradictory of the   1-order of w-inconsistency.
(2) The collection   xnx w,n wx w,n x is
contradictory of the   1-order of w-inconsistency.
The standard non-classical response to these paradoxes is to find fault with the

logical and deduction principles involved in the deduction. Most standard approaches to
the paradoxes take them to be important lessons in the behaviour of a Boolean
negation.
However if you wish to define negation non-classically, there are many options

available.You can define negation inferentially, taking A to mean that if A, then
something absurd follows,or it can be defined by way of the equivalence between the
truth of ~A and the falsity of A, and allowing truth and falsity to have rather more
independence from one another than is usually taken to be the case: say, allowing
statements to be neither true nor false, or both true and false. The former account takes
truth as primary, and defines negation in terms of a rejected proposition and implication.
For example, one can to define a strong negation ~sA non-classically [16]:

~sA  A  xyx w y  x s y.
4.1. 4

Theorem 4.3. The collection ~s such that x w ~s~sx w x i.e.,



~s  x~sx w x is contradictory.
Proof. Replace Fx,y in the axiom schema of abstraction (4.2) in the
definition of collection by ~sx w x, so that the implicit definition of ~s

becomes

x w ~s~sx w x. 4.1. 5

Instantiating in (4.5) x by ~s then by unrestricted modus pones MP,
we obtain:
(1)  ~sw~s ~s~sw~s .

By unrestricted modus pones MP one obtain the contradiction

(2)  ~sw~s~s~sw~s .

Thus, if we adds (4.2)-(4.3) to first-order logic LP
# V , , conceived as the logic

of a set-theoretic language with suitable adapted V and  a nontrivial paraconsistent
set theory KSth

# is obtained.

IV.2. Paraconsistent Set Theory ZFC
# .

Basic Definitions and Elementary Operations on
Inconsistent Sets.

Remark 4.2.1. In this subsection, we will be, to distinguish:
(i) a weak implication A w B, where A w B abbreviates A,A w B  B,B  V and
(ii) a strong implication A s B, where A s B abbreviates A,A s B  B;
(iii) a weak negation wA, where wA abbreviates A  B,B  V and
(iv) a strong negation sA where sA abbreviates A  B.
Designations 4.2.1.We will be write for short:
x w

n
y instead x w yn,n  1,2, . . . ;

and we will write for short:
x wn y instead x w yn,n  1,2, . . .

Remark 4.2.2. Thus in particular we will be write:
x w1 y instead x w y  x w y  wx w y, etc.

and we will be write:
x w

1
y instead x w y  x w y  wx w y, etc.

Remark 4.2.3.However we will be often write for short:
x w y instead x w0 y and x w y instead x w0 y.

Remark 4.2.4. In this subsection, we will be distinguish:
(I) the relations:
(i) consistent (s-consistent) equality denoted by  s  and such that



x,yx s y  sx s y  B; 4.2. 1

(ii) weak or strongly inconsistent (or w-inconsistent) equality denoted by  w 
or by  w  for short, and such that

x,yx w y  wx w y  B;
4.2. 2

(iii) wn-inconsistent) equalities denoted by w1 , . . . ,  wn  , . . . ,n  1,2, . . .

and such that

nx,yx wn y  wx wn y  B,

x,yx w1 y s x w0 y,

nx,yx wn1 y s x wn y,

4.2. 3

where x w0 y  x w y;

(II) the relations:
(i) consistent (or s-consistent) membership relation denoted by  s ,and such that

x,yx s y  sx s y  B; 4.2. 4

(ii) weak or strongly inconsistent (or w-inconsistent) membership relation denoted by
 w  and such that

x,yx w y  wx w y  B,

nx,yx wn y  B
4.2. 5

(iii) wn-inconsistent membership relations denoted by  w1 , . . . ,  wn , . . . ,
n  1,2, . . .and such that

nx,yx wn y  wx wn y  B,

x,yx w1 y s x w0 y,

nx,yx wn1 y s x wn y,

4.2. 6

where x w0 y  x w y;

Remark 4.2.5. Note that: (1) in accordance with (4.2.2) the w-inconsistent equality
 w  admit the infinite levels of a contradiction;
Definition 4.2.1. Let x and X be a sets such that:
(i) the statement x s X holds, then we will be say that
x is a strong member (or s-member) of a set X;
(ii) the statement x w X holds, then we will be say that
x is a weak member (or w-member) of a set X;

Remark 4.2.5. We note, that in ZFC
# valid:

(i) x,yx s y  sx s y  B,
(ii)



(ii) x,yx w y  wx w y  B,B  V ,n  1,2,
(ii) x,yx s y  wx s y  B,
(ii) x,y : x w y  n

x w y  B,B  V ,n  1,2,
(iii) x,y : x s y  wx s y  B,
(iv) x,y : x w y  n

x w y  B,B  V ,n  1,2,
Remark 4.2.4. (i) sA abbreviates A  B, i.e. s is a strong negation,
(ii) A s B abbreviates A,A s B  B, i.e.s is a strong implication.
Designations 4.2.2. (I) We will be write for short:

(i) x w0 y instead x w y  x w y  wx w
1

y ,

(i) x w0 y instead x w y  x w y  wx w
1

y ,

(ii) x w1 y instead x w y  x w y  x w1 y  wx w
2

y ,

(iii) x wn y instead x w y  x w y . . .x wn y  wx w
n1

y ,

n  1,2,

(iv) x w0 y instead x w y  x w y  wx w
1

y ,

(v)
(vi)

(iii) x wn y instead x s y  x w y . . . x wn y  wx w
n1

y ,

n  1,2,
(iv) x w y instead x s y  x w0 y 0n

x wn y,

(v) x w y instead x s y  x w0 y 0n
x wn y.

(II) We will be write for short:
(i) x w

s y instead x s y  x w y  swx w y

(ii) x w0
s y instead x s y  x w y  sx w

1
y ,

(iii) x w1
s y instead x s y  x w y  x w1 y  sx w

2
y ,

(iv) x wn
s y instead x s y  x w y . . .x wn y  sx w

n1
y , n  1,2,

(v) x wn
s y instead x s y  x w y . . . x wn y  sx w

n1
y ,

n  1,2,
(vi) x w

s y instead x s y  x w0
s y 0n

x wn
s y,

(vii) x w
s y instead x s y  x w0

s y 0n
x wn

s y.

(III)We often will be write for short:
(i) x w0 y instead x w0 y,

(ii) x w1 y instead x w1 y,n  1,2, ,

(iii) x wn y instead x wn y,n  1,2, ,

(iv) x w y instead x w y,

(v) x w y instead x w y.

Definition 4.2.1. Let x be an object (set). We shall say that x is a strongly consistent
object (s-consistent) or classical object iff: x s x and x w x  B, i.e. x is a strongly
consistent object (set) iff x s x  sx w x.
Designations 4.2.3. We will be write for short: s-conx iff x is s ̵ consistent object

(set).
Definition 4.2.2.Let x be an object (set). We shall say that:



(i) x is a weakly consistent (w-consistent) object (set) iff
(1) x w x, (2) x w x  B,B  V (3) sx s x and (4) sx w1 x, i.e. x w1 x  B;
(ii) x is a weakly inconsistent (w-inconsistent) object (set) iff
(1) x w x, (2) sx s x and (3) x w1 x  B,B  V .
Designations 4.2.4. We will be write for short:
(i) w-conx or w0

-conx iff x is w ̵ consistent object (set).
(ii) w-incx or w0-incx iff x is w ̵ inconsistent object (set).
Definition 4.2.3.Let x be an object (set). We shall say that:
(i) x is w1-inconsistent object iff x w1 x and x w1 x  B,B  V .
(ii) x is wn-inconsistent object iff x wn x and x wn x  B,B  V ,n  1,2,
(iii) x is w-inconsistent object iff n x wn x  x wn x  B,B  V .

Designations 4.2.5. We will be write for a short:
(i) wn-incx iff x is wn-inconsistent object (set), n  1,2,
(ii) w-incx iff x is w-inconsistent object (set).
Definition 4.2.4.Let x be an object (set). We shall say that:
(i) x is a weakly w1-inconsistent object iff w1-incx and sw2-incx.
(ii) x is a weakly wn-inconsistent object iff wn-incx and swn1-incx,n  1,2,
Designations 4.2.6. We will be write for a short:
(i) w1

-incx iff x is a weakly w1-inconsistent object (set).
(ii) wn

-incx iff x is a weakly wn-inconsistent object (set).
Definition 4.2.5. Let x and y be any s ̵ consistent objects (sets),i.e. s-conx and

s-cony.
We shall say that objects (sets) x and y are strongly equivalent (s-equivalent) iff x s y.
Definition 4.2.6. Let x and y be an objects (sets) such that w-conx and w-cony.
We shall say that objects (sets) x and y are weakly equivalent (w-equivalent) iff x w y.
Definition 4.2.7. Let x and y be an objects (sets) such that w-conx and w-cony.
We shall say that objects (sets) x and y are weakly equivalent in consistent sense
(w-equivalent) iff x w y and sx w1 y.
Definition 4.2.8. Let x and y be any objects (sets) such that wn-incx and wn-incy,
then we shall say that:
(i) x and y are wn- equivalent iff x wn y,x wn y  B,B  V ,n  0,1, 2,
(ii) x and y are wn- equivalent in consistent sense (wn

- equivalent) iff x wn y and
sx wn1 y,n  0,1, 2,
(iii) x and y are w- equivalent iff n x wn y  x wn y  B,B  V

Designations 4.2.7. We will be write for a short:
(i) x wn y iff x and y is a wn- equivalent,(ii) x wn

 y iff x and y are wn
- equivalent,

(iii) x w y iff x and y are w- equivalent.
Definition 4.2.9. Let x and y be an objects (sets) such that s-conx and wn-incy.
We shall say that objects (sets) x and y are weakly equivalent (w-equivalent) iff x w y.
Definition 4.2.10. Let x and y be any objects (sets) such that s-incx and wn-incy,
then we shall say that:
(i) x and y are wn- equivalent iff x wn y where x wn y  B,B  V ,n  0,1, 2,
(ii) x and y are wn- equivalent in consistent sense (wn

- equivalent) iff x wn y and
sx wn1 y,n  0,1, 2,
(iii) x and y are w- equivalent iff n x wn y  x wn y  B,B  V



Designations 4.2.8. We will be write for a short:
(i) x wn y iff x and y is a wn- equivalent,
(ii) x wn

 y iff x and y are wn
- equivalent,

(iii) x w y iff x and y are w- equivalent.
Definition 4.2.11. Let x and y be any objects (sets), then:
(i) we shall say that x is a strongly consistent member (s-member) of y if x s y.
(ii) we shall say that x is a weakly consistent member (wc-member) of y if x w y and
x w y  B, i.e. x is a weakly consistent member of y if x w y and sx w y
(iii) we shall say that x is a weak w1-inconsistent member (w1-member) of y if
x w y  x w y
Designations 4.2.9.We will be write for a short:
(i) x wc y or x w0

c y iff x is a weak consistent member of y

Definition 4.2.12. We shall say that:
(i) an formula  of Set Theory ZFC

# is a a strongly consistent formula iff formula 
contains only predicates x s y and x s y. Sometimes we designate such formula by

s.
(ii)
(iii)
Designations 4.2.10. Before introducing any set-theoretic axioms at all, we can

introduce some important abbreviations. Let x,y and z be any consistent objects (sets)
(i) x s y abbreviates zz s x  z s y;
(ii) x s y abbreviates x s y  x s y;
(iii) x s y abbreviates sx s y;
(iv) x s y abbreviates sx s y;
(v) u s s x  s x  zz s u  y s xz s y;
(vi) u s s x  s x  zz s u  y s xz s y;
(vii) x s yϕs abbreviates xx s y  ϕs;
(viii) x s yϕs abbreviates xx s y  ϕs;
(ix) !sxϕsx abbreviates xϕsx  xyϕsx  ϕsy  x s y
Designations 4.2.11.For any terms r, s, and t, we make the following abbreviations of
formulas.
(i) x s t or x s ts for xx s t s ;
(ii) x s tw for xx s t w ;
(iii) x wn t or x wn ts for xx wn t s ;

(iv) x wn tw for xx wn t w ;

(v) x wn t or x wn ts for xx wn t s ;

(vi) x wn tw for xx wn t w .

Designations 4.2.12.For any terms r, s, and t, we make the following abbreviations of
formulas.
(i) x s t for xx s t  ;
(ii) x w t for xx w t  ;
(iii) x wn t for xx wn t  ;
(iv) x wn t for xx wn t  ;
(v) x wn

s t for x x wn
s t   .

Designations 4.2.13.For any terms r, s, and t, we make the following abbreviations of



formulas.
(i) x s t or x s

s t for sx s t;
(ii) x s

w t for wx s t;
(iii) x w

w t for wx w t;
(iv) x w

s t for sx w t;
(iv) x wn

w t for wx wn t;

(iv) x wn
s t for sx wn t;

(v) x wn
w t for wx wn t;

(vi) x wn
s t for sx wn t;

(vii) x wn
w,s t for w x wn

s t ;

(viii) x wn
s,s t for s x wn

s t .

Designations 4.2.14.
(i) The notation x|xs,s will stand for a set X such that xx s X s x.

(ii) The notation x|xw,s will stand for a set X such that

xx w X s x.
(iii) The notation x|xw,w will stand for a set X such that

xx w X w x.
(iv) The notation x|xwn,s

will stand for a set X such that

xx wn X s x.

(v) The notation x|xwn,s
will stand for a set X such that

xx wn X s x.

(vi) The notation x|xwn,w
will stand for a set X such that

xx wn X w x.

Designations 4.2.15.Whenever we have a finite number of terms t1, t2, . . . , tn then
(i) the notation t1, t2, . . . , tns,s is used as an abbreviation for the class:

x|x s t1  x s t2  ···  x s tns,s;

(ii) the notation t1, t2, . . . , tnw,s is used as an abbreviation for the class:

x|x w t1  x w t2  ···  x w tnw,s;

(iii) the notation t1, t2, . . . , tnw,w is used as an abbreviation for the class:

x|x w t1  x w t2  ···  x w tnw,w;

(iv) the notation t1, t2, . . . , tnwn,s
is used as an abbreviation for the class:

x|x wn t1  x wn t2  ···  x wn tnwn,s
;

(v) the notation t1, t2, . . . , tnwn,s
is used as an abbreviation for the class:

x|x wn t1  x wn t2  ···  x wn tnwn,w
;

(vi) the notation t1, t2, . . . , tnwn,s
is used as an abbreviation for the class:

x|x wn t1  x wn t2  ···  x wn tnwn,s
;

(vii) the notation t1, t2, . . . , tnwn,s
is used as an abbreviation for the class:

x|x wn t1  x wn t2  ···  x wn tnwn,w
.

Designations 4.2.16.We abbreviate the following important sets:
(i) s, s-union t1 s,s t2 or t1 s t2 for x|x s t1  x s t2s,s;



(ii) w, s-union t1 w,s t2 or t1 w,s t2 for x|x w t1  x w t2w,s;

(iii) w,w-union t1 w,w t2 or t1 w,w t2 for x|x w t1  x w t2w,w;

(iv) wn, s-union t1 wn,s t2 or t1 wn,s t2 for x|x wn t1  x wn t2wn,s
;

(v) wn,w-union t1 wn,w t2 or t1 wn,w t2 for x|x wn t1  x wn t2wn,w
;

(vi) wn, s-union t1 wn,s t2 or t1 wn,s t2 for x|x wn t1  x wn t2wn,s
;

(vii) wn,w-union t1 wn,w t2 or t1 wn,w t2 for x|x wn t1  x wn t2wn,w
;

Designations 4.2.17.We abbreviate the following important sets:

(i) s, s-union s, s-C or s, s-
Ss C

S for x|x s S for some S s C s,s
;

(ii) w, s-union w, s-C or w, s-
Sw C

S for x|x w S for some S w C
w,s

;

(iii) w,w-union w,w-C or w,w-
Sw C

S for x|x w S for some S w C
w,w

;

Designations 4.2.18.We abbreviate the following important sets:
(i) s, s-intersection t1 s,s t2 or t1 s t2 for x|x s t1  x s t2s,s;

(ii) w, s-intersection t1 w,s t2 for x|x w t1  x w t2w,s;

(iii) w,w-intersection t1 w,w t2 for x|x w t1  x w t2w,w;

(iv) wn, s-intersection t1 wn,w t2 for x|x wn t1  x wn t2wn,w
;

(v) wn,w-intersection t1 wn,w t2 for x|x wn t1  x wn t2wn,w
;

(vi) wn, s-intersection t1 wn,w t2 for x|x wn t1  x wn t2wn,w
;

(vii) wn,w-intersection t1 wn,w t2 for x|x wn t1  x wn t2wn,w
.

Designations 4.2.19.We abbreviate the following important sets:

(i) s, s-intersection s, s-C or s, s-
Ss C

S for x|x s S for all S s C s,s
;

(ii) w, s-intersection w, s-C or w, s-
Ss C

S for x|x w S for all S w C
w,s

;

(iii) w,w-intersection w,w-C or w,w-
Ss C

S for x|x w S for all S w C
w,w

;

IV.3. The Axioms of Paraconsistent Set Theory ZFC
# .

IV.3.1.The Axioms of Extensionality.

(1) Strong axiom of w-extensionality

uu w X s u w Y s X w Y. 4.3. 1

(2) Weak axiom of w-extensionality



uu w X w u w Y w X w Y. 4.3. 2

(3) Strong axiom of wn-extensionality

uu wn X s u wn Y s X wn Y. 4.3. 3

(4) Weak axiom of wn-extensionality

u u w
n

X w u w
n

Y w X w
n

Y. 4.3. 4

(5) Strong axiom of wn-extensionality

uu wn X s u wn Y s X wn Y. 4.3. 5

(6) Weak axiom of wn-extensionality

u u w
n

X w u w
n

Y w X w
n

Y. 4.3. 6

IV.3.2.The Axioms of Empty Set.
(1) Axiom of strongly w-empty set

xuu w
s x. 4.3. 7

The strongly w-empty set, denoted w
s .

(2) Axiom of weakly w-empty set

xuu w
w x. 4.3. 8

The weakly w-empty set, denoted w
w.

(3) Axiom of weakly w0-empty set

xu u w0
w x . 4.3. 9

The weakly w0-empty set, denoted w0
w .

IV.3.3.The Axioms of Pairing.
(1) Strong axiom of w, s-pairing.

abcxx w c s x w a  x w b 4.3. 

and we define the w, s-pair a,bw,s by a,bw,s w c.

IV.3.4.The Axioms of Separation.
(1) Strong Separation Schemes.

(i) Let ϕu,p1, . . . ,pk be a formula free from symbols wn
s ,wn

s ,n  1,2, . . . . For any

X
and p1, . . . ,pk, there exists a set Y w u w X|ϕu,p1, . . . ,pkw,s, i.e.



XpYuu w Y s u w X  ϕu,p1, . . . ,pk 4.3. 4

(ii) Let ϕu,p1, . . . ,pk be a formula free from symbols wn
s ,wn

s ,n  1,2, . . . . For any

X
and p1, . . . ,pk, there exists a set Y wn u wn X|ϕu,p1, . . . ,pkwn,s

, i.e.

XpYuu wn Y s u wn X  ϕu,p1, . . . ,pk 4.3. 

(iii) Let ϕu,p1, . . . ,pk be a formula free from symbols wn
s ,wn

s ,n  1,2, . . . . For any

X
and p1, . . . ,pk, there exists a set Y wn u wn X|ϕu,p1, . . . ,pkwn,s

, i.e.

XpYuu wn Y s u wn X  ϕu,p1, . . . ,pk 4.3. 

(2)Weak Separation Schemes.

(i) Let ϕu,p1, . . . ,pk be a formula. For any X and p1, . . . ,pk, there exists a set
Y w u w X|ϕu,p1, . . . ,pkw,w, i.e.

XpYuu w Y w u w X  ϕu,p1, . . . ,pk 4.3. 

(ii) Let ϕu,p1, . . . ,pk be a formula. For any X and p1, . . . ,pk, there exists a set
Y wn u wn X|ϕu,p1, . . . ,pkwn,s

, i.e.

XpYuu wn Y w u wn X  ϕu,p1, . . . ,pk 4.3. 

(iii) Let ϕu,p1, . . . ,pk be a formula. For any X and p1, . . . ,pk, there exists a set
Y wn u wn X|ϕu,p1, . . . ,pkwn,s

, i.e.

XpYuu wn Y w u wn X  ϕu,p1, . . . ,pk 4.3. 

IV.3.5.The Axioms of Replacement.
(1) Strong Replacement Scheme.

(i) Let x,y,u be a formula free from symbols wn
s ,wn

s , then for any n  1,2, . . . .

xyy x,y,u  x,y ,u s y w y   s

s szyy w z s xx w sx,y,u.
4.3. 

The set z is denoted y|xx,y,u  x w sw,s.

(ii) Let x,y,u be a formula free from symbols wn
s ,wn

s , then for any

u  p1, . . . ,pk, n  1,2, . . . .

xyy x,y,u  x,y ,u s y wn y
  s

s szyy wn z s xx wn sx,y,u.
4.3. 

The set z is denoted y|xx,y,u  x wn swn,s
.

(iii) Let x,y,u be a formula free from symbols wn
s ,wn

s , then for any



u  p1, . . . ,pk, n  1,2, . . . .

xyy x,y,u  x,y ,u s y wn y
  s

s szyy wn z s xx wn sx,y,u.
4.3. 

The set z is denoted y|xx,y,u  x wn swn,s
.

(2)Weak Replacement Scheme.
(i) Let x,y,u be a formula, then for any u  p1, . . . ,pk, n  1,2, . . .

xyy x,y,u  x,y ,u w y w y   w

w szyy w z w xx w sx,y,u.
4.3. 

The set z is denoted y|xx,y,u  x w sw,w.

(ii) Let x,y,u be a formula, then for any u  p1, . . . ,pk, n  1,2, . . .

xyy x,y,u  x,y ,u w y wn y
  w

w szyy wn z w xx wn sx,y,u.
4.3. 

The set z is denoted y|xx,y,u  x wn swn,w
.

(iii) Let x,y,u be a formula,then for any u  p1, . . . ,pk, n  1,2, . . .

xyy x,y,u  x,y ,u s y wn y
  w

w szyy wn z s xx wn sx,y,u.
4.3. 

The set z is denoted y|xx,y,u  x wn swn,w
.

w

IV.3.6.The Axioms of Union.

IV.3.6.(1) Strong Axiom of Union.
(i) Strong w-union

xystt w ys s uu w x  t w u. 4.3. 

The set ys is denoted w,s x or s,w-x.

(ii) Strong wn-union

xystt wn ys s uu wn x  t wn u. 4.3. 

The set ys is denoted wn,s x or s,wn-x.

(iii) Strong wn-union

xystt wn ys s uu wn x  t wn u. 4.3. 

The set ys is denoted wn,s x or s,wn-x.

IV.3.6.(2) Weak Axiom of Union.
(i) Weak w-union



xywtt w yw w uu w x  t w u. 4.3. 

The set yw is denoted w,w x or w,w-x.

(ii) Weak wn-union

xywtt wn yw w uu wn x  t wn u. 4.3. 

The set yw is denoted wn,w x or w,wn-x.

(iii) Weak wn-union

xywtt wn yw w uu wn x  t wn u. 4.3. 

The set yw is denoted wn,w x or w,wn-x.

IV.3.7.The Axioms of Power Set.

IV.3.7.(1) Strong Axioms of Power Set.
(i) Strong axiom of w-power set.

XYstt w Ys s zz w t s z w X 4.3. 

For any set X,a set Ys is denoted Pw
s X.

(ii) Strong axiom of wn-power set.

XYstt wn Ys s zz wn t s z wn X 4.3. 

For any set X,a set Ys is denoted Pwn
s X.

(iii) Strong axiom of w0-power set.

XYstt w0 Ys s zz w0 t s z w0 X 4.3. 

For any set X,a set Ys is denoted Pw0
s X.

(iv) Strong axiom of wn-power set.

XYstt wn Ys s zz wn t s z wn X 4.3. 

For any set X,a set Ys is denoted Pwn
s X.

IV.3.7.(2) Weak Axioms of Power Set.
(i) Weak axiom of w-power set.

XYwtt w Yw w zz w t w z w X 4.3. 

For any set X,a set Yw denoted Pw
wX.

(ii) Weak axiom of wn-power set.

XYwtt wn Yw w zz wn t w z wn X 4.3. 

For any set X,a set Yw is denoted Pwn
w X.

(iii) Weak axiom of w0-power set.

XYwtt w0 Yw w zz w0 t s z w0 X 4.3. 

For any set X,a set Ys is denoted Pw0
w X.

(iv) Weak axiom of wn-power set.



XYwtt wn Yw w zz wn t w z wn X 4.3. 

For any set X,a set Yw is denoted Pwn
w X.

IV.3.8.The Axioms of Infinity.

IV.3.8.(1) Strong Axioms of Infinity.
(i) Strong Axiom of w-infinity

Xyy w X  zz w
s y  yy w X s

s zz w X  tt  z s t w y  t w y
4.3. 

There is a set X such that w
s w X and whenever y w X, then y w,s yw,s w X.

A set X is denoted w
s .

(ii) Strong Axiom of wn-infinity.

X yy wn X  z z wn
s y  yy wn X s

s zz wn X  tt wn z s t wn y  t wn y
4.3. 

There is a set X such that wn
s wn X and whenever y wn X, then

y wn,s ywn,s
wn X.A set X is denoted wn

s .

(iii) Strong Axiom of w0-infinity.

X yy w0 X  z z w0
s y  yy w0 X s

s zz w0 X  tt w0 z s t w0 y  t w0 y
4.3. 

There is a set X such that w0
s w0 X and whenever y w0 X, then

y w0,s yw0,s
w0 X.A set X is denoted w0

s .

(iv) Strong Axiom of wn-infinity.

X yy wn X  z z wn
s y  yy wn X s

s zz wn X  tt wn z s t wn y  t wn y
4.3. 

There is a set X such that wn
s wn X and whenever y wn X, then

y wn,s ywn,s
wn X.A set X is denoted wn

s .

IV.3.8.(2) Weak Axioms of Infinity.
(i) Weak Axiom of w-infinity

Xyy w X  zz w
w y  yy w X w

s zz w X  tt  z w t w y  t w y
4.3. 

There is a set X such that w
w w X and whenever y w X, then y w,s yw,w w X.

A set X is denoted w
w.

(ii) Weak Axiom of wn-infinity.



X yy wn X  z z wn
w y  yy wn X w

s zz wn X  tt wn z w t wn y  t wn y
4.3. 

There is a set X such that wn
s wn X and whenever y wn X, then

y wn,w ywn,w
wn X.A set X is denoted wn

w .

(iii) Weak Axiom of w0-infinity.

X yy w0 X  z z w0
w y  yy w0 X w

s zz w0 X  tt w0 z w t w0 y  t w0 y
4.3. 

There is a set X such that w0
w w0 X and whenever y w0 X, then

y w0,w yw0,w
w0 X.A set X is denoted w0

w .

(iv) Weak Axiom of wn-infinity.

X yy wn X  z z wn
w y  yy wn X w

w zz wn X  tt wn z w t wn y  t wn y
4.3. 

There is a set X such that wn
w wn X and whenever y wn X, then

y wn,w ywn,w
wn X.A set X is denoted wn

w .

IV.4.w-Inconsistent Relations and Functions

IV.4.1.w-Consistent Relations and Functions
Definition 4.4.1.An w-consistent ordered pair a,bs,w (or s-w-ordered pair ) is defined

to
be

a,bs,w  as,w,a,bs,w s,w
. 4.4. 1

Similarly we define

a,b,cs,w  a,b,cs,w  as,w,a,bs,w, as,w,a,bs,w s,w
,c

s,w s,w
, 4.4. 2

etc.
Definition 4.4.2. Let Rw

s be an w-consistent set. An w-consistent set Rw
s is a binary

w-consistent relation (or s-w-relation) if all w-elements of Rw
s are w-consistent ordered

pairs, i.e. for z w
s Rw

s there exists x and y such that z w
s x,ys,w. We can also denote

x,ys,w w
s Rw

s as xRw
s y, and say that x is in s-w-relation Rw

s with y if xRw
s y holds.

Designation 4.4.1.

IV.5. w-Inconsistent w-Equivalences and w-Orderings



Definition 4.5.1. Let Rw
s  be a binary w-consistent w-relation in A.

(i) Rw
s is s-w-reflexive (or strongly w-reflexive) in A if for all a w

s A, aRw
s a.

(ii) Rw
s is s-w-symmetric (or strongly w-symmetric) in A if for all a,b w

s A :
aRw

s b s bRw
s a.

(iii) Rw
s is s-w-antisymmetric (or strongly w-antysymmetric) in A if

for all a,b w
s A : aRw

s b  bRw
s as a w

s b.
(iv) Rw

s is s-w-asymmetric (or strongly w-asymmetric) in A if
for all a,b w

s A : aRw
s bs sbRw

s a,i.e. aRw
s b and bRw

s a cannot both be true.
(v) Rw

s is s-w-transitive (or strongly w-transitive) in A if
for all a,b,c w

s A : aRw
s b bRw

s cs aRw
s c.

Definition 5.1.1.An w-consistent (or strong) w-ordering w
s of A is called s-w-linear or

s-w-total if any two w-elements of A are comparable in the ordering w
s ;i.e. for any

a,b w
s A, either a w

s b,b w
s a, or a w

s b. The pair A,w
s  is called a s-w-linearly

w-ordered set.
Definition 5.1.The condition that X w

s A has a strong w
s -least element reads

xx w
s Xy w

s Xx w
s y 4.5. 1

or in the following equivalent form

xx w
s Xy w

s Xsy w
s x. 4.5. 2

Definition 5.1.1.An w-inconsistent (or weak) w-ordering w
w of A is called

V.The w-inconsistent natural numbers

V.1.The w-consistent natural numbers
In defining the w-consistent natural numbers we begin by examining the most

fundamental set, the strong w-empty set w
s .We can very easily create a pattern that is a

prime candidate for the definition of the w-consistent natural numbers:
w-empty set w

s has zero elements in the w-consistent sense;
w

s  has one element in the w-consistent sense;
w

s ,w
s  has two elements in the w-consistent sense,etc.

Revisiting our prime candidate for w-consistent natural numbers, we can revise it as:
0w
s w

s w
s ;

1w
s w

s 0w
s  w

s w
s w,s w

s  w
s w

s ;
We see that each number is de ned based on the number that precedes it. This

sequence is anchored by 0w
s . As long as 0w

s is defined, then 1w
s can be defined. Once 1w

s

is defined, 2w
s can also be, and so on. This brings us to the concept of w-consistent

induction.

Definition 5.1.1. The w-consistent w-successor (or strong w-successor) of a set x is



the
set

Sw
s x w

s x w,s xw,s. 5.1. 1

Definition 5.1..A set Iws is called s-w-inductive (or strongly w-inductive) if
(i) w

s w
s Iws .

(b) If x w
s Iws , then Sw

s x w
s Iws .

Definition 5.1... The w-consistent set of all w-consistent natural numbers is defined by

Definition 5.1..Let A \ws by a set every nonempty w-subset X of A \ws has w-consistent
(strong) w-complement A\ws X.Any w-consistent s-w-linear w-ordering w

s of a set A is a
w-consistent well-ordering if every nonempty w-subset X of A \ws has a w

s -least element.
The structure A \ws ,w

s  is called w-consistent well-ordered set.

V.2.The w-inconsistent natural numbers

V. The Standard and Non-Standard Models of formal
Paraconsistent theories.

V.1. Generalized Incompleteness Theorems.
Let Th be some fixed, but unspecified, paraconsistent, i.e. inconsistent but nontrivial

formal theory and in these case we wrote PTh or PconPTh instead Th. For later
convenience, we assume that the encoding is done in some fixed consistent formal
theory S and that PTh contains S. We do not specify S— it is usually taken to be a
formal system of arithmetic, although a weak set theory is often more convenient. The
sense in which S is contained in PTh is better exemplified than explained: If S is a formal

system of arithmetic and PTh is, say, ZFn, 1  n   or ZFC# then PTh contains S in the
sense that there is a well-known embedding, or interpretation, of S in PTh.Since
encoding is to take place in S, it will have to have a large supply of constants and closed
terms to be used as codes. (E.g. in formal arithmetic, one has 0,1,... .) S will also have
certain function symbols to be described shortly.
To each formula , of the language of PTh is assigned a closed term, c, called the

code of . [N.B. If x is a formula with free variable x, then xc is a closed term
encoding the formula x with x viewed as a syntactic object and not as a parameter.]
Corresponding to the logical connectives and quantifiers are function symbols, neg,



imp, etc., such that, for all formulae , : S  negn
c  n

c,

S  impc, c    c, etc. Of particular importance is the substitution operator
sub, represented by the function symbol sub, . For formulae x, terms t with codes
tc :

S  subxc, tc  tc. 5.1. 1

Iteration of the substitution operator sub allows one to define function symbols sub3,
sub4, . . . , such that

S  subnx1,x2, . . . ,xnc, t1 c, t2 c, . . . , tn c  t1, t2, . . . , tnc. 5.1. 2

It well known [17] that one can also encode derivations and have a binary relation
ProvThx,y (read "x proves y " or "x is a proof of y") such that for closed t1, t2 :
S  ProvTht1, t2 iff t1 is the code of a derivation in PTh of the formula with code t2.It

follows that

PTh   iff S  ProvPTht, 
c 5.1. 3

for some closed term t.
Definition 5.1.1.Thus one can define

PrPThy  xProvPThx,y, 5.1. 4

and therefore one obtain a predicate asserting provability.
Remark 5.1.1. We note that it is not always the case that :

PTh   iff S  PrPTh
c. 5.1. 5

It well known [17] that the above encoding can be carried out in such a way that the
following important conditions D1,D2 and D3 are met for all sentences:



D1.PTh   implies S  PrPTh
c,

D2.S  PrPTh
c  PrPThPrPTh

cc,

D3.S  PrPTh
c  PrPTh  c  PrPTh

c.

5.1. 6

Generalized Incompleteness Theorems depend on the following.
Theorem 5.1.1. (Diagonalization Lemma). Let x in the language of PTh have only

the free variable indicated. Then there is a sentence  such that

S    c. 5.1. 7

Proof. Given x, let x  subx,x be the diagonalization of x. Let
m  xc and   m. Then we claim that S    c.For x in S, we see
that

  m  subm,m  subxc,m  mc  c. 5.1. 8

We apply now (5.1.7) to nPrThx.
Theorem 5.1.2. (Generalized First Incompleteness Theorem).Let (1) PconnTh and
(2) Th   nPrTh

c.
Then (i)

Th  , 5.1. 9

(ii) under an additional assumption

Th  n. 5.1. 10

Proof. (i) Observe Th  implies Th  PrTh
c by D1, which implies Th  n,

contradicting the paraconsistency of Th.
(ii) The additional assumption is a strengthening of the converse to D1, namely

Th  PrTh
c implies Th .We have Th  n,hence Th  nnPrTh

c so
that Th  PrTh

c and, by the additional assumption,Th  , again contradicting the
paraconsistency of Th.
Theorem 5.1.3. (Generalized Second Incompleteness Theorem).
Let PconnTh be nPrThn 

c,where n  A  nA is any convenient



n-contradictory statement. Then

Th  PconnTh.
5.1. 11

Proof. Let  be as in the statement of Theorem 5.2.. We show: S    PconnTh.
Observe that S    nPrTh

c implies S    nPrThn 
c, since S    n

implies S  PrTh  n 
c,by D1, which implies S  PrThn 

c  PrTh
c,by D3.

But   nPrThn 
c is just   PconnTh and we have proven half of the

equivalence. Conversely, by D2,S  PrThc  PrThPrTh
cc , which implies

S  PrThc   PrThn
c,by D1,D3, since   nPrTh

c.This yields S 
PrTh  n

c, by D1,D3, and logic, which implies S  PrThc  PrThn 
c by

D1,D3, and logic. By contraposition, S  nPrThn 
c  nPrTh

c,which is
S PconnTh  , by definitions.
Theorem 5.1.4. S  PconnTh  Pconn Th  nPconnTh .

Proof.By the proof of Theorem 5.3, (i) S  PconnTh  nPrTh
c,

(ii) S  PconnTh  .Using now D2,D3, it follows that
S  PconnTh  nPrThPconnTh

c,so that

S PconnTh  nPrThnPconnTh  n 
c 5.1. 12

which gives S  PconnTh  Pconn Th  nPconnTh .

Definition 5.2.Define: (i)

ProvTh
 x,y  ProvThx,y 

zw  xProvThz,w  y  negnw  w  negny

5.1. 13

(ii)

PrTh
 y  xProvTh x,y 5.1. 14

and
(iii)

Pconn
 Th  PrTh

 n 
c. 5.1. 15



Theorem 5.1.5. (Generalized Rossers Theorem).Let (1) PconnTh and
(2) Th   nPrTh

 c.
Then
(i)

Th  , 5.1. 16

(ii)

Th  n. 5.1. 17

(iii)

Th  Pconn
 Th. 5.1. 18

Proof.(i) By the paraconsistency of Th, ProvTh and ProvTh
 binumerate the same

relation. Hence D1 holds: Th   Th  PrTh
 c.Thus, the proof of the first part of

the First Incompleteness Theorem yields the result.
(ii) This follows from (iii).
(iii) Follows immediately from the remarks that Th is paraconsistent and
Th  nn.
Theorem 5.1.6. (Generalized Löb’s Theorem). Let be (1) PconnTh and (2)  be

closed. Then

Th  PrTh
c   iff Th  . 5.1. 19

Proof. The one direction is obvious. For the other, assume that Th  . Then
Th  n is consistent and we may appeal to the Generalized Second

Incompleteness Theorem to conclude that Th  n does not yield PconnTh  n,
hence not nPrTh  n 

c. Thus Th  n  nPrTh
c.Contraposition yields

Th  PrTh
c  .

Let be PconnTh.Now we focuses our attention on the following schemata:

(I) Generalized Local Reflection Principle RfnTh :

PrTh
c  ,  closed. 5.1. 20



(II) Generalized First Uniform Reflection Principle RFNTh :

xPrThxc  xx, x has only x free. 5.1. 21

(III) Generalized Second Uniform Reflection Principle RFNTh :

xPrThxc  xx, x has only x free. 5.1. 22

Theorem 5.1.7. (Generalized First Incompleteness Theorem).Let be PconnTh.Then
for some true, unprovable 

Th  PrTh
c   5.1. 23

Theorem 5.1.8. (Generalized Second Incompleteness Theorem).Let be
PconnTh.Then for any refutable 

Th  PrTh
c   5.1. 24

Theorem 5.1.6 simply yields

Th  PrTh
c   iff Th , 5.1. 25

V.2. The Generalized Compactness Theorem
corresponding to paraconsistent first-order logic LP

# .
In order to use the Generalized Compactness Theorem, and in fact, even to state it,

we must first develop the logical language to which it applies. In this case, we shall use
paraconsistent first-order logic LP

# with infinite hierarchy levels of contradiction. We will
begin by listing the requisite definitions.
Definition 5.2.1. A language  is a not necessarily countable collection of relation
symbols P, function symbols G, and constant symbols c.
Definition 5.2.2. The inconsistent universe V inc is inconsistent universal set or any
inconsistent set A inc  V inc.



Definition 5.2.3. An interpretation function  is a function such that:
(1) For each n-place relation symbol P of ,P  R where R  A inc

n .
(2) For each m-place function symbol G of , G  F where F : A inc

m  A inc

is an m-place function on A inc.
(3) For each constant symbol c, c  x for some x  A inc.
Definition 5.2.4. An inconsistent model Minc for any paraconsistent theory Thinc with a

language  (paraconsistent -theory) consists of a universe A inc and an interpretation
function , which we denote by

MTh inc  Minc  A inc,, 5.2. 1

or Minc.
Definition 5.2.5. A term is one of four things:
(i) A variable is a term.
(ii) A constant symbol is a term.
(iii) If F is an m-placed function symbol, and t1, . . . , tm are terms, then Ft1, . . . , tm
is a term.

(iv) A string of symbols is a term only if it can be shown to be a term by a finite
number of applications of (i)-(iii).

Remark.5.2.1.The purpose of (iv) is to ensure that there are no infinite terms.
Remark.5.2.2.Now before we continue, we note that there is two two-place relation
symbol which always belongs to rst-order logic, even though it does not belong to .
This relation is called the identity relation, and is denoted by s and w .
Definition 5.2.6. An atomic formula of  is a string of the form:

(i) t1 s t2 where t1 and t2 are terms of .
(ii) t1 w t2 where t1 and t2 are terms of .
(iii) Pt1, . . . , tn where P is an n-placed relation and t1, . . . , tn are terms of .
Definition 5.2.7. A formula of  is defined as follows:
(i) An atomic formula is a formula.
(ii) If  and  are formulas, then   ,  ,s,w,  ,   are formulas.
(iii) If v is a variable and  is a formula, then v is a formula.
(iv) If a string of symbols can be shown to be a formula by a finite number of
applications of (i)-(iii), then it is a formula.
Definition 5.2.8. A formula is a sentence if every variable in the formula is bound
by the quantifier  or .
Definition 5.2.9. A sentence  is true in a model Minc, or alternatively, Minc is
a model of , denoted Minc  , if for every possible sequence of elements in A inc,
substituting these elements in A inc for the variables present in  yields a true
sentence at last at inconsistent sence,i.e.,both  and w holds in Minc for some .
Remark.5.2.2.Note that: (1) this idea of truth precludes the possibility of both  and
s holding in A inc but (2) the possibility of both  and w holds in Minc for some .

Definition 5.2.10. We say that Minc is inconsistent model of a set of sentences  if
Minc is a model of  for all   .

Definition 5.2.11. A sentence  is a consequence of a set of sentences , denoted



  , if every model Minc of  is a model of .
Definition 5.2.12. sentence  is deducible from , expressed  RMP , if there
exists a nite chain of sentences 0, . . . ,n where n is  and each previous
sentence in the chain either belongs to , follows from one of the axioms of
Thinc  LP

# , or can be inferred from previous sentences.
Definition 5.2.13. A set of sentences  is paraconsistent if and only if (i) there does
not exist a sentence  such that  RMP  and  RMP s, (ii) there
exist at least one sentence  such that RMP  .
Lemma 5.2.1. Let  be a set of sentences. If  RMP , then   .
Theorem 5.2.1.(Generalized Soundness Theorem). Let  be a set of formulas. If 

has an inconsistent model Minc, then  is paraconsistent.
Proof. Suppose that is not paraconsistent. Then there exists some  such that:
(i)  RMP  and  RMP s, or (ii)  RMP  for all .
1. From assumption (i) by Lemma 5.2.1, we have    and   s.This means
that  cannot have a model Minc, because if it did, then    and   s, which is
impossible.
2. From assumption (i) by Lemma 5.2.1, we have    for all .This means
that  cannot have a model Minc, because if it did, then  RMP  for all , which is
impossible.Thus, we have proved our statement.
Theorem 5.2.1.(Generalized Godel’s Completeness Theorem). Let  be a set of
formulas. If  is paraconsistent, then it has an inconsistent model Minc.
Proof. Let  be an arbitrary paraconsistent set of sentences of some language .
Let  be an expansion of  created by adding a set of new constant symbols not in
 that has the same cardinality as . The firrst step is to add sentences to  to
create a paraconsistent set of sentences  in the language . It is possible to show
by canonical way, that  has a model Minc which is a model for . Now if we let inc

be the reduction of Minc to only involve the original language , it is possible to show
by canonical way, that inc is a model for , because the sentences in do not involve
any constants which belonged to ,so the reduction of Minc to inc did not affect its
ability to model .
Theorem 5.2.2.(Generalized Compactness Theorem). Any paraconsistent set of
sentences  has a model Minc if and only if every finite subset of  has a model.

V.3. The Non-Standard Models of Paraconsistent second
order arithmetic Z2

#.
This subsection presents the terminology and results necessary to prove the existence

of non-standard models of paraconsistent second order arithmetic Z2
# and paraconsistent

Peano arithmetic PA inc  Z2
# [24] and that there are 20 such countable models.

Definition 5.3.1.Any paraconsistent theory Thinc with a language  is called
paraconsistent -theory.
Definition 5.3.2.Let Minc be an inconsistent model Minc  A inc,,.
(i) The set A inc of all elements of Minc, called the domain of Minc and named by
domMinc.



(ii) For a constant symbol c the constant element c named by cMinc .
(iii) For a relation symbol R, the relation R named by RMinc .

(iv) For a function symbol F, the function F named by FMinc .
Notation5.3.1. Any inconsistent model Minc  A inc,, we often call as
-model.
Definition 5.3.3.Let Thinc be an paraconsistent -theory and let   . If Minc  
for all   Thinc, then Minc is inconsistent model for Thinc, written Minc  Thinc or MTh inc .
Definition 5.3.4.The second-order language of paraconsistent second order
arithmetic Z2

# named by 2
#.

Definition 5.3.5. Inconsistent model for paraconsistent second order arithmetic Z2
#

is an inconsistent model Minc  Z2
# such that Minc   for all   Z2

#.
Definition 5.3.6. Any inconsistent model Minc  A inc,, of paraconsistent
-theory Thinc is colled inconsistent -model.
Definition 5.3.7. The signature SMinc of an inconsistent model Minc of paraconsistent
-theory Thinc lists the set of functions, relations and constants of that inconsistent
model.
Definition 5.3.8.Let S be a signature and let M1

inc and M2
inc be -models with

signature S  SM1
inc  SM2

inc .A homomorphism f : M1
inc  M2

inc, is a function f from

domM1
inc to domM2

inc such that:
1. For each constant c of S, f cM1

inc
 cM2

inc
.

2. For each n  0,n-ary relation symbol R of S and n-tuple a  M1
inc, if a  RM1

inc
then

fa  RM2
inc
.

3. For each n  0,n-ary function symbol F of S and n-tuple a  RM1
inc
,

f FM1
inc
a  FM2

inc
fa.

Where a  a0, . . . ,an1 and fa  fa0, . . . , fan1.
Definition 5.3.9.An embedding of M1

inc into M2
inc is a homomorphism f : M1

inc  M2
inc

which is injective and satisfies:
1. For each n  0, each n-ary relation symbol R of S and each n-tuple a  M1

inc,
a  RM1

inc
 fa  RM2

inc
.

Furthermore, M1
inc and M2

inc are isomorphic, written M1
inc  M2

inc, when there exists a
surjective embedding f : M1

inc  M2
inc.

The importent question is recapitulated formally as motivation for classifying the
properties
of standard and non-standard models of inconsistent arithmetic Z2

# [24].
Problem. Given the standard model  inc of Z2

#, if Minc  Z2
# and Minc   inc, then how

many such countable models Minc are there and how do they differ from  inc?
The answer to this question requires the theory of inconsistent non-standard models

and
will be answered by Theorem 5.3.1 and Theorem 5.3.3 below .
Definition 5.3.10. Let AZ2

# be a set of the all axioms of Z2
#. A non-standard model

Minc

of Z2
# is an 2

#-model such that Minc w ϕ, for all ϕ  AxZ2
#, and Minc   inc, where

 inc

is the standard model of Z2
#.

That is to say, an model Minc of Z2
# or PA inc  Z2

# is non-standard when there does not



exist a surjective weakly embedding f :  inc w Minc. Unpacking the definitions, this
means that for any homomorphism f :  inc  Minc, either there exists a constant symbol,
relation, or function which is not mapped to (i.e., f is not a bijection), or the condition for
an embedding - that a  Rinc  a  RMinc

- does not holds. The explicit construction of
such a non-standard model Minc of Z2

# will require a connection between the satisfiability
of a theory and some new constant symbol which ensures that Minc   inc.
Theorem 5.3.1. (Generalized Gödel’s Completeness Theorem) Let Thinc be an
paraconsistent -theory and let   , where ϕ is an -sentence. Then Minc w ϕ if

and
only if Thinc  ϕ.
Corollary 5.3.1. Thinc is paraconsistent if and only if Thinc is satisfiable.
Proof. Assume to the contrary that there exists a theory Thinc such that Thinc is

paraconsistent and Thinc is not satisfiable. Since Thinc is not satisfiable, there does not
exist a model Minc of Thinc. So, any model Minc of Thinc is a model of s (s    s ).
Then, Thinc  s and so by the Completeness Theorem, Thinc RMP s ; yet this
contradicts the assumption that Thinc is paraconsistent. Assume to the contrary that
there exists a theory Thinc such that Thinc is satisfiable and Thinc is not paraconsistent;
this is an immediate contradiction by the definition of satisfiability. Therefore,Thinc is
paraconsistent if and only if Thinc is satisfiable.
Theorem 5.3.2.(Generalized Compactness Theorem) Thinc is satisfiable if and only if

every finite subset of Thinc is satisfiable.
Theorem 5.3.3.There exists inconsistent non-standard models of PAinc.
Proof. We want to prove that there exists a model Minc  MPA inc for PAinc which is not

isomorphic to the standard model  inc. Let nw be the value of the weak numeral nw
formed by
nw1 w1

nw1 1 s

1w1 w1 . . .w1 1w1 , and let c be a new constant symbol such that c w1 cw1

where cw1 is an w1-inconsistent object, i.e. w1-inccw1. Then we set:

Thkw1

inc  AxPAinc  wcw1 w1inc nw1 |nw1inc w1inc kw1  5.3. 1

be a set of axioms in the language 2
#  cw1, where n,k wcon  inc. For a given k, give

the interpretation cw1
inc w1inc kw1

inc Then, since PAinc is paraconsistent,Thkw1inc
inc is

paraconsistent, and thus satisfiable by Corollary 5.3.1, for each k wcon  inc. Therefore,
the standard model of PAinc is a model for Thkw1

inc ; that is to say,  inc  Thkw1

inc . Since

Th
kw1
1
inc  Th

kw1
2
inc . . . Th

kw1
i
inc . . . 5.3. 2

and each Th
kw1
i
inc is satisfiable for i  . We set now



Thinc#  
i

Th
kw1
i
inc . 5.3. 3

is satisfiable by the Generalized Compactness Theorem. So, there exists an
2

#  cw1-model MPA inc such that MPA inc  Thinc# and thus MPA inc  AxPAinc.Assume
now to the contrary that MPA inc   inc, then there exists a surjective embedding
f :  inc  MPA inc and so fn w n, for all n   inc. But since cw1 w n, for all n   inc,
there does not exist an image in MPA inc of cw1 under f, which contradicts that f is a
w-surjective embedding. Therefore, MPA inc is a model for Peano arithmetic PAinc.

V.3

VI.Paralogical Nonstandard Analysis.

VI.1. The inconsistent ultrafilter.

VI.1.1. The consistent ultrafilter.
We remind some classical definitions.
Definition 6.1.1.Letcon be an infinite classical set con  Vcon. Any consistent filter
con that is a family of subsets of con satisfying the following properties:
(i)con s con,s s con.
(ii) A1, . . . ,An s con s A1 s . . .s An s con.
(iii) A s con and A s B s B s con.
Definition 6.1.2.A filter con oncon is called free if it contains no finite set.
Definition 6.1.3.A filter con is called an consistent ultrafilter overcon if for all
E s con either E s con orcon \sE s con, i.e.,

E s con s con \sE s
s con, 6.1. 1

where we abrraviate: con \sE s
s con  scon \sE s con.

Remark.6.1.1.Notice that from the nontriviality condition [Definition 6.1.1(i)] it follows
that
if con is an ultrafilter oncon and E s con,then exactly one of the sets E and

con \sE
belongs con.

VI.1.2. The inconsistent w-ultrafilter.
Definition 6.1.4.Letw be a infinite weakly inconsistent (w-inconsistent ) set

w  Vw.
Any weakly inconsistent filter (w-filter) w that is w1-inconsistent family of w-subsets

of



w satisfying the following properties:
(i)w w w,w

s w
s w.

(ii.a) A1, . . . ,An w w s A1 w,s . . .w,s An w w.
(ii.b) A1, . . . ,An w1 

w s A1 w,s . . .w,s An w1 
w.

(iii.a) A w w and A w B s B w w.
(iii.b) A w1 

w and A w B s B w1 
w.

Definition 6.1.5.A w-filter w onw is called free if it contains no finite set.
Definition 6.1.6.A w-filter w is called an w-ultrafilter overw if for all
E w w either E w w orw \sE w w, i.e.,

E w w s w \sE w
s w, 6.1. 2

Remark.6.1.2.Notice that from the nontriviality condition [Definition 6.1.4(i)] it follows
that
if w is an w-ultrafilter onw and E w w,then exactly one of the sets E andw \sE
w-belongs w.

VI.1.3. The weakly consistent w0-ultrafilter.
Definition 6.1.7.Letw0 be a infinite weakly consistent (w0-consistent) set

w0  Vw0 .
Any weakly consistent filter (w0-filter) w0 that is a family of w0-subsets of w0

satisfying
the following properties:
(i)w0  w0 ,w0

s w0
s w0 .

(ii.a) A1, . . . ,An w0 
w0 s A1 w0 . . .w0 An w0 

w0 ,
(ii.b) A1, . . . ,An w0 

w0   A1, . . . ,An w0
w w0  s

A1 w0 . . .w0 An w0 
w0   A1 w0 . . .w0 An w0

w w0 .
(iii.a) A w0 

w0 and A w0 B s B w0 
w0 ,

(iii.b) A w0 
w0   A w0

w w0  and A w0 B s B w0 
w0  s B w0

w w0 .
Definition 6.1.8.Any w0-filter w0 onw0 is called free if it contains no finite set.
Definition 6.1.9.Weakly consistent filter w0 is called a w0-ultrafilter
overw0 if for all E w0 

w0 either E w0 
w0 orw0 \w0

E w0 
w0 .

E w0 
w0 s w0 \sE w

s w0 , 6.1. 3

Remark.6.1.3.Notice that from the nontriviality condition [Definition 6.1.7(i)] it follows
that
if w0 is an ultrafilter onw0 and E w0 

w0 ,then E w0 
w0 orw0 \Ew0 w0 

w0 .
We can now construct an w-inconsistent and w0-consistent nonstandard extensions.

VI.1.4 The w-inconsistent nonstandard extension.
Definition 6.1.10.Let be w a free w-ultrafilter onw and introduce a strong
w-equivalence relation fw w

s gw on w-sequences f w w w
w

by

fw w
s gw s  w w | f w w g w

w
w w. 6.1. 4

Remark.6.1.4.Note that for any f w,g w,h w w w

f w w gw  g w w hw s f w w hw. 6.1. 5



Definition 6.1.11.w
w

"divided" out by the w-equivalence relation inc on clases fw
w

by
formula

f w w fw
w ,

gw gw w fw
w s fw w gw ,

6.1. 6

gives us the inconsistent nonstandard extension #w, the inconsistent hyperreals; in
symbols,

#ww  w
w

w , 6.1. 7

which mean a natural w-embedding:

f w w fw
w 6.1. 8

If f w w w
inc

, we denote its image in #ww by fw
w , and, of course,every element in

#ww

is of the form finc
w , for some f w : w w w.

Remark.6.1.5.Note that for any f w,g w w w
w

f w w gw s fw
w w gw

w . 6.1. 9

For any w-inconsistent real number rw w w,such that rw w r, r s , let rw denote
the
constant w-function with value rw in w, i.e., rw w rw, for all  w w. We then

have a
natural w-embedding:

#w : w w
#ww 6.1. 10

by setting #wrw w rw
w , for all rw w w. We must now lift the structure of w to the

w-inconsistent hyperreals (w-hyperreals) #ww

Remark.6.1.6.Notice that as an algebraic w-inconsistent structure, w is a w-complete
w-odered field,i.e., a w-structure of the form

w,w ,w , 0w, 1w, 6.1. 11

where w w  is the set of elements of the structure, w and w are the binary
operations of addition and multiplication, w is the ordering relation, and 0w w 0 s 
and 1w w 1 s  are two distinguished elements of the domain. And it is complete in
the sense that every nonempty set w-bounded from above has a w-least w-upper bound.
(I) The #w-embedding of (6.1.10) sends 0w to #w0 w 0w

w  0w and 1 to #w1 w 1w
w 

1w. We must lift the operations and relations of w to #ww. We get the clue from (6.1.9),
which tells us when:
(i) two elements fw and gw, of #ww are w-equal:

fw
w w gw

w s  w w | f w w gw w w, 6.1. 12

(ii) two elements fw and gw, of #ww are not w-equal in strong consistent sense:

fw
w w

s gw
w s  w w | f w w gw w

s w, 6.1. 13

(iii) two elements fw and gw, of #ww are not w-equal in a weak sense:



fw
w w

w gw
w s  w w | f w w gw w

w w, 6.1. 14

(iv) two elements fw and gw, of #ww are are w-equal and are not w-equal in a weak
w-inconsistent sense:

fw
w w gw

w  fw
w w

w gw
w s fw

w w1 gw
w s

s  w w | f w w gw w w 

  w w | f w w gw w
w w .

6.1. 15

In a similar way we extend w to #w by setting for arbitrary fw
w ,and gw

w ,in #ww:

fw
w0 w gw

w s  w w |fw w gw w w,

fw
w0 w

s gw
w s  w w |fw w gw w

s w,

fw
w0 w

w gw
w s  w w |fw w gw w

w w,

fw
w0 w gw

w  fw
w0 w

s gw
w s fw

w0 w1 gw
w s

s  w w |fw w gw w w  

 w w |fw w gw w
w w .

6.1. 16

(II) With this definition of w in #ww we easily show that the extended domain #ww is
w-linearly w-ordered w-inconsistent field. As an example we verify w-transitivity of w in
#ww. Let fw

w w gw
w , and gw

w w hw
w ,i.e.,

D1
w w  w w |f w w gw w w,

D2
w w  w w |gw w hw w w

6.1. 17

By the finite intersection property,[see Definition 6.1.4.(ii)] D1
w w D2

w w w. If
 w D1

w w D2
w, then fw w gw and gw w hw; hence by transitivity of w in

w,

fw w gw  gw w0 hw s fw w0 hw. 6.1. 18

Thus

D1
w w D2

w w0  w w |fw w hw 6.1. 19

The closure property [Definition 6.1.4(iii)] then tells us that fw
w w hw

w . Similarly one
can

to prove that given any fw
w ,gw

w w
#ww , then either fw

w w gw
w ,or gw

w w fw
w , or

fw
w w gw

w .
Remark.6.1.7.The w-relation w on #ww introduced in (6.1.16) extends the relation

w

on w, i.e., given any r1, r2 w w we see that r1 w r2 in w iff #wr1 w
#wr2 in #ww.

We now have w-inconsistent w-linear order on #ww and can verify that #ww contains
w-inconsistent infinitesimals (w-infinitesimals) and weakly consistent infinite numbers
(w-infinite numbers). A (positive) w-infinitesimal w in #ww is an
w-element w w

#ww such that #w0w w w w
#wrw for all rw w  0w in w.

Notice that w-nfinitesimals exist. Let w a free w-ultrafilter onw w w

and let f1
wnw w nw1 and f2

wnw w nw2 for nw  w. Then 1,w w f1,w
w and



2,w w f2,w
w ,is a positive w-infinitesimals and 2,w w 1,w.

In the same way g1
wnw0 w nw and g2

wnw w nw
2 introduce a weakly consistent

infinite numbers, 1,w w g1,w
w , and 2,w w g2,w

w , and we have that 1,w w 2,w

in #ww.
(III) It remains to extend the operations w and w to #ww. Looking back to (6.1.12)
and (6.1.16) we have nothing to do but to set

fw
w w gw

w w hw
w s

s  w w |f w w gww w hw w w,
6.1. 19

and

fw
w w gw

w w hw
w w

w  w w | f w w gw w hw w w.
6.1. 20

With these definitions one can to proves easily that #ww is an w-inconsistent
extension of
w. And these definitions introduce an w-inconsistent algebra on the w-infinitesimals

and

on the w-infinitely large numbers. One may wish to verify easily that if fw
w w gw

w , and
#w0w w hw

w ,then

fw
w w hw

w w gw
w w hw

w . 6.1. 21

One should also notice that for the w0-infinitesimals 1,w and 2,w and the w0-infinite
1,w0

and 2,w0 introduced above, we have, e.g., 2,w w 1,w
2 , 1,w0 w0 1,w0 w0 1w0 , is

infinitesimal, and 6 w’ is infinite.Thus the w0-infinitely small and the w0-infinitely large
have
a decent wekly consistent arithmetic.
The way we extended the particular operators w0 and w0 and the particular
relation w0 from w0 to

#w0w0 can be used to extend any function and relation
on w0 to

#w0w0 . Let F be an n-ary w0-function on w0 , i.e.,

Fw0 :

n times

w0 w0    w0 w0w0 w0 . 6.1. 22

Then we introduce the extended w0-function #w0F by the w0-equivalence

#w0Fw0 fw0
1,w0 , . . . , fw0

n,w0 w0 gw0
w0 s

 w0 
w0 |Fw0 f 1,w0, . . . , f n,w0 w0 g w0 w0 

w0

6.1. 23

The reader may want to verify that #w0F is a w0-function and that #w0F really
extends F, i.e., #w0F#w0 r1,w0 , , . . . ,

#w0 rn,w0  w0
#w0 rw0 iff F

w0r1,w0 , . . . , rn,w0   rw0 . In the
same way we extend any n-ary w0-relation Sw0 on w0 to a w0-relation #w0Sw0 on #w0w0 .
Note that since a w0-subset E w0 w0 corresponds to an unary w0-relation, we have

an
w0-extension #w0E characterized by the condition

fw0
w0 w0

#w0E s  w0 
w0 |f  E w0 

w0 . 6.1. 24



Thus if E  0w0 , 1w0, then
#w0E as a subset of #w0w0 will have every positive

w0-infinitesimal as an w0-element, but not #w00w0 , a fact which can be read off
immediately from condition (6.1.24).But first a few elementary observations on the
w0-extension of subsets of w0 : #w0w0 is the w0-empty set in #w0w0 . If E w0 w0 ,

then
#w0 rw0 w0

#w0E for all rw0 w0 E, but in general(see the example E  0w0 , 1w0

above)#w0E
will contain elements not of the form #w0 rw0 for any rw0 w0 E. Furthermore #w0 is a
Boolean homomorphism in the sense that #w0 E1 w0 E2 w0 #w0E1 w0 

#w0E2 and
#wE1 w E2 w0 #wE1 w #wE2 for arbitrary sets E1, E2 w w. Finally, we note
that #wE1 w

#wE2 iff E1 w E2, and #wrw w
#wE iff rw w E.

Before proceeding we need to discuss the important concept of standard
part. By virtue of (6.1.23) the absolute-value function ||w on w has an extension to

#ww

that we will denote by #w ||w.
Definition 6.1.12.An w-element x w

#wwis called w-finite if #w |x|w w
#wrw for some

0w w rw.
As we shall see, every finite x w

#ww is w-infinitely close to some rw w w in the

sense that #w x w
#wrw

w
is either #w0w or w0-positively w0-infinitesimal in #w0w.

Definition 6.1.13.This w-unique rw is called the w-standard part of x and is denoted by
stwx or w x.
The proof of existence of the standard part is simple. Let x w

#ww be finite. Let D1

be
the set of rw w w such that #wrw w x and D2 the set of rw w w such that
x w

#wrw.The pair D1,D2 forms a Dedekind cut in w, hence determines a unique
rw w w. A simple argument shows that stwx w rw.

VI.2.1 The w0-consistent nonstandard extension.
Definition 6.2.1.Let be w0 a free w0-consistent ultrafilter onw0 and introduce an
w0-equivalence relation f w0 w0

w0 gw0 on w0-sequences f w0 w0 w0
w0

by

f w0 w0 gw0 s  w0 
w0 | f w0 g w0 

w0 . 6.2. 1

Definition 6.2.2.w0
w0

divided out by the w0-equivalence relation w0 gives us the
w0-consistent nonstandard extension #w0w0 , the hyperreals; in symbols,

#w0w0  w0
w0 w0 . 6.2. 2

Remark.6.2.3.Note that for any f w0 ,g w0 ,h w0 w0 w0
w0

it follows

f w0 w0 gw0  g w0 w0 hw0 s f w0 w0 hw0 . 6.2. 3

Remark.6.2.4.If f w0 w0 w0
 w0

, we denote its image in #w0w0 by fw0
w0 , and, of

course,every w0-element in #w0w0 is of the form fw0
w0 , for some f w0 : w0  w0 .

Remark.6.2.5.Note that for any f w0 ,g w0 ,h w0 it follows by definitions

f w0 w0
w0 gw0 s fw0

w0 w0 gw0
w0 ,

f w0 w0
w0 gw0  gw0  hw0

w0 s f w0  hw0
w0 .

6.2. 4



For any real number rw0 w0 w0 let r
w0 denote the constant w0-function with value rw0

in
w0 , i.e.,r

w0 w0 rw0 , for all  w0 
w0 . We then have a natural w0-embedding:

#w0 : w0 w0
#w0w0 6.2. 5

by setting #w0 rw0 w0 rw0
w0 , for all rw0 w0 w0 .

(I) The #w0-embedding of (6.2.5) sends 0 to #w00 w0 0w0
w0  0w0 and 1 to

#w01 w0 1w0
w0  1w0 .We must lift the operations and relations of  to #w0w0 . We get

the clue from (6.2.1), which tells us when two elements fw0 and gw0 , of #ww0 are
w0-equal:

fw0
w0 w0 gw0

w0 s  w0 
w0 |f w0 w0 gw0 w0 

w0 . 6.2. 6

In a similar way we extend w0 to #w0w0 by setting for arbitrary fw0
w0 ,and gw0

w0 ,in #w0w0

fw0
w0 w0 gw0

w0 s  w0 
w0 |fw0 w0 gw0 w0 

w0 ,

fw0
w0 w0

s gw0
w0 s  w0 

w0 |fw0 w0 gw0 w0
s w0 ,

fw0
w0 w0

w gw0
w0 s  w0 

w0 |fw0 w0 gw0 w0
w w0 ,

fw0
w0 w0 gw0

w0  fw0
w0 w0

w gw0
w0 s

s  w0 
w0 |fw0 w0 gw0 w0 

w0  

s w0 
w0 |fw0 w0 gw0 w0

w w0 .

6.2. 7

(II) With this definition of w0 in
#w0w0 we easily show that the extended domain #w0w0 is

linearly w0-ordered w0-inconsistent field. As an example we verify w0-transitivity of w0 in
#w0. Let fw0

w0 w0 gw0
w0 , and gw0

w0 w0 hw0
w0 ,i.e.,

D1
w0 w0  w0 

w0 |f w0 w0 gw0 w0 
w0 ,

D2
w0 w0  w0 

w0 |gw0 w0 hw0 w0 
w0

6.2. 8

By the finite intersection property,[see Definition 6.2.7.(ii)] D1
w0 w0 D2

w0 w0 
w0 . If

 w0 D1
w0 w0 D2

w0 , then fw0 w0 gw0 and gw0 w0 hw0; hence by transitivity
of
w0 in w0 ,

fw0 w0 gw  gw0 w0 hw0 s fw0 w0 hw0. 6.2. 9

Thus

D1
w0 w0 D2

w0 w0  w0 
w0 |fw0 w0 hw0 6.2. 10

The closure property [Definition 6.1.7(iii)] then tells us that fw0
w0 w0 hw0

w0 . Similarly one

can to prove that given any fw0
w0 ,gw0

w0 w0 #w0, then either fw0
w0 w0 gw0

w0 ,or

gw0
w0 w0 fw0

w0 , or fw0
w0 w0 gw0

w0 .
Remark.6.2.6.The w0-relation w0 on

#w0w0 introduced in (6. 2.5) extends the relation

w0 on w0 , i.e., given any r1, r2 w0 w0 we see that r1 w0 r2 in w0 iff
#w0 r1 w0

#w0 r2
in

#w0w0 .
We now have a weakly consistent linear order on #w0 and can verify that #w0w0

contains
weakly consistent infinitesimals (w0-infinitesimals) and weakly consistent infinite



numbers
(w0-infinite numbers). A (positive) w0-infinitesimal w0 in

#w0w0 is an
w0-element w0 w0

#w0 such that 0w0 w0 w0 w0
#w0 r for all r  0 in .

Notice that w0-nfinitesimals exist. Let w0 a free w0-consistent ultrafilter on
w0 w0 w0

and let f1
w0 nw0 w0 nw0

1 and f2
w0 nw0 w0 nw0

2 for n  w0 . Then 1,w0 w0 f1,w0

w0 and

2,w0 w0 f2,w0

w0 ,is a positive w0-infinitesimals and 2,w0 w0 1,w0 .

In the same way g1
w0 nw0 w0 nw0

and g2
w0 nw0 w0 nw0

2 introduce a weakly consistent

infinite numbers, 1,w0 w0 g1,w0

w0 , and 2,w0 w0 g2,w0

w0 , and we have that 1,w0 w0

2,w0

in #w0w0 .
(III) It remains to extend the operations w0 and w0 to #w0w0 . Looking back to (6.2.1)
and (6.2.2) we have nothing to do but to set

fw0
w0 w0 gw0

w0 w0 hw0
w0 w0

w0  w0 
w0 |f w0 w0 g

w0w0
w0 hw0 w0 

w0 ,
6.2. 11

and

fw0
w0 w0 gw0

w0 w0 hw0
w0 w0

w0  w0 
w0 |f w0 w0 g

w0 w0 hw0 w0 
w0 .

6.2. 12

With these definitions one can to proves easily that #w0 is an w0-consistent extension
of
. And these definitions introduce an w0-consistent algebra on the
w0-infinitesimals and on the w0-infinitely large numbers. One may wish to verify easily

that

if fw0
w0 w0 gw0

w0 , and #w00 w0 hw0
w0 ,then

fw0
w0 w0 hw0

w0 w0 gw0
w0 w0 hw0

w0 . 6.2. 13

One should also notice that for the w0-infinitesimals 1,w0 and 2,w0 and the w0-infinite
1,w0

and 2,w0 introduced above, we have, e.g., 2,w0 w0 1,w0
2 , 1,w0 w0 1,w0 w0 1w0 , is

infinitesimal, and 6 w’ is infinite.Thus the w0-infinitely small and the w0-infinitely large
have
a decent wekly consistent arithmetic.
The way we extended the particular operators w0 and w0 and the particular
relation w0 from w0 to

#w0w0 can be used to extend any function and relation
on w0 to

#w0w0 . Let F be an n-ary w0-function on w0 , i.e.,

Fw0 :

n times

w0 w0    w0 w0w0 w0 . 6.2. 14

Then we introduce the extended w0-function #w0F by the w0-equivalence

#w0Fw0 fw0
1,w0 , . . . , fw0

n,w0 w0 gw0
w0 s

 w0 
w0 |Fw0 f 1,w0, . . . , f n,w0 w0 g w0 w0 

w0

6.2. 15



The reader may want to verify that #w0F is a w0-function and that #w0F really
extends F, i.e., #w0F#w0 r1,w0 , , . . . ,

#w0 rn,w0  w0
#w0 rw0 iff F

w0r1,w0 , . . . , rn,w0   rw0 . In the
same way we extend any n-ary w0-relation Sw0 on w0 to a w0-relation #w0Sw0 on #w0w0 .
Note thatsince a w0-subset E w0 w0 corresponds to an unary w0-relation, we have

an w0-extension #w0E characterized by the condition

fw0
w0 w0

#w0E s  w0 
w0 |f  E w0 

w0 . 6.2. 16

Thus if E w0 0w0 , 1w0w0 , then
#w0E as a subset of #w0w0 will have every positive

w0-infinitesimal as an w0-element, but not #w00w0 , a fact which can be read off
immediately from condition (6.2.16).But first a few elementary observations on the
w0-extension of subsets of w0 : #w0w0 is the w0-empty set in #w0w0 . If E w0 w0 ,

then
#w0 rw0 w0

#w0E for all rw0 w0 E, but in general (see the example E  0w0 , 1w0w0

above)
#w0E will contain elements not of the form #w0 rw0 for any rw0 w0 E. Furthermore

#w0 is a
Boolean homomorphism in the sense that #w0 E1 w0 E2 w0 #w0E1 w0 

#w0E2 and
#w0 E1 w0 E2 w0 #w0E1 w0 

#w0E2 for arbitrary sets E1, E2 w0 w0 . Finally, we
note
that #w0E1 w0

#w0E2 iff E1 w0 E2, and #w0 rw0 w0
#w0E iff rw0 w0 E.

Before proceeding we need to discuss the important concept of standard
part. By virtue of (6.2.15) the absolute-value function ||w0

on w0 has an extension to
#w0w0 that we will denote by #w0 ||w0

.

Definition 6.2.3.An w0-element x w0
#w0w0 is called finite if #w0 |x|w0

w0
#w0 rw0 for

some
0w0 w0 rw0 .
As we shall see, every finite x w0

#w0w0 is w0-infinitely close to some rw0 w0 w0 in
the

sense that #w0 x w0

#w0 rw0
w0

is either #w00w0 or w0-positively w0-infinitesimal in #w0w0 .

Definition 6.2.4.This w0-unique rw0 is called the w0-standard part of x and is denoted
by stw0x or

w0 x.
The proof of existence of the standard part is simple. Let x w0

#w0w0 be finite. Let D1

be
the set of rw0 w0 w0 such that #w0 rw0 w0 x and D2 the set of rw0

 w0 w0 such that
x w0

#w0 rw0 .The pair D1,D2 forms a Dedekind cut in w0 , hence determines a
unique
rw0 w0 w0 . A simple argument shows that stw0x w0 rw0 .

VI.2.2.The classical transfer principle.
We now remind the construction of the nonstandard extension. Let  be a free
ultrafilter on and introduce an equivalence relation on sequences in  as

f  g s   | f  g s . 6.2. 17

 divided out by the equivalence relation  gives us the nonstandard
extension , the hyperreals:   /.Two elements f,g   are equal:



f s g s   |f  g s . 6.2. 18

In a similar way we extend  to  by setting for arbitrary f,g  

f s g s   |f  g s . 6.2. 19

It remains to extend the operations , to  by

f s g s h s   |f  g  h s ,

f s g s h s   |f  g  h s 
6.2. 20

With these definitions we can prove easily that  is an ordered field extension of .
Let F be an n-ary function on .We introduce the extended function F by the

equivalence

F f
1 , . . . , f

n  g s  s |F f 1, . . . , f n  g s  6.2. 21

Note thatsince a w0-subset E w0 w0 corresponds to an unary w0-relation, we have

an w0-extension #w0E characterized by the condition

f s

E s   | f  E s . 6.2. 22

We consider now the standard consistent reals as a structure

,s ,s ,s ,s , ||, 0, 1, 6.2. 23

The properties of ordered fields in classical consistent
case
Any consistent ordered field F is a field together with a total ordering of its elements

that is compatible with the field operations. The basic example of an ordered field is the
field of real numbers, and every Dedekind-complete ordered field is isomorphic to the
reals .
Definition 6.2.5. A field is a nonempty set F containing at least 2 elements alongside

the two binary operations of addition, f : F s F  F such that fx,y  x s y and
multiplication fx,y  x  y that satisfy all of the axioms below.
I.Basic Properties of Equality
1. x s Fx s x.
2.x,y s Fx s y  y s x.
3.For any function fx1, . . . ,xn : F s . . .s F  F, if x1 s y1, . . . ,xn s yn then
fx1, . . . ,xn s fy1, . . . ,yn.
II.Axioms for Addition
Field Axiom for Addition 1. The operation of addition is closed, that is
x,yx s y s F.
Field Axiom for Addition 2. The operation of addition is commutative, that is
xyx s y s y s x (Commutativity of addition).
Field Axiom for Addition 3. The operation of addition is associative, that is
xyzx s y s z s x s y s z (Associativity of addition).
Field Axiom for Addition 4. The operation of addition has the additive identity element

of
0s such that xx s 0s s x (Existence of an additive identity).



III.Axioms for Multiplication
Field Axiom for Multiplication 1. The operation of multiplication is closed, that is
xyx s y s F.
Field Axiom for Multiplication 2. The operation of multiplication is commutative, that is
xy x s y  y s x (Commutativity of multiplication).
Field Axiom for Multiplication 3 The operation of multiplication is associative, that is
xyz x s y s z s x s y s z (Associativity of multiplication).
Field Axiom for Multiplication 4 The operation of multiplication has the multiplicative
identity element of 1s such that
x 1s s x s x (Existence of an multiplicative identity).
Field Axiom for Multiplication 5 The operation of multiplication has the multiplicative
inverse element of 1s/x such that
x x s 1s/x s 1s (Existence of a multiplicative inverse).
IV.Field Axiom for Distributivity
The operation of multiplication is distributive over addition, that is
xyzx s y s z s x s y s x s z (Distributive law).
V.Order Axioms
1. Either x s y or x s y or y s x (Trichotemy)
2. x s y if and only if x s z s y s z (Addition Law)
3. If zs  0s, then x s z s y s z if and only if x s y. If
c s 0s, then a s c s b s c if and only if b s a (Multiplication Law)
4.If x s y and y s z, then x s z (Transitivity)

The upper and lower bounds in classical consistent case
Definition 6.2.5.If A   is a set of real numbers, then:
(i) a s  is an upper bound for A if x s a for all x s A,
and we shall denote this relation by Us ,so aUsA meant that a is an upper bound of

A;
(ii) b is the least upper bound or supremum (s-supA) for A if b is
an upper bound, and moreover b s a whenever a is any upper bound for A,
and we shall denote this relation by LsUs ,so bLsUsA meant that b is least upper

bound
of A.
One similarly defines lower bound and greatest lower bound or infinum (infA) for A

by
replacing s by s .
Definition 6.2.6.If A   is a set of real numbers, then:
(i) a s  is an lower bound for A if a s x for all x s A,
and we shall denote this relation by Ls ,so aLsA meant that a is an lower bound of

A;
(ii) b is the gratest lower bound or infinum (s-infA) for A if b is
an lower bound, and moreover a s b whenever a is any lower bound for A,
and we shall denote this relation by GsLs ,so bGsLsA meant that b is gratest lower
bound of A.
Remark.6.2.7.The following second-order sentence expresses the least upper bound
property:



A s ww s A  zuu s A  u s z 

 xyww s A  w s x 

uu s A  u s y  x s y.

6.2. 23

The structure  has an associated consistent simple language s that can be used
to describe the kind of properties of  that are preserved under the -embedding:

 :   . 6.2. 23

The elementary formulas of  are expressions of the form
(i) t1  t2 s t3,(ii) t1  t2 s t3,(iii) |t1 | s t2, (iv) t1 s t2, (v) t1 s t2, (vi) t1 s X,
where t1, t2, t3 are either the constants 0 or 1 or a variable for an arbitrary
number r s , and X is a variable for a subset A s .
From the elementary formulas we generate the class of all formulas or
expressions of s using the propositional connectives:,,s,s ,
and the number quantifiers: xx s ,xx s  by the rules:
(vii) If  and  are formulas of s, then   ,  , s ,s,
are formulas of s,and the consistent number quantifiers xx s ,xx s 

are
formulas of s.
(viii) If  is a formula of s and x is a consistent number variable, then x,x
are formulas of s.
The language s is basically a first-order consistent language; i.e., we allow
number quantification but not set quantification.

We give a few examples: in the language s we can write down conditions which
express that s is a strongly consistent linear ordering:
(1) s-transitive xyzx s y  y s z s x s z
(2) s-irreflexive xsx s x
(3) s-linear xyx s y  x s y  y s x
A formula  of s is in general of the form

  X1, . . . ,Xm,x1, . . . ,xq, 6.2. 24

where x1, . . . ,xq are the free consistent number variables of , i.e., variables not
bound by a quantifier , and X1, . . . ,Xm are the (free) consistent set variables
of . Every formula in  has an standard interpretation in the structure ;e.g., let
X be the formula

X  y y s X s z z s  0  y1|y s y1 | s z s y1 s X 6.2. 25

and let A s , then A expresses the fact that A is open in .

The classical Lo s Theorem
Remind the following theorem.
Theorem 6.2.1. (Loś Theorem) Let X1, . . . ,Xm,x1, . . . ,xq be a formula of

. Then for any A1, . . . ,Am s  and f
1 , . . . , f

q s




 A1, . . . ,Am, f
1 , . . . , f

q s

s  s | A1, . . . ,Am, f 1, . . . , f q s .
6.2. 26

Proof.The proof is by induction on the number of logical symbols in . If  has no
logical
symbols, it is an elementary formula of the form (i)-(vi),and (6.2.26) then reduces to

one
of (6.2.18),(6.2.19),(6.2.20),(6.2.21), or (6.2.22). If  contains logical symbols, then 

is
of the form   ,  , s ,s,xx s ,xx s .The verification of
(6.2.26) is, by induction, in each case reduced to an elementary property of the
consistent ultrafilter .For example, if   1  2, (6.2.26) follows from the finite
intersection property of the consistent ultrafilter . The case   s1 uses in an
essential way that  is an consistent ultrafilter namely, that

\s s  s  s
s . 6.2. 27

Quantifiers offer no special difficulties,For example, if   x1 and let  have one
free
variable; we shall prove

f iff   |f s , 6.2. 28

where f is of the form x1x, f.Now f is true in  iff there is some
g s

 such that 1g, f is true in .By the induction hypothesis this means
that

  |1g, f s . 6.2. 29

But if 1g, f is true in , then x1x, f is also true in ,i.e.,

  |1g, f    |x1x, f. 6.2. 30

From (6.2.30) and the property (3) of consistent filters it follows that

  |f s . 6.2. 21

In order to prove the converse, assume that:     |f s .For each 
such that    we choose some  s  such that 1, f is true in . Let

g  

be a function g :    such that g s  for all    and g s  otherwise,
where  is some arbitrary s-element of .Then we have:

  |1g, f s . 6.2. 22

Hence by the induction hypothesis we have 1g, f is true in , i.e., we have
f  x1x, f is true in .

The theorem of Loś has the consistent transfer principle as an immediate corollary.
Theorem 6.2.2.(CONSISTENT TRANSFER PRINCIPLE).Let X1, . . . ,Xm,x1, . . . ,xq

be a formula of
. Then for any A1, . . . ,Am s  and r1, . . . , rn s , A1, . . . ,Am, r1, . . . , rn holds in


iff   A1, . . . , Am, r1, . . . , rn holds in ,i.e.,



A1, . . . ,Am, r1, . . . , rn s A1, . . . , Am, r1, . . . , rn. 6.2. 23

Proof.From (6.2.16) we get at once

A1, . . . , Am, r1, . . . , rn s   |A1, . . . ,Am, r1, . . . , rn s con 6.2. 24

But the set   |A1, . . . ,Am, r1, . . . , rn is equal to  con if  is true of
A1, . . . ,Am, r1, . . . , rn in , and is equal to  s if  is not true of A1, . . . ,Am, r1, . . . , rn in

.
Thus A1, . . . ,Am, r1, . . . , rn holds in  iff A1, . . . , Am, r1, . . . , rn holds in .

VI.4.The Generalized Los Theorem
We will consider the standard w-inconsistent reals as an w-inconsistent algebraic

structure w.As w-inconsistent algebraic structure, w is a w-complete w-ordered field,
i.e., w-inconsistent structure of the form

w  w,w ,w ,w ,w , 0w, 1w, 6.4. 1

where w w r|r w r s w is the set of w-elements of the inconsistent structure,w

and w are the binary operations of addition and multiplication, w is the w-ordering
relation, and 0w and 1w are two distinguished elements of the domain such that
s0w w 1w but note that

w0w w 1w  0w w 1w  A, 6.4. 2

i.e. sentence w0w w 1w  0w w 1w holds in w.
And it is complete in the sense that every w-nonempty set w-bounded from above has

a w-least w-upper bound. We consider now the standard inconsistent w-reals as

w-inconsistent structure

w,w ,w ,w ,w , ||w, 0w, 1w, 6.4. 3

where, in addition to the information in (6.4.1), we have added the absolute value ||w
that defines the metric on w. Of course,||w is definable in terms of the other entities in
(6.4.1), but it makes things a bit easier to include it explicitly in the specification.
The structure w has an associated simple language w  ww that can be used to

describe the kind of properties of w that are preserved under the #w-embedding:

#w : w 
#ww. 6.4. 4

The elementary formulas of ww are expressions of the form:
(i) t1 w t2 w t3,(ii) t1 w t2 w t3,(iii) |t1 |w w t2, (iv) t1 w t2, (v) t1 w t2, (vi) t1 w X,
where t1, t2, t3 are either the constants 0w or 1w or a variable for an arbitrary
number r w w, and X is a variable for a w-subset A w w.
From the elementary formulas we generate the class of all formulas or
expressions of ww using the propositional connectives:,,s,s ,w,w ,
and the inconsistent number quantifiers: xx w w,xx w w by the rules:
(vii) If  and  are formulas of ww, then

  ,  , s ,s, w ,w
are formulas of ww,and the consistent or inconsistent number quantifiers
xx w w,xx w w are formulas of ww.
(viii) If  is a formula of ww and x is a consistent or inconsistent number variable,
then x,x are formulas of ww.
The language ww is basically a first-order inconsistent language; i.e., we allow



number quantification but not set quantification.
We give a few examples: in the language ww we can write down conditions which
express that w is a w-inconsistent linear w-ordering:
(1) w-transitive xyzx w y  y w z s x w z,
(2) w1-transitive xyzx w1 y  y w1 z s x w1 z,

(3) w-reflexive xsx w x,
(4) xyx w y s sy w x,
(5) w1-linear xyx w y  x w y  y w xx w1 y  x w1 y  y w1 x

A formula  of ww is in general of the form

  X1, . . . ,Xm,x1, . . . ,xq, 6.4. 5

where x1, . . . ,xq are the free consistent and inconsistent number variables of , i.e.,
variables not bound by a quantifier , and X1, . . . ,Xm are the (free) consistent and
inconsistent set variables of . Every formula in ww has an standard interpretation

in
the structure w;e.g., (i) let X be the formula

X  y y w X s z z w  0w  y1|y w y1 |w w z s y1 w X 6.4. 6

and let A w w, then A expresses the fact that A is open in w;
(ii) let 1X be the formula

X  y y w X s z z w  0w  y1|y w y1 |w w z s y1 w X 6.4. 7

and let A w w, then A expresses the fact that A is open in w;
Remark.6.4.1. Note that w-inconsistent algebraic structure w mentioned above is a
w-complete w-ordered field.

VI.4.2.The properties of w-inconsistent w-ordered field Fw

Definition 6.4.1.A w-inconsistent field is a nonempty w-inconsistent set Fw containing
at least 2 elements along side the two binary operations of w-addition,
fw : Fw w Fw  Fw such that fw x,y w x w y and w-multiplication fw x,y w x w y
that satisfy all of the axioms below.
I.Basic properties of w-inconsistent w-equality
1. x w Fwx w x  x w1 x.

2.
3.x,y w Fwx w y s y w x.
4.
5.For any function fx1, . . . ,xn : Fw w . . .w Fw  Fw, if x1 w y1, . . . ,xn w yn then
fx1, . . . ,xn w fy1, . . . ,yn.
6.
II.Axioms for w-addition
Field axiom for w-addition 1. The operation of w-addition is closed, that is
xyx w y w Fw.
Field axiom for w-addition 2. The operation of w-addition is w-commutative, that is
xyx w y w y w x (w-commutativity of w-addition).
Field axiom for w-addition 3. The operation of addition is associative, that is
xyzx w y w z w x w y w z (Associativity of addition).
Field axiom for w-addition 4. The operation of w-addition has the w-additive w-identity



w-element of 0w such that
xx w 0w w x (Existence of an w-additive w-identity).
III.Axioms for w-multiplication
Field axiom for w-multiplication 1. The operation of w-multiplication is closed, that is
xyx w y w Fw.
Field axiom for w-multiplication 2. The operation of w-multiplication is w-commutative,
that is
xy x w y  y w x (w-commutativity of w-multiplication).
Field axiom for w-multiplication 3 The operation of multiplication is associative, that is
xyz x w y w z s x s y s z (w-associativity of w-multiplication).
Field axiom for w-multiplication 4 The operation of w-multiplication has the

w-multiplicative
w-identity element of 1w such that
x 1w w x w x (Existence of an w-multiplicative w-identity).
Field axiom for w-multiplication 5 The operation of multiplication has the

w-multiplicative
w-inverse w-element of 1w/x such that
xx s 0w x w 1w/x s 1s (Existence of a multiplicative inverse).
IV.Field axiom for w-distributivity
The operation of w-multiplication is w-distributive over w-addition, that is
xyzx s y s z s x s y s x s z (Distributive law).
V.Order Axioms
1. Either x w y or x w y or y w x or x w1 y or (w-trichotemy)

2. x w y if and only if x w z w y w z (w-addition law)
3. If zw 0w, then x w z w y w z if and only if x w y.
If c w 0w, then x w c w y w c if and only if y s x (Multiplication Law)
4.If x w y and y w z, then x w z (w-transitivity)

VI.4.3.The w-upper and w-lower bounds in w-inconsistent
case.
Definition 6.4.2.If A w w is a w-set of w-inconsistent real numbers, then:
(i) a w  is an strong w-upper bound for A if

xx w A x w a , 6.4. 8

and we shall denote this relation by SUw ,so aSUwA meant that a is an strong
w-upper
bound of A;
(ii) b is the least strong w-upper bound or strong w-supremum (wS-supA) for A if b is

an strong w-upper bound, and moreover

b w a 6.4. 9

whenever a is any strong w-upper bound for A,and we shall denote this relation by
LwSUw ,so bLwSUwA meant that b is least strong w-upper bound of A.
Remark.6.4.2. One similarly defines strong w-lower bound and greatest strong

w-lower
bound or strong w-infinum (wS-infA) for A by replacing w by w .



Definition 6.4.3.If A w w is a w-set of w-inconsistent real numbers, then:
(i) a w w is an strong w-lower bound for A if

xx w Aa w x 6.4. 10

for all x s A,
and we shall denote this relation by SLw ,so aSLwA meant that a is an strong

w-lower
bound of A;
(ii) b is the gratest strong w-lower bound or strong w-infinum (wS-infA) for A if b is
an strong w-lower bound, and moreover

a w b 6.4. 11

whenever a is any strong w-lower bound
for A,and we shall denote this relation by GwSLw ,so bGwSLwA meant that b is

gratest
strong w-lower bound of A.
Remark.6.4.3.We rewrite now the inequality (6.4.8) in the following equivalent form

xx w A s a w x . 6.4. 12

From the statement (6.4.12) by using logical postulate sA s wA we obtain

xx w A w a w x . 6.4. 13

Note that by using (6.4.13) one obtains more weakened conditions then required
above
in Definition 6.4.2-6.4.3.
Definition 6.4.4.If A w w is a w-set of w-inconsistent real numbers, then:
(i) a w  is an weak w-upper bound for A if

xx w A w a w x , 6.4. 12

and we shall denote this relation by WUw ,so aWUwA meant that a is an weak
w-upper
bound of A;
(ii) b is the least weak w-upper bound or weak w-supremum (wW-supA) for A if b is

an weak w-upper bound, and moreover

w a w b 6.4. 13

whenever a is any weak w-upper bound for A,and we shall denote this relation by
LwWUw ,so bLwWUwA meant that b is least weak w-upper bound of A.
Remark.6.4.4. One similarly defines weak w-lower bound and greatest weak w-lower
bound or weak w-infinum (wW-infA) for A by replacing w by w .
Definition 6.4.5.If A w w is a w-set of w-inconsistent real numbers, then:

(i) a w w is an strong w-lower bound for A if

xx w Aa w x 6.4. 14

for all x s A,
and we shall denote this relation by SLw ,so aSLwA meant that a is an strong

w-lower
bound of A;



(ii) b is the gratest strong w-lower bound or strong w-infinum (wS-infA) for A if b is
an strong w-lower bound, and moreover

a w b 6.4. 11

VI.4.4.w-complete w-inconsistent w-ordered field.

VI.3.3.The properties of w-inconsistent naturals w

Remark.6.3.1. The w-inconsistent structure w has an consistent substructure
w

s w
s w

w
s ,w

s ,w
s ,w

s ,w
s , ||w

s , 0w
s , 1w

s , 6.3. 

denoted below by w
s or by w

con. The structure w
s has an associated simple language

w
s  w

s w
s  that can be used to describe the kind of properties of w

s that are
preserved under the #w-embedding:

#w : w
s  #ww

s w
s #ww. 6.3. 

The elementary formulas of w
s w

s  are expressions of the form:
(i) t1 w

s t2 w
s t3,(ii) t1 w

s t2 w
s t3,(iii) |t1 |w

s w
s t2, (iv) t1 w

s t2, (v) t1 w
s t2, (vi) t1 w

s X,
where t1, t2, t3 are either the constants 0w

s or 1w
s or a variable for an arbitrary number

r w
s w

s , and X is a variable for a w-consistent w-subset A w
s w

s .From the elementary
formulas we generate the class of all formulas or expressions of ww using the
propositional connectives:,,s,s ,w,w ,and the w-consistent number

quantifiers:
xx w

s w,xx w
s w

s  by the rules:
(vii) If  and  are formulas of w

s w
s , then

  ,  , s ,s, w ,w
are formulas of w

s w
s ,and the w-consistent number quantifiers

xx w
s w,xx w

s w
s  are formulas of w

s w
s .

(viii) If  is a formula of w
s w

s  and x is a w-consistent number variable,
then x,x are formulas of w

s w
s .

The language w
s w

s  is basically a first-order w-consistent language; i.e., we allow
number quantification but not set quantification.
We give a few examples: in the language w

s w
s  we can write down conditions which

express that w
s is a w-consistent linear w-ordering:

We give a few examples: in the language w
s w

s  we can write down conditions which
express that w

s is a strongly consistent linear ordering:
(1) s-w-transitive xyzx w

s y  y w
s z s x w

s z



(2) s-w-irreflexive xsx w
s x

(3) s-w-linear xyx w
s y  x w

s y  y w
s x

A formula  of w
s w

s  is in general of the form

  X1, . . . ,Xm,x1, . . . ,xq, 6.3. 6

where x1, . . . ,xq are the free consistent number variables of , i.e., variables not
bound by a quantifier , and X1, . . . ,Xm are the (free) consistent set variables
of . Every formula in w

s  has an standard interpretation in the structure w
s ;e.g.,

let
X be the formula

X  y y w
s X s z z w

s 0w
s  y1|y w

s y1 |w
s w

s z s y1 w
s X 6.3. 7

and let A w
s w

s , then A expresses the fact that A is open in w
s ;

The properties of w-consistent w-ordered fields
Definition 6.2.. A w-consistent field is a nonempty w-consistent set Fw

s containing at
least
2 elements alongside the two binary operations of addition, fws : F w

s F  F such that
fws x,y w

s x w
s y and multiplication fws x,y w

s x w
s y that satisfy all of the axioms

below.
I.Basic Properties of w-Consistent Equality
1. x w

s Fx w
s x.

2.x,y w
s Fx w

s y s y w
s x.

3.For any w-consistent function fx1, . . . ,xn : F w
s . . .s F  F, if x1 w

s y1, . . . ,xn w
s yn

then fx1, . . . ,xn w
s fy1, . . . ,yn.

,

Theorem 6.3.1. (Generalized Loś Theorem) Let m,q  X1, . . . ,Xm,x1, . . . ,xq be a
formula of ww.
(I) Assume that m,q is not of the form   w.Then for any A1, . . . ,Am w  and

fcon
1 , . . . , fcon

q w
#w :

 A1, . . . ,Am, fw
1 , . . . , fw

q s

s  w w| A1, . . . ,Am, f 1, . . . , f q w w.
6.3. 6



(II) Assume that m,q is of the form   w.Then for any A1, . . . ,Am w w and

fcon
1 , . . . , fcon

q w
#ww :

1 A1, . . . ,Am, fw
1 , . . . , fw

q s

s  w w| A1, . . . ,Am, f 1, . . . , f q w1 
w.

6.3. 7

Proof.(I)The proof is by induction on the number of logical symbols in . If  has no
logical symbols, it is an elementary formula of the form (i)-(vi),and (6.3.6) then reduces

to
one
of (), (), ( ) ,( ) , or (). If  contains logical symbols, then  is of the form
  ,  , s ,s, w ,w,xx w w,xx w w.The verification

of
(6.3.6) is, by induction, in each case reduced to an elementary property of the

inconsistent
w-ultrafilter w.For example, if   1  2, (6.3.6) follows from the finite

w-intersection
property of the inconsistent w-ultrafilter w. The case   s1 uses in an essential
way that w is an inconsistent w-ultrafilter namely, that

w\w,s w w s  w
s w 6.3. 7

and

w\w,s w1 
w s  w1

s w s  w
s w, 6.3. 8

we remind that sa  wa s sa  a.
The case   w immediately from definition

w A1, . . . ,Am, fw
1 , . . . , fw

q s

s  w w| A1, . . . ,Am, f 1, . . . , f q w
w w.

6.3. 9

Quantifiers offer no special difficulties.For example, if   x1 and let  have one
free
variable; we shall prove

fw  s  w w|f w w, 6.3. 10

where fw  is of the form x1x, fw .Now fw  is true in #ww iff there is some
gw w

#ww such that 1gw, fw  is true in #ww.By the induction hypothesis this
means that

 w |1g, f w w. 6.3. 11

But if 1g, f is true in w, then x1x, f is also true in w,i.e.,

 w w|1g, f w  w w|x1x, f. 6.3. 12

From (6.3.12) and the property (3) of inconsistent w-filters it follows that

 w w|f w w. 6.3. 13

In order to prove the converse, assume that:  w   |f w w.For each

such that  w  we choose some  w  such that 1, f is true in w. Let



g w w
w

be a w-function g : w  w such that g w  for all  w  and
g w  otherwise,where  is some arbitrary w-element of .Then we have:

  w|1g, f w w. 6.3. 14

Hence by the induction hypothesis we have 1gcon , fcon  is true in #ww, i.e., we have
fw   x1x, fw  is true in #ww.Thus A1, . . . ,Am, r1, . . . , rn holds in w iff
#wA1, . . . , #wAm, #wr1, . . . , #wrn holds in #ww.

(II) The case   w immediately from definition

 A1, . . . ,Am, fw
1 , . . . , fw

q s

 A1, . . . ,Am, fw
1 , . . . , fw

q  w A1, . . . ,Am, fw
1 , . . . , fw

q s

s  w w| A1, . . . ,Am, f 1, . . . , f q w w 

  w w| A1, . . . ,Am, f 1, . . . , f q w
w w .

6.3. 15

Quantifiers offer no special difficulties.For example, if   x1,where 1    w
and let  have one free variable; we shall prove

fw  s

 w w|f w w    w w|f w
w w ,

6.3. 16

where fw  is of the form x1x, fw .Now fw  is true in #ww iff there is some
gw w

#ww such that gw, fw  is true in #ww.By the induction hypothesis this
means that

 w |g, f w w   w |g, f w
w w . 6.3. 17

and therefore

 w |g, f w w   w |wg, f w w . 6.3. 18

Remind that (6.3.18) means that 1g, f is true in w,i.e.,both g, f and
wg, f is true in w

But if both g, f and wg, f is true in w, then both xx, f and
xwx, f is also true in w,i.e.,

 w w|g, f w  w w|xx, f. 6.3. 19

and

 w w|wg, f w  w w|xwx, f. 6.3. 20

From (6.3.19)-(6.3.20) and the property (3) of inconsistent w-filters it follows that

 w w|f w w 6.3. 13

and

 w w|wf w w 6.3. 13

In order to prove the converse, assume that:  w   |f w w.For each

such that  w  we choose some  w  such that 1, f is true in w. Let
g w w

w

be a w-function g : w  w such that g w  for all  w  and
g w  otherwise,where  is some arbitrary w-element of .Then we have:

  w|1g, f w w. 6.3. 14



VI.3.2.The Generalized Transfer Principle
Theorem 6.3.1.(Transfer principle).Let X1, . . . ,Xm,x1, . . . ,xq be a formula of

w. Then for any A1, . . . ,Am w  and r1, . . . , rn w w, A1, . . . ,Am, r1, . . . , rn holds
in w

iff   A1, . . . , Am, r1, . . . , rn holds in ,i.e.,

A1, . . . ,Am, r1, . . . , rn s A1, . . . , Am, r1, . . . , rn. 6.2. 23

Proof.From (6.2.16) we get at once

A1, . . . , Am, r1, . . . , rn s   |A1, . . . ,Am, r1, . . . , rn s con 6.2. 24

But the set   |A1, . . . ,Am, r1, . . . , rn is equal to  con if  is true of

We consider now the w0-consistent w0-reals w0 as a structure

w0 ,w0 ,w0 ,w0 , ||w0
, 0w0 , 1w0, 6.2. 17

The structure w0 has an associated simple language w0  that can be used to
describe
the kind of properties of  that are preserved in wekly consistent sense
under the embedding:

#w0 : w0 
#w0. 6.2. 18

Theorem 6.2.2. (Generalized Los Theorem) Let X1, . . . ,Xm,x1, . . . ,xq be a formula
of

w0 . Then for any A1, . . . ,Am s w0 and fw0
1 , . . . , fw0

q w0
#w0

 A1, . . . ,Am, fw0
1 , . . . , fw0

q s

s  w0 
w0 |A1, . . . ,Am, f 1, . . . , f q w0 

w0 .

 A1, . . . ,Am, fw0
1 , . . . , fw0

q  w A1, . . . ,Am, fw0
1 , . . . , fw0

q s

6.2. 16



Remark.6.2.2.

VI.3.The #w-transfer.
VI.3.1.The #w-embedding
We consider the inconsistent w-reals as a structure

w,w ,w ,w , ||, 0w, 1w, 6.2. 

(II)The #w-embedding of (6.1.10) sends 0w to #w0w w 0inc
w  0w and 1w to #w1 w

1inc
w  1w. We must lift the operations and relations of  to #w.

Definition 6.3.1.We get the clue from (6.1.6), which tells us when two elements finc
w

and ginc
w , of #w are weakly w-equal in a weak paraconsistent sense iff :

finc
w w ginc

w w fw w gw 6.3. 1

e.g.,

finc
w w ginc

w w  w w |f w w gw w inc. 6.3. 2

Remark.6.3.1.

Definition 6.3.2.Two elements finc
w and ginc

w , of #w are w-equivalent in a weak
inconsistent sense :

In a similar way we extend  to #w by setting for arbitrary finc
w ,and ginc

w ,in #w:

finc
w w ginc

w   w  inc |f w w gw w inc. 6.3. 2

With this definition of w in #w we easily show that the extended domain #w is linearly
w-ordered w-inconsistent field. As an example we verify w-transitivity of w in #w. Let
finc
w w ginc

w , and ginc
w w hinc

w ,i.e.,

D1
w w  w  inc |fw w gw w inc,

D2
w w  w  inc |gw w hw w inc

6.3. 3

By the finite intersection property (ii),[see Definition 6.1.1.(ii)]w D1
w w D2

w w inc. If
 w D1 w D2, then f w g and gw w hw; hence by transitivity of  in ,

fw w gw  gw w hw w0 fw w hw. 6.3. 4

Thus

w0 D1 w D2 w  w  inc |fw w hw 6.3. 5

The closure property (3) then tells us that:

w0 finc
w w hinc

w 6.3. 6

VI.4.The #wn transfer and #wn-embedding



VI.5. The Extendent Paralogical Universe.

VI.5.1. The inconsistent superstructures over universal set.
Definition 6.5.1. The superstructure over inconsistent set, or inconsistent universe

Sinc, denoted by VwSinc,Vw0Sinc,Vw1Sinc,etc. is defined by the following canonical
recursion:

V1
wSinc w Sinc,

Vn1
w Sinc w Vn

wSinc w X|X w Vn
wSinc

w
,

VwSinc w w-
n

VnSinc.
6.5. 1

V1
w0Sinc w0 S

inc,

Vn1
w0 Sinc w0 Vn

w0Sinc w0 X|X w0 Vn
w0Sinc

w0
,

Vw0Sinc w w0-
n

Vn
w0Sinc.

6.5. 2

V1
wmSinc wm Sinc,

Vn1
wm Sinc w0 Vn

wmSinc w0 X|X wm Vn
wmSinc

w0
,

VwmSinc w wm-
n

Vn
wmSinc,

m  1,2, . . . .

6.5. 3

The extended inconsistent nonstandard universe of paraconsistent nonstandard
analysis will be obtained by postulating: the extensions #w  , #w0  , #wn  , and
postulating the embeddings

#w : VwSinc    Vw#wSinc,
#w : Vw0Sinc    Vw0#w0Sinc,
#w : VwnSinc    Vwn#wnSinc.

6.5. 4

We shall now extend the construction of the inconsistent ultrafilter to demonstrate that
will have properties similar to the embedding #w :   #w constructed in Subsections
6.1-6.4.
Remark.6.5.1.First of all we assume the following principle.EXTENSION PRINCIPLE.
(i) #w is a proper w-inconsistent extension of  and #wr w r for all r  ,
(ii) #w0 is a proper w-consistent extension of  and #w0 r w0 r for all r  ,
(iii) #wn is a proper wn-consistent extension of  and #wn r wn r for all r  ,n  .

VI.5.2. The Bounded Paralogical Ultrapowers.

VI.5.2.1. The Bounded Consistent Ultrapowers.
Remind the following definitions.



Definition 6.5.2. A sequence A  Av v of elements of VScon  VScon   is

bounded if there is a fixed n  1 such that each Av  VnScon  .
Remark.6.5.2.
Definition 6.5.3.Two bounded sequences A and B are equivalent with respect to the

free
consistent ultrafilter , in symbols A~B, iff

v  |Av  Bv  . 6.5. 5

We let A denote the equivalence class of A and define the bounded ultrapower by

VScon/  A|A is a bounded VScon-sequence . 6.5. 6

Definition 6.5.4.We define the membership relation  in the ultrapower by

A  B iff v  |Av  Bv  . 6.5. 7

There is a natural proper embedding

i : VScon  VScon/ 6.5. 8

namely let iA  A, the equivalence class corresponding to the constant sequence
A A.

VI.5.2.2. The Bounded Paralogical w-Ultrapowers.
Definition 6.5.5. (i) A w-sequence A  Av vw w of w-elements of VwSinc

w  w

is w-bounded if there is a fixed n1 such that each Av w Vn
wSinc

w  w.
Remark.6.5.3.
Definition 6.5.6.Let w be a free w-ultrafilter onw.Two w-bounded w-sequences Aw

and Bw are w-equivalent with respect to the free inconsistent ultrafilter w, in symbols

Aw w
w Bw iff i w w|Av w Bv w w. 6.5. 9

Definition 6.5.7.We let Aw
w denote the w-equivalence class of A and define the

w-bounded w-ultrapower by

VwSincw/w w Aw
w |Aw is a w-bounded VwSinc-sequence

w
6.5. 10

There is a natural proper embedding

iw : VSinc  VwSincw/w 6.5. 11

namely let iwAw w Aw, the equivalence class corresponding to the constant
w-sequence Aww Aw.

Definition 6.5.8.We define the w-membership relation w in the w-ultrapower by

Aw
w w Bw

w iff i w w|Av w Bv w w, 6.5. 12

VI.5.2.3. The Bounded Paralogical w0-Ultrapowers.
Definition 6.5.9.A w0-sequence Aw0  Av vw0 w0 of w0-elements of Vw0Sinc

w0  w0 is w0-bounded if there is a fixed n  1 such that each Av w0 Vn
w0Sinc

w0  w0.
Remark.6.5.4.
Definition 6.5.10.Let w0 be a free w0-ultrafilter onw0 .Two w0-bounded

w0-sequences Aw0 and Bw0 are w0-equivalent with respect to the free w0-consistent
ultrafilter w0 , in



symbols

Aw0 w0
w0 Bw0 iff i w0 w0 |Av w0 Bv w0 

w0 . 6.5. 13

Definition 6.5.11.We let Aw0
w0 denote the w0-equivalence class of A and define the

w0-bounded w0-ultrapower by

Vw0Sincw0 /w0 w0 Aw0
w0 |Aw0 is a w-bounded Vw0Sinc-sequence 6.5. 14

There is a natural proper w0-embedding

iw0 : Vw0Sinc  Vw0Sincw0 /w0 , 6.5. 15

namely let iw0Aw0   Aw0 , the w0-equivalence class corresponding to the constant
w0-sequence Aw0  Aw0

.

Definition 6.5.12.We define the w0-membership relation w0 in the w0-ultrapower by

Aw0
w0 w0 Bw0

w0 iff v w0 w0 |Av w0 Bv w0 
w0 . 6.5. 16

VI.5.2.4. The Bounded Paralogical wn-Ultrapowers.
Definition 6.5.13.A wn-sequence A  Av vwn wn of wn-elements of VwnSinc

w  w

is wn-bounded if there is a fixed n  1 such that each Av wn Vn
wnSinc.

Remark.6.5.5.
Definition 6.5.14.Let wn be a free wn-ultrafilter onwn .Two wn-bounded

wn-sequences A and B are wn-equivalent with respect to the free inconsistent ultrafilter
wn , in symbols A wn

wn B, iff i wn wn |Av wn Bv wn wn .
Definition 6.5.15.We let Awn

wn denote the wn-equivalence class of A and define the
wn-bounded wn-ultrapower by

VwnSincwn /wn wn Awn
wn |A is a wn-bounded VwnSinc-sequence . 6.5. 17

There is a natural proper wn-embedding

iwn : VwnSinc  VwnSincwn /wn , 6.5. 18

n   namely let iwnA wn Awn , the wn-equivalence class corresponding to the
constant wn-sequence Awn  Awn

.

Definition 6.5.16.we define the wn-membership relation wn in the wn-ultrapower by

Awn
wn wn Bwn

wn iff v wn wn |Av w0 Bv wn wn . 6.5. 19

VI.5.3.The embedding VwSincw /w into Vw#wSinc,etc.

VI.5.3.1.Сlassical embedding VScon/con into VScon
Let us consider now the classical embedding VScon/ into VScon.Remind that

Scon   is the bounded ultrapower VScon/.
Remark.6.5.6.Note that in classical case the bounded ultrapower VScon/ alwais

will
not be the same as the full superstructure VScon  
Remind the construction of canonical embedding

j : VScon/  VScon 6.5. 20

such that: (i) j is the identity on Scon   and (ii) if A  Scon then

jA  jB|B  A. 6.5. 21



This means that the relation  in the ultrapower is mapped into the ordinary
membership
relation in VScon.The embedding j is constructed in stages. Let

VkScon/  A|A is a sequence from VkScon 6.5. 22

Then the bounded ultrapower is the union of the chain
  

Scon  V1Scon/ . . .VkScon/ . . . 6.5. 23

and we can define j by induction. For k  1, the embedding j must be the identity. If
A  Vk1Scon/ and A 

Scon we simply set jA  jB|B  A

This
makes sense: if B  Ait follows from (6.5.7 ) that v  |Bv  VkScon  , i.e.,
B  VkScon/,which means that jB is defined at a previous stage of the

inductive
construction.Combining i and j we get a model of the extended nonstandard univers

VScon/ VScon

i





VScon

6.5. 24

where #wA w jwiwA, for any A w VwScon.Here VwScon   and Vw#wSinc are
connected by a classical transfer principle.
Theorem 6.5.1.(TRANSFER PRINCIPLE) Let A1, . . . ,An  VScon.Any VScon

statement  that is true of A1, . . . ,An in VScon is true of A1, . . . , An in VScon .
Proof.In the ultrapower model there are three structures involved,VScon,VScon/
and VScon.Given any VScon formula X,Y (see Remark.6.5.7),we have

explained
how to interpret it in the three structures.Notice that Lo s theorem, 1.1.3, immediately
extends to the bounded ultrapower VScon/ by exactly the same proof;
i.e., for any A,B  VScon/ we have

i A,B iff   |A,B  ,

from which transfer follows between VScon and VScon/ exactly as in 1.1.4.
But Principle 1.2.4 asserts transfer between VScon and VScon. And in order to

prove
this we need to replace the equivalence (i) by

ii jA, jB iff   |A,B  .

But this is a rather immediate extension which follows from the fact that every element
of,
say, jA in VScon is of the form jA

  for some A
  VScon/;see the

construction of the j-map above.And once we have (1 1) the Transfer Principle 1.2.4
follows by the same argument as in 1.1.4.

Remark.6.5.7.The structure Scon   has an associated elementary language Scon,
which we used to give the necessary precision to the transfer principle. We need a
similar formal tool to state the extended transfer principle.The language VScon will



be an extension of the language Scon  Scon  .

VI.5.3.2.The w-embedding VwSincw /w into Vw#wSinc
Let #wSinc be the (w-bounded) w-ultrapower VwSincw/w.
Remark.6.5.8.Note that in contrast with a classical case VwSincw/w not alwais will

not
be the same as the full w-superstructure Vw#wSinc.
We shall now construct an w-embedding

jw : VwSincw/w  Vw#wSinc 6.5. 25

such that: (i) jw is the w-identity on #wSinc and (ii) if Aw
w w

w #wSinc, then

jwAw
w  w jwBw

w |Bw
w w Aw

w
w
. 6.5. 26

This means that the relation w in the w-ultrapower is mapped into the ordinary
w-membership relation in Vw#wSinc.The w-embedding jw is constructed in stages. Let

Vk
wSincw/w w Aw

w | A is a w-sequence from Vk
wSinc

w
. 6.5. 27

Then the bounded w-ultrapower is the w-union of the w-chain
#wSinc w V1

wSincw/w w . . .w Vk
wSincw/w w . . . , 6.5. 28

and we can define jw by induction. For k  1, jw must be the w-identity. If
Aw

w w Vk1
w Sincw/w and Aw

w w
w #wSinc we simply set

jwAw
w  w jwBw

w |Bw
w w Aw

w
w
This makes sense: if Bw

w w Aw
w it follows from

(6.5.12 ) that v w w|Bv w Vk
wSinc

w
w w, i.e.,Bw

w w Vk
wSincw/w,which

means that jwBw
w  is defined at a previous stage of the inductive construction.

Combining iw and jw we get a model of the extended w-inconsistent nonstandard
universe

VwSincw/w Vw#wSinc

iw


#w

w


VwSinc

6.5. 29

where #wA w jwiwA, for any A w VwSinc.Here VwSinc   and Vw#wSinc are
connected by w-inconsistent transfer principle.

VI.5.3.3.The embedding Vw0Sincw0 /w0 into Vw0#w0Sinc
Let #w0Sinc be the (w0-bounded) w0-ultrapower Vw0Sincw0 /w0 .
Remark.6.5.9.Note that in contrast with a classical case Vw0Sincw0 /w0 not alwais

will
not be the same as the full w0-superstructure Vw0#w0Sinc.
We shall now construct an w0-embedding

jw0 : Vw0Sincw0 /w0  Vw0#w0Sinc 6.5. 30

such that: (i) jw0 is the w0-identity on #w0Sinc and (ii) if Aw0
w0 w0

w #w0Sinc, then



jw0Aw0
w0  w0 jw0Bw0

w0 |Bw0
w0 w0 Aw0

w0

w0
. 6.5. 31

This means that the relation w0 in the w0-ultrapower is mapped into the ordinary
w0-membership relation in Vw0#w0Sinc.The w0-embedding jw0 is constructed in stages.
Let

Vk
w0Sincw0 /w0 w0 Aw0

w0 | A is a w0-sequence from Vk
w0Sinc

w0
. 6.5. 32

Then the bounded w0-ultrapower is the w0-union of the w0-chain
#w0Sinc w0 V1

w0Sincw0 /w0 w0 . . .w0 Vk
w0Sincw0 /w0 w0 . . . , 6.5. 33

and we can define jw0 by induction. For k  1, jw0 must be the w0-identity. If
Aw0

w0 w0 Vk1
w0 Sincw0 /w0 and Aw0

w0 w0
w #w0Sinc we simply set

jwAw0
w0  w0 jwBw0

w0 |Bw0
w0 w Aw0

w0

w
This makes sense: if Bw0

w0 w0 Aw0
w0 it

follows from (6.5.16) that v w0 w0 |Bv w0 Vk
w0Sinc

w0
w0 

w0 , i.e.,

Bw0
w0 w0 Vk

w0Sincw0 /w0 , which means that jw0Bw0
w0  is defined at a previous stage of

the inductive construction.
Combining iw0 and jw0 we get a model of the extended w0-consistent nonstandard

universe

Vw0Sincw0 /w0 Vw0#w0Sinc

iw0


#w0

w0



Vw0Sinc

6.5. 34

where #w0A w0 jw0iw0A, for any A w0 V
w0Sinc.Here Vw0Sinc and Vw0#w0Sinc are

connected by w0-consistent transfer principle.

VI.5.3.4.The embedding VwnSincwn /wn into Vwn#wnSinc.
Let #wnSinc be the (wn-bounded) wn-ultrapower VwnSincwn /wn .
Remark.6.5.10.Note that in contrast with a classical case VwnSincwn /wn not alwais

will
not be the same as the full wn-superstructure Vwn#wnSinc.
We shall now construct an wn-embedding

jwn : VwnSincwn /wn  Vwn#wnSinc 6.5. 35

such that: (i) jwn is the wn-identity on #wnSinc and (ii) if Awn
wn wn

w #wnSinc, then

jwnAwn
wn  wn jwnBwn

wn |Bwn
wn wn Awn

wn

wn
. 6.5. 36

This means that the relation wn in the wn-ultrapower is mapped into the ordinary
wn-membership relation in Vwn#wnSinc.The wn-embedding jwn is constructed in stages.
Let

Vk
wnSincwn /wn wn Awn

wn | A is a wn-sequence from Vk
wnSinc

wn
. 6.5. 37

Then the bounded wn-ultrapower is the wn-union of the wn-chain
#wnSinc wn V1

wnSincwn /wn w . . .w Vk
wnSincwn /wn wn . . . , 6.5. 38

and we can define jwn by induction. For k  1, jwn must be the wn-identity. If
Awn

wn w0 Vk1
w0 Sincw0 /w0 and Awn

wn w0
w #w0Sinc we simply set

jwAw0
w0  w0 jwBwn

wn |Bwn
wn w Awn

wn

w
This makes sense: if Bwn

wn w Awn
wn it



follows from (6.5.19) that v wn wn |Bv w0 Vk
wnSinc

wn
wn wn , i.e.,

Bwn
wn w Vk

wnSincwn /wn , which means that jwnBwn
wn  is defined at a previous stage of

the inductive construction.
Combining iwn and jwn we get a model of the extended w0-consistent nonstandard

universe

VwnSincwn /wn Vwn#wnSinc

iwn


#wn

w0



VwnSinc

6.5. 

where #wnA wn jwniwnA, for any A wn V
wnSinc.Here VwnSinc and Vwn#wnSinc are

connected by wn-inconsistent transfer principle.

VI.6.The Paralogical Transfer Principle

VI.6.1.The restricted inconsistent language
The structure Sinc  w has an associated elementary language Sinc  w, which

we used to give the necessary precision to the transfer principle. We need a similar
formal tool to state the extended transfer principle.The language VwSinc will be an

extension of the language Sinc  Sinc  w. We add to our stock of elementary

formulas [see (i)-(vi) in Section 1.11 expressions of the form

X s Y,X w Y,X w0 Y,X wn Y, . . . 6.6. 1

and

X s Y,X w Y,X w0 Y,X wn Y, . . . 6.6. 2

We keep the logical symbols of Sinc,but in addition to the number quantifiers we add

bounded set quantifiers

XX s Y,XX w Y,XX w0 Y,XX wn Y, . . .

XX s Y,XX w Y,XX w0 Y,XX wn Y, . . .
6.6. 3

Formulas  of VwSinc are then constructed in exactly the same way as formulas of

Sinc. A formula  of of VwSinc can be interpreted in a natural way in any of the

structures VwSinc, VwSincw/w, and Vw#wSinc; note that in VwSinc and Vw#wSinc

we have the standard interpretation of the w symbol, in VwSincw/w we use w as
introduced in (6.5.8) to interpret w-membership. Given any formula X1, . . . ,Xn with
X1, . . . ,Xn as the only free set parameters, and given sets A1, . . . ,An w VwSinc,we mean
by A1, . . . ,An the statement about VwSinc obtained by giving the variables X1, . . . ,Xn

the values A1, . . . ,An, respectively. In a similar way we interpret #wA1, . . . , #wAn as a
condition about Vw#wSinc obtained by giving each Xk the value #wAk w jwiwAk.
Theorem 6.6.1.(TRANSFER PRINCIPLE) (i) Let A1, . . . ,An w VwSinc.Any

VwSinc

statement  that is true of A1, . . . ,An in VwSinc is true of #wA1, . . . , #wAn in Vw#wSinc .

(ii) Let A1, . . . ,An w0 V
w0Sinc.Any Vw0Sinc statement  that is true of A1, . . . ,An in

Vw0Sinc is true of #w0A1, . . . , #w0An in Vw0#w0Sinc.

(iii) Let A1, . . . ,An wn V
wnSinc.Any VwnSinc statement  that is true of A1, . . . ,An in



VwnSinc is true of #wnA1, . . . , #wnAn in Vwn#wnSinc.

Remark 6.6.1.Let A  
 then A  V2.The canonical embedding

 : V

 V

maps V2 to a set V2  V.Will A belong to this set: V2 ? It well known
that
is not necessarily except if A  B for some B  V2, i.e. then A  V2.
We thus want to prove that

A A  
B  A  

  A  
V2 . 6.6. 4

As it stands, (6.6.4) is not an V formula. However, it is equivalent to

A A  
B r  A r  

  A  
V2 . 6.6. 5

This is genuine VwSinc; i.e., we have only bounded set quantifiers.Now (6.6.5) is

a condition B, , V2, which by transfer is true in V iff the corresponding
B,,V2 is true in V. But the latter condition is trivially true. Thus we have
shown that if a subset of  is an element of some B in V, then it is already an
element of the -image of V2.
Remind the following definition.
Definition 6.6.1.Let A  V, then
(i) A is called -standard if A  B for some B  V,
(ii) A is called -internal if A  B for some B  V, and
(iii) A is called -external if A is not -internal.
Remark6.6.2.It well known that every -standard set is -internal and that every

element
of an -internal set is -internal.
Definition 6.6.2.Let A w Vw#ww, then:
(i) A is called w-standard if A w

#wB for some B w Vww,
(ii) A is called w-internal if A w

#wB for some B w Vww, and
(iii) A is called w-external if A is not w-internal.
Definition 6.6.3.Let A w Vw#ww, then:
(i) A is called weakly w-standard or w1-standard if A w1

#wB for some B w Vww,

(ii) A is called weakly w-internal or w1-internal if A w1
#wB for some B w Vww,

and
(iii) A is called w1-external if A is not w1-internal.

Definition 6.6.4.Let A w0 V
w0

#w0w0 , then:

(i) A is called w0-standard if A w0

#w0B for some B w0 V
w0 w0 ,

(ii) A is called w0-internal if A w0

#w0B for some B w0 V
w0 w0 , and

(iii) A is called w0-external if A is not w0-internal.

Definition 6.6.5.Let A w0 V
w0

#w0w0 , then:

(i) A is called weakly w0-standard or w0
w -standard if

A w0

#w0B  A w0
w #w0B for some B w0 V

w0 w0 ,

(ii) A is called weakly w0-internal or w0
w -internal if

A w0

#w0B  A w0
w #w0B for some B w0 V

w0 w0 , and

(iii) A is called w0
w -external if A is not w0

w -internal.



Definition 6.6.6.Let A wn V
wn

#wnwn ,n  1,2, . . . , then:

(i) A is called weakly wn-standard or wn
w -standard if

A wn

#w0

B  A wn
w

#w0

B for some B wn V
wnwn ,

(ii) A is called wn-internal if A wn

#w0B for some B wn V
wnwn , and

(iii) A is called wn-external if A is not wn-internal.
Definition 6.6.7.Assume now that for any A w Vw#ww:
(i) A is w1-standard or (ii) A is w1-internal,
then superstructure Vw#ww is called purely w1-internal and we abbreviate

V1-Int
w #ww.

Definition 6.6.8.Assume now that for any A w0 V
w0

#w0w :

(i) A is w0
w -standard or (ii) A is w0

w -internal,

then superstructure Vw0
#w0w0 is called purely w0

w -internal

and we abbreviate Vw0
w -Int

w0 #w0w0 .

Definition 6.6.9.Assume now that for any A wn V
wn

#wnwn :

(i) A is wn
w -standard or (ii) A is wn

w -internal,

then superstructure Vwn
#wnwn is called purely wn

w -internal

and we abbreviate Vwn
w -Int

wn #wnwn .

Remark.6.6.3.We remind now the details of the description the
-internal sets in the consistent model. Let A be -internal; thus A  Vk1 for some
k  1. This means that A will be of the form A  jA, for some A.By the
By the construction of j, one then gets

A  
Vk1 iff jA  jiVk1,

iff A  iVk1,

where i is the embedding of V into the ultrapower. The definition of  then
gives

A  
Vk1 iff v  |Av  Vk1  ,

where Av v is the bounded sequence defining A. Thus the -internal sets are
precisely the objects we obtain by starting with an arbitrary bounded sequence

Avand

the standard objects are obtained by starting from a constant sequence Av.

Remark.6.6.4.Because of their importance we will describe in detail the
w-internal sets in the models. Let A be w-internal; thus A w

#wVk1
w Sw

inc
w  w for

some k  1. This means that A will be of the form A w jwAw
w , for some Aw

w .By the
construction of jw, we then get

A w
#wVk1

w Sw
inc

w  w iff jwAw
w  w jw iw Vk1

w Sw
inc

w  w ,

iff Aw
w w iw Vk1

w Sw
inc

w  w ,

where iw is the w-embedding of Vww into the w-ultrapower. The definition of w

then
gives



A w
#wVk1

w Sw
inc

w  w iff v w w| w w,

where Av vw  is the bounded w-sequence defining A. Thus the w-internal sets are

precisely the objects we obtain by starting with an arbitrary bounded sequence Avw 

and the standard objects are obtained by starting from a constant sequence Avw .

Remark.6.6.5.
Remind the following Theorem.
Theorem 6.6.2.(i) Every nonempty -internal subset of  has a least element.
(ii) Every nonempty -internal subset of  with an upper bound has a -least upper
bound.
Proof.We prove (i), so let A   be internal. Then A  V; see (6.6.5). We can
express the fact that an internal subset of  has a least element by the condition

 

X X  
V2 X    X  

  X has a  -least element ,
6.6. 6

where the condition: X has a -least element, in detail is

xx  Xyy  X  y  x. 6.6. 7

Finally we have a condition

  X X  
V2

X    X  
  xx  Xyy  X  y  x .

6.6. 8

We thus have a condition ,V2 such that ,V2 is true in V. By
-transfer condition , V2 is true in V proving (i).
Remark.6.6.6.It follows from Theorem 6.6.2(i) that:
(1) \ is -external since there is no -least element in \ : if x  \ then also
x  1  \.
(2) We also see that  is external; thus   V2\V2
(3) From Theorem 6.6.2(ii) it follows that  as a subset of  is -external.
(4) Note that Theorem 6.6.2 is valid only for -internal sets; the positive infinitesimals

in
 is bounded but has no least upper bound.
Theorem 6.6.3.(i) If A is -internal and   A, then A contains some infinite natural
number, i.e., an element of \.
(ii) If A is internal and every infinite n  

 belongs to A, then A contains some
standard
n  .
(iii) If an internal set A contains every positive infinitesimal, then A contains some

positive
standard real r  .
(iv) If an internal set A contains every standard positive real, then A contains some
positive infinitesimal.

Remark 6.6.7.Let A w
#ww then A w V2

w#ww.The canonical embedding

#w : Vww
#w
 V#ww maps V2

ww to a set #wV2
ww w Vw#ww.Will A w-belong to

this set: #wV2
ww ? That is not necessarily except if A  #wB for some B w V2

ww, i.e.



then A  #wV2.We thus want to prove that

A A w
#wB  A w

#ww s A w
#wV2

ww . 6.6. 9

As it stands, (6.6.4) is not an Vww formula. However, it is equivalent to

A A w
#wB r w A r w

#ww  A w
#wV2w . 6.6. 10

This is genuine Vww; i.e., we have only bounded set quantifiers.Now (6.6.5) is a
condition #wB, #w, #wV2

ww, which by transfer is true in V#ww iff the corresponding
B,w,V2

ww is true in Vww. But the latter condition is trivially true. Thus we have
shown that if a subset of #ww is an element of some #wB in Vw#ww, then it is already
an element of the w-image of V2

ww.

The following Theorem very similar to Theorem 6.6.2.
Theorem 6.6.4.(i) Every nonempty w-internal subset of #ww has a w -least element.
(ii) Every nonempty w-internal subset of #ww with an w -upper bound has a w -least
upper bound.
Proof.We prove (i), so let A w

#ww be w-internal. Then A  #wVww; see (6.6.5).
We
can express the fact that an internal subset of #ww has a least element by the

condition

 

X X w
#wV2w 

X w w
w  X w

#ww s X has a w -least w-element ,

6.6. 11

where the condition: X has a w -least w-element, in detail is

xx w Xyy w X s wy w x. 6.6. 12

Finally we have a condition

  X X w
#wV2

ww 

X w   X w
#ww s xx w Xyy w X s wy w x .

6.6. 13

We thus have a condition w,V2w such that w,V2
ww is true in Vww. By

#w-transfer condition #ww, #wV2
ww is true in Vw#ww proving (i).



VII. Set theory HST
# .

VII.1.Axiomatical system HST
# ,as inconsistent

generalization of Hrbacek set theory HST.

In this chapter we introduces HST
# , inconsistent generalization of Hrbacek set theory

HST and describes the basic structure of the HST
# set universe. Syntactically, HST

# is
a theory in the sts-s -stw-w -language, which contains: (1) a binary consistent predicate
of strong or consistent membership s and consistent unary predicate of strong or
consistent standardness sts (and strong or consistent equality s of course) as the
consistent primary notions and (2) a binary inconsistent predicate of weak or
inconsistent membership w and inconsistent unary predicate of weak or inconsistent
standardness stw (and weak or inconsistent equality w of course) as the inconsistent
primary notions. Formula x w y reads: x weakly belongs to y, or x is an weak element of
y, with the usual set theoretic understanding of inconsistent membership. The formula
stwx reads: x is a weakly standard, its meaning will be explained below. A
sts-s -stw-w -formula is a formula of the sts-s -stw-w -language. An w -formula is a
formula of the w -language having w as the only atomic predicate. Thus an
w -formula is a stw-w -formula in which the standardness predicate does not occur.
w -formulas are also called weak internal formulas, in opposition to weak external
formulas, i.e., those stw-w -formulas containing stw.

VII.2. The universe of HST
#

Inconsistent set theory HST
# deals with eight major types of sets: (i) strongly external

or s-external,(ii) strongly internal or s-internal, (iii) strongly standard or s-standard, (iv)
strongly well-founded or s-well-founded,(v) weakly external or w-external,(vi) weakly
internal or w-internal, (vii) weakly well-founded or w-well-founded.
First of all, strongly standard sets are those consistent sets x which satisfy stsx and

weakly standard sets are those inconsistent sets x which satisfy stwx.Strongly internal
sets are those consistent sets y which satisfy intsy, where intsy is the formula
stsxy s x  xstsx  y s x (saying: y strongly belongs to a strongly standard set),
weakly internal sets are those inconsistent sets y which satisfy intwy, where intwy is the
formula stwxy w x (saying: y weakly belongs to a weakly standard set). Thus,
i Ss  x : stsxs is the class of all consistent standard sets,
ii Is  y : intsys  y : stsxy s xs is the class of all consistent internal sets,
iii Sw  x : stwxw is the class of all inconsistent standard sets,
iv Iw  y : intwyw  y : stwxy w xw is the class of all inconsistent internal sets,
v S#  Ss s Sw  x : stsxs s x : stwxw is the class of all consistent and

inconsistent standard sets,
vi I#  Is s Iw  y : intsys s y : intwyw is the class of all consistent and

inconsistent internal sets.
The class Is is the source of some typical objects of consistent "nonstandard”

mathematics like consistent hyperintegers and consistent hyperreals, the class Iw is the
source of some typical objects of inconsistent "nonstandard” mathematics like



inconsistent hyperintegers and inconsistent hyperreals [],

Blanket agreement 1.1. Thus, internal sets are precisely all sets which are elements
of consistent or inconsistent standard sets. This understanding of the notion of internality
and the associated notions like I#,sts ,stw,st#  sts  stw,sts ,st#  sts  stw is
default throughout this paper. All exceptions (e.g., when IST

# is considered) will be
explicitly indicated.
External sets consistent and inconsistent, are simply all sets in the nonstandard

universe of HST
# . We shall use H

# to denote the class of all consistent and inconsistent
external sets. Thus, H

# is the "universe of discourse", the universe of all sets considered
by the theory, including the classWF

# of all well-founded sets. WF
# will satisfy all

axioms of ZFC
# . The class S# of all standard sets {determined by the predicate st, as

above) will be shown to be s -w -isomorphic toWF
# . In a sense, S# is an "isomorphic

expansion" of WF
# into H

# . Given that S# is not transitive, I# arises naturally as the class
of all elements of sets in S#. It is viewed as an elementary extension of S# {in s -w -
language), and thereby also of WF

# . Finally, H
# is a comprehensive universe in which

all these classes coexist in a reasonable common set theoretic structure, with
s -w having the natural meaning in all mentioned universes.

VI.3. The axioms of the external inconsistent universe.

This group includes the ZFC
# Extensionality, Pair, Union, Infinity axioms and the

schemata of Separation and Collection (therefore also Replacement, which is a
consequence of Collection, as usual) for all sts-s stw-w -formulas or for all st#-# -
formulas for short.

VI.4. Axioms for standard and internal sets

Notation 4.1. (1).Let quantifiers sts ,sts ,stw and stw be shortcuts meaning: there
exists a
strongly standard..., for all strongly standard,there exists a weakly standard..., for all
weakly standard, ..., formally:
(i) stsxx means xstsx  x, (ii) stsxx means xstsx  x,
(iii) stwxx means xstwx  x, (iv) stwxx means xstwx  x.
Quantifiers  int and int (meaning there exists an internal ... , for all internal ...) are

introduced similarly. If g, is an E-formula then g,st, the relativization of g to S, is the for-
mula obtained by restriction of all quantifiers in g to the class S, so that all occurrences



of 3 x ... are changed to 3stx ... while all occurrences of V x ... are changed to ystx .... In
other words, g,st says that g is true in S. Rela-tivization g,int, which displays the truth of
an e-formula g in the universe 0, is defined similarly: the quantifiers 3, V change to 3int,
yint. The following axioms specify the behaviour of standard and internal sets.
Notation 4.2.For all sts-s stw-w -formulas or for all st#-# - formulas for short.
ZFC

st# : The collection of all formulas of the form g,st, where g is an e- statement
which is an axiom of ZFC

# . In other words, it is postulated that the universe S# is a ZFC
#

universe. (Note that the ZFC
# axioms are assumed to be formulated as certain closed

# - formulas in this definition.) This is enough to prove the following statement:
Lemma 4.1. (1) Ss  Is, (2) Sw  Iw.
Proof.(1) See [18] Lemma 1.1.3.
(2) Let x w Sw. The formula yx w y is a theorem of ZFC

# , therefore yx w ystw

that is the formula stwyx w y,is true. In other words, x is an element of a standard set,
which means x w Iw.
1.Strong or Consistent Transfer (s-Transfer): ints  sts , where  is an arbitrary
closed s -formula containing only consistent standard sets as parameters.
To be more exact, Consistent Transfer is the collection of all statements of the form
stsx1. . .stsxnintsx1, . . . ,xn  stsx1, . . . ,xn
2.Strong Consistent Transitivity of Is : intsxyy s x  intsy.
3.Consistent Regularity over Is : For any non empty consistent set X there exists
x s X such that x s X s Is. (The full Regularity of ZFC requires x s X  s.)
4.Consistent Standardization: XstwyX s Ss  s Ss). (Such consistent standard

set
Y, unique by Consistent Transfer and Consistent Extensionality, is sometimes

denoted by SsX. )
5.Weak Transfer (w-Transfer): intw  stw, where  is an arbitrary closed
s -w -formula containing only consistent and inconsistent standard sets as
parameters.
To be more exact, Weak Transfer is the collection of all statements of the form
stsx1. . .stsxnstwy1. . .stwymintsx1, . . . ,xn;y1, . . . ,ym  stwx1, . . . ,xn;y1, . . . ,ym
6.Weak Transitivity of Iw : intsxyy w x  intwy.
7.Weak Regularity over Iw : For any non empty consistent set X there exists x w X
such that x w X w Iw. (The full Regularity of ZFC requires x w X  w.)
8.Strictly Weak Regularity (Strictly w-Regularity): For any non empty inconsistent
set X there exists x w X such that x w X w w  x w X w w.
9.Weak Standardization (w-Standardization): XstwYX w Sw w Y w Sw.
9.Weak Standardization: XstwyX w Sw  w Sw). (Such consistent standard set Y,

unique by Consistent Transfer and Consistent Extensionality, is sometimes denoted by
SwX. )
Such inconsistent standard set Y, w-unique by w-Transfer and weak Extensionality,
is sometimes denoted by SwX.
Remark 4.1. (i) w-Transfer can be considered as saying that: Iw, the universe of all

inconsistent internal sets, is an elementary extension of Sw in the s -w -language. It fo
llows, by ZFC

# stw, that the class Iw of all inconsistent internal sets satifies ZFC
# (in the

s -w -language ), in fact, we can replace ZFC
# stw by ZFC

#  intw, with relativization to
Iw, in the list of HST

# axioms. See also Theorem 1.3.9 below.



(ii) w-Transitivity of Iw postulates that: inconsistent internal sets to form the basement
of the s -w -structure of the universe H

# . This axiom is very important since it implies
that some set operations in Iw retain their sense in the whole universe H

# .
(iii) w-Regularity over Iw organizes the HST

# set universe H
# in general case as a sort

of hierarchy over the internal universe Iw, in the same way as the w-Regularity axiom
organizes the universe in the von Neumann w-hierarchy over the w-empty set w in
ZFC

# .
(iv) Strictly w-Regularity organizes the HST

# set universe H
# in the von Neumann

w-hierarchy over the w-empty set w,but in a strictly inconsistent sense only.
(v) w-Standardization postulates that H

# does not contain collections of standard sets
other than those of the form S w Sw for inconsistent standard set S.
Remark 4.2. It well known that the ZFC Regularity fails in H  Hs : the set of all

nonstandard Is-natural numbers does not contain an s -minimal element, (see for
example [18], Exercise 1.2. 15(3)). In contrast with a classical case, ZFC

# w-Regularity
valid in H

# , but in a strictly inconsistent sense only. For example the set of all
nonstandard Iw-natural contain an inconsistent w -minimal element, see [22]-[23].

VII.5. Well-founded inconsistent sets.
Now we can introduce the last principal class: well-founded inconsistent sets. Recall

the following notions from general inconsistent set theory.
Definition 5.1. (i) A binary weak relation w on inconsistent set or inconsistent class X

is a strictly well-founded if any nonempty set Y w X contains consistent w -minimal
w-element x w Y, that is there exists x w Y such that no y w Y satisfies y w x.
(ii) A binary weak relation w on inconsistent set or inconsistent class X is weakly well-

founded (or w-well-founded) if:
(1) w is not a strictly well-founded and
(2) any nonempty set Y w X contains a w -minimal w-element x w Y, that is there

exists y w Y satisfies: y w x  x w y, i.e. y w x  y w x.
(iii) Inconsistent set or inconsistent class X is w-transitive if any x w X satisfies

x w X, i.e., weak elements of weak elements of X are weak elements of X.
(iv) Inconsistent set or inconsistent class X is w-complete if we have y w X whenever
y w x w X, that is a weak subsets of weak elements of X are weak elements of X.
(v) Inconsistent set x is a strictly well-founded if there is a w-transitive set X such that

x w X and the restriction w  X is a strictly well-founded weak relation.
(vi) Inconsistent set x is w-well-founded if there is a w-transitive set X such that x w X

and the restriction w  X is a w-well-founded weak relation.
Remark 5.1. It is known that all sets are well-founded in ZFC by the Regularity axiom.
This is not the case in HST : the set  of all Is-natural numbers is ill-founded [18].

Remark 5.2. In contrast with a classical case, all inconsistent sets are w-well-founded
in HST

# by the Strictly w-Regularity axiom. For example, the set #   inc of all
Iw-natural numbers is w-well-founded by the Strictly Weak Regularity axiom.
Definition 5.2.(HST

# ). (i) Let s-wfwx mean that x is a strictly well-founded. We put
s-WFw w x : s-wfwxw, the class of all strictly well-founded inconsistent sets and
(ii) let w-wfwx mean that x is a w-well-founded. We put w-WFw w x : w-wfwxw, the
class of all w-well-founded inconsistent sets.



Notation 5.1.We introduce quantifiers s-wfw,s-wfw,w-wfw and w-wfw (meaning: there is
a well-founded ... , for any well-founded ... ) and the relativization (1) s-wfw to s-WFw, (2)
w-wfw to w-WFw similarly to sts ,sts ,sts ,stw,stw,stw in §VII.1.3. In other words, s-wfw

says that gj is true in WIF. The main property of the classes s-WFw and w-WFw in HST
#

is that it admits a definable w -isomorphism w #w onto the class S of all standard
sets.

PART III.

I.Introduction

I.1.Carleson’s theorem and generalizations in dimention
N  1.
L.Carleson’s celebrated theorem of 1965 [25] asserts the pointwise convergence of

the
partial Fourier sums of square integrable functions. The Fourier transform has a
formulation on each of the Euclidean groups , and Τ.Carleson’s original proof

worked
on Τ.bFefferman’s proof translates very easily to  . Máté [26] extended Carleson’s

proof
to .Each of the statements of the theorem can be stated in terms of a maximal

Fourier
multiplier theorem [27]. Inequalities for such operators can be transferred between

these
three Euclidean groups, and was done P. Auscher and M.J. Carro [28]. But Carleson’s
original proof and another proofs very long and very complicated. We give a very short

and
very “simple” proof of this fact. Our proof uses PNSA technique only, developed in part

I,
and does not uses complicated technical formations unavoidable by the using of

purely
standard approach to the present problems. In contradiction to Carleson’s method,

which
is based on profound properties of trigonometric series, the proposed approach is

quite
general and allows to research a wide class of analogous problems for the general
orthogonal series. Let us suppose that there are general orthogonal series in space

2
  d,d  1,2. . .




n0


cnfnx,cnn0

n  l2, fn  2,n  .




f ix  f jxd Nx  ij.
1.1. 1

We shall say that a sequence fnn0
n or series (1.1.1) admit LC-property if series

(1.1.1)
converges a.e. It is well known that a general orthogonal series does not admit
LC-property [29-30].
Definition 1.1.1. We shall say that for orthogonal series (1.1.1) LC-property holds iff
series (1.1.1) converges a.e. on a set .
A problem corresponding to LC-property is still open for many orthogonal series,
as example for the series by Jakoby’s polynomial. In the present work we shall obtain

a
general sufficient condition guaranteeing the LC-property for series (1.1).
Definition 1.1.2. We shall say that orthogonal series (1.1.1) in a space L2 is a

strongly paraorthogonal series, iff the following condition is satisfies

#w 
#w

#wf ix 
#wf jx d Nx w #wij,

i, j w
#w,

#wf ix w
#wL2#w, i w

#w.

1.1. 2

Here

#wij w 1w  i w j; #wij w 0w  i w j

and
#wij w 1w  i w j; #ij w 0w  i w j.

1.1. 3

I.2.Carleson’s theorem and generalizations in dimentions
N  2.
Carleson’s results are trivially transferred on N -harmonic Fourier series, for the case

of convergence by cubes, but in the case of arbitral convergence Carleson methods
does not works and,in general,the problem for N -harmonic Fourier series is still open.
Particularly,this problem is open for the case of the spherical sum EMfx,x  N :



EMfx  2N 
n2M

fn  expinx

n  N

n  i1
N ni2 .

1.2. 1

In 1971 R. Cooke proved Cantor-Lebesque theorem in two dimentions [30]: if

k
lim 

|n |2k

cn expinx  0 1.2. 2

a.e. on Τ2, then

k
lim 

|n |2k

|cn |2  0. 1.2. 3

I.3.The uniqueness problem of the trigonometric expansion
in dimention N  1.Cantor-Lebesque theorem in
dimention N  1.

The uniqueness problem of the trigonometric expansion in dimention N  1 can be
stated as follows. Suppose the series

a0

2


n1



an cosnx  bn sinnx 1.3. 1. 

converges to zero for every x  ,, does it follow that an  bn  0 for all n ? The
answer is not obvious, but was found to be affirmative by Cantor in 1870.

Theorem 1.3.1. (Cantor’s uniqueness theorem). If the series (2.3.1)
converges everywhere to zero, then an  bn  0 for all n  .

Let us briefly discuss the proof of Theorem 1.3.1. The first who systematically studied
everywhere convergent trigonometric series was Riemann, in his habilitation thesis
(1854). He had the idea to introduce the function

Fx  a0

4
x2 

n1


an cosnx  bn sinnx

n2

1.3. 2

obtained by formally integrating an everywhere convergent series (1.3.1) twice. Riemann
assumed that the coefficients an, bn are bounded, in which case the series (1.3.2)
converges uniformly and hence Fx is a continuous function on  (note that Fx is not
periodic if a0  0). He then proved that the Schwartz second derivative

D2Fx 
Fx  h  2Fx  Fx  h

h2
1.3. 3



exists, and is equal to (1.3.1).Cantor proved that the coefficients an,bn are tending to
zero (and in particular, they are bounded). If we now assume that
(1.3.1) converges everywhere to zero, then D2Fx  0. It is then possible to
prove that Fx is linear,which quite easily implies that an  bn  0. For more
details see [6,chapt.I].
Let us consider the uniqueness problem for a trigonometric expansion which
converges almost everywhere. That is, suppose a function fx admits a
trigonometric expansion such that (1.3.1) holds for almost every x. Is the
expansion unique? Equivalently, suppose that (1.3.1) converges to zero for
almost every x,does it follow that an  bn  0 for all n?
Lebesgue developed his theory of measure and integration in the years 1902-1906. In

the following years it became common to consider sets of
measure zero “negligible”.
Theorem 2.3.2.(Cantor-Lebesgue).If an cosnx  bn sinnx  0 for all x

in some set E of one-dimensional positive measure, then
an,bn  0.

Proof. By Egorov’s theorem we may assume that unx  an cosnx  bn sinnx
tends to 0 uniformly on some set E of positive measure. Consider the
equations unx  an cosnx  bn sinnx and uny  an cosny  bn sinny as a linear
system with unknowns an,bn.The determinant of this system is sinny  x.
Since E has positive measure, the set Ĕ  y  x|x,y  E contains some
interval , (see [41], Lemma 3.37, p. 46), therefore for any sufficiently
large n there exist x,y  E such that y  x  

2n . For such x,y we have

sinny  x  1, hence the above system determines an,bn uniquely,
an  unx sinny  uny sinnx;bn  unycosnx  unxcosny.Therefore

|an|, |bn| 
n
lim 2

xE

sup |unx|  0, and so Theorem 2.3.2 is proved.

Theorem 2.3.3.(Menshov).There exists a non-zero series (2.3.1) which
converges to zero for almost every x.

Lemma (Menshov).There exists continuous function Fx such that:
(1) Fx  const on 0,2;
(2) Fx  c for all x in some set P of Lebesgue measure zero;
(3) the equality

n
lim  Fcosn  xd  0 2.3. 4

is satisfied uniformly on 0,2.

Proof. (a) We define a set P in the following way.From the interval 0,2



we remove a central open interval such that there remain two closed
intervals of equal length .From each of these two intervals we remove
again a central interval such that there remain 4 closed intervals of length
2
3 . Continuing this process, on the k-th step there remain 2k closed

intervals of length 2
k1

.

(b) Supose that i, 1  i  2k  1 is any one of the intervals which was deleted
from the interval 0,2 in the k-th step of the above procedure.

I.4.The uniqueness problem of the trigonometric expansion
in dimentions N  1.Cantor-Lebesque theorem in

dimentions N  2.
Let N  0,1N  N be the N dimensional torus.Let fnxn be a real or complex

valued system of functions that are in

L2 N  fx| f : N  ; 
TN

fx
2
dNx   .

1.4. 1

The inner products ,  : L2 N  L2 N   in L2 N is

fn, fm    fnx, fmxdNx
1.4. 2

where the bar denotes complex conjugate.If satisfy

fn, fm   0 if n  m,

fn, fm   1 if n  m,

n,m  

1.4. 3

we call the system fnxn orthonormal (ON).Given an ON system and

a function fx on N it is often possible to represent f x  L2 N as an
infite linear combination of the elements of the system.
Definition 1.4.1.If the linear combination,n anfnx be everywhere

pointwise convergent to the value f x, i.e.

x  N : fx 
n
lim n anfnx, 1.4. 4

3.2.2.If the linear combination,n anfnx be o.e. pointwise convergent to the value

f x, i.e.



x  N\E

E  0 :

fx 
n
lim n anfnx,

1.4. 5

In 1971 R.Cooke proved Cantor-Lebesque theorem in two dimentions [31]:

Chapter II.Analysis on #w1w1 .

II.1.Paraordered fields.

II.1.1.Designations
Remind that n stands for n1  n10,where 0    w, 1  n  .
Designations 2.1.1.In this section we will be write for short x w

n
y instead

x w yn,n  1,2, . . . ;and we will write for short x wn y instead x w yn,n  1,2, . . .

Remark 2.1.1. Thus we will be write

x w1 y

instead

x w y  wx w y

2.1. 1

etc. and we will be write

x w
1

y

instead

x w y  wx w y

2.1. 2

etc. and we will be write

x w
1

y

instead

x w
1

y  x w1 y.

2.1. 3



Remark 2.0.2. In this section, we will be distinguish:
(1) the relations:
(i) strong (consistent) equality denoted by  s ,
(ii) weak equality denoted by  w ,
(iii) weak (inconsistent) equalities denoted by
 w1 , . . . ,  wn , . . . ,n  1,2, . . .

(2) (i) strong (consistent) inequality denoted by  s ,
(ii) weak inequality denoted by  w ,
(iii) weak (inconsistent) inequalities denoted by
 w1 , . . . ,  wn , . . . ,n  1,2, . . . .

(iv) weak (inconsistent) inequalities denoted by
 w1 , . . . ,  wn , . . . ,n  1,2, . . . .

Designations 2.1.2. (I) We will be write for short:
(i)  s

s  instead s s ,
(ii)  s

w  instead w s ,
(iii)  w

s  instead s w ,
(iv)  w

w  instead w w ,
(II) We will be write for short:

(i) x w0 y instead x s y  x w y  wx w
1

y ,

(ii) x w1 y instead x s y  x w y  x w1 y  wx w
2

y ,

(iii) x wn y instead x s y  x w y . . .x wn y  wx w
n1

y ,

n  1,2,
(iv) x w y instead x s y  x w0 y 0n

x wn y,

Remark 2.1.3.(i) Note that in general case sx w y  y w x, i.e. in general case

x w y s sy w x. 2.1. 4

We often will be write for short: x w
s y instead sx w y.

(ii) For any x and y such that sx w y  y w x we will be write for short:

x w
s y 2.1. 5

instead x w y, i.e.we will be write x w
s y iff

sx w y s y w x. 2.1. 6

We often will be write for short: x w
s y instead sx w

s y.
(iii) Note that in general case wx w y  y w x, i.e. in general case the statement
wx w y does not imply provability of the statement y w x and therefore in general
case

wx w y s y w x. 2.1. 7

We often will be write for short: x w
w y instead wx w y

(iv) For any x and y such that wx w y  y w x we will be write for short:

x w
w y 2.1. 8

instead x w y, i.e.we will be write x w
w y iff

wx w y s y w x. 2.1. 9

We often will be write for short: x w
w y instead wx w

w y.



(v) x w y  wx w y s wsy w x  wy w x or x w
1

y s w x w
1

y

in general case, i.e.
Designations 2.1.3. (I) We will be write for short:
(ii) x w1 y instead x w y  x w1 y etc.

Designations 2.1.4. We will be write for short:

(i) x w0 y instead x s y  x w y  wx w
1

y ,

(ii) x w1 y instead x s y  x w y  x w1 y  wx w
2

y ,

(iii) x wn y instead x s y  x w y . . .x wn y  wx w
n1

y ,

n  1,2, .
Designations 2.1.5. We will be write for short:
(i) x w0 y instead x s y  x w y  sx w

1
y,

(ii) x w1 y instead x s y  x w y  x w1 y  sx w
2

y,

(iii) x wn y instead x s y  x w y . . .x wn y  sx w
n1

y, n  1,2, .

Designations 2.1.6. We will be write for short:
(i) x w0 y instead x s y  x w y  sx w

1
y,

(ii) x w1 y instead x s y  x w y  x w1 y  sx w
2

y,

(iii) x wn y instead x s y  x w y . . .x wn y  sx w
n1

y, n  1,2, .

Designations 2.1.7. We will be write for short:
(i) x w0 y instead x s y  x w y  sx w

1
y,

(ii) x w1 y instead x s y  x w y  x w1 y  sx w
2

y,

(iii) x wn y instead x s y  x w y . . .x wn y  sx w
n1

y, n  1,2, .

Remark 2.1.4.(i) Note that in general case sx w0 y  y w0 x, i.e. in general

case

x w0 y s sy w0 x. 2.0. 10

We often will be write for short: x w0
s y instead sx w0 y.

(ii) For any x and y such that sx w0 y  y w0 x we will be write for short:

x w0
s y 2.0. 11

instead x w0 y, i.e.we will be write x w0
s y iff

sx w0 y s y w0 x. 2.0. 12

We often will be write for short: x w0
s y instead s x w0

s y .

(iii) Note that in general case wx w0 y  y w0 x, i.e. in general case the

statement
wx w0 y does not imply provability of the statement y w0 x and therefore in

general case

wx w0 y s y w0 x. 2.1. 13

We often will be write for short: x w0
w y instead wx w0 y

(iv) For any x and y such that wx w0 y  y w0 x we will be write for short:

x w0
w y 2.1. 14



instead x w0 y, i.e.we will be write x w0
w y iff

wx w y s y w x. 2.1. 15

We often will be write for short: x w0
w y instead w x w0

w y .

Remark 2.0.5.(i) Note that in general case sx w0 y  y w0 x, i.e. in general

case

x w0 y s sy w0 x. 2.0. 10

We often will be write for short: x w0
s y instead sx w0 y.

(ii) For any x and y such that sx w0 y  y w0 x we will be write for short:

x w0
s y 2.1. 11

Proposition 2.1.1. (i) x w0 y or y w0 x but not x w0 y and y w0 x

simultaneously,
(ii) x w1 y or y w1 x but not x w1 y and y w1 x simultaneously,

(iii) x wn y or y wn x but not x wn y and y wn x simultaneously,n  1,2, .

Proof.Immetiately from definitions.

II.1.2.Basics about paraordered fields.
In this section we will define the notion of paraordered field, which is simply a field in

the algebraic sens together with a total order which has a compatible behavior with the
operations of the field.
Definition 2.1.1.A w-consistent field (w-field) is a w-set w (w-set w) together with
two binary operations w (addition), w (product) which satisfy the following axioms:
1

w (i) x,yx,y w w s x w y w w, (ii) x,yx,y w w s x w y w w.
2

w (i) x,y, zx,y, z w w s x w y w z w x w y w z,
(ii) x,y, zx,y, z w w s x w y w z w x w y w z.

3
w (i) x,yx,y w w s x w y w y w x,
(ii) x,yx,y w w s x w y w y w x.

4
w There exists a w-unique w-element 0w w w such that
x w wx w 0w  w x.

5
w There exists a w-unique w-element 1w w w such that
x w wx w 1w  w x.

6
w xx w wyy w wx w y w 0w .

7
w x,y, zx,y, z w w s x w y w z w x w z w y w z.

Definition 2.1.2 (w-ordered w-field). An w-ordered w-field is a w-field w such that a
binary
predicate w is defined on the set w-w, such that w- satisfies the following axioms :
1

w x,y w w one and only one of the following holds :
(i) x w y, (ii) x w y, (iii) x w

w y, (iv) x w
w y, (v) y w x, (vi) y w

w x.
2

w (i) x w y s sy w x, (ii) x w y w y w x, (iii) x w y s y w x
3

w x,y, zx,y, z w wx w y  sy w z s x w z.
4

w x,y, zx,y, z w wx w y s x w z w y w z.
5

w x,y, zx,y, z w wx w y  0w w z s x w z w y w z.



Designation 2.1.1.A w-field w,w ,w  which is an w-ordered w-field for w will be
noted w,w ,w ,w .
Definition 2.1.2.We say that an element x w w is a w-positive element if xw  0w.

We
denote w

 the set of all w-positive elements.
Remark 2.1.1.

Definition 2.1.3.The following function ||w : w  w
 w 0ww is called w-absolute

value
and can always be defined on any w-ordered w-field.

|x|w w
w-maxw x,x s x w

s 0w  x w
w 0w

0w s x w 0w

2.1. 12

Proposition 2.1.1.

Definition 2.1.1.A w-field is an w1-inconsistent set order one w (w-set w) together
with
two binary operations w (addition), w (product) which satisfy the following axioms:
(1

w) (i) x,yx,y w
s w s x w y w

s w, (ii) x,yx,y w
s w s x w y w

s w

(iii) x,yx,y w1 w s x w y w1 w, (iv) x,yx,y w w1 s x w y w1 w

( w is closed at least in paraconsistent sense order one under addition and product)
(2

w) (i) x,y, zx,y, z w w s x w y w z w1 x w y w z,

(ii) x,y, zx,y, z w w s x w y w z w1 x w y w z,

(the binary operations are associative in paraconsistent sense order one)
(3

w) (i) x,yx,y w w s x w y w1 y w x,

(3
w) (ii) x,yx,y w w s x w y w1 y w x

(the binary operations are commutative in paraconsistent sense order one)
(4

w) There exists a w-unique w-element 0w w w such that
(i) x w w

II.2.Limits continuity, and the derivative
Any consistent sequence ann is a map a :    and, as such, has an

paraconsistent extension to a map #wa : #w  #w. For any n  #w we write an#w  #wan
. We use ann #w or an

#wn #w to denote the extended paraconsistent w-sequence.

For any elements a,a  #w we shall write a w a to mean that the difference a w a



is infinitesimal at least in inconsistent sense.
PROPOSITION 2.2.1.(i) limn an  a iff a

#w w a for all   #w\.
(ii) limn an  a a#w w a for all   #w\.
Remark 2.2.1. (i) Here the left-hand side of the equivalence in statement (i) has its
standard meaning inside V. The right-hand side is a statement about the weacly
consistent extended universe V#w.
(ii) (i) Here the left-hand side of the implication in statement (ii) has its standard

meaning
inside V. The right-hand side is a statement about the paraconsistent extended
universe V#w.
Proof. (i) If llimn an  a , then given any   0 there is some n   such that the
following statement is true in V :

mm  m  n  |a  am |   2.1. 1

By w-transfer the statement

m m  #w m  n  a  am#w   2.1. 2

is true in V#w. If   #w\, then a  a#w   is true in V#w. Since

this is true for all standard   0, it means that the difference a
#w w a, is

w-infinitesimal, i.e., a
#w w a.

We present bellow two versions of the proof of the converse of the statement (i):
(ii)

Definition 2.2.1.Let xnn be a sequence xnn  .A w0-hypersequence

xnnw0 
#w0 that is a mapping #w0xnn  : #w0  #w0 .

Definition 2.2.2. Let xnn be a sequence xnn  .A w1-hypersequence

xnnw1 #w1 that is a mapping #w1 xnn  : #w1  #w1 .

Definition 2.2.3.A w0-hypersequence xnnw0 
#w0 is:

(i) w0-increasing (or non-w0-decreasing) if xn w0 xn1 for all n w0 
#w0 ;

(ii) w0-decreasing (or non-w0-increasing) if xn1 w0 xn for all n w0 
#w0 ;

(iii) strictly w0-increasing if xn w0 xn1 for all n w0 
#w0 ;

(iv) strictly w0-decreasing if xn1 w0 xn for all n w0 
#w0 .

Definition 2.2.4. A w1-hypersequence xnnw1 #w1 is:

(i) w1-increasing (or non-w1-decreasing) if xn w1 xn1 for all n w1 
#w1 ;

(ii) w1-decreasing (or non-w1-increasing) if xn1 w1 xn for all n w1 
#w1 ;

(iii) strictly w1-increasing if xn w1 xn1 for all n w1 
#w1 ;

(iv) strictly w1-decreasing if xn1 w1 xn for all n w1 
#w1 .

Definition 2.1.5. A w0-hypersequence is:
(i) w0-monotone if it is either w0-increasing or w0-decreasing;
(ii) strictly w0-monotone if it is either strictly w0-increasing or w0-strictly
w0-decreasing.
Definition 2.1.6.A w1-hypersequence is:



(i) w1-monotone if it is either w1-increasing or w1-decreasing;
(ii) strictly w1-monotone if it is either strictly w1-increasing or strictly

w1-decreasing.

Definition 2.1.7.We call x w0 
#w0 the w0-limit of the w0-hypersequence

xnnw0 
#w0 if the following condition holds:for each hyperreal number  w0 

#w0 ,

 w0  0w0 , there exists a hypernatural number N w0 
#w0 such that, for every

hypernatural number n w0  N, we have |xn w0 x|w0 w0 .The

w0-hypersequence xnnw0 
#w0 is said to w0-converge to or tend to the w0-limit

x,
written xn w0 x or

nw0

w0- lim xn w0 x.Symbolically, this is:

w0  0w0  

N N w0 
#w0 n n w0 

#w0 nw0  N s |xn w0 x|w0 w0  .
2.1. 3

Remark 2.1.2. For w0-hypersequences xnnw0 
#w0 w0 

#w0 it is also convenient

to define the notions xn w0 
#w0and xn w0 w0 

#w0 as n w0 
#w0 .

Definition 2.1.8.If xnnw0 
#w0 w0 

#w0 then xn w0 
#w0as n w0 

#w0

if for every positive hyperreal number M w0 
#w0 there exists an hyperinteger

N w0 
#w0 such that n w0  N s xn w0  M (xn w0 w0 M), we

sayxnnw0 
#w0

has w0-limit #w0 (w0 
#w0 ) and write w0-limn

#w0 xn w0 
#w0 (w0 

#w0 ).

Definition 2.1.9.We call x w1 
#w1 the w1-limit of the w1-hypersequence

xnnw1 
#w1 if the following condition holds:for each hyperreal number  w1 

#w1 ,

 w1  0w1 , there exists a hypernatural number N w1 
#w1 such that, for every

hypernatural number n w1  N, we have |xn w1 x|w1 w1 .The

w1-hypersequence xnnw1 
#w1 is said to w1-converge to or tend to the w1-limit

x,
written xn w1 x or

nw1

lim xn w1 x.Symbolically, this is:

w1  0w1  

N N w1 
#w1 n n w1 

#w1 nw1  N s |xn w1 x|w1 w1  .

Remark 2.1.3. For w1-hypersequences xnnw1 
#w1 w1 

#w1 it is also

convenient
to define the notions xn w1 

#w1and xn w1 w1 
#w1 as n w1 

#w1 .

Definition 2.1.10. If xnnw1 
#w1 w1 

#w1 then xn w1 
#w1 #w1 as

n w1 
#w1 if for every positive hyperreal number M w1 

#w1 there exists an

hyperinteger N w1 
#w1 such that n w1  N s xn w1  M (xn w1 w1 M),

we sayxnnw1 
#w1has w0-limit #w1 (w1 

#w1 ) and write



w1-limn
#w1 xn w1 

#w1 (w1 
#w1 ).

Theorem 2.2.1. (i) Every w0-internal w0-hyperbounded w0-monotone

w0-hypersequence in #w0 has a w0-limit in #w0 .
(ii) Every w0-external w0-hyperbounded strictly w0-monotone w0-hypersequence

in #w0 has a w0-limit in #w0 .

Proof: Suppose xnnw0 
#w0 w0 

#w0and xnnw0 
#w0 is w0-increasing (if

xnnw0 
#w0 is w0-decreasing,the argument is analogous). Since the set

w0-
n

xnnw0 
#w0of w0-hyperreals is w0-hyperbounded above, it has a least

w0-hyperupper bound in #w0 , x, say. We claim that xn w0 x as n w0 
#w0 . In

order
to see this, note that xn w0 x for all n w0 #w0 ; but if  w0  0w0 then xk

w0  x w0  for some k, as otherwise x w0  would be an upper bound. Choose

such
k  k.Since xk w0

 x w0 , then xn w0
 x w0  for all nw0  k as the

sequence
is increasing.Hence x w0  w0 xn w0 x for all nw0  k.Thus x w0 xn w0

w0 

for nw0  k, and so xn w0 x since  w0  0w0 is arbitrary.

(ii) Let d

#w0be Dedekind completion of #w0 .Suppose xnnw0 
#w0 w0 

#w0and

xnnw0 
#w0 is strictly w0-increasing (if xnnw0 

#w0 is strictly w0-decreasing,the

argument is analogous). Since the set w0-
n

xnnw0 
#w0of w0-hyperreals is

w0-hyperbounded above, it has a least w0-hyperupper bound in d

#w0 , x, say.
Assume

that x  #a,a  #w0 ,where #a is image a in d

#w0 ,see [46].In this case argument is
the same as above.Assume now that x  #a,a a  #w0 , i.e. x is absorbtion number

in

d

#w0 .We claim that again xn w0 x as n w0 
#w0 . In order to see this, note that

xn w0 x for all n w0 #w0 ; but if  w0  0w0 then xk w0
 x w0  for some k, as

otherwise x w0  would be an upper bound. Choose such

Theorem 2.1.2.

Theorem 2.2.3.(Comparison Test)
(i) If 0w0 w0 xn w0 yn for all n w0  N w0 

#w0 ,and yn w0 0 as n w0 
#w0 ,

then xn w0 0 as n w0 
#w0 .

(ii) If xn w0 yn for all n w0  N w0 
#w0 ,xn w0 x as n w0 

#w0and yn w0 y

as
n w0 

#w0 , then x w0 y.

(iii) In particular, if xn w0 a for all n w0  N w0 
#w0and xn w0 x as

n w0 
#w0 , then x w0 a.



.

II.3.Cauchy w0-hypersequences and
w1-hypersequences.
II.3.1.Cauchy w0-hypersequences.
Defnition 2.3.1. A w0-metric space X;dw0 is a set X together with a distance

function dw0 : X w0 X  #w0such that for all x,y, z w0 X the following hold:

1.dw0x,y w0  0w0 ,dw0x,y w0 0w0 s x w0 y (positivity),

2. dw0x,y w0 dw0y,x (symmetry),

3. dw0x,y w0 dw0x, z w0 dw0z,y (triangle inequality).

We denote the corresponding metric space by X;dw0, to indicate that

a metric space is determined by both the set X and the metric dw0 .

Definition 2.3.2. Let xnw0
 xnnw0 

#w0 w0 X where X;dw0 is a w0-metric

space. Then xnw0
is a Cauchy w0-hypersequence if for every  w0  0w0 there

exists an hyperinteger N w0 #w0 such that

m,n w0
 N sdw0xm,xn w1  2.3. 1

We sometimes write this as dw0xm,xn w0 0w0as m,n w0 
#w0 .

.

II.3.2.Cauchy w1-hypersequences.
Defnition 2.3.1. A w1-metric space X;dw1 is a set X together with a distance

function dw1 : X w1 X  #w1such that for all x,y, z w1 X the following hold:

1.dw1x,y w1  0w1 ,dw1x,y w1 0w1 s x w1 y (w1-positivity),

2. dw1x,y w1 dw1y,x (w1-symmetry),

3. dw1x,y w1 dw1x, z w1 dw1z,y (triangle w1-inequality).

We denote the corresponding metric space by X;dw1, to indicate that

a metric space is determined by both the set X and the metric dw1 .

Definition 2.3.2. Let xnw1
 xnnw1 

#w1 w1 X where X;dw1 is a w1-metric

space. Then xnw1
is a Cauchy w0-hypersequence if for every  w0  0w0 there

exists
an hyperinteger N w0 #w0 such that

m,n w0
 N sdw0xm,xn w1  2.3. 1

We sometimes write this as dw0xm,xn w0 0w0as m,n w0 
#w0 .

.



II.4.w0-Limits and w1-Limits of Functions
.

II.4.1.w0-Limits of Functions
Definition 2.4.1.Let f : A  Y,A w0 X, where X;dw0 and Y is a w0-metric

spaces,
and let a be a w0-limit point of A. Suppose

xnw0
w0 A\w0aw0

 xn w0 a s fxn w0 b. 2.4. 1

Then we say f has w0-limit b at a and write

w0-
xnw0

a, xw0 A
lim fx w0 b 2.4. 2

or

w0- xnw0
a

lim fx w0 b, 2.4. 3

where in the last notation the intended domain A is understood from the context.
Definition 2.4.2.

.

II.4.2.w1-Limits of w1-Functions

II.5.w0-Continuity at a point
Definition 2.5.1.Let f : A  Y,A w0 X, where X;dw0 and Y is a w0-metric

spaces,
and let a w0 A. Then f is w0-continuous at a if a is an w0-isolated point of A, or if

a is a w0-limit point of A and

w0-
xnw0

a, xw0 A
lim fx w0 fa. 2.5. 1

Definition 2.5.2.If f is w0-continuous at every a w0 A then we say f is

w0-continuous.
The set of all such w0-continuous w0-functions is denoted by Cw0A,Y.

Example 2.5.1. Define

fx w0

x  w0- sinx
w0 1w0 if sx w0 0w0 

if x w0 0w0

2.5. 2

f is w0-continuous everywhere on #w0 .



.

II.6.Uniform w0-convergence of functions

II.6.1.Uniform w0-convergence of functions
Definition 2.6.1. Let f, fn : S  Y for every n w0 #w0 , where S is any set and

Y;dw0 is a w0-metric space. If fnx w0 fx for all x w0 S then fnx w0 fx

pointwise on S.

Definition 2.6.2. Let f, fn : S  Y for every n w0 #w0 , where S is any set and

Y;dw0 is a w0-metric space.If for every  w0  0w0 there exists N w0 #w0

such
that n w0  N s dw0fnx, fx w0  for all x w0 S then we say fnx w0 fx

uniformly on S and write fnx w0 fx.

.

II.6.2.Uniform w1-convergence of functions

II.7.Uniform w0-convergence and w0-continuity

.

II.8.The w0-derivative of w0-internal function of one
variable
Definition 2.8.1.For each w0-function f : #w0  #w0 , we define its w0-derived

function f w0 : #w0  #w0by setting, for every point p w0 
#w0

f w0 p 
xw0

p

w0 - lim
fx w0 fp

x w0 p
2.8. 1

if this w0-limit exists.If the w0-limit in (2.8.2) exists, we call it the w0-derivative of f
at p. If, in addition, this w0-limit is w0-finite or w0-hyper finite, we say that f is

w0-differentiable at p. If this holds for each p w0 B w0 #w0 , we say that f has a

w0-derivative (respectively, is w0-differentiable) on B, and we call the function f w0

the
w0-derivative of f on B. If the limit in (2.8.2) is one sided (with x w0 p or x w0 p),

we call it a one-sided (left or right) w0-derivative at p, denoted f
w0or f

w0 .

Definition 2.8.2.Given any w0-internal function f int  f #w0 : #w0  #w0 ,where f :
  ,we define its n-th w0-derived function (or w0-derived function of order

n w0 
#w0 ),denoted f

nw0 : #w0  #w0 , by transfer:

f int
0w0 w0 f

#w0 , f int
1w0 w0 f 1

#w0 ., . . . , f int
nw0 w0 f n

#w0 . 2.8. 2

Definition 2.8.3.We say that f int has n w0-derivatives at a point p iff the w0-limits



II.9.The w0-integral.

II.9.1.The w0-Internal w0-integral.
In this section we deal with w0-internal function f int  f #w0 where f :   ,defined on

a w0-finite interval a,b #w0 . A w0-hyper finite internal partition of a,b #w0 is a
w0-hyper finite set of w0-subintervals

x0w0
,x1w0

#w0 , x1w0
,x2w0

#w0 , . . . , xNw0 1w0
,xN

#w0 , 2.9. 1

where N w0 
#w0 and where xnnw0 0w0

N is an w0-internal w0-sequence such that

a w0 x0w0
w0 x1w0

w0 x2w0
w0 . . .w0 xN w0 b 2.9. 2

Thus, any w0-internal set of N w0 1w0 points satisfying (2.9.2) defines an

w0-internal partition Pw0N of a,b
#w0 , which we denote by

Pw0N w0 x0w0
,x1w0

, . . . ,xN
w0

. 2.9. 3

The points x0w0
,x1w0

, . . . ,xN are the partition points of Pw0  Pw0N. The largest of

the lengths of the w0-subintervals (3.1.1) is the norm of Pw0 , written as Pw0; thus,

Pw0 w0 1w0 iw0 N
max x i w0 x iw0 1w0

, 2.9. 4

where RHS of (2.9.4) is defined by w0-transfer.

If Pw0 and Pw0
 are partitions of a,b#w0 , then Pw0

 is a refinement of Pw0 if every

partition point of Pw0 is also a partition point of Pw0
 ; that is, if Pw0

 is obtained by

inserting additional points between those of Pw0 .

Definition 2.9.1.If w0-internal f is defined on a,b#w0 , then w0-internal w0-hyper
finite w0-sum

w0
N  w0-

jw0 1w0

N
fc j w0 x j w0 x jw0 1w0

, 2.9. 5

where x jw0 1w0
w0 c j w0 x j, 1w0 w0 j w0 N and where c jjw0 1w0

N is any

w0-internal w0-hyper finite sequence, is a Riemann w0-hyper finite w0-sum of f
over
the partition Pw0N. We will say more simply that w0

N is a Riemann w0-hyper finite

w0-sum of f over a,b#w0 .

II.9.2.The w1-External w1-integral.



In this section we deal with w0-internal function f int  f #w0 where f :   ,defined on

a w0-finite interval a,b #w0 . A w0-hyper finite internal partition of a,b #w0 is a
w0-hyper finite set of w0-subintervals

x0w0
,x1w0

#w0 , x1w0
,x2w0

#w0 , . . . , xNw0 1w0
,xN

#w0 , 2.9. 1

.

Chapter III.Analysis on #w1w1 .

II.8.Internal and external series in #wn of
wn-hyperreals.

II.8.1.Internal series in #w0 of w0-hyperreals.
Definition 2.8.1. We call w0-series in ₣#w0 (which means #w0or #w0 ) any pair

f #w0 ,g #w0  of w0-hypersequences, where f #w0 : #w0  ₣#w0 is w0-internal

mapping which defines the general terms of the w0-series, also noted xn #w0
f #w0 n

and
g : #w0  ₣#w0 represents the sequence of partial w0-internal w0-hyperfinite sums

sn, i.e.

sn #w0
w0-

i0

n

xn #w0
g #w0 n. 2.8. 1

Instead of f #w0 ,g #w0 , the w0-series in ₣#w0 is frequently marked as an
w0-hyperinfinite sum

w0- 
n0


#w0

xn 2.8. 2

Definition 2.8.2. We say that the w0-series f
#w0 ,g #w0  is w0-convergent to

s w0 
#w0 , respectively s is the sum of the w0-series, iff the w0-hypersequence

snnw0 
#w0 , of partial sums, w0-converges to s, and we note

w0- 
n0


#w0

xn w0 w0- limn
#w0 sn w0 s. 2.8. 3

Theorem 2.8.1.(The general Cauchy’s criterion). The w0-series (2.8.2) is

w0-convergent iff for any  w0  0w0 we can find n0 w0 #w0 such that

w0- 
nw0 1w0

nw0 p

xn w0  2.8. 4



holds for all n w0  n0 and arbitrary p w0 #w0 .

Proof.The assertion of the theorem reformulates in terms of  and n0 the fact that a
w0-series (2.8.2) is w0-convergent iff the hypersequence snnw0 

#w0 of partial

sums is w0-fundamental. This is valid in both #w0and #w0 .

Theorem 2.8.2. If w0-series (2.8.2) is convergent, then xn w0 0
#w

0 as

n w0 
#w0 .

Proof. Take p  1 in the (2.8.4) above.

Example 2.8.1.In order to get the complete answer about the w0-convergence of the

w0- hyperinfinite geometric series w0-
n0


#w0

zn we consider two cases:

(i) If |z|w0 w0 1
#w

0 , then zn w0 0
#w

0 , and consequently sn w0 s, where

sn w0 w0- 
iw0 0

#w
0

iw0 nw0 1
#w

0

zn w0

1 w0 z
n

1 w0 z
w0

1
1 w0 z

w0 s. 2.8. 5

(ii) If |z|w0 w0
 1

#w
0 , then the series is w0-divergent because the general term is

not

tending to zero 0
#w

0 (as the above Theorem 2.8.2 states).
Theorem 2.8.3. (The 1st criterion of comparison) Let

II.8.2.w1-Internal and w1-external series in 
#w1 of

w1-hyperreals.

II.9.wn-Internal and wn-External series of wn-functions

II.9.1.w0-Internal series of w0-functions
Definition 2.9.1. Let D w0 

#w0 be a fixed domain, and let

 D,#w0  #w0
D
be the set of all w0-functions f : D  #w0 .Any w0-function

F : #w0   D,#w0 is called w0-hypersequence of (w0-hyperreal) w0-functions.

Most frequently it is marked by mentioning the terms fnnw0 
#w0 or fn, where fn

w0 Fn, and n is an arbitrary w0-hypernatural number.

Definition 2.9.2.We say that a number x w0 D is a point of w0-convergence of fn

if the numerical sequence fnxnw0 
#w0 is w0-convergent. The set of all such points



forms the set (or domain) of w0-convergence, denoted w0-Dc. The resulting function,

say  : w0-Dc  #w0 , expressed at any x w0 Dc by

x w0 w0-
n

#w0

lim fnx 2.9. 1

is called w0-limit of the given w0-sequences of w0-functions. Alternatively we say
that  is the (point-wise) w0-limit of fn, fn p-tends to  and we abreviate


p
w0 w0-

n
#w0

lim fn. 2.9. 2

Remark 2.9.1. The notions of series of functions, partial sums, infinite sum, domain of
convergence, etc., are similarly defined in  D,#w0 .

Definition 2.9.3.A functional w0-series is a series

w0- 
n0


#w0

unx 2.9. 3

where each term of the series unx is a w0-function on an interval I.

We can also de ne pointwise w0-convergence for functional w0-series:

Definition 2.9.4.The functional w0-series (2.9.3) is pointwise w0-convergent for
each x w0 I if the w0-limit

w0- 
n0


#w0

unx w0 w0-
N

#w0

lim 
n0

N

unx 2.9. 4

exists for each x w0 I.

’

II.2.THE INTEGRAL.

Let f : I   be a positive continuous function, where I is some interval in . Let
a,b  I and let x be a positive real. The Riemann sum is defined as


a

b

fxx  
i0

n1
fx ix  fxnb  nx, 2. 2.1

where n is the largest integer such that a  nx and where

x0  a,x1  a  x, . . . ,xn, a  nx. 2. 2.2

Remark 2.2.1.Note that it may happen that nx  b  n  1x. [Since f is positive
and continuous we have formed the Riemann sum as the sum of the rectangles over
each subinterval with height equal to the value of fx at the left end of the base of the
rectangle.]The Riemann sum (2.2.1) for fixed a,b is a function of x. By extension and
transfer this function is also defined for positive w-infinitesimals d#wx. We get a
corresponding hyperfinite sum




a

b

fxd#wx, 2.2. 3

where the number n  #w\ in Eq.(2.2.1) is now an w-infinite number.
Remark 2.2.2.Note that the Riemann sum given by Eq.(2.2.3) is a finite w-hyperreal

number; thus it has a w-standard part.
Definition 2.2.1.Let a,b  I and let d#wx be a positive w-infinitesimal. The

definiteinte integral of f from a to b with respect to d#wx is the w-standard part of the
Riemann sum,


a

b

fxdx  w-st 
a

b

#w fxd#wx . 2.2. 4

Remark 2.2.3.Note that this definition depends upon the choice of infinitesimal dx. But
it can be immediately proved that if dx and du are two positive w-infinitesimals, then


a

b

fxdx  
a

b

fudu. 2.2. 5

Note that the x in fx and u in fu are dummy variables; the d#wx and the d#wu are
not.
Notation.2.2.1.

Remark 2.2.It may be convenient to let the internal space by the
#w-transform or by the #w-transform in general case of a classical standard measure
space. For instance,if ,, is the standard Lebesgue space on , our internal

starting
point could be the w-internal measure space #w, #w, #w and w-internal measure
space #w, #w, #w.Here #w and #w is finitely, hence finitely, hence hyperfinitely,
additive on the w-internal algebra #wand w-internal algebra #w correspondingly.Of
course -additivity is lost in the transition. However, it is restored
by passing to the associated Loeb space.By transfer we can write down integrals


A

#w fxd#wx

A w #w
2.2. 5

and


A

#wfxd#wx

A w
#w,

2.2. 5

which however must be handled with some care: no countable manipulations are
allowed.



Chapter III.

III.1.Riemann’s non differentiable function.
According to Weierstrass [32],in a talk to the Royal Academy of Sciences in Berlin on

18 July 1872, Riemann introduced the function:

x 
n1


sinn2x

n2 .
3.1. 1

in order to warn that continuous functions need not have a derivative.Not succeeding
in verifying that x is nowhere differentiable, Weierstrass proved this property instead
for the series

Wx 
n1



bn cosant, 0  b  1,0  a. 3.1. 2

This appeared first in print in Du-Bois-Reymond [33]. According to Butzer and Stark
[34], there are no other known sources which confirm Riemann’s role in the story.Hardy
[35,pp.322-323] proved that Riemann’s function x is not differentiable in any irrational
point x   and also x is not differentiable in a some class of rational point x  
.Gerver [36] succeeded in 1970 in showing that at every rational point r  p/q with p and
q both odd, x is differentiable, and has derivative equal to 1/2 at r. Furthermore he
showed that at all other rational points the function is not differentiable. Other,shorter
proofs were given by Smith [37], Quefelec [38], Mohr [39], Itatsu [40], Luther [41] and
Holschneider and Tchamitchian [42]. For previous reviews on Riemann’s function, see
Neuenschwander [43] and Segal [44]; the literature list of [34] contains many further
references abaut the
Riemann’s function x. In paper [45] Gerver introduced the function:

G3,x 
n1


expin3x

n
.

3.1. 3

For reals 2    4,in [45] directed analyze the behavior,near the points y 
p
q of

(3.1.3).considered as a function of x ,and expand this series into a constant term, a

term on the order of quantity z1x  x  p
q

1
3 , a term linear in z2x  x  p

q a

“chirp" term on the order of quantity z2x  x  p
q

21
4 , and an error term on the

order z2x  x  p
q


2 . At every such rational point, the left and right derivatives are

either both finite (and equal) or both infinite, in contrast with the quadratic series, where
the derivative is often finite on one side and infinite on the other. However, in the cubic
series, again in contrast with the quadratic case, the chirp term generally has a different
set of frequencies and amplitudes on the right and left sides. Finally, in [45] was shown
that almost every irrational point can be closely approximated, in a suitable Diophantine



sense, by rational points where the cubic series has an infinite derivative. This implies
that when

  97  1
4

 2.212. . . , 3.1. 4

both the real and imaginary parts of the cubic series are differentiable almost nowhere.
At the same time it is necessary to note that in spite of a big progress obtained in the
considered studies area, any general absence criterions of the finite almost everywhere
derivate for absolutely convergent trigonometrical series was not obtained. In [22]-[23],
using the methods of paralogical nonstandard analysis, was obtained the general
criterion of the absence almost everywhere finite derivative for the following continuous
function x;1n,2n :

x;1n,2n 
n1


expi  x  1n

2n
,

1 :   ,2 :   ,


n1


1

|2n|
 .

3.1. 5

It is shown in [22]-[23] that under condition


n1


1n
2n

2

 
3.1. 6

function x;1n,2n does not have a finite derivate on a quantity of a positive
measure. Particularly we shall reinforce the foregoing Gerver’s result by showing that
inequality (3.1.4) is possible to change by inequality   4, at least for a quantity of
points of a positive measure.

.

III.2.Non standard proof of the non-differentiability of the
Riemann function x.
Non-differentiable Riemann function x is defined by

x 
n1


sinn2x

n2 , 3.2. 1

see subsection III.1.
Theorem 3.2.1. x is not a.e. differentiable on 0,.
Proof. See Remark 3.2.1 etc.
Remark 3.2.1.Remind that there exist imbeding

j #w1
:   w1 

#w1 3.2. 2

and there exist imbeding



j #w1
:   w1 

#w1 3.2. 3

such that

j #w1
  w1

 #w1
 #w1

#w1 3.2. 4

and

j #w1
  w1

 #w1
 #w1

#w1 3.2. 5

correspondingly.
Notation.3.2.1.(i) We will use the following notation j #w

1
n  n #w1

,n   and

j #w1
x  #w

1
x #w

1
,x  , j #w1

x  y  #w
1

x #w
1

 #w
1

y #w
1

,

j #w1
  #w

1
 #w

1
, etc.

(ii) we often letter for short: simply n instead n#w1
,simply x instead x#w1

,

simply x  y instead x #w
1

 #w
1

y #w
1

, etc.

(iii) We will use the following notation f #w1 ,#w1 ,#w1
, . . . instead #w1 f, #w1 ,

#w1  , j #w1
T1 w

1
Tw

1

1 etc.

(iv) we let for short j #w1
sinn2x w

1
sin #w1

n#w1
2 x , where x  #w1

Tw
1

1 , etc.

Definition 3.2.1.We define now a w 1-function  #w1
: Tw

1

1  w1
Tw

1

1 :

 #w1
j #w1

x w
1

j #w1
x w

1

j #w1

n1


sinn2x

n2 w
1


nw

1
w

1
1w

1

w
1 sin #w1 n#w1

2 x

n#w1
2 ,

x  #w1
Tw

1

1

3.2. 6

Definition 3.2.2.We define now a w 1-function  #w1

 : T1#w1  w1
T1#w1 :

 #w1

 x w
1

w
1

Ext-w 1- 
n  w

1
1 w

1

M cn  #w
1

sin#w
1 n2  #w

1
x

n2 , 3.2. 7

where M w1 
#w1 \ w1  #w1

and

cn  w
1

1 #w
1

iff n  w
1
 #w1

0 w
1

iff n  w
1
#w1 \ w1  #w1

3.2. 8

Remark 3.2.3.Note that for any x  #w1
Tw

1

1 :

 #w1
x  #w1

 #w1

 x. 3.2. 9



Remark 3.2.4.We assume now that a Riemann function x is differentiable almost
everywhere in the sense of the Lebesgue measure d  d, i.e., a.e. the derivative

x
exists and finite,i.e., x such that a.e. x   and

a.e. : x  x  . 3.2. 10

Remark 3.2.4.Therefore (i) from Eq.(3.2.9) by w 1-transfer it follows that a

w 1-function  #w1

 x is #w
1
-differentiable #w

1
-almost everywhere on T1#w1 in the

sense of the w 1-transfered Lebesgue measure d#w1  d#w1. (ii) By

w 1-transfer

from (3.2.10) we obtain

w 1-a.e. :
d#w1

d#w1x
 #w1

 x  #w1
#w1 x, 3.2. 11

where

w 1-a.e. : 
#w1 x  #w1

#w1 3.2. 12

From Eqs.(3.2.7)-(3.2.8) by w 1-differentiation one obtains

d#w1

d#w1x
 #w1

 x w
1

w
1

d#w1

d#w1x
Ext-w 1- 

n  w
1

1 w
1

M cn  #w
1

sin#w
1 n2  #w

1
x

n2

w
1

Ext-w 1- 
n  w

1
1 w

1

M
d#w1

d#w1x

cn  #w
1

sin#w
1 n2  #w

1
x

n2

w
1

w
1

Ext-w 1- 
n  w

1
1 w

1

M

cn  #w
1

cos#w1 n2  #w
1

x .

3.2. 13

Thus finally we obtain

x w
1

d#w1

d#w1x
 #w1

 x w
1

w
1

Ext-w 1- 
n  w

1
1 w

1

M

cn #w1
 #w

1
cos#w1 n2  #w

1
x .

3.2. 14

Remark 3.2.5. Note that a w 1-function x is not w 1-a.e. w 1-finite on T1#w1 , i.e.

s w 1-a.e. : x  #w1
#w1 x w

1
T1#w1 3.2. 15

In order to proof (3.2.15) we calculate now the w 1-integral


,

w
1

x w
1
xd#w1x.



From Eq.(3.2.14) one obtains

x w
1
x w

1

w
1

Ext-w 1- 
n #w1

 w
1

1 w
1

M


m #w1

 w
1

1 w
1

M

cn #w1
 #w

1
cm #w1

w
1

w
1

cos#w1 n #w1

2  #w
1

x w
1

cos#w1 m #w1

2  #w
1

x .

3.2. 16

From Eq.(3.2.16) by w 1-integratiion one obtains


,

w
1

x w
1
xd#w1x w

1

w
1

Ext-w 1- 
n #w1

 w
1

1 w
1

M


m #w1

 w
1

1 w
1

M

cn  #w
1

cm w
1

w
1


0,

w
1

cos#w1 n2  #w
1

x w
1

cos#w1 m2  #w
1

x d#w1x.

3.2. 17

where by d#w1x we denote #w1- transfered standard Lebesgue measure dx on

0,.
Note that


,

w
1

cos#w1 n2  #w
1

x w
1

cos#w1 n2  #w
1

x d#w1x w
1

w
1

3.2. 18

and


,

w
1

cos#w1 n2  #w
1

x w
1

cos#w1 m2  #w
1

x d#w1x w
1

0w
1

3.2. 19

iff s n #w1
w

1
m #w1

.Then from Eq.(3.2.17) and Eqs.(3.2.18)-(3.2.19) one obtains


,

w
1

x w
1
xd#w1x w

1

w
1

w
1

Ext-w 1- 
n  w

1
1 w

1

M

cn w
1

w
1

w
1
,

3.2. 20

where

  w
1

Ext-w 1- 
n  w

1
1 w

1

M

cn 3.2. 21

and therefore


,

w
1

x w
1
xd#w1x w

1
w

1
w

1
. 3.2. 22



Remark 3.2.6. Note that obviously  w
1
#w1 \w1fin

#w1and therefore (3.2.15)

holds.
But (3.2.15) contradicts with (3.2.11). This contradiction finalized the proof.

III.3.Non standard proof of the non-differentiability of the
Generalized Riemann function x;1n,2n.
Theorem 3.3.1. Let x;1n,2n be the continuous function

x;1n,2n 
n1


expi  x  1n

2n
, 3.3. 1

where 1 :   , 1 :    and the following conditions holds:
(i) nm1n  1m  n  m,

(ii)
n1


1

|2n|
  and

(iii)


n1


1n
2n

2

 . 3.3. 2

Then a function x;1n,2n does not have a finite derivative on a set
  , of
a positive Lebesgue measure   0.
Proof. Similarly to proof of the Theorem 3.3.1.
Definition 3.3.1.We define now a w 1-function

 #w1
x;1n,2n : Tw

1

1  w1
Tw

1

1 :

 #w1
x;1n,2n w

1
j #w1

x;1n,2n w
1

j #w1

n1


sin1n  x

2n
w

1


nw

1
w

1
1w

1

w
1 sin #w1 1w

1
nw

1
w

1
x

2w
1

nw
1

,

1w
1

nw
1

w
1

j #w1
1n,

2w
1

nw
1

w
1

j #w1
2n.

3.3. 3

Definition 3.3.2.We define now a w 1-function  #w1

 : T1#w1  w1
T1#w1 :

 #w1

 x;1n,2n w
1

w
1

Ext-w 1- 
n  w

1
1 w

1

M cn  #w
1

sin#w
1 1

w
1 n w

1
x

2

w
1 n

,
3.3. 4

where M w1 
#w1 \ w1  #w1

and



cn  w
1

1 #w
1

iff n  w
1
 #w1

0 w
1

iff n  w
1
#w1 \ w1  #w1

3.3. 5

Remark 3.3.1.Note that for any x  #w1
Tw

1

1 :

 #w1
x;1n,2n  #w1

 #w1

 x;1n,2n. 3.3. 6

Remark 3.3.2.We assume now that a Generalized Riemann function
x;1n,2n is
differentiable almost everywhere in the sense of the Lebesgue measure d  d, i.e.,
a.e. on T1 the derivative x;1n,2n exists and finite,i.e., x such that a.e.
x   and

a.e. : x;1n,2n  x  . 3.3. 7

Remark 3.3.3.Therefore (i) from Eq.(3.3.6) by w 1-transfer it follows that a

w 1-function  #w1

 x;1n,2n is #w
1
-differentiable #w

1
-almost everywhere on

T1#w1 in the sense of the w 1-transfered Lebesgue measure d#w1  d#w1. (ii) By

w 1-transfer from (3.3.7) we obtain

w 1-a.e. :
d#w1

d#w1x
 #w1

 x;1n,2n  #w1
#w1 x, 3.3. 8

where

w 1-a.e. : 
#w1 x  #w1

#w1 3.3. 9

From Eqs.(3.3.4)-(3.3.5) by w 1-differentiation one obtains

d#w1

d#w1x
 #w1

 x;1n,2n w
1

w
1

d#w1

d#w1x
Ext-w 1- 

n  w
1

1 w
1

M cn  #w
1

sin#w
1 1

w
1 n w

1
x

2

#w
1 n

w
1

Ext-w 1- 
n  w

1
1 w

1

M
d#w1

d#w1x

cn  #w
1

sin#w
1 1

w
1 n w

1
x

2

#w
1 n

w
1

w
1

Ext-w 1- 
n  w

1
1 w

1

M

cn  #w
1

1

w
1 n

2

#w
1 n

 #w
1

 #w
1

cos#w1 1

w
1 n w

1
x .

3.3. 10

Thus finally we obtain



x;1n,2n w
1

d#w1

d#w1x
 #w1

 x;1n,2n w
1

w
1

Ext-w 1- 
n  w

1
1 w

1

M

cn  #w
1

1

w
1 n

2

#w
1 n

 #w
1

 #w
1

cos#w1 1

w
1 n w

1
x .

3.3. 11

Remark 3.3.4. Note that a w 1-function x;1n,2n is not w 1-a.e. w 1-finite on

T1#w1 , i.e.

s w 1-a.e. : x;1n,2n  #w1
#w1 x w

1
T1#w1 3.3. 12

In order to proof (3.2.12) we calculate now the w 1-integral


,

w
1

x;1n,2n w
1
x;1n,2n d#w1x. 3.3. 13

From Eq.(3.2.11) one obtains

x;1n,2n w
1
x;1n,2n w

1

w
1

Ext-w 1- 
n #w1

 w
1

1 w
1

M


m #w1

 w
1

1 w
1

M

cn  #w
1

cm w
1

w
1

1

w
1 n

2

#w
1 n

w
1

1

w
1 m

2

#w
1 m

w
1

w
1

cos#w1 1

w
1 n w

1
x w

1
cos#w1 1

w
1 m w

1
x .

3.2. 16

IV.1.Non standard proof of the Carleson’s theorem.
Let us consider Fourier series in space 2T1


n0


cn expinx, 4.1. 1

where T1  ,, such that


n0


|cn |2  . 4.1. 2

Remark 4.1.1.Note that in this section we will be consider more general trigonometric
series such that




k1


ck expixnkx, 4.1. 3

where T1  ,, nk   if k   and


k1


|ck |2  , 4.1. 4

or


k1


cnkx expixnkx, 4.1. 5

where T1  ,, nk   if k   and


k1


|cnkxk  |

2   4.1. 6

kxk  T1

(I) Now we go to prove that under the condition (4.1.6) the following statement holds:
for any sequence pk a.e. on Τ1

pk,k
lim 

k1

pk

cnkx expixnkx
2

 . 4.1. 7

(1) In contrary with (4.1.7) we assume now that : a.e. on Τ1


k1


cnkx expixnkx

2

 . 4.1. 8

Let x  Τ1be a real number and there exists a sequence nkxk such that

mq,q
lim 

k1

mq

cnkx expixnkx
2

 . 4.1. 9

Remark 4.1.2.Let x  Τ1be a real number. Note that a sequence nkxk mentioned
above in Eq.(4.1.7) in general case is not unique and there exists infinite set of the
sequences nk

l xk, l  1,2, . . .such that for any l  

mq,q
lim 

k1

mq

cnkl x expixnk
l x

2

 . 4.1. 10

Remark 4.1.3.Note that any sequence nk
l xk, l  1,2, . . . mentioned above in

Eq.(4.1.8) depend on number x  Τ1 and we will be denoted such sequences nk
l k

by
nk

l xk or by nkxk,mkxk,rkxk etc.

Remark 4.1.4.Note that from (4.1.7) it follows that : a.e. on Τ1

mq
lim 

k0

mq

cnkx expixnkx
2

 , 4.1. 11

where mq  ,q  .From (4.1.11) by #w1- transfer it follows that : #w1- a.e. on

Τ#w1
1  Τ1

#w1



#w1-Ext 
kw1 0w1

M

c
nk
#w1

x

#w1 exp ix #w1
nk
#w1 x

2

#w1

#w1-Ext 
k1w1 0w1

M

#w1-Ext 
k2w1 0w1

M

c
nk1

#w1
x

#w1 c
nk2

#w1
x

#w1 #w1

exp ix #w1
nk1
#w1 x #w1

exp ix #w1
nk2
#w1 x #w1

#w1
NMx,

4.1. 12

where M w1 
#w1 \w1 and

NMx w1 
#w1 \#w1

, 4.1. 13

where #w1-sequence

nk
#w1 x

k#w1


#w1
4.1. 14

is obtained by using #w1- transfer from the standard sequence nkxk, i.e.

nk
#w1 x

kw1 
#w1

w1 nkxk
#w1 . 4.1. 15

Remark 4.1.5. We introduce now w1-inconsistent hyperintegers nk
# corresponding to

trigonometric series (4.1.5) by the following way


xw1 Τ#

1

nk
# w1

w nk
#w1 x . 4.1. 16

Note that for any w1-inconsistent hyperintegers nk
# and mk

# the following property
holds

nk
# w1

mk
#  x nk

# w1

w nk
#w1 x  mk

# w1

w nk
#w1 x . 4.1. 17

Notation 4.1.1. We often abbreviate for short

nk,x
# #w1

w nk
#w1 x, 4.1. 18

where x w1 Τ#
1, instead (4.1.16).

Definition 4.1.1. For any w1-inconsistent hyperinteger nk
# we define a w1-set

Valnk
#

by

x nk
#w1 x w1 Valnk

#  nk,x
# #w1

w nk
#w1 x . 4.1. 19

Note that for any w1-inconsistent hyperintegers nk
# and mk

# the following property
holds

nk
# w1

mk
#  Valnk

# w1
Valmk

#. 4.1. 20

Definition 4.1.2.For any w1-inconsistent hyperintegers nk
# and mk

# we define now the
relation nk

# w1
mk

# :

nk
# w1

mk
#  Valnk

# w1
Valmk

#. 4.1. 21



Remark 4.1.6.(i) The vector w1-addition nk
# #w1

mk
# of w1-inconsistent

hyperintegers
nk

# and mk
# is defined by


xw1 Τ#

1

nk
# w1 mk

# w1

w nk
#w1 x w1 mk

#w1 x 4.1. 22

or

x w1 Τ#
1 nk,x

# w1 mk,x
# w1

w nk
#w1 x w1 mk

#w1 x 4.1. 23

(ii) The vector w1-multiplication on scalar  takes any scalar  #w1
#w1or

 w1 
#w1 and any w1-inconsistent hyperinteger nk

# and gives w1-inconsistent

hyperreal number or nonstandard complex number defined by


xw1 Τ#

1

 w1 nk
# #w1

w  w1 nk
#w1 x . 4.1. 24

or

xx w1 Τ#
1 nk,x

# w1 mk,x
# w1

w nk
#w1 x w1 mk

#w1 x 4.1. 25

(iv) Note that the following properties holds:
(a) w1-associativity of vector w1-addition:
nk

# w1 mk
# w1 kk

# w1 nk
# w1 mk

# w1 kk
#,

(b) w1-associativity of vector w1-multiplication:

nk
# #w1

mk
# w1

mk
# #w1

nk
# #w1

mk
# #w1

kk
# ,

(c) w1-commutativity of vector w1-addition:
nk

# w1 mk
# w1 mk

# w1 nk
#,

(d) w1-commutativity of vector w1-multiplication:
nk

# w1 mk
# w1 mk

# w1 nk
#,

(c) inverse elements of vector w1-addition: nk
# w1 w1 nk

# w1 0w1

(d) compatibility of vector w1-multiplication on scalars , w1
#w1 with

multiplication
in field #w1 :
 w1 nk

# w1  w1 mk
# w1  w1  w1 n w1 mk

#.

Definition 4.1.6. Let # be a w1-set of the all w1-inconsistent hyperintegers nk
#

with binary operations w1 ,w1 ,etc. defined above.The tuple #,w1 ,w1 is an

inconsistent #w1 -algebra and we will be denoted this algebra by #.
Remark 4.1.7. We introduce now w1-inconsistent complex nonstandard numbers ck

#

corresponding to trigonometric series (4.1.5) by the following way


xw1 Τ#

1

cnk#
# w1

w c
nk
#w1

x

#w1 . 4.1. 26

Notation 4.1.2. We often abbreviate for short ck
# instead notation cnk#

# , i.e.

ck
#  cnk#

# . 4.1. 27

Remark 4.1.8. Note that for any w1-inconsistent numbers ck1
# and ck2

# the following



property holds

ck1
# w1

ck2
#  x ck1

# w1

w nk1
#w1 x  ck2

# w1

w nk2
#w1 x . 4.1. 28

Notation 4.1.3. We often abbreviate for short

ck,x
# #w1

w ck
#w1 x, 4.1. 29

where x w1 Τ#
1, instead (4.1.28).

Definition 4.1.7. For any w1-inconsistent number ck
# we define a w1-set Valck

# by

x ck
#w1 x w1 Valck

#  ck,x
# #w1

w ck
#w1 x . 4.1. 30

Note that for any w1-inconsistent numbers ck1
# and ck2

# the following property holds

ck1
# w1

ck2
#  Valck1

#  w1
Valck2

# . 4.1. 31

Remark 4.1.9.(i) The vector w1-addition ck1
# #w1

ck2
# of w1-inconsistent numbers ck1

#

and ck2
# is defined by


xw1 Τ#

1

ck1
# #w1

ck2
# w1

w ck1
#w1 x #w1

ck2
#w1 x 4.1. 32

or

xx w1 Τ#
1 ck1,x

# #w1
ck2,x
# w1

w ck1
#w1 x #w1

ck2
#w1 x 4.1. 33

(ii) The mixed w1-addition ck1
# #w1

ck2
# of w1-inconsistent numbers ck1

# and ck2
# is

defined by


x,yw1 Τ#

1

ck1
# #w1

ck2
# w1

w ck1
#w1 x #w1

ck2
#w1 y 4.1. 34

or

xyx,y w1 Τ#
1 ck1

# #w1
ck2
# w1

w ck1
#w1 x #w1

ck2
#w1 y 4.1. 35

(iii) Note that the following properties holds:
(a) w1-associativity of vector w1-addition:

ck1
# #w1

ck2
# #w1

ck3
# #w1

ck1
# #w1

ck2
# #w1

ck3
# ,

(b) w1-associativity of vector w1-multiplication:

ck1
# #w1

ck2
# #w1

ck,3
# #w1

ck1
# #w1

ck2
# #w1

ck,3
# ,

(c) w1-commutativity of vector w1-addition:
ck1
# #w1

ck2
# #w1

ck2
# #w1

ck1
# ,

(d) w1-commutativity of vector w1-multiplication:
ck1
# #w1

ck2
# #w1

ck2
# #w1

ck1
# ,

(e) w1-associativity of mixed w1-addition:

ck1
# #w1

ck2
# #w1

ck3
# #w1

ck1
# #w1

ck2
# #w1

ck3
# ,

(f) w1-commutativity of mixed w1-addition:
ck1
# #w1

ck2
# #w1

ck1
# #w1

ck2
# .

Definition 4.1.3.Let zkxk be any sequence of functions zkxk such that
zk : Τ1  .Assume that a #w1-sequence



zk
#w1 x

k#w1


#w1
4.1. 36

is obtained by using #w1- transfer from the standard sequence zkxk, i.e.

zk
#w1 x

kw1 
#w1

w1 zkxk
#w1 . 4.1. 37

We introduce now w1-inconsistent nonstandard complex numbers zk
# corresponding

to
sequence (4.1.37) by the following way


xw1 Τ#

1

zk
# w1

w zk
#w1 x . 4.1. 38

Remark 4.1.8. Note that for any w1-inconsistent numbers ck1
# and ck2

# the following

property holds

zk1
# w1

zk2
#  x zk1

# w1

w zk1
#w1 x  zk2

# w1

w zk2
#w1 x . 4.1. 39

Notation 4.1.4. We often abbreviate for short

zk,x
# #w1

w zk
#w1 x, 4.1. 40

where x w1 Τ#
1, instead (4.1.38).

Definition 4.1.4. For any w1-inconsistent number zk
# we define a w1-set Valzk

# by

x zk
#w1 x w1 Valzk

#  zk,x
# #w1

w zk
#w1 x . 4.1. 41

Note that for any w1-inconsistent numbers zk1
# and zk2

# the following property holds

zk1
# w1

zk2
#  Valzk1

#  w1
Valzk2

# . 4.1. 42

Definition 4.1.5.(i) The vector w1-addition zk1
# #w1

zk2
# of w1-inconsistent numbers

zk1
#

and ck2
# is defined by


xw1 Τ#

1

zk1
# #w1

zk2
# w1

w zk1
#w1 x #w1

zk2
#w1 x 4.1. 43

or

xx w1 Τ#
1 zk1,x

# #w1
zk2,x
# w1

w zk1
#w1 x #w1

zk2
#w1 x 4.1. 44

(ii) The mixed w1-addition zk1
# #w1

zk2
# of w1-inconsistent numbers zk1

# and zk2
# is

defined by


x,yw1 Τ#

1

zk1
# #w1

zk2
# w1

w zk1
#w1 x #w1

zk2
#w1 y 4.1. 45

or

xyx,y w1 Τ#
1 zk1

# #w1
# zk2

# w1

w zk1
#w1 x #w1

zk2
#w1 y 4.1. 46

(iii) Note that the following properties holds:
(a) w1-associativity of vector w1-addition:



zk1
# #w1

zk2
# #w1

zk3
# #w1

zk1
# #w1

zk2
# #w1

zk3
# ,

(b) w1-associativity of vector w1-multiplication:

zk1
# w1

zk2
# w1

zk,3
# w1

zk1
# #w1

zk2
# w1

zk,3
# ,

(c) w1-commutativity of vector w1-addition:
zk1
# w1

zk2
# w1

zk2
# w1

zk1
# ,

(d) w1-commutativity of vector w1-multiplication:
zk1
# w1

zk2
# w1

zk2
# w1

zk1
# ,

(e) w1-associativity of mixed w1-addition:

zk1
# #w1

zk2
# #w1

zk3
# #w1

zk1
# #w1

zk2
# #w1

zk3
# ,

(f) w1-commutativity of mixed w1-addition:
zk1
# w1

zk2
# w1

zk1
# w1

zk2
# .

Definition 4.1.7.
Definition 4.1.8.of Let zk

#
kw1 

#w1 be a w1-sequence of w1-inconsistent

numbers
zk
#,k w1

#w1 ,m w1w1
#w1 .External vector w1-summation of the sequence

zk
#kw1 0w1

may be defined recursively by using external induction principle as

follows:
if m is any w1-hyperinteger, then the recursion schemata reads

#w1-Ext 
kw1 0w1

0w1

zk
# w1

z0w1

# ,

#w1-Ext 
kw1 0w1

m

zk
# w1

#w1-Ext 
kw1 0w1

mw1 1w1

zk
# w1

zm# .

4.1. 47

Propozition 4.1.1.

Definition 4.1.7.

Definition 4.1.8.

#w1- w1
-Ext 

kw1 0w1

M

ck,i
# 4.1. 

#w1  Ext 
kw1 0w1

M

ck,i
# 4.1. 

Definition 4.1.7.
Definition 4.1.8. We define now a function Expu,nk

# : Τ#
1 w1 

#  # by

expiu w1 nk
# w1

w expiu w1 nk,x
#  4.1. 



where u,x w1 Τ#
1,nk

# #w1
# and k w1

#w1 .

Remark 3.3.5. We introduce now a w1-function Mx by the following way

Mx #w1
#w1-Ext 

kw1 0w1

M

cnk#  exp ix #w1
nk

# . 3.3. 16

From Eq.(3.3.8) and Eq.(3.3.10) we obtain

x #w1
#w1-Int 

kw1 0w1

M

cnk# exp ix #w1
nk

# #w2
NMx. 3.3. 12

By #w1- integration From Eq.(3.3.11) we obtain

M #w1
#w1-Ext 

Τ#w1

1

M
2 xd#w1x #w1

#w1-Ext 
Τ#w1

1

#w1-Int 
kw1 0w1

M

cnk# exp ix #w1
nk

#

2

d#w1x #w1

#w1
#w1-Int 

kw0 0w0

M

cnk#
2
,

3.3. 13

where by d#w1x we denote #w1- transfered standard Lebesgue measure dx on

Τ1. From (3.3.2) by #w1- transfer it follows that M w1 
#w1 \

M #w1
#w1-Ext 

kw1 0w1

M

cnk#
2
w1 fin

#w1 , 3.3. 14

i.e. the quantity M alwais is #w1- finite i.e.

s M w1 
#w1 \w1fin

#w1 . 3.3. 15

From RHS of the Eq.(3.3.12) By #w1- integration we obtain

#w1-Ext 
Τ#w1

1

NM
2 xd#w1x #w2

#w2 
Τ#w1

1

#w1-Ext 
kw1 0w1

M

cnk# exp ix #w1
nk

#

2

d#w1x #w1

#w1
#w1-Ext 

kw1 0w1

M

cnk#
2
#w1

M

3.3. 16

But on other hand from Eq.(3.3.8) By #w1- integration we obtain




Τ#w1

1

#w1NMxd
#w1x #w1

#w1 
Τ#w1

1

#w1 #w1-Int 
kw0 0w

M

cnkx
#w1 exp ix #w1

nk
#w1 x d#w1x

w1 
#w1 \w1fin

#w1 .

3.3. 17

Obviously by (3.3.15),Eq.(3.3.16) and Eq.(3.3.17) one obtains a contradiction.

(II) Now we go to prove that: a.e. on Τ1


n
lim 

n0

n

cn expinx  . 3.3. 17

It follows from (I) that


k
lim 

nk0

nk

cnk expinkx 
k
lim 

nk0

nk

cnk expinkx  , 3.3. 18

where nk   iff k  .
We assume now that: a.e. on Τ1


n
lim 

n0

n

cn expinx. 3.3. 19

Let z  Τ1be a real number such that


n
lim 

n0

n

cn expinz. 3.3. 20

Notice that (3.3.20) meant that there exists countable sequence nkzk such that


k
lim 

nk0

nkz

cnkz expiznkz. 3.3. 21

Notice that (3.3.21) meant that there exists z  0 and N   such that


nkznk1z

nkznk2z

cnkz expiznkz  z, 3.3. 22

where nk2z  nk1z  N.

From (3.3.22) by #w1- transfer it follows that : #w1- a.e. on Τ#w1
1  Τ1

#w1

#w1-Ext 
nk1

#w1
x

nk2

#w1
x

c
nk
#w1

x

#w1 exp ix #w1
nk
#w1 x #w1

 #w1 x, 3.3. 23

where nk1
#w1 x w1 

#w1 \ and nk2
#w1 x w1 

#w1 \ and where a sequence

nk
#w1 x

k#w1


#w1

is obtained by using #w1- transfer from sequence nkxk, i.e.

nk
#w1 x

kw1 
#w1

#w1
nkxk

#w1 . 3.3. 24



Remark 3.3.5. We introduce now w1-inconsistent numbers by the following way


xw1 Τ#

1

nk
# #w1

nk
#w1 x . 3.3. 25

Remark 3.3.6. We introduce now a w1-function Mx by the following way

nk1
# ,nk2

# x #w1
#w1-Ext-

nk1
#

nk2
#

cnk#
#w1cnk# exp ix #w1

nk
# . 3.3. 26

From Eq.(3.3.23) and Eq.(3.3.25) we obtain

x #w1
#w1-Ext-

nk1
#

nk2
#

cnk# exp ix #w1
nk

# #w2
#w1 x. 3.3. 12

By #w1- integration From Eq.(3.3.26) we obtain

M #w1
#w1-Ext- 

Τ#w1

1

M
2 xd#w1x #w1


Τ#w1

1

#w1 #w1-Int 
kw1 0w1

M

cnk# exp ix #w1
nk

#

2

d#w1x #w1

#w1
#w1-Int 

kw0 0w0

M

cnk#
2
,

3.3. 13

where by d#w1x we denote #w1- transfered standard Lebesgue measure dx on

Τ1. From (3.3.2) by #w1- transfer it follows that M w1 
#w1 \

M #w1
#w1-Ext 

kw1 0w1

M

cnk#
2
w1 fin

#w1 , 3.3. 14

i.e. the quantity M alwais is #w1- finite i.e.

s M w1 
#w1 \w1fin

#w1 . 3.3. 15

From RHS of the Eq.(3.3.12) By #w1- integration we obtain


Τ#w1

1

#w1NM
2 xd#w1x #w2

#w2 
Τ#w1

1

#w1 #w1-Int 
kw1 0w1

M

cnk# exp ix #w1
nk

#

2

d#w1x #w1

#w1
#w1-Int 

kw1 0w1

M

cnk#
2
#w1

M

3.3. 16

But on other hand from Eq.(3.3.8) By #w1- integration we obtain




Τ#w1

1

#w1NMxd
#w1x #w1

#w1 
Τ#w1

1

#w1 #w1-Int 
kw0 0w

M

cnkx
#w1 exp ix #w1

nk
#w1 x d#w1x

w1 
#w1 \w1fin

#w1 .

3.3. 17

Obviously by (3.3.15),Eq.(3.3.16) and Eq.(3.3.17) one obtains a contradiction.

Apendix 1.Paraconsistent Nonstandard Arithmetic
Designations 1.1. We will be write for short:

(i) x w0 y instead x s y  x w y  sx w
1

y ,

(ii) x w1 y instead x s y  x w0 y  x w1 y  sx w
2

y ,

(iii) x wn y instead x s y  x w0 y . . . x wn y  sx w
n1

y ,

n  1,2, .
Designations 1.2. We will be write for short:
(i) x w0

s y instead sx w0 y, i.e. instead

s x s y  x w y  sx w
1

y ,

(ii) x w1 y instead x s y  x w0 y  x w1 y  sx w
2

y ,

(iii) x wn y instead x s y  x w0 y . . . x wn y  sx w
n1

y ,

n  1,2, .
The Theory PAs

The Theory PAw0

Let w0be a set containing an w0-element 0w0 , and let Sw0 : w0  w0 be a

w0-function satisfying the following postulates:
PAw00 : 0w0 w0 0w0 ,

PAw01 : Sw0x w0
s 0w0 , for all x w0 w0 .

PAw02 : x,y w0 w0Sw0x w0 Sw0y s x w0 y,

PAw03 : Let A be any w0-subset of w0 which contains 0w0 and which is closed

under
Sw0 i.e. Sw0x w0 A for all x w0 A. Then A w0 w0 .

PAw04. y1. . .ykA0w0   xAx s ASw0x

where A is any formula whose free variables are among x,y1,yk.



The Theory PAw1

Let w1be a w1-set containing an w1-element 0w1 , and let Sw1 : w1  w1 be

a
w1-function satisfying the following postulates:
PAw10 : 0w0 w0 0w0 ,

PAw11 : Sw0x w0
s 0w0 , for all x w0 w1

# .

PAw12 : If Sw0x w0 Sw0y then x w0 y, for all x,y w0 w1 .

PAw14.

PAw15.There exists w1-subset w1 w1 w1
# such that the following statement

holds:
any w1-subset X w1 w1has a strong w1-complement w1 \w1

s X in w1 .

Definition 1.1.The condition that X has a strong w1
-least element reads

x x w1
X y w1

Xs y w1
x . 1.2

Definition 1.2.
Remark 1.1.
Theorem 1.1. w1 is a strong well-w1-ordered w1-set.

Proof.We will prove by using strong (or complete) induction.
Let X be a w1-nonempty w1-subset of w1 . Suppose X does not have a w1 -least

element. Then consider the set w1 \w1
s X.

Case 1) w1 \w1
s X w1

w1
. Then X w1

w1 and so 0w1 is a strong w1 -least

element. Contradiction.

Case 2) s w1 \w1
s X w1

w1
. There exists an n w1

w1 \w1
s X such that for all

k w1 n; k w1
w1 \w1

s X.

(Note that n necessarily exists because 0w1 w1
w1 \w1

s X, else 0w1 w1
X and

would
be a w1 - least w1-element of X. )

Since we have supposed that N    X does not have a least element, thus n 2 X.
Using strong induction, we see that for all k  n; k 2 N    X and n 2 N    X. We can

conclude
n 2 N    X for all n 2 N. Thus N    X  N implies X  ?.
This is a contradiction to X being a nonempty subset of N.

Notation 1.1. We often abbreviate for short x w1
y instead

w y w1
x . 1.1

Definition 1.1.The condition that X has a weak w1
-least w1-element reads

x x w1
X y w1

Xw y w1
x . 1.2

or

x x w1
X y w1

X x w1
y . 1.3



Definition 1.1.Assume that the condition that X has a weak w1
-least element is

satisfied and let x be a weak w1
-least w1-element of the X.We will say that x is

inconsistent if the following statement is true

PAw03.The a weak w1-well-ordering principle:

(i) every non-empty w1-set of natural numbers w1-contains a weak w1
-least

element
or in the following equivalent form
(ii) every non-empty w1-set of natural numbers contains a w1

-least w1-element

Remark 1.1.We remind that

y w1
x  s x w1

y . 1.4

Theorem 1.1.
Proof. Assume that (i) and (ii) are both true statements.
Let XP be the w1-set of all natural numbers for which Py is false, i.e.

y w1
XP  sPy. 1.5

If XP is w1-empty set then we are done, so assume that XP is not w1-empty.Then,by
the weak well w1-ordering principle, XP has a weak w1

-least w1-member let’s say

x, i.e.

x x w1
XP y w1

XP x w1
y . 1.6

Since x is the weak w1
-least w1-member of XP it follows that P x w1

1w1
is

true. But this means, by (ii) above, that Px is true. We have a contradiction and so our

assumption that s XP w1
w1

must be wrong.
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