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Abstract: The purpose of this paper is to expldia pattern of fill factors observed in the
Fractional Quantum Hall Effect (FQHE), which appeato be restricted to odd-integer
denominators as well as the sole even-integer devataor of 2. The method is to use the
mathematics of gauge theory to develop Dirac molegpeithout strings as originally taught by
Wu and Yang, while accounting for orientation / amflement and related “twistor”
relationships between spinors and their environmietihe physical space of spacetime. We find
that the odd-integer denominators are included Hr@even-integer denominators are excluded
if we regard two fermions as equivalent only iftbtteir orientation and their entanglement are
the same, i.e., only if they are separated byndt 2r. We also find that the even integer
denominator of 2 is permitted because unit chaagspair into boson states which do not have
the same entanglement considerations as fermiomstreat all other even-integer denominators
are excluded because only integer charges, andraotional charges, can be so-paired. We
conclude that the observed FQHE fill factor pattezan be fundamentally explained using
nothing other than the mathematics of gauge th@osmgew of how orientation / entanglement /
twist applies to fermions but not to bosons, whastricting all but unfractionalized fermions
from pairing into bosons.
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1. Introduction: Wu and Y ang and the Dirac Monopole without Strings

The Fractional Quantum Hall Effect (FQHE) obserwedwo-dimensional systems of
electrons at low temperatures in superconductintgmads subjected to large magnetic fields is
characterized by observed filling factarss n/ m, wheren andm are each integers, but whene
is anodd integer onlywith the exception thah may also be the even integer & other words,
the apparent pattern, widely reported and studiedthe literature, isv=n/m with
n=0,£1+2+3.. andm=1,2,3,5,7,9,11., see, e.g., [1], [2], [3], [4], [5], [6] generallgnd for
the even denominator 2, see, e.qg., [6], [7]¥erl/ 2, [8] for v=3/2, [9] for v=5/2 and [10]
for v=7/2. Two questions arise from this effect: why are denominators in the filling factor
odd but not even (including the quantization of honit charges witlm=1), and why is the
even denominatom=2 an apparent exception? We show that this patérfilling factor
denominators has a fundamental explanation baseiog the mathematics of gauge theory to
develop the Dirac Quantization Condition (DQC) firac-Wu-Yang monopoles, in view of
how orientation-entanglement applies to fermiomsgs but not to bosons, and also in view of a
“twisting” associated with orientation-entanglemeiich appears to have been underreported in
the literature.

In 1931 Dirac discovered that the existence of meig monopoles implies that the
electric charge must be quantized [11]. While ghaguantization had been known for several
decades based on the experimental work of Thompsdhand Millikan [13], Dirac was
apparently the first to lay out a possible thecedtimperative for this quantization. Using a
hypothesized solenoid of singularly-thin width knoas the Dirac string to shunt magnetic field
lines out to mathematical infinity, Dirac estabbshthat a magnetic charge strengtivould be
related to the electric charge strengtlaccording toey =277n, wheren is an integer, which
became known as the Dirac Quantization Conditio Q@) Subsequently, Wu and Yang used
gauge potentials, which are locally- but not glbpakact, to obtain the exact same DQC
without strings [14], [15]. Their approach is ca®ty summarized by Zee on pages 220-221 of
[16] and will be briefly reviewed here, becauseprbvides the methodological basis for
understanding the pattern of filling factors obsenfor the FQHE. Throughout we use the
natural units ofi =c =1.

Using the differential one formA= A dX' for the electromagnetic gauge field a.k.a.
potential and the differential two-fornfr =5 F dx“ 0dX = dA=9, A dX0 dk a magnetic

chargeu may bedefinedas the total net magnetic flux = <ﬁ> F passing through a closed two-

dimensional surfac&® which for convenience and symmetry we may takeébéoa sphere.
Differential exterior calculus in spacetime geomdtaches that the exterior derivative of an
exterior derivative is zerad=0, which means that the three-form equatitbfh= ddA=0. Thus,

via Gauss / Stokes{,ﬂO:H dF = SEJS F=u. In classical electrodynamics prior to Diracsthi

was taken to mean that the magnetic charg®e But a close consideration of gauge symmetry,
which is locally but not globally exact, tells dfdrent story.
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When a spin ¥z fermion wavefunction (which we magard to be that of the electron)
undergoes a local gauge (really, phase) transfamag(x) — ¢'(X) = €"®y( %, the gauge
field one-form transforms as

A A=A+e"dé/ i (1.1)

If we represenE in polar coordinategr,¢,6) as F =(u/4m)d cosfdg, then becaus€ = dA

anddd=0, we can deduce thaﬂ:(,u/4ﬂ) cosfdg. However,dg is not defined on the north
and south poles. So we may define a north coaelinpatch over which
A, =(u/4m)(cosf- 3dg and a south patch over whick =(u/4m)(cosf+ 3dg. But at
places where these patches overlap, these gaugatipts are not the same, and specifically, the
difference isA; — A, =(u/2m) dg, or written slightly differently:

A~ A= A= A+(ul2m) d. (1.2)

So comparing this with (1.1), we may rega#fd as a gauge-transformed stad¢ of A, for
which the gauge transformation is simply:

lenge =4 ¢ (1.3)
ie 21T

This differential equation foN and ¢ in relation toe andy is satisfied by:

exp(in) = exp{ie,u 2¢ J (1.4)

T

as can be seen simply by pluggigd from (1.4) into the left hand side of (1.3) andueing.
This relates the azimuth angée which is one of the three spacetime coordinateshe local

gauge (phase) angle, and thereby connects rotations througghn physical space to rotations
through A in the gauge space in a manner that we shall xgéoe in detail.

In polar coordinatesg =0 and ¢ =277 in (1.4) describe exactly the sarngentation
(but not entanglement) on the surfaceSof So to make sense of (1.4) at like-orientations,
must have:

exp(in) = exdiex 00 = & expiexO], (1.5)
Specifically, this means thwxp(ie,u) =1. Mathematically, the general solution for an dtum

of this form is exp(i 277n) = 1for any integern=0,+1,+ 2+ 3.., which is infinitely degenerate
but quantized. As a result, the solution to (is5)
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N =eu=2mn. (1.6)

This, of course, is the Dirac Quantization Conditizvhich may also specified in relation to the
gauge (phase) parametéx which is seen to be an quantized integer multipie 277.
Specifically, (1.6) with simple rearrangement tells that the electric charge is quantized
according to:

e= n2—”= nq=A, a.7)
H H

where then=1 “unit” (u) of electric charge i, =277/ i, defined a2/ times the inverse of the
magnetic charge. The customary interpretatioreefn(Zﬂ/y) in (1.7), ever since Dirac first
found this relationship, is that if this magneticacge “exists,” then the electric charge is
quantized in units ofg,. It is important to keep in mind that the coneers not true: the

observed quantization of electric charge doesimply that the magnetic charges do exist. In
fact, as best as is known, this magnetic chargeas not been observed to date, and the
guantization of electric charge is explained nottlom basis of these Dirac-Wu-Yang magnetic

charges, but on the basis of the charge generQer¥ /2+ I° which emerge in Yang-Mills
gauge theory following the electroweak symmetryakneg of SU(2), x U(1), down toU(1),,,.

We may then go back to the original definitipre <ﬂ> F and use (1.6) to write:

@F :ﬂZZ_ZTn:n,Uu:A, (18)
e e

where we also define an=1 unit of magnetic chargg/, =2 /e, similarly quantized. By
appropriate local gauge transformation, and spedifi by choosingh=0 which is the same as
choosing the phase angfe=0, the nonzero surface integral can be made to Iva[gsF =0.

But this does not invalidate (1.7) and (1.8) noesld prevent us from seeking to draw physical
conclusions from these. It simply means the® with no monopoles and no electric charges is
one of the permitted states. But again, the megaafrthe whole range of charges= ne for
n#0 has been physically-interpreted since Dirac, aggssting that the “existence” of a

magnetic charge would imply electric charge quanitn, with the further understanding that
the converse is not true.

In the lowest positive non-zem=1 state, from (1.6), we hav&d =eu=2mr. So if we
define a reducedh =/A\/2m, then by (1.6), the reduced gauge paraméter n is simply the
charge quantum numbar So every gauge transformation adding an ang@ofdds one unit
of electric and magnetic charge. Thus, althodgh 277,477, 67.. aremathematicallyequivalent
angles, they do appear (if these monopoles “extsthe physicallydistinguishable because of
their connectionA =n to charge quantization. This is an important olet@&n which will
show itself in a number of ways throughout the Hooiming development. It should also be

5
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noted that using the local ang(x)=0 and ¢, =¢,+2m in (1.4), ¢, =0 had no special
physical significance. One could have used angrobx ¢, < 277 or indeed anyy, whatsoever
and still ended up with the exact same DQC in (16 0 was merely the easiest mathematical

choice. This all means that the DQC (1.6) is iraugrunder local gauge symmetry, as it must be
to have possible physical meaning.

This is how Wu and Yang obtain Dirac monopoles @edDQC without strings.

2. The Fractional DenominatorsIndicated by Dirac-Wu-Yang: arethey
Somehow Related to FQHE?

If we closely study this derivation by Wu and Yamg see that there are some additional
guantum states indicated that have not yet beesidemred. Referring to (1.5), not only do
¢ =0 and ¢ =27 describe exactly the sanmientation (sans entanglement), but so too do

g=4m, ¢ =6, ¢ =8m, etc. Sowe may now extend (1.5) to:
exp(in) = 1= exfiex0) = expieyOP= expeu)3F eXpeuD)4 efkpu0)s i) €(2.1)

Each of the above is a separate relationship of gheeral form exp(ie,u[l]):], where

1=1,2,3,4,5,6.=¢ /Z is an integer not the same as thalready in use and corresponds to
the number of azimuth windings. At the same tiagenoted after (1.5), the general solution for
an equation of this form i®xp(i 2m) =1 with this integern=0,£1+2+3... Comparing

exp(iexd) = 1 with exp(i 2m) = 1 means that more generallgu0=27m, or, restated (also
using A =2/m from (1.6)):

e=——=—¢g=ve=——, (2.2)

where we define a “filling factor”

v

Iﬂ; N=0+1+2+3.: I=¢ /2= 1,2,3,4,5,6. (2.3)

So this tells us that if these monopoles “existt only is the electric (and magnetic) charge
quantized, but each unit of electric chaeye(or magnetic charggs,) can be fractionalized into

any v:n[ﬂlll) quantizedn fraction 1/1 of itself. As with (1.6) this relationship is laity
gauge invariant.

Taking (1.7) together with (2.2) and (2.3), thieans that if the Dirac-Wu-Yang
monopole “exists,” then all particles carrying étemagnetic charge must obey (1.7). But they
will also obey the more permissive conditions aRfavhich lead to fractionalized charges. We
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then see, that (1.7)e=ne, is a special case of (2.2) and (2.3=(n/l)e with
| =1,2,3,4,5,6., in the particular circumstance whérd..

Now, one may take the view that (2.2) and (2.3)jast a “trivial” extension of (1.7),
because mathematically, it is certainly trivialtttize anglesp = 257, 47, 671, 877, etc. have the

same trigonometric properties as the angle0, and rotational orientation is indistinguishable
as between any set of anglgs= ¢, +2/m withn=0,x1,+2+ 3.. differing from some base
angle ¢, by an integer multiple oR77. And this may explain why (2.2) and (2.3) do appear

to have been developed or studied in the literaturesarly the same degree as the DQC. But in
the context of (2.2) and (2.3), the fact that tinigial trigonometric concurrence gh =0 with

¢ =2m, 4, 611, 8 leads to fractional charges is anything but ttividlust as the DQC

motivates us to consider whether the Dirac monapelast and if so in what fashion and under
what circumstances, the logical extension of theCD@ Wu and Yang motivates us to ask the
same questions about fractional charges which wealasut Dirac monopoles, because (2.2) and
(2.3) package all of these questions inseparalggther: If these monopoles exist, tlgauge
theory itselfinexorably implies that electric charge is quagdizand also that electric charge is
fractionalized This means that the DQC is really a DQFC, DiQuoantization and
FractionalizationCondition. And although this emanates from sometkhat is mathematically
trivial, namely the trigonometric indistinguishatyil of rotational anglesp =2, 4, 6, 817

etc. from one another, the fact that gauge thegly tis that the DQC is really a DQFC, is highly
non-trivial and must be explored.

So, given that the Dirac-Wu-Yang arguments do leatdonly to charge quantization, but
inexorably to theguantization of fractionalized chargeise., to filling factorsy = n[ﬂl/l) , and

given that fractionalized chargase experimentally observed the FQHE, one is motivated to

explore the question whether there is a connedbemveen the two. So we now pose the
guestion which will be the subject of the remaindéthis paper: might the DQFC (2.2) and
(2.3) actually be related in some way to the FQHERI if so, how?

For there to be a valid connection between thetitraalized charge states of Dirac-Wu-
Yang monopoles and the fractionalized quasipartgtltes of FQHE, there are two main
problems that must be overcome, one experimenthlaathmetical, the other theoretical and
physical. First,experimentally and arithmeticallywhile the fractional charge denominators
permitted by Dirac-Wu-Yang in (2.3) may assume amgger valuel =1,2,3,4,5,6., the
denominators observed in the FQHE are more restricted: they only take thalues
1=1,2,3,57,9.. That is, the observed denominators are always$ iotegers, with the

exception that the even integer 2 is also observed, see again, [6], [7], [8], [4Q]. So, the
Dirac-Wu-Yang approach — if it applies at all to R — must be able to explain this
arithmetically-restricted experimental pattern @served denominators. The result in (2.3) is
simply too inclusive, i.e., it includes states whare not observed alongside states which are.

Secondtheoretically and physicallyeven if the denominator pattetr=1,2,3,5,7,9..
can be explained, applying the Dirac-Wu-Yang argueto the fractionally charged
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quasiparticles in FQHE systems is still physicalyntrivial. The Dirac-Wu-Yang theoretical
argument is developed within the three-dimensiqgisical space of spacetime geometry, and
is understood to apply to systems of electronstopsy and neutrons for which no fractionally
charged particles and no Dirac-Wu-Yang magneticopotes have ever been observed. But at
the level of analysis where the quasiparticle lagguapplies, the system is fundamentally two-
dimensional, because the superconducting matenmsed together with the ultra-low
temperatures and large magnetic fields appliedtitoutate the observed FQHE, combine in
some fashion to substantially remove one degregpafial freedom from the electrons and so
restrict the electrons to two space dimensionsd #insome way that needs to be understood,
these all synergistically coact to produce thel, 2,3,5,7,9.. denominator pattern. Because of
this difference between the three-dimensional spa&irac-Wu-Yang and the two-dimensional
restricted space of FQHE, one might takedhgriori view that there is no connection between
Dirac-Wu-Yang and FQHE. So for certain, at theyvieast, if there is some hidden, not-yet-
understood connection between these two fundanhewliffierent environments of Dirac-Wu-
Yang and FQHE, it is important for such a connectmbe carefully developed and articulated.

3. Orientation-Entanglement, and the Odd-Integer FQHE Denominators

Spinors, which includes electrons, reverse sigonug spatial rotation through an angle
@ by an odd multiple o77. Specifically, as Misner, Thorne and Wheeler (MTp@int out in

one of the most widely-regarded discussions oftthpéc in [17] at section 41.5, the spin matrix
of a rotationR=cos(¢ /A -i(nl&r) si{g /2 (see MTW [41.48]) reverses sign upon a rotation

through an odd multiple 0277, as does the sign of a spinor under. ' =R (MTW [41.50]).

This sign reversal does not, however, appear in ttaesformation law for a vector,
X - X'= RXR (MTW [41.49)).

Misner, Thorne and Wheeler provide a visual, msmopic, intuitive, essentially-
topological understanding for this result by coesidg the orientation and entanglement of an
object relative to its surrounding environment, daese while orientation is restored unde2za
rotation, it takes ads/r rotation to restore the object’s state of entamgilet, i.e., to restore the
complete “version” of the object. They do, howearpage 1148 of [17], make the statement:

“Whether there is also a detectable difference hia physics . . . for two
inequivalent versions of an object is not known.”

This question of whether MTW orientation-entanglemierings about detectable physics in the
study of physical systems will occupy a fair shafréhe analysis to follow in this paper.

Now, the gauge transformatiog(x) — ¢'(X) = €"®w( ¥ with which we originally
started at (1.1) acts on a Dirac fermion wavefamctivhich we may take to be that of an
electron. And electrons are Dirac spinors. Ssua$), the sign of this wavefunction will reverse
under any rotation from a givep to ¢ + 27 and will only be restored under two rotations,, i.e

when rotated from¢ to ¢+4m. Therefore, let us suppose that some weight nezdse

ascribed to theversion of the electron and not only its orientation, a@hdrefore revisit (2.1)
where we equated the entire set of rotations diffeirom one another by onlg/7, not 477.

8
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Specifically, let us now explore the consequenddaling the more-restrictive view that
two termsexp(ie,u(¢ /21)) in (1.4) may be equatetiand only if they differ from one another

by 4. Then, let us start with a Dirac fermion in tige= 277 state, which as seen in the
derivation leading to (1.6) is the=1 state for which the DQC givesy =277. Thus, for this

state, we haveexp(ieu (¢4 / 27)) = exi{i 2r( r /2))= . Then, because we are starting out

with a fermion oriented tap = 277, the equivalenversionswill be those for whichg =677,
@ =10, ¢ =14/, etc. As a result, when we apply this entangl@mestriction to (1.4), then
in lieu of (2.1), we now obtain:

exp(in) = 1= exp{ieu%}z expiey D)= exiend)3= eXpeuD)5 ekiguD) 7. (3.1)

So this consideration of entanglement in additmorientation naturally discards all of the even-
numbered states such esp(ieu D), exp(iex ™), etc.

Each of the above is now a separate relationeb(tp(ieu(l+ 2)) = 1 wherel continues
to be an integer with the valuds=0,1,2,3.., so that2l+1=1,3,5,7.. is an odd integer
Comparing exp(ie,u(1+ 2)) = 1 with the mathematical relationshigxp(i 2m) = 1 means that

eu(1+2l) = 27m, or, restated:

n 2m n
e— =

L —ve, 3.2
1+2 1 TR (3.2)

with a redefined filling factor:

© n=0,1+2+3..; |= 0,1,2,3. (3.3)

In contrast to (2.3), this filling factowill always have an odd denominatorAnd with the
exception of the even denominator 2, this is whathserved in FQHE.

This means that if regard two electron statesteduivalent in (1.4) only if they have the
same version i.e., differ from one another 4w not 277, then all of the fill factors will only
have an odd-integer denominator, and all even-ertegnominators will be excluded because
they involve inequivalent versions. Other thanakien denominator of 2, this fully accords with
the fractional charges states observed in FQHE. otBer than the question of the even-
numbered denominator of 2, this does solve @éRkperimental and arithmetical problewf
matching the observed fractional charge denomisat8ut because of the role of entanglement
in reaching this result, we are now led to entartat only whether the FQHE is in some way a
physical manifestation of the Dirac Quantizateomd FractionalizationCondition, but whether

9
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theodd-integerdenominators in the FQHE are “also a detectalfferdnce in the physics . . . for
two inequivalent versions of an object,” whichhe tquestion Misner, Thorne and Wheeler have
posed. In short: is FQHE an experimental, detéetadanifestation not only of Dirac-Wu-Yang
monopoles and fractionalizatiobut also a_detectable physical manifestation of M3Mhor
orientation and topological entanglem@&niAnd if so, how?

For ordinary systems of electron and protons amgtrons in which the electrons are
unconstrained to two-dimensions by any materiald Aor low temperatures and / or large
magnetic fields and so are operating in three-dsiogral space, neither fractionalization nor
Dirac monopoles nor signs of orientation and entangnt appear to be physically detectable.
So as to theheoretical and physical problenthe question is whether in some way, and if so
how, the physical constraints imposed by certaippestonducting materials and low
temperatures and high magnetic fields create anira@maent in which fractionalization and
entanglement and even the Dirac-Wu-Yang monoptiesselves are suddenly forced to make
a physical appearance.

As to the Dirac-Wu-Yang monopoles, we keep in ntimak while the high energies of
Grand Unified Theories (GUT) have certain symmestrgich are broken at lower energies, so
too, low temperaturesear absolute zero are also thought to causeagspl certain symmetries
which become broken at higher temperatures, seevidkis [18]. So the question which comes
to the fore is whether an electric / magnetic symnynef Maxwell’s theory in the form of Dirac-
Wu-Yang monopoles really does physically manifestrf the confluence of low-temperatures
near OK for electrons in certain superconductingens under large magnetic fields, and then
gets broken into the non-observation of monopoteieuanything but these limited conditions.

As to entanglement, the question which comes to ftte is whether by tightly
constraining the electrons to two rather than tllieeensions, and extracting virtually all of their
heat energy leaving them only with their Fermi gnes, we are forcing the electrons into some
highly-constrained topological condition which fescthem to reveal their entanglements and to
display an electric and magnetic monopole symmatiy a charge fractionalization which they
otherwise can keep hidden from observation.

And straddling between the experimental and aritigakeproblem and the theoretical
and physical problem laid out in section 2, is fiblleowing problem as to the boundary between
mathematics and physics: Mathematically speakamgangle ofg =277 is indistinguishable
from an angle o#d/r, 677, 877, etc. But physically, for fermions, if we accodiot entanglement
together with orientation, thept =0, 477, 87 etc. form one set of “equivalent” angles, while
¢ =2m, 6, 10T etc. form a second set of “equivalent” angles, aeddo have a basis for
physically distinguishing these two sets of angles notwithditay their mathematical
indistinguishability. In (3.2) and (3.3) we usdustto force out the even-numbered fractional
denominators and only retain the odd-integer denatars which does accord with the FQHE
observations aside from tine=2 denominator still to be discussed. But thergtilsa puzzle for
the anglesvithin each of these two sets of angles

For example, an=1 state withv =1 corresponds with the azimuth= 277, while ann=1
state withy =1/3 corresponds with the azimuth=677. Even with entanglement considered, it

10
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therefore seems as though we should still regar2/7 to be equivalent witlp =677. And yet,

from (3.2) and (3.3), these two angles are condewith two observably-different physical n=1
states namely,v =1 for ¢ =2 and v=1/3 for ¢ =6/7. And going further,v =1/5 for

@ =10rr, etc. So we are also required to consider thlviihg question: How it is that
geometric angles such as=2/r and ¢ =677 and ¢ =107 which are equivalent under both
orientation and entanglementstill manage to lead to distinct physical statesch as the
respectivev =1, v =1/3 andv =1/5? Is there something else that is still being Sa&d' by
the orientation-entanglement analysis which leadsartgles such ag =2/ and ¢ =67 and

@ =107 still being distinguishable from one another, rittiatanding their pure trigonometric
equivalence and their like-entanglements? Puewdfitly, entanglement makes the=0, 477,
8 etc. azimuths different from th¢ = 277, 677, 1077 etc. azimuths, but within each azimuth
set, what might make, e.gg¢ =2 observably physically different fronpp =677 and those
observably physically different fromd =107z, etc.? As we shall develop starting in sectioalb,

of these angles are indeed distinguishable, beazuséopological “twisting” which also occurs
in relation to orientation-entanglement, but whiappears to be overlooked is the usual
discussions of this subject.

All of the foregoing questions will be considereddietail beginning in section 5. But for
the moment, having explained the odd-integer FQ&ochinators via (3.2) and (3.3) by only
equating angles with matching orientatiand entanglementwe must now address the next
experimental and arithmeticatjuestion: Why does nature also appear to pernat eben
denominator 2, in addition to the odd denominafor® in (3.3), but not permit any other even
denominators?

4. Untangled Electrons Pairing into Bosons, and them=2 FQHE
Denominators

Equation (1.7) for the non-fractionalized Diracatization Condition specifies charges
e= n(2n/,u) = ne which are integer multiples of the unit charge=27/ 4. For this set of

integer charges, (1.6) tells us that the gaugenpater A =27m. This entire set of integer-
quantized charges= ne corresponds to the single azimuth= 277 which means that there is a

one-to-infinite quantized mapping @ to A. That is, an infinite set of gauge stat®s- 2/m
can all be used to equivalently describe the sammauth stateg =277, yielding quantized
multiples of the unit charge.

Now, if we take a single fermion e.g. electrorhia ¢ = 277 state and do 4/7 rotation to
a ¢ =677 state which restores the electron to its origor&ntation and entanglement version,

then exp(iA) = 1= exf{iex 03 is the portion of (3.1) which describes this neates Referring
again to the general relationsh'ﬁpxp(i 277n): 1, the solution iSA =2rm=3eu, restated as
e=A/3u=(n/3)(2r/u)=ne /3. This specifies integer multiplesof 1/3 of the unit charge
e,. As before, the gauge paramefer 27m, from which we earlier defined a reduced gauge

11
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7/ =n after (1.8). Similarly, if we generally define@duced azimuthp = ¢ /277, we see that
for ¢ =677, the fractional denominatdr+ 2 is equal to the reduced azimuth; 2 = ¢ = 3. It
is readily seen that for thg¢ =1077, ¢ =147 etc. states which also maintain tie= 277 version
of the fermion, that the odd number denominato8ig) and (3.3) may be written gs=1+ 2.
Using this information and notation, we rewrite fhieng factor of (3.3) as:

SEARSEAY
¢ ¢

% A=n=0,+1+2+3..; ¢= ¥ 2= 13,57,9..01= 012,. (4.1)

So thefractionalization of charge is determined directly by the numbefvahdings”
¢ =1+ 2 in the physical space of spacetinamd the odd-integer denominators occur because
two topological windings, not one, are needed tstore a fermion to its original version.
Although the ¢ =1+ 2 =1,3,5,7,9. states all appear to be mathematically equivdlased on

their differing from one another by and so representing the same fermion versionfaitte
that these windings directly determine the fracdl@ation denominator is potentially an
observable physical effect which belies this appaeguivalence. Similarly, thguantizationof
charge into integer multiplesof a fractional chargé/ ¢ is related to the quantized degeneracy

of the gauge parametek =n which describes an infinite number of equivaleauge states,
and mathematically to the fact that phase angleshwtliffer from one another by@m are
degenerately equivalent. Nonetheless, each “wgidim the gauge spacadds one unit to the
charge quantization number=-, and this too is a physical effect which belieis #pparent
equivalence of gauge states differing from one lagrdby 277.

This sharpens the question as to how angles whifdr ééom another by2/r or by 47
and so are trivially mathematically equivalent, caonetheless yield different observable
physical results, because even disregarding fraalimation, the quantum numbear=#- which
represents the local gauge angles +27m will most certainly be an observable if the Dirac-
Wu-Yang monopoles “exist.” It is also worth notitigat the fill factorv which is certainly
observed if it can be related to the FQHE fill tacts given simply by the ratie =A/¢ of the
gauge angle to the azimuth angle, even though thetke angles are thought to have the same
mathematical property of indistinguishability unde@sr or a 477 rotation. Again, all of this
this would have to mean that there is something gting on in both the physical and in the
gauge spaceabove and beyond orientation-entanglememhich causes different observable
effects even when mathematically, two angles witl27a or 47 difference seem to be
indistinguishable. And again, this is a relatedadlogical twisting to be develop in the next
section.

But first, let us return to the immediate businaskand, which is to understand the only
even denominator, 2, which is phenomenologicallyered in the FQHE.

Based on (4.1), it will be easily appreciated taatenominator of 2 corresponds to a
winding numberg =2. The set of quantized states for the unit charget a fractional charge

— which we now write ag@=A-(277/ ) = A€, corresponds to the winding numbgr=1. So
to get from an electron witlg =1 to some state witl =2 we are only making one turn of the
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azimuth. Thus while we are restoring orientatiomg are not restoring entanglement.
Nonethelessg =2 is the only even winding number which nature p&nso we have to figure

out why we observe a state that is only one tuovelg =1.

A ¢ =1 electron will not be restored to its original viersat ¢ =2, because fermions
need to do two windings to regain their originaisien. Only bosons can maintain equivalent
version with one winding, because for bosons, aji¢ganent is not an issue because they are not
spinors. Again, as reviewed at the start of sacBpspinors rotate according o &' = R¢,
while vector bosons rotate vid - X' = RXR. So for an electron to go fromd =1 to ¢ =2,
that electron must “disguise” itself as a bosomowHmight the electron do that? By finding a
second electron to “conspire” with the first electrand “pair up” into a single boson system.
Then, that pair of electrons can be wound fragn=1 to ¢ =2 without changing its
entanglement. And based on (4.1), the filling daetill now bev =A /¢ =n/2, which yields
the denominator of 2.

What does this mean?: it means that while allhef permitted windings of individual
electrons yield fractional charges with the 3, 5,97 etc. odd denominators, the permitted
winding for a bosorpair of electronsyields the one permitted even denominator, nar@ely
While the “Cooper pairs” model of electron pairid®] may well come to mind, for the moment
let us not be that specific. Let us simply talktemms of the requirement that a first electron
needs to find some way to pair together with a sé@ectron if ag =2 winding state and thus
a % unit of charge is to be empirically displayetier the right set of conditions — as it is at
extremely low temperatures in suitable materialsjextted to large magnetic fields — while
leaving open the mechanism by which that pairifkg falace. So, the pairing of electrons into
boson states would appear to explain why Reignittedas an even denominator, and we know
that there is some grounding in established th&mrguch pairing to occur. Now, we have left,
for the experimental and arithmetical problem, xplain why 4, 6, 8 and even denominators
other than Zarenot permitted

The next even denominator of coursars4 which we now know corresponds to the
winding azimuth¢ =4. And we know that this fractionalizatian=n/4 is not observed So

let us start with an electron in thg =3 fractional state for whiclv =n/3. These are fractional
fermion charges, so to get them to @=4 winding which would correspond adding one
azimuth turn tog =3. This would result in an oppositely-entangledestavhich is inequivalent
to ¢ =3. So, as we did to get fronp =1 to 4 =2, we would have to “pair up” two of these
¢ =3 fractional v =n/3 fermions into a boson state to get go=4 with a quarter-integer
fraction v =n/4. The fact that we do not obsenge=4, nor do we observe any other even
windings ¢ =6,8,10.., is nature’s way of telling us thafctional charges cannot be paired up
into boson states All boson pairs must be constructed from unfraci@ed charge units
u,=2mle. Given that fractional charges are commonly regdrds quasiparticles while unit

charges are not, this simply means that only “realticles, not quasiparticles, can form pairs.
This is anobservationabout what nature seems to be telling us by exuudll even
denominators except for 2; we still will wantagplain whynature does so.
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Pulling together all of these results, we now seiment (3.1) withg =2. Thus, the
final result for the overall observed pattern is:

_IN_A,

V== A=n=0,t1+2+3..; =2 —or—¢= % I2:1= 0,122 (4.2)

The ¢ =1+2 odd-denominator states represent fermions exhgifractional charges; the
¢ =2 state represents a boson pair of unit chargesatieanhot fractional; and the absence of
¢ =4,6,8.. states tells us that fractional charges are nulde of forming into boson pairs. In

Figure 1 below, which is reproduced from [20] a2d][ we have annotated the unit electron
charge, thewv =A-/ ¢ =1/3 fractional charge, and the ground state for a phunit electrons

forming a boson withA-/ ¢ =1/2. Also added as annotations are appavenb/11, v =6/11
andv =7/9 fractional states.

3 | 1
2.9 -
—_ 2 - . Fractional
o Unit Electron
..92 Eclicrf.on Charge
:_C_. e Boson 2/5 13
1'5 B State
Q Electron
ac Pair 377
1/2
1= a1 4/91
q
i e ||
¥ 4
} 517
4/5
k J LJ!

10 20 30

Magnetic Field (T)
Figure 1: Fractional Quantum Hall Effect, reproddi®m [20], [21], with annotation

It is worthwhile comparing theéxr =n=1 ground state of thgg =1, ¢ =2 and ¢ =3
windings, which are the three states annotatedebdworv =A-/ ¢ =1 we of course have a
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unit electron charge. For=-A/¢ =1/3 we have 1/3 fractional charge. But for the bogam
with v=4A/¢ =1/2with a 1/2 unit of fractional charge, there &mo electrons not one
contributing to the half unit of charge. Therefogach electron actually contributes a 1/4 unit of
charge. Given that electrons naturally repel am&tteer so that any pair formation mechanism
must overcome this repulsion, it will be easier iwo electrons to assume charges of 1/4 unit
apiece and then pair into a boson, than to stdlgarunit charge state or in the 1/3 charge state
and then pair up. It is the 1/4 charge-per-elecpaired state which minimizes the repulsion and
therefore provides the most energetically-favoreadfiguration.

Finally, we return to the original definition = <ﬂ> F of the Dirac monopoles. If rewrite

e=Vve, :V(ZIT/,U) with the complete filling factor (4.2) in terms @f, then using the “unit” of
magnetic charges, = 277/ e, what we learn about the permitted monopole flugehat:

#F:v,uu:(ﬁ/¢)uu; A=0,+1+2+3..; $=2 -or-¢=% 12;1= 012732 (4.3)

This extended understanding of Dirac monopolesntude fractionalized charges,
should put into a somewhat different perspectiwe bae thinks about these monopoles, at least
based on Dirac’'s quantization absent further dgreknts such as t'Hooft / Polyakov
monopoles [22], [23] which rely on Yang-Mills gaugjeeory which is not needed for Dirac
monopoles alone. Although the Dirac monopoles windlig developed using Wu and Yang's
gauge approach afeactionalized as well as quantizeithese fractional charges are not observed
except under very limited conditions at extremehy temperatures in suitable superconducting
materials. Thus, to the degree that the fillingtdes (4.2) do describe a feature of the natural
world but only under these specialized conditi@m] because (4.3) is integrally related to (4.2),

it would appear that the non-zero magnetic qu><<§F:v,uu of Dirac monopoles (as

distinguished from other types of monopole) wouldycevidence themselves in nature under
equally-restricted conditions.

Therefore, from an experimental and arithmetiadp@int, we conclude that a complete
analysis of the gauge symmetries of Dirac Monop@dédewing the approach pioneered by Wu
and Yang [14], [15] results in electric and magnetharges which are quantizexhd
fractionalizedin the manner observed in the Fractional Quantuath Effect. Because fermions
rotated through an azimuth ov&rr regain their orientation but not their entangleméme 47
rotation needed to restore both orientation andregiément is responsible for the observation of
odd-integer denominators and the skipping of mosnenteger denominators. The only
observed even-integer denominator of 2 appeare tilvd result of pairing two integer-charged
fermions into a boson, and the absence of anydagen denominators appears to indicate that
only integer charges, and not fractional charges, loe so-paired. The simplicity of the fill
factor v =4/ ¢, and the ability to derive this strictly from gautheory via Dirac-Wu-Yang
approach in view of orientation-entanglement arguisi@n an arithmetic basis that does match
experimental observation, is certainly intriguingut now we must study these results deeply
from a theoretical and physicaktandpoint to see if our suspicion that Dirac-WanRy is
connected to the FQHE is real, or illusory.
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5. Twist: The Missing I ngredient from Orientation-Entanglement, and
how this may lead to a Topological Under standing of Quantization

In section 3 we began to review Misner, Thorne &vldeeler's classic treatment of
orientation-entanglement (OE) in section 41.5 of][1 In this section we shall continue this
discussion, focusing on one aspect of this subydith requires further development, namely,
the topological “twisting” of the threads which aused to track orientation-entanglement.
Specifically, we do this because the questions rased as to how states which differ from one
another even by thdsr, two winding rotation needed to restore versiaifi,raight leave certain
observable signposts in the spaces of these nmogatinich render these states physically and
observably-distinct from one another. Thus, wetlayfoundation for physically understanding
how, say, seemingly-equivalent rotational statethwe.g. ¢ =277 and ¢ =677 and ¢ =107

might nonetheless be connected to distinctly-oleserelated quasiparticle states with respective
inequivalent v =n andv =n/3 andv =n/5 quantized fractional charges. And in the process,
we also lay the foundation for understanding hoe Dirac-Wu-Yang arguments based on
U ()., gauge theory in three space dimensions generdlhput restriction, may connect to the

FQHE observed for highly-restricted electrons fdrcmto two dimensional restraint by
superconducting materials and ultra-low temperatureler very large magnetic fields. Thus, by
developing these topological twisting featuresyfulve lay the foundation for connecting the
guantized fractional charge results in (4.2) to tR@HE, not only arithmetically and
experimentally as we have already done, but thigatlt and physically as we now must do.

D. K. Ross in [24] “hypothesize[s] that the OEatedns are important to physics [and]
represent the deep relationship between any padichmaterial body and its environment.” He
proceeds to show (reference renumbered here) Dirac [11] magnetic monopoles do not
satisfy the OE relationship” and “hypothesize[dttthis is the reason they have never been seen
despite extensive searches . . . and despite haunagural and elegant theory underlying them . .
. going back to the more natural symmetry of MaXwetquations with magnetic monopole
sources present. ” He then states that “[s]inckralwn particles satisfy the OE relations and we
show that Dirac magnetic monopoles which have epenlseen do not satisfy these relationships,
it is hopes that this paper will stimulate furtiveork on the OE relations themselves and their
topological role in physics.” This further work time OE relationships is precisely the subject of
this section, and will lead us to understand treetional quasiparticles of FQHE as those
particles which “do not satisfy these [OE] relasbips.”

Figure 41.6 of MTW'’s [17] which is also postedioel at [25], shows a spherical “object
connected to its surroundings by elastic threadslfideed, it is these “threads” and various
configurations of these “threads” which most dikediustrate the “deep relationship between
any particle or material body and its environmengntioned by [24]. It is also these “threads”
themselves which will be the object of the preskstussion. As is well-understood, it is always
possible following a 720° rotation or integer mpikis thereof of an object connected to its
environment with “untwisted threads,” to remove atitanglement from the connections of an
object to its surroundings. But of particular imjamce, as we shall now develop here, the
sequences of disentangling the “threads” from oraher arenot unique Depending upon the
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sequence chosen, even after disentanglerttentithreads” may still each maintain individual
twists or they may have all twisting removed and haventreturned to an untwisted state.

To simplify this development without any loss effarmation, rather than use the
spherical object and the spherical environment thied“threads” employed in Figure 41.6 of
[17], let us employ a first “bar” or “stick” whichepresents the environment and a second “bar”
or “stick” which represents the object, and a paifribbons” which represent the connections of
this object to its environment. These two waysepiresenting OE do topologically map into one
another as is shown below in Figure 2, which is wlgycan use the “bars and ribbons” as an
alternative way of representing Figure 41.6 of [17]

Specifically, to verify this mapping, one may staith the OE system shown in drawing
1 from Figure 41.6 of [17], and as shown in FigB(a) below, to maintain points of reference,
may label the northern and southern hemisphertseasbject as shown, which hemispheres also
have northerly and southerly “thread” connectianthe environment. Then, as shown in Figure
2(b) below, one may topologically deform the objegtstretching it in into a vertical elongation,
while relocating the threads to the right along tloetheastern and southeastern regions of the
environment. Then, one can take the entire Fi@@b@ and rotate it 90° counterclockwise to
arrive at Figure 2(c) below. In this final stepeenvironments simply represented by a top
“bar” or a “stick” at the top of 2(c), thebjectis represented by a bottom “bar” or a “stick” fa t
bottom of 2(c) which maintains the “north” and “sidu labels and now also introduces a
directional vector running from north to south, ahd north and south thread pair are merged
together into a pair of “ribbons” which represené entanglemenbetween the object and its
environment. It will be appreciated that the ribb@apture the same topological information as
the threads (just think of the two lines boundihg tibbon widths as being two threads and then
add a few more threads for good measure). Thefibesfeemploying “ribbons” (or thick
“threads” with discernable width) rather than thimeads is that it is much easier with a two-
sided ribbon to illustrate and track any twist whimay occur in the course of performing OE
operations, which will be very central to the engudiscussion.

o\

= =>

[N——S |

(a) (b) ()
Figure 2: Topological Deformation of Figure 41.6[d7] (MTW) into a “Bar and Ribbon”
Configuration

17



Jay R. Yablon
PARTIAL DRAFT

This “bar and ribbon” configuration is often usedillustrations of the OE relationships, see, for
example, an online animation at [26]. To help ithterested reader to follow the forthcoming
development, tt is easy and advisable, to consaymhysical apparatus resembling Figure 2(c)
by taking two sticks or dowels or even pencils, dhen gluing or stapling two ribbons or
shoelaces or rubber bands to the sticks in thagumation illustrated. It also helps to color each
side of the ribbons differently for monitoring twss The apparatus constructed by the author for
this purpose, may be viewed latps://jayryablon.files.wordpress.com/2014/12/feyipg in the
upper-left photograph.

So now, starting with the bar and ribbon configjora of Figure 2(c) above, let us
immobilize the top “environmental” bar, and rot#te bottom bar — which from now on we shall
simply call the bottom “vector” — by & - ¢ +4mr=¢+ 720 rotation counterclockwise about
the z axis through the anglg in the x-y plane, as shown in Figure 3(a) belawatrive at the
configuration of Figure 3(b) below. It is worth tmy that all three x, y, z dimensions are
utilized in this operation, and also worth keepingmind that for electrons frozen in two
dimensions at low temperature in superconductingenas in the FQHE environment, one
degree of spatial freedom is removed. It is algtea that this angle is an azimuth angle of

rotation in three space dimensions, just as wastimauth angleg first introduced after (4.1)
when we write the electromagnetic field strengtrFas(,uMﬂ)d cosddg .

Z f‘%
~
/)
L

Y
____/ @ — @+720°
/.’,-"‘ / -'s‘.\ X
— N s N »S

T >

Figure 3: Environmental OE Consequences of Rotaikwgctor through 720°

In Figure 3(b), the wider lines illustrated on eaitibbon are passing in front of the narrower lines
illustrated on each ribbon, and diagonal hash laresused to illustrate the opposite face of the
ribbon relative to the face shown in Figure 3(&).3(b), we reach a state in which the ribbons
are entangled with one another, with the entanghrdoeming a left-handed helix as illustrated.
And in addition, each of the two individual ribboakso is twisted into a left-handed helix as
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illustrated. And in addition, both the entanglemleslix and the twist helixes ad®ublehelixes,

in the sense that there are two full helix rotagioh—4/7=-72C, using a convention in which a
right helix has a positive sign and a left helixs llanegative sign. Now we seek to disentangle
the ribbons, while immobilizing both the environntedr'bar” and the N> S vector, by moving
the ribbons around the ends of the vector.

Now, if the initial rotation in Figure 3 had betdwough only+2/7=+36C, Figure 3(b)
would contain alkingle helixes, and as is well known there would be ng teadisentangle the
two ribbons from each other using only manipulaiai the ribbons. But from Figure 3(b),
because of the double helix entanglement whichlteedtom the double winding rotation
through¢ - ¢ +4mr=¢+ 720 a.k.a.¢ - ¢ +2 using the reduced azimuth = ¢/ 277 earlier

defined, disentanglement is possible using onlgatbmanipulations. And specifically, in order

to disentangle the two ribbons using only operatiohthe ribbons with both the environment

and the vector remaining immobile, one must perfmmribbon operations, and there are three
choices for this.

For the first choice, as shown in Figure 4 below,the first operation, one can take the
north ribbon, wind it past the north “pole,” wind it beneatretkntire vector, and then wind it
back above the vector past the south “pole.” THenthe second operation, one can take the
southribbon, wind it past the north “pole,” wind it beneattretbntire vector, and then wind it
back above the vector past the south “pole.” Thisbe done in either order, that is, one can use
the south ribbon in the first operation and thetmeibbon in the second operation and end up
with the exact same result, which, as shown in leigli below, not only disentangles the two
ribbons from each other, but also removes the iddal twists in each ribbon. We denote this
by placing the number “0” next to each ribbon tdigate that it has no residual twist.

(b)

Figure 4: The Disentanglement Operatid® - ¢ + 2 - { N S} - 0,(
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In either case, however, whether the north or sabtton is operated first, the ribbon windings
must go from north to soutthat is, the ribbons must be first brought arotirednorth pole, then
wound beneath the vector, then be brought backagpthe south pole. If the ribbons are wound
from south to north, they will become even furteatangled, and the net effect will be that of
having performed & - ¢ +8m a.k.a. a¢ - ¢ +4 quadruple rotation starting from Figure

3(a). The question occurs why there is this appaasymmetry in which the ribbons must be
brought past the north pole first, but that is expd by the fact that the Figure 3 rotation was
done counterclockwise and thus was positively signe - ¢ +4/7. Had the rotation been

clockwise hence negative according to the custoroanyentions for defining angular rotation,
ie., ¢ -~ ¢—-4mr aka. ¢ - ¢ -2, then disentanglement would have required windimg

ribbons first over the south and then over themale. So that in fact there is an overall
symmetry to these operations.

We shall use the shorthan®,0- ¢+2- N/N,S/N- 0,C to represent this
operation in Figure 4 where both the north and Isailibons start with no twist®,0, the
azimuth is positively rotated through two windings+ 2, the north and then south ribbons are
wound over the north polél / N, S/ N, and the disentangled state also restores nost@;sx.
The fact the order of ribbon operations does not ttana means that
0,0 ¢+2-S/N,N/N- 0, as well. Thus,0,0-¢-2-N/S,S/S> 0,C and
0,0-¢-2-S/S, N/ S 0,Care also operations which restore the initial mligegled state
with no twists when the initial rotation is negatiy — ¢ —2 rather than positivgg - ¢ +2.

From here, we shall work only with positive rotai$o which means that ribbons must always go
first over the north pole to achieve disentanglemelVe also keep in mind that the final
configuration is invariant under the order in whible north and south ribbons are operated, i.e.,

under either temporal orderir{dN, S) or (S, N) of the permutated ribbon sgN, S . Thus, we
can simplify the shorthand to write the Figure 4empion as0,0- ¢+2-{N,§ - 0,

simply indicating that eithe{N, S) or (S, N) over the north pole will restore an untangled,
untwisted state following @ + 2 rotation of a vector.

For the second choice, one can take the nortlomit#md wind ittwice about the north
pole, then under the vector, then back over théhspole and the ribbons will disentangle. But
here, there will be a residual twist in each ribbasnow shown below in Figure 5.
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(a) (b)

Figure 5: The Disentanglement Operati@i® — @+ 2 - { N ,N} - R

Now, because we have used the ribbor{$&tN} to disentangle the ribbons, the north ribbon

maintains a double helix twist with right-handedifyaas defined along the +z axis (see Figure
3(a)) which we denote by 2R, while the south ribl¢so has a double helix twist but with left-
handed parity which we denote as 2L. If we addjight-hand rule,” then we may also refer to
these as a double twist “up” for the north ribbang a double twist “down” for the south ribbon.
The ribbons are fully disentangled, and yet, theé gate in Figure 5(b) is observably, physically-
distinct from the end state of Figure 4(b), basdwblly on the operation that was used to
disentangle the ribbonsSo even though a rotation of a vector through- ¢ + 4 yields the
exact same orientation and the exact same entamglefor that vector, the final, physical state
can still be different from the starting state, \Whalependent upon how the disentanglement
operation has taken place.

It is because of this, that we can now begin toktdbout how, for example, the FQHE
filling factor v =n/1 for which ¢ =1 a.k.a.¢ =2 in (4.2), can exhibit different observable
physics from the filling factow =n/3 for which ¢ =3 a.k.a. ¢ =6 in (4.2), even though
these angles differ from one another &y and so would be physically indistinguishable if we
only considered orientation-entanglement (OE) withivist. So as we now see, the complete
physics of vector rotations requires us to consmh&ntation-entanglement-twist all together,
which we abbreviate as OET, and once we do considst, then angles which differ from one
another by2sr or by 477, despite their trivial trigonometric equivaleneegall distinct based on
their OET relationships to the surrounding envirentn The a vector rotated to the angke is
different from a4 vector is different from6s7 is different from8s7 is different from107, ad
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infinitum, once the OET of the vector is also taken fullpiaccount. This is a place where
physics informs and extends mathematics.

Using the notation developed above, we may 0gg— ¢+ 2-{N ,N} -~ 2R,2L to

denote the final state of Figure 5(b) in which tiogth ribbon ends up with a double right-handed
helix and the south ribbon ends up with a doulftehlanded helix. It will be apparent, however,
that the left and right twists are offsetting, whis to say that theettwist of the overall system
remains zero as it was when it started in Figueg,3nd in general, this “conservation of twist”
result will carry through to all OET disentanglert&enSo, if we know that the north ribbon has
ended up withi2R, then we automatically know that the south riblt@s ended up witRL.
Thus, we can used twist conservation under OETnthsglement to simplify the summary of

the Figure 5 operations 10,0 - ¢ + 2 - { N ,N} - 2R, showing only2R as the end state for

the north ribbon, and deducing by implication tRhatis therefore the twist for the south ribbon.
In this way, we adopt @&onventionwhereby the helicity of the “north” ribbon is us¢d
characterize the helicity of the overall OET systfeitowing disentanglement.

For the third and final choice, one can take th&lsoibbon and wind itwice about the
north pole, then under the vector, then back olier douth pole and the ribbons will again
disentangle. But here, there will be a residuasttwn each ribbon oppositely to that shown in
Figure 5, as now shown below in Figure 6.

2L 2R

(b)

Figure 6: The Disentanglement Operati@di® - @ + 2 - {SS} - 2L

Here, we have used the ribbon 4& § to disentangle the ribbons, and the north ribbon
maintains a double helix twist but now with leftAgied parity which we denote by 2L, while the
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south ribbon also has a double helix twist but vigft-handed parity which we denote as 2R.
Twist is still conserved, i.e., the net ribbon twszero, so continuing to represent the end tesul

simply by the2L state of the north ribbor),0 - ¢+ 2 {SQ - 2L now summarizes the
Figure 6 operation.

Returning to Figure 4, because we now know thasttws conserved, we further
consolidate the summary of this operation by sgtdf0 - 0, that is, by using a single zero to

represent the twist state of the north ribbon Wit south ribbon implicitly also having zero
twist because of net twist conservation. Thus we mrite this asO -~ #+2 - {N,S - 0.

Figure 5is therD — ¢ +2 - {N,N} — 2Rand Figure 6 i9 - ¢+2-{S,§ - 2L

How let us now make some final changes to ourtimsta Because the non-zero twist
end results always contain a left- or right-handedble twist, let us count use the number 1 to
define a single double-twist, and let us use thesign to denote a right handed and “-” to
represent a left-handed twist, and let us refeth® quantum variable which represents the
number and handedness of double twists in theteggulorth ribbon asn'. Thus, the end state
2R - m=+1, 2L - m=-1,and0 - m = 0. The numbem is of course quantized, but there
is no mystery to this because it represents thebeurof topological twists and once OE is
restored between a vector and its environmentytmeber of double twists will always be either
zero or an integral number. Secondly, because wst mways perform a two-windingdr
rotation to be able to restore OE, let us also #d&ut this in terms of making one (1) double
turn, rather than two terns. Let us designatentimaber of double turns ds, so that in all of
Figures 4, 5 and 6, we have started out malirg+1 double turns. Therefore, we rewrite
$+2 as ¢ +2I'" with I'=+1, and we refer to all of the results in Figuress4and 6 as the

I"=+1 OET states, and we pick out the nickname “prinlgguane” for thesel’ = +1 states and
abbreviate this by p'.” Pulling all of this together enables us to suanize the three results

from Figures 4, 5 and 6 as follows: TEACH m=0 FE® AND m=0 STARTING POINT

{N,N} - ni=+1 (|1=+1ni=+3)
pP=l'=+l: 0 ¢+2 - (NS - m=0 ([=+1m=19) . (5.1)
{S.§ - m=-1 (1=+1 rh=-1)

Now let's repeat everything we have just done, ihstead of a single double-winding
I"=+1, let’s start with Figure 3a, and do two doublednys, ¢ — ¢+8r7, i.e., ¢ - ¢ +4.
This is now anl' =+2 state, and it requires four ribbon operations.t iBstead of using more
drawings, let’s just use the consolidate notatmmepresent the results. As discussed earlier,
ribbons must always be drawn first over the norld ghen over the south pole, because the
rotation is a positive rotation. Doing otherwisathwcreate further entangling, rather than
detangling. As also reviewed, the temporal ordeeh which one draws the ribbons does not
matter because as with=+1 the final twist results are invariant with resptxthis order. So

operational sets of ribbons that can be used intamporal permutation argN, N, N, N},
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{NNON S, {NUN,S S, {N, S S$ and{S,S S $ Let us nickname thid'=+2 as

“diffuse-prime,” abbreviatedl’. What we now have, in place of five more Figueeg, the five
resulting states:

{N,N,N,N = m=+2 ([ 1=+2,m=+2)
{N/N,N,§ = mh=+1 (| 1=+2,th=+})
d'=l'=+2: 0-4+2' - {N,N,S §- h=0 (| 1=+2 1= 0) . (5.2)
{NSS$- m-1 ('E+2 te-})
{sSssk- -2 ('E+2 tw-3)

So now we start to see the pattern of OET. In ggnE which represents the number of
double windings is an integer which always has phbsitive valuel'=0,1,2,3,.. (I'=0 is
represented by Figure 3(a) and has the single sfated with no twists), and the resultant twist
of the north ribbon flowing detangling ranges otrex integersm’ for which -I'sm'<+I". So,
for example, if we go next t& =+3 with three double windings, and call this “fundarted-
prime,” abbreviated f'. For f', with I'=+3, we have seven statesy =0,+1,+2+Z.
Strikingly, this is the same pattern of orbital alag momentum and magnetization, as
represented by the quantum numbeasdm which characterize the electrons in an atom. And
also strikingly, the azimuth anglg is the same azimuth in physical three-dimensi@paice

against which angular momentum is specified.

This leads us to two questions: Are these concaeemerely coincidental, or can OET
be used to provide a fully-topological understagdai electronic structure (and by extension
nuclear structure which is subject to the same tigeh exclusion principles for proton and
neutrons)? And, how does this all relate to thedEQvhich motivated this discussion because
of the need to physically-distinguish rotationates with the same OE, i.e., states differing by a
47 rotation. Clearly, OET provides the basis foreaisg that even states which differ Bym
rotations from one another are not trivially-ideationce all of OE and Twist are considered,
and that the differences between these inequivataies parallel the orbital and magnetic
quantum structures of the atom and the nucleugtenduantum numbers which force exclusion.
We also note in passing that the web animation2&} {vhich follows the same winding
procedure we have used here albeit displayed frbottam perspective view, is one example of
how OE discussions often overlook Twist: This artiora performs the disentanglement

operation{S, S} so while it does indeed untangle the threadstilit leaves the routinely-

overlooked twist which in this case|i$=+1,m’" = -1 of Figure 6.

This leads us to consider the possibility that éha®mic quantum numbers may in fact
be indicators of states of twist, and it will leads to propose an experiment by which the
fractional quantum Hall states are examined fopprties reminiscent of electrons in the s, p, d,
f, g, h, i, k... orbital states of electrons in atormgossibly validate or contradict these apparent
parallels.
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6. Twist Part 2: Topological Modelling of Fermions and Conser vation of
Orbital Plus Spin Angular Momentum

The reason we started to study topology in thedastion was to see if physical azimuths
@ which differ from one another b¥/r and so are geometrically indistinct, or especiaiiydr
which are indistinct under geometric orientationd atopological entanglement, might
nevertheless be topologically distinct based orolagical twist. If we can show topological
distinctness, this would provide a basis for tHegang observable, physical differences based on
different azimuth or gauge angles, even when tlosges differ by integer multiples & or
47t and so are indistinct under, respectively, oritmiaalone or orientation-entanglement alone.
If established, this in turn would provide a bas trying to connect the quantized and
fractionalized fill factors in (4.2) to FQHE assungiwe can also physically and theoretically
explain the carryover of a result derived in thdé®ensional gauge theory to a fundamentally
two-dimensional, ultra-low temperature phenomenon.

We saw in the last section that when twist is abersd, the topological pattern could be
summarized by quantum numbeéfs=0,1,2,3,.. and -I'<sm’' < +I", which follow the precise

pattern that unprimed versions of these quantumbeusnfollow in atomic structure. This does
confirm that even azimuths separated4sy are physically distinct when Twist is made part of
the Orientation-Entanglement analysis. So refgrrio the proposed FQHY fill factor
relationshipyv =A /¢ of (4.2), this means that the use of angles segghtay 277 in the case of

the gauge anglé\ and by4 in the case of the azimuth angpeare physically distinct when

their topological Orientation-Entanglement-Twis¢ @onsidered, and thttese angles therefore
can be used in the relationship=A/¢ to specify a physical observabl@r, to be precise: the

fact that angles differing bysr are trivially indistinct based on geometric trigometry alone
cannot be used to disqualily=A/¢ as a possible observed physical relationship basdtie
combined consideration @eometry and topologyn particular, once topological twisting has
been taken into consideration. Even once thislausdcleared, however, the question of how a
three-dimensional Dirac-Wu-Yang (DWY) U(1) gaugedhy analysis resulting in U(1) QWY
magnetic monopoles has any relevance to the twehional system of electrons in FQHE still
does remain for consideration.

It is entirely possible to turn right now to thisiestion of how the three-dimensional
DWY analysis for the U(1) gauge theory of electronthree dimensions can possibly be related,
theoretically and physicallyfo FQHE systems in which electrons are fundanfigrdanstrained
to two dimensions. (For shorthand, we shall réfethis as the “two-dimensional constraint
problem.”) But, not only have we now establishbdttangles separated &7 or 477 are
topologically distinct,but we have established that they are topologicdisfinct in a fashion
that can be characterized By=0,1,2,3,.. wherel is the number of OET double rotations, and

by —-I'sm’' < +I' wherem' is the number of double twists that remain follegvdisentanglement
using one of2l' +1 disentanglement operations. Because the remowaé dprimes” from these
relationships yields the precise relationships tfe orbital quantum numbers of electrons in
atoms, and becauseis these very same electrons which have thresedsional freedom in
general at higher temperatures but become constrhio two dimensions in superconductors at
low temperaturesit seems that we will want to know as much assiibs about the topological
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behavior of these electrons before to attempt ¢kleéathe two-dimensional constraint problem.
Why?

Consider even these elementary questions: Therabsctin the atomic shells of a
superconducting material at high temperature (nmgamot too close to OK) certainly possess
the quantum numbers |, m, s which establish the basis for fermionic exclusionhe filling of
orbital shells. And these quantum numbers yieldage shell structures and wavefunction
distributions (see e.g. [27]) which are very faariland well established. So: what will happen
to these quantum numbers as we cool down this rabteward OK and phase transitions occur
which enable FQHE? Will these quantum numbers gasaway? Or will they still be there?
That is, are electrons in a superconducting matelise to OK still carriers of tha, |, m, s
guantum numbers which subject them to exclusioat@mic orbitals? And, if we suppose that,
yes, these quantum numbers do continue to exighéelectrons in a superconductor near OK,
then another question arises: What effect will ¢hed, m, s quantum numbers have on what is
observed when the superconductor is subjectedréye lmmagnetic field near OK? Instead of
manifesting in the three-dimensional shell strussureviewed in e.g. [27] which will most
certainly be constrained in some fashion to twoatisions near OK, might, I, m, s instead
manifest in some other way? And, if they do mastii@e some other way, might they in fact
manifest via the fill factow = A/ ¢ ; which is driven by gaug@ and azimuthp angles that are

topologically-distinct under277 or 477 rotations; which angles based on what we found in
section 5 may well bear a one-to-one relationshith w, |, m, s; and which fill factor does
correctly represent the observed FQHE based onwhaliscussed in section 4?

By laying out the questions in this way, we haeélerately “shown our hand,” which is
to say, this is exactly the line of reasoning that shall seek to develop and support in the
balance of this paper. Namely, we shall seek tovsthat FQHE is to low temperature electronic
behavior in atoms, what the shell structure isighér temperature electronic behavior in atoms.
But, if it is then, |, m, s quantum numbers which are the common denominatwrden low and
high temperatures, invariantly characterizing etetd no matter what the temperature, and with
the temperature dependence being expressed by hesge tunvarying quantum numbers
observably exhibit themselves, then thasg m, s become the fundamental point of reference
for guiding our understanding from high to low teargitures and back again.

What is fundamentally important about what we umced in section 5 — beyond the
showing that angles differing b2 or 47 are topologically distinct — is the finding théet
topological pattern’=0,1,2,3,.. and —-I'<sm’'<+I' matches the electronic pattern for orbital
angular momentum, which raises the prospect tlestethy |, m, s quantum numbers themselves,
in turn, can be completely grounded in a topoldgigaderstanding. And if that can be
established, then it becomes the topology itse®ET when performed in three dimensions
versus OET when performed under the restraintrabreng the degree of freedom of one space
dimension and so being restrained to two dimensiomgich becomes our key guidepost for
tacking the two-dimensional constraint problem.

Moreover, if in fact then, I, m, s quantum numbers of electronic structure can be

grounded entirely in the topology of OET in thramensions whether or not one of the space
dimensions is removed as a degree of freedom, them when we consider ordinary
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temperatures well above OK where all three spanesions are available, it would become
possible to understand atomic structure itself sgjyson the basis of geometry and topology.
This in turn would be extraordinarily beneficial the ultimate fulfillment of Wheeler's

geometrodynamic program [28], [29] in the spiritEifiistein and Weyl, of establishing that the
entirety of the observed natural world is a mangesn of spacetime geometry and spacetime

topology.

For all of these reasons, we shall now continuevdod with the development from
section 5, to further develop this possible connadbetween this OET topology and electronic
atomic structure.

We found in section 5 that when rotating a vectoedning, the arrow in the-XS bar)
through1'=0,1,2,3,.. double windings (throughr), that the number of double twistg7{
twists) that remain following disentanglement usimge of 2I'+1 available disentanglement
operations is—I'sm'<+l'. And this made us attentive topmssibleconnection with the
analogousl| =0,1,2,3,.. and -I<m<+|l in one of 21+1 states from atomic structure.
However, even if this possible is established tocalirue connection, the finding that angles
differing by 47 are topologically distinct still does not entiredglve the problem of physical
observability because the orbital angular momentumr xp to which we seek a connection is
not by itself a physical observable. Observablestrmommute with the Hamiltonian, and when

commuted with the Dirac HamiltoniafH,L] =i (a@xP). To fashion arobservableangular
momentum analogy, we need to also include the epémator for whichdiag(Z) =(o o), and
for which [H,S =+2 (a'x P). Then, forming the total angular momentuh=L +1%, we

obtain[H,J] =0, and find that it is) =L +1X which is the conserved observable. Thus, if our

goal is to develop a topological understandinglagervablephysics — as it must be — then we
must advance the results of section 5 to provitigalogical understanding of the intrinsic spin
% of fermion, and its interplay with orbital anguraomentum. Thus will be the main objective
of this section.

We saw in the last section through the notationettged in advance of (5.5) namely
2R m=+1, 2L - m=-1, and 0 - m =0, that a double twist ofdrr resulting from
detangling following one double rotation throughiz which we represented by =+1,
corresponds with one unit @ff which appears analogous to the magnetization qoantimber
m. And the z-component of total angular momentys m+s, combinesn with s, =+ unit
of angular momentum which is intrinsic spin, asoavdstream consequence &L +3% and
[H,J] =0. So carrying through this analogy, if we wishuse these topological twists to

represent spin Y2, a single twist througfz would correspond to a half unit off , and analogize

to a spin ofs, =+ . So we shall now proceed to represent a fermisimg the “bar and ribbon”
topological device of Figure 2(c), by introducingsiagle 277 twist into each ribbon, but with
opposite helicity as between these two ribbonssstw a&onserve twist. Because we are using a
convention utilizing twist conservation whereby tin@th ribbon specifies the OET helicity, we
will need two such bar and ribbon systems: one Imckv the north ribbon has right-handed
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helicity to represent spin up, and the other inaht has left-handed helicity to represent spin
down. We denote the right-helicity ribbon with dmaf of a right-handed double twist using the

quantum numbes, =+ and the left-helicity ribbon likewise ag = -3, and we continue the

convention where the “north” ribbon representsdkierall topological system. We also define
j,=m'+s,. Because we have not yet performed a#dyr rotations over the +z azis and then

disentangled anything, we these are configuratioribe statgl'=0,m' = 0). This is shown in
Figure 7 below.

i I i

IR IR

N S N > S
(a) (b)
Figure 7: Topological Representation of |(lé): om =0, =+1,]= +_%> and (b)
P=om=0g=-3.=-1)

Now, given that we intend to use the configuratbirigure 7 above to represent spin up
and spin down fermions, =+%and s, =-1, a practical question arises which may point to a

deep physical result: Let us suppose that theerelaals built the apparatus in Figure 3(a) and
now wishes produce the apparatuses of Figuresan@)y(b). Is the reader required to unstaple
or unglue (detach) the ribbons from Figure 3(ajegithem each a twist, and then reattach them
back? Or, can the reader merely perform somefsgiavations of rotation and disentanglement
to get from Figure 3(a) to Figures 7? This is acfical question, but it is also a theoretical
guestion, namely: is there some way in which Figg({@ can be topologically deformed into
Figures 7? That is to sagre these topologically equivalent, or, are theydiogically different?
The reason this is important is that if are evdhtuatending to have the number of double
twists be a topological representation of totalldagmomentum about the z-axis, then Figure 3
will eventually represent spin 0 and Figures 7 weWMentually represent spin %, and so the
topological deformation of Figure 3 into Figuresvduld suggest that one can use topological
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deformations to go from spin O scalars to a spiief/ions and by induction to higher spins. So
the deep question this raises viether topological deformations in the three-disienal
physical space can be used to connect particleifigrent spins, or whether such different-spin
particles are topologically distinct

As it turns out, which the reader who has buifjufe 3(a) will find, there are no OET
operations about either the z or y axes that vefbodn Figure 3 into Figures 7. The z-rotations
have already been explored in the last section,iatgns out that rotations about the y axis
followed by detangling produce results equivalenthie z rotations. However, it is possible to
deform Figure 3(a) into Figures 7 by rotating tlegtdam N>S bar about the x axis, and then
detangling. Specifically, using +x to define thasaof rotation, of one does réght-handed
rotation of the N>S bar about the x axis throughir (one rotation not two) letting the ribbons
wind once about the bar, and then untangles thin miabon over the north pole and the south
ribbon over the south pole, the resulting configiorais s, =+1 in Figure 7(a). With deft

handedrotation of the N>S bar about the x axis throudhrr followed by the same untangling,
the result is Figure 7(b). So our representatiospm O can be topologically deformed into our
representation of spin %2, but only if we are alldwe rotate the WS bar about the x axis. If
we are prevented from this rotation, and are omgmtted rotations about y and z, then the
different spins cannot be deformed into one another

Although tangential to the main development hehts taises the physical question
whether there are natural situations in three-dsioeral space where rotations can occur about
two of the three axes but not about the third. Anthinking about this question, one is drawn to
the dynamical property of physical space wherebgné has an object with differing length >
width > depth, say a length of 12 inches, a widtl® anches and a depth of 1 inch, and then
throws that object into the air while impartingatdn, a stable rotation can be achieved about
the length and depth axdsyt not about the width axisSo there is a physical precedent for
“excluding” rotations about one of the three spaxes. While we shall not pursue this collateral
question here, it is perhaps worth musing whethisrdynamical property of three-dimensional
space can help is try to understand spin supersymnee its apparent observed absence.

So returning to the main development, let us notate the azimutlp of the N>S bar
of each of Figures 7(a) and (b) through one doubteling of +477, then disentangle using the
{N,N}, {N,g} and{S, § operations developed and discussed in sectionVBe can draw
some more Figures for this, but that is now unreagsbecause we have developed some
shorthand for representing the results. Startinth virigure 7(a) which is in the state
I'=0,m"=0,5, =+1, j,=+21)with one-half of a right-handed double twist in therth ribbon,

2
we rotateg — ¢ +47, which brings about thé'=1) state representing one double rotation.

(Again, every whole integer represents the numbeloabletwists or rotations.) We learned at
(5.1) and (5.2) that an untangling which equalllabeesN andS restores the original number of
and handedness of double twists, i.e., leavaesnchanged from its original state. If one carries
out these above operations it will become clear thatells us the number of double twists in

each final state. Thereafter, for each of tmedlttombinations of disentangling, we arrive at:
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{N,N} ~ [I=1,m=+18=+1,
I'=0,m'=0,5,=+%,f,=+1) - +47 - <{N,§ - [ 1= 1Lm= 0,5=+1 ]
{S 9 -|1=1m=-15=+1, j=-1)

Likewise, if we start with Figure 7(a) which is the state|I'=0,m=0,5 =-1,j,=-%) and
again rotate vig — ¢+47 to|l' =1), each of the disentangling options produces:

I'=0m'=0,8,=-%,[,=-4) - +47 - {NS}—>|I—1rﬁ 05-—% == . (6.2)

We see here, and can confirm generally, that whemaximally-stretched all-N or all-S
untangling operations are applied, every two-wigdiotation of +4/7 will have added or
subtracted exactly one double twist from the oagstate. This means that we should now also

assign the azimuth anglegs= 27 to each of Figures 7, i.e., thEt=0 with s, =+1 should be
assigned the azimuth angle= 2 indicating that one twist is already built intasttground
state.

But the most important result is that were we to@y remove the “primes” from all the
guantum numbers in (6.1) and (6.2), these wouldiged/ reproduce all six of the angular
momentum-related quantum numbers for the p shetitreinic structure of an atom, which, for
example, appear in the Periodic Table of the Eléemeaquence B, C, N, O, F and Ne. This
appears to validate that atomic structure may ot fee explainable simply on the basis of
topological OET in three space dimensions. Domssphttern continue for larger rotations?

Let's now start with each of Figures 7 which we navow haveg =27 and rotate four
times to ¢ =107 which brings them into th€ =2 state of two double azimuth rotations. To
save on drawings, let us simply represent the tesuthe same way. Now we have:

{N,N,N N - [ T=2,m=+2,8=+1  [=+3)
{N,N,N,§ ~ | 1=2,m=+1 5=+, j=+3
I'=0,m'=0,5 =+%,j,=+%) - +87 - {{N,N,S,$ - | I= 2,iF 0,5=+1 ,=+1) .(6.3)
{NSS$—»| =2, he-1, 5=+, j=-1)
{SSS¥-|'E2 k-2 s+1 ,j.=-3)

Likewise, if we start with Figure 7(a) which is the state|I'=0,m =0, =-1,j,=-%) and

again rotate via - ¢ +4m to |I’ :l>, each of the disentangling options produces:
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2
N,N,N,s}q||:2,m:+1,§:_%,j:+%>
N.N.S, $~|l= 2, 051 jF-%) .(6.4)

z

I'=0m'=0,8=-%,j,=-4) - +87-

This now yields ten sets of tﬂﬂé = 2) guantum numbers which are precisely analogoulsdaset

of the d shell electrons which, for example, ruonirSc to Zn. Forp =147, i.e., by adding

+12r a.k.a. doing at’ =3 rotation, there are fourteen states that precisgdyoduce the f shell
angular momentum electronic structure seen in r@Hanoids and Actinoids. So this pattern —
derived wholly from the topology of OET in threasp dimensions will continue to perfectly
match the observed atomic structure for angular emtom, all the way through the entire
periodic table.

These results deepen our attention to a possilsleection between OET topology and
electronic atomic structure, especially now thathage a j, quantum number representing the

total number of double twists which aobservableafter all untangling has been performed,
which analogizes to thebservableJ =L + 1% for which [H,J] =0 which has the associated

half-integer statesj, =m+s,=+1,+3,+5 +1 _ for the eigenvaluej, in J,|&)=j,|&) when
J, operates on the spinor stalté>. So the observable numbers of doubles twistshen t

topological pattern now matches up precisely witike tempirically-observable angular
momentum. And in general the permitted statesramabers of these states also match perfectly
with all of the angular momentum quantum numlbbens, s, j. Because these results which seem
so reminiscent of atomic structure are directlyuwsdl from studying twists in the orientation-
entanglement regime articulated by MTW in [17]g&urn to these origins of OET study is now
highly warranted.

7. Fermions as Twisted Strings, and the Four Laws of Topological L east
Action

When we talk about orientation-entanglement (amaukhalso be talking about twist),
such as is done in Misner, Thorne and Wheeler'snge exposition [17], the discussion is
always approached schematically in terms of anéabj(e.g., the “ball” in Figure 41.6 of
MTW'’s [17] or the “bar” into which that is deformeah Figure 2) which is entangled via
“threads” (e.g., the north and south threads otifeigt1.6 or the “ribbons” of Figure 2) with its
external “environment” (e.g., the outer sphere iTWI and the top bar into which that is
deformed in Figure 2). The “threads” or “ribbonet related devices are then used to
topologically track the “object” relative to itsfigironment.”

But throughout all of this is an unstated assunmptidiich we now state explicitly, that
the “object” is representative of a spinor suchaaselectron and that the “environment” is
something to which the threads can be “tied,” sasmearby nuclei. But if OE&T is ever to
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progress from an analogy to a direct model for obslerved physics, we must progress from this
schematic, and ask come very direct physical questi Physically speaking, what is the
“object,” what is “the environment,” and most impontly, what are the threads@nderstanding
the physical nature of the “threads” or “ribbons’critical for advancing OE&T from an analogy
to a physical model of electrons and electronid (duereafter nuclear) structure.

On might be reflexively inclined to think of theréads as “field lines” emanating from
the “object / electron” in the fashion of Faradayt that is a classical picture and a quantum
field is not a set of lines but a set of quantumap®eters at every point in space. But we do not
even have to answer this question in this way,afnete something very basic about the results
in the last section: Starting with Figures 7, afte have performed’ double rotations, and
after we have used some permutations of N and é&disglement operations to remove all
entanglement, we wilvisually observeat a twist-conserved (zero total twist) configimatin
which the left ribbon (used as a convention to lldie result) hasj, =+1,+3 ,+2 + ... double
twists (+ = right handed; - = left-handed) whichashumber exactly equal to the observable
j,=*3,£3,#3,+Z... which tells us the number of units of angular momentum for an

electron in the absolutely analogous electronitesta an atom. Simply stated: After all is
rotated and then disentangléds the threads themselves, through their nundbefouble twists,
which carry the angular momentum quantum numbecsitzed to the electron (or protons or
neutron) itself. And from this we make a very important infereabeut physical reality:

Given that the electron (or proton or neutromyvisat carries the observeg in the real
world, and given as demonstrated that the threaitdbdns are what carry the analgg in an

isomorphic topological mapping, then if this topgittal modelling is to be used to describe real
observed fermions, theis the threads or ribbons themselves which rhaghe fermions!Mich
like the “Wizard of Oz” distracting us from the “mdbehind the curtain,” the “object” and the
“environment” in the usual OE discussion, like avdr natural magician, are actually distracting
us from what is really going on, especially if thesume without real examination of our
assumptions that the OE “object” should be an ofadde fermion. The threads or ribbons are
what carry the quantum orbital properties assoaikwéth electrons; it is therefore these threads
or ribbons or whatever one names them which shbeldegarded as the electrons.

Indeed, in retrospect, when we topologically defed Figure 2(a) from MTW into
Figure 2(c) which has been employed here and ¢ébeanced to Figure 7 once intrinsic spin was
considered, we stopped one deformation short ofimgake ribbon into electrons. Specifically,
the distinctions (lines) between the ribbons ared“tbject” and environment,” topologically, are
totally irrelevant. The lines between ribbons &ads can be removed, the bars can be shortened
and rerouted to merge them continuously and seamigh the ribbons, the earlier N and S
designations can be relocated and we can add “Wé¢sthd “east” E designations, and at the end

of this further topological deformation, the remmestion of them' =0,s =+ electrons in
Figure 7 can be topologically deformed into Figudselow:
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Figure 8: Topological Model of (a) Fermion obserwéth Spin Up| m=0,s = +%> and (b) a
Fermion observed with Spin Dowm! =0, =-1)

It should be apparent that Figures 8 are complétglologically equivalent to Figures 7.

But in Figures 8, there is no longer any conceptlistinction between the “object” on the one
hand, and the “environment” and the “threads” andther. Figure 8(a) is the topological model
of a spin up electron and Figure 8(b) is the togmlal model of a spin down electron. All of the
additional states analogous to the observed orbitgllar momenta, such as those in equations
(6.1) to (6.4), involve merely rotating the vectdrthe renamed south pole about the z-axis, and
then untangling the W and E threads in various péations about the southwest SW corner
until all that remains are twists without entangbens, precisely as was done before. It is easily
seen that these figures can be further stretchddr@amded without changing their inherent
topologies, which is indicated schematically by tiveles overlaid with each of these figures.

But now, we are not rotating of an “object” relatito an “environment” followed by
disentanglement of distinct “threads.” Now, #lectron itselfis seen as a “ribbon” or “loop” or
“ring” or, yes, a “string” (with some finite thicless), which is inherently-twisted to contain two
oppositely-handed twists, and which, like a pretdesorts, can have some of its parts rotated
relative to its other parts about the y or z axesl then disentangled about the southwest corner.
(As mentioned in the last section, there is nevestation about the x axis, or more accurately,
about any local tangent to the string, becausentbigdd change the string’s intrinsic twist which
analogizes to changing its intrinsic spin.) Thesgular-momentum-analogs developed in
sections 5 and 6 no longer describe OET of somgttbrelative to an “environment,” but the
pretzel-like OET of a string-like electron in retat to itself They are now, loosely speaking, a
topological characterization of a pretzel and te@omations use to create the pretzel. After all
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of this is disentangled, we end up precisely a®reefwith states that map in the manner of
guantum exclusion to the angular momenta of and, fy etc. shell electron.

This fully accounts, by analogy, for three of tieeif quantum numbetsm ands,. As to
the principal quantum number not yet addressed, we are mindful that in theimaigBohr
model of the atom, this quantum number arose mticgl to the orbital angular momentum via
L =ni. Of course, this relationship has long since bsgperseded, but to this daystill
represents the overall energy of each orbital,a@ndrbital energy increases, so too does distance
from the nucleus, and thus, the mean radius othial. It is for that reason that we have also
shown circles with radii in Figures 8, with the view not being quantifigdttas time, that this
final n quantum number is accounted for by the radiushefdlectron string, so thatl is
represented by the Figure 8 twisted strings hasmme minimum radius, an®=2,3,4 etc. are
represented by string radii which are larger in samay still-to-be quantified.

For nomenclature, we shall adopt the word “stritggtefer to these models of a fermion
in Figure 8, and it is apparent that these aregdrwith twists. This is meant to validate the
string theory approach widely reviewed in the atere, with the caveat that what we mean to
validate, specifically, is the idea that an electoy similar particle might be represented by a
closed physically-real loop, in physical three-dnsienal space, which has a finite radius.
Because the twisting of and twists within this eldsstring are of vital importance in
topologically connecting these strings to the obset, m ands,, and to the degree that a “twist”
in a “string” cannot be discerned unless that gthias some finite cross-sectional width, we shall
regard these strings as in reality having an infteidso to-be-determined, finitely dimensioned
cross-section in the physical three-dimensionatespa

We shall refer to the indicated four sectors @&sthrings as north, south, east and west,
and although we have changed the earlier N andsigrd®ions, we maintain a reference vector
displayed in the south sector so we can talk eabityt rotating the south part of the string about
the north portion of the string whereby evetir rotation adds one double-rotation unit |6f
Because it is helpful to enable discussion of timestigin, Podolsky & Rosen (EPR) [30] paradox
with reference to these twisted rings, we may akfer to the western and eastern sectors,
respectively, as thoee of “Alice” and “Bob.” And a reminder of the origin of Figures 8 from
Figures 7, we shall refer to the north and southiaes of these rings, formerly the “bars,” as the
“anchors.”

As before, rotations which add involve holding the north anchor fixed while ratat
the vector tattooed on the south anchor right-hdiydgbout the z-axis. This is simply a choice
of convention; the results do not change if we t@man immobile south and a movable north
anchor. As before, just with new names, untanghibalways proceed about the west side of
the south anchor, because using the southeastrcam@d not untangle but adds further
tangling, as has been discussed earlier. Theaedstvest string sections (a.k.a. Alice and Bob
sections) can be untangled in any permutations i8a.wFor example, see (6.3) and (6.4), we

can use any ofW,W,W, W, {W,w,w, 8, {W,W,EB, {W,EEB OR{E,EER to
untangle thel’=2 entanglement, and this together wih is what determines which of the
I''m',s,, },) we end up with after all untangling is complete.

34



Jay R. Yablon
PARTIAL DRAFT

Topologically, a single rotation of2/7 and +277 about the labelled x axis in figures 8(a)
and (b) respectively would remove all twists andhtthese into true “rings.” So these twisted
strings arenot Mobius strips. But, because such a rotation abwiix axis as discussed in the
previous section would turn this from a spin %2 espntatives to a spin O representative, we shall
forbid rotations about x and only permit rotati@imut y and z. Of course, coordinate systems
may be defined locally and nobody ought be barrewh fireely choosing using coordinates other
than what and where these are shown in Figurésa8what we really need to forbid to preserve
intrinsic spin, is rotating any localized part betstring about the axis that runs locally parallel
(tangentially) to the body of the string, becauss tvould change the twists that we are using to
represent the spin. While rotations about y an(@nzthe orientations locally depicted) are
permitted, as earlier discussed, y rotations armtations end up with the same results. So as a
convention we shall always use z rotations whenfivgt add I' to an electron before we
untangle it.

Finally, so we have in mind some definitive possilbbhapping between the quantum
numbers, |, m ands, from atomic physics and the topologidgim', s, developed so far here, let

us formalize a principal topological numbaer, at least qualitatively, which we now introduce
and designate by a positive integér=1,2,3,4... An increase in this1' is to correlate to a
presently-unquantified increase in the mean radfuke string loops in Figure 8. Then, if we
are using these strings to model the quantum sbatelectron in atoms, we simply use strings of
greater radius, e.gn' =2,3,4.. once we fill all the exclusionary states for aagiwespective

radiusn'=1,2,3... Then, because a larger radius hence greatemdiecence provides enough

extra string length to allow more entangling twist® can put this into a new relatidh<n’
analogizing to the atomic relatidnr<n. Simply put: a longer string can be given morgtas
and twists than a shorter string.

Now let’s use Figures 8 to develop some physiocseotions.

Dating back to Fermat, Maupertuis, Euler, Lagraage Hamilton, the principle of least
action written in the present day in spacetime8s= 5I d' x® =0, has been the foundation for

describing the dynamical behaviors of physicalayst Albert Einstein gavgeometricvoice to
this principle via the geodesic equatiadfx* / dt2+rg’ﬂ(d>€/dt)( df/dt):o of General

Relativity, in which the Newton’s first law that rmaterial body will move in a straight line
absent a second-law force acting thereon was deregtdo the law that such bodies will move
in straight geodesiclines when the spacetime containing that movenpmogsesses local
Riemannian, non-Euclidean curvature. The prospased in Figures 8 above that physical
electrons and other fermions might be represenyetidotopological tanging and detangling and
twisting of twisted strings suggests that we oughsupplement this line of development with
some form otopologicalleast action principle. After all, it is one tlgifior a person to build an
apparatus like that of Figures 7 and then manuwsdiyly forces to rotate the bars and untangle
the threads. It is quite another thing for an tetecbearing some physical relation to Figures 8
to first find itself twisted and tangled up in somvay, and then to somehow untangle itself into
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configurations represented by states such as thiog1) to (6.4) which map to its quantized
states as part of an atomic shell structure, abushed by human hands.

It will be familiar to anybody who has even touradscience museum that planetary
orbits are often geodesically modelled by introdgca moving ball into a concave receptacle
such as the upper half bttp://37.media.tumblr.com/tumblr_[0j2tgKctvigbOwdu r1 400.jpg
and then watching the ball “orbit” about the cehtrack until frictional losses draw the ball into
the neck to disappear from view. Of course, gadiah itself is drawing the ball down into the
neck and that is not how the geodesic equatiotyreadrks, but the model still imparts a true
visualization as to how curved geometry influenoatural straight-line motion without overtly
applying any acceleration-inducing force.

A similar simple visual model can be developedtégologicalleast action that will be
understood by any parent or child who has evendég a swing set at a playground: Going
back to Figures 7, imagine that the lower bar & $lwing seat upon which the child sits, the
upper bar is the top fulcrum of the swing set, #ratwo ribbons are the chains which connect
the seat to the top of the swing set, and thaktlebains happen to each have one twist in them
which we are forbidden from removing. Let us thimikthis in least action or lowest energy
terms as theopological “ground state” to which the swing seat will alwaggnamically to
return, if it is not otherwise prevented from dosw

Now let's do what any playful child has ever doaad instead of using the swing as
intended, let us twist the swing seat a few timasuaa z-axis pointing up, so that now the two
ribbons (chains in the swing set) have become @gistbout and entangled with one another.
What will now happen, dynamically? If the childdeyo of the swing (removes any force from
the swing) and steps back, then the swing willteotdbout the z axis oppositely to how the child
first wound it, it will go past its original configation to some extent due to its rotational ierti
it will thereafter slow to a stop. Then it willverse direction, and do this through a few
pendulous cycles until the damping effect of foatihas drawn off all energy and the swing seat
has returned to its ground state. And if the chitd on the swing while this is all happening, the
child will get dizzy and perhaps provide the parewth an opportunity to modify the child’'s
behavior. This is a topological analog of theigtraline motion of Newton’s first law. The
swing, after release, has no restraint imposedga#émy of the three space dimensions, and so it
can rotate freely to untangle itself, until it esstored to its ground state. As with the geodesic
museum model, the analogy is not perfect becawsmatgis drawing the swing seat back to its
ground state and we do not expect gravity to bangling electrons from themselves. But this
is still a valid model fotopologicalleast action dynamics in the in the same mannéneaball
in the concave receptacle is a valid model geometricleast action geodesic dynamics, and
allows us to state several definitions and thenypai® afirst law of topological least action.

Thedefinitionsare as follows:
Rotation: an orientation change in vectorial dinect of a section of a string loop
relative to other regions of the string loop.

Entanglement: a state in which two or more sectwins string loop have become
twisted around one another.
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Twist: a state in which single section of a striogp has become intrinsically
twisted unto itself, without reference to any otbections of the string loop.
Untangling: an operation to remove an entanglenweithout rotation, by moving
a first part of a string loop over and around a ged part of the string loop.

With these definitions, thigrst topological lawof least action is as follows:

1. A string loop which is in a state of entanglemeill naturally evolve to
become untangled by rotation, absent a force actingthe string loop which
prevents its untangling by rotation

This describes the situation where the child letsofjithe swing seat and everything naturally
reverts back to the ground sate through a dampedupsus rotation. We note — because this
will connect to the three-dimensional environmeinthe Dirac-Wu-Yang use of gauge theory to
derive DWY monopoles and fractionalized, and quadticharges — that this first topological
law is a statement of dynamics operating with axcaé three dimensions. There are no
dimensional restraints on this swing.

Now let’s suppose that the child at the swingisgdarticularly clever and mischievous
(which often go hand in hand), notices that eachirchlready has one twist a.k.a. half a double
twist (| j’ :i%>), and decides he or she would like to leave everenwists in the chains before
the next child comes along to use the swing. Sogbexceptionally clever and realizing that
nothing can be untangled following a single rotatithe child introduces two rotations about the
z axis (+41) which is one double entanglemeht£1), but then does not release the seat. The
child continues to exert a force which preventd §ean rotating. Now the child has imposed a
dimensional constraint. If in Figures 8 the chadusing force to prevent the vecter at the
south anchors from rotating about the z axis, theroverall swing and its chains are confined to
the two dimensions of the x-z plane. The y axigfidimits, and least for rotations of the seat.

But suppose the child now decides to untangldatsdiwork by passing the left chain
twice about the left side of the swing, which iss&y, by applying the what {sN, N} operation

in Figure 7, leading to the final stalf =1,m'=+1,s, =+1,,=+%) on the top line of (6.1).
With that maneuver, the next child to arrive at $heng will encounter three halves of a double
twist (| j’ :i§>), l.e., three twists in each chain. In Figure)&(@s entails twice passing the W

section of the string loop over and around thetsmagt corner and then around the south anchor.
This is the template for second topological lawf least action, which is as follows:

2. If there is a force which prevents a stringdao a state of entanglement from
untangling_by rotation, that string will naturallgvolve to become untangled by
untangling, absent a force acting on the stringdaghich prevents its untangling

by untangling

Now the reader will notice that the child has expld a small but important loophole to untangle
the swing without using a rotation: While the ysakias been placed off limits to rotation and so
the string loop really is restrained to two dimemsi, the very act of “moving a first part of a
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string over and around a second part of the strohggs require that there be at least some
nominal incursion into the y axis, albeit very shaald very limited, in order to bring the W or E
sections of the string around the vectron the south anchor. Specifically, if carefullgne,

the untangling operation can be performed benéatin the x-z plane withoutverbringing

the ribbon / string section off of the x-z plamxcepta) when it is brought past the southwest
corner and b) when it is against brought past theheast corner. At each of these corners, the
string will need to assume a coordinate positipr —¢, where £ is some small but finite
number at least as large as the width of the sttg®lf at is narrowest cross section. It is worth
the reader carrying this exercise to witness tHt® these two corners represent “chokehold”
positions for untangling: if everything is confinéal the two dimensions of the x-z plane, and
there is a choke against even goingyte —¢ at the SW and SE corners, then there is no way to

untangle the string, either by rotation or by ugtary.

If the reader has carefully followed these twonses, then it will become apparent that
there is also a natural dynamical preference fosttaver entanglement. In the scenario just

described, a system which stated V\4i|th: 0,j' =i%> was rotated through4sr (I'=1) into a

state||' =1j' :i%> where the two chains were mutuadiytangledthrough two turns. Let us

represent this “double entanglement” (one doubisttef chains or string sectiomsound one
anothe) by |e' :1>. Rotation was then removed by the child as aioogdbr untangling. So

now there were two options left: First, the systean remain in the sta1e’ =1 :J> with one

double entanglement following a double rotatiorec@&d, the system can be untangled by one
of the {N,N}, {N, S or {S, § operations represented in (6.1) and (6.2). Ilfuse{N, N},

then|€ =1,I'=1) evolves to|€ =0,I'=1,j'=+$), and the unit of double-twist entanglement is

removed,€ =1= € =0 at the expense of adding one net unit of doublsttt® each chain,
j'=+*1=j"=+£3. If we take note an electrons will evolve, foaexle, from their free state of

j =+ to an in-shell state of =+2 if required to join an atomic shell, then thisdsaus by

analogy to discern third topological lawof least action:

3. A string loop in a state of entanglement wekkk to become untangled, always
first by rotation. If there is a dimensional restit barring rotation, then the
string loop will seek to become untangled by unliaggeven if this creates more
twists.

Now, let us imagine that we take a single chain laaag a swing seat by that one chain.
Whatever twist may reside in that chain, if anyg@the pendulous rotation of the swing ceases,
we will have found the ground state for the twidthis leads us to Bourth topological lawof
least action:

4. A section of string taken out of its groundtestaf twist will naturally untwist back
toward its ground state of twist, absent a forceclwiprevents its untwisting.

Both topological laws 3 and 4 work together, beeanhkile an individual string section will seek
its ground state of twist it can, untangling takes precedence over untwisting. m&amtaining
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an untangled state, in and of itself, may bringutttbe force which prevents untwisting into the
ground sate. We also noted in the earlier disongsiat if one were to rotate Figures 8 about the
X axis by one turn at the local area where this axshown, then the spin % could be removed.
This is not permitted, and so in Figures 8, it ie-dalf of a double twist which is the ground
state of twist.

Now let’s consider the final situation, alreadgyewed, where the child has rotated the
swing a few times, does not let go (remove his @r force) to permit a counter-rotation that
removes the tangles and twists the child has seftypntroduced, and does even not allow any
of the chains to be passed about the seat soaddast untangle the chains even if that means
adding more twists to each chain. Now the child tlaoked off the SW and SE corners of the
swing. And suppose the child has a bad tantrumgaed so far as to spray water all over the
chains so that they rust in place, or to place cgérme glue into the chains so that they are all
gummed into place, or to spray liquid nitrogenaler the chains so that they are frozen into
place (the “frozen” analogy is intentional becatlss is what will lead us to FQHE). Now, the
swing is simply stuck with extra tangles and exwasts that cannot be removed, and when the
next child arrives, what was expected to be a swsag will have a somewhat different
appearance and not be usable in the way that waesced. And if the swing is really an
electron, this choking off of untangling occurs mn@&, and it simultaneously restores a U(1)
electric-magnetic symmetry, gives rise to Dirac-Wang monopoles, and causes the electric
and magnetic charges to appear in quantized mestipli fractionalized charges.

At the moment, this is still an analogy under depment, with physical connections also
under development. But as earlier noted in secdipjust as GUTs have certain symmetries
which are broken at lower energidsyw temperatureqnear absolute zero are also thought to
cause displays of certain symmetries which becomlkeln at higher temperatures, per Volovok.
[18] So if the migration from electrons which diree to move without restraint in three
dimensions, to electrons which are somewhat topoddly constrained to be able to occupy
shells in atoms, to electrons which are even migtely constrained to be wholly confined to
two dimension because the temperatures are now nigar absolute OK, can be shown to
parallel the migration from the free electron grloops of Figures 8, to configurations where all
rotation is prevented for untangling (first lawuisavailable), to a configuration where a choke is
placed so that the topology is tightly restrictedwo dimensions and no untangling whatsoever
is permitted, then we will have found a path togbglly connect the three-dimensional analysis
of DWY, topologically, to the two-dimensional enmmment of FQHE.

The foregoing four topological least action prpies are the first step to developing
these physical connections. The next step is ewead by another simple question. Spin and
angular momentum all comes in units or half unitsio Of course, one can always work in
natural units withz=c=1. But when we step back out of natural uniisis a unit of action
which is also a unit of action. We have been agiaiog units of angular momentum against
units of double-twist. Units of double twist araly dimensionless numbers. So how do twists,
which are topological numbers, physically becomgugar momentums, which represent circular
flows of energy? That is the subject of the nextisn.
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8. From Topological Twist to Quantized Angular Momentum (to be
added)

To be added.
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