Jay R. Yablon
PARTIAL DRAFT

Dirac-Wu-Yang M onopoles, Gauge Symmetry, Orientation-Entanglement &
Twist, and how these Underlie the Fractional Quantum Hall Effect

Jay R. Yablon
910 Northumberland Drive
Schenectady, New York 12309-2814
jyablon@nycap.rr.com

December 10, 2014

Abstract: The purpose of this paper is to expldia pattern of fill factors observed in the
Fractional Quantum Hall Effect (FQHE), which appeato be restricted to odd-integer
denominators as well as the sole even-integer devataor of 2. The method is to use the
mathematics of gauge theory to develop Dirac molegpeithout strings as originally taught by
Wu and Yang, while accounting for orientation / aegflement and related “twistor”
relationships between spinors and their environmietihe physical space of spacetime. We find
that the odd-integer denominators are included Hr@even-integer denominators are excluded
if we regard two fermions as equivalent only iftbtteir orientation and their entanglement are
the same, i.e., only if they are separated byndt 2r. We also find that the even integer
denominator of 2 is permitted because unit chaagspair into boson states which do not have
the same entanglement considerations as fermiomstreat all other even-integer denominators
are excluded because only integer charges, andraotional charges, can be so-paired. We
conclude that the observed FQHE fill factor pattezan be fundamentally explained using
nothing other than the mathematics of gauge th@osmjew of how orientation / entanglement /
twist applies to fermions but not to bosons, whastricting all but unfractionalized fermions
from pairing into bosons.

PACS: 11.15.-n73.43.Cd; 14.80.Hv
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1. Introduction: Wu and Y ang and the Dirac Monopole without Strings

The Fractional Quantum Hall Effect (FQHE) obserwedwo-dimensional systems of
electrons at low temperatures in superconductintgmads subjected to large magnetic fields is
characterized by observed filling factarss n/ m, wheren andm are each integers, but whene
is anodd integer onlywith the exception thah may also be the even integer & other words,
the apparent pattern, widely reported and studiedthe literature, isv=n/m with
n=0,£1+2+3.. andm=1,2,3,5,7,9,11., see, e.g., [1], [2], [3], [4], [5], [6] generallgnd for
the even denominator 2, see, e.g., [6], [VE(L/2), [8] (v=3/2), [9] (v=5/2) and [10] (
v=7/2). Two questions arise from this effect: why ame tlenominators in the filling factor
odd but not even (including the quantization of honit charges witlhm=1), and why is the
even denominatom=2 an apparent exception? We show that this patérfilling factor
denominators has a fundamental explanation baseiog the mathematics of gauge theory to
develop the Dirac Quantization Condition (DQC) firac-Wu-Yang monopoles, in view of
how orientation-entanglement applies to fermiomsgs but not to bosons, and also in view of a
“twisting” associated with orientation-entanglemeiich appears to have been underreported in
the literature.

In 1931 Dirac discovered that the existence of meig monopoles implies that the
electric charge must be quantized [11]. While ghaguantization had been known for several
decades based on the experimental work of Thompsdhand Millikan [13], Dirac was
apparently the first to lay out a possible thecedtimperative for this quantization. Using a
hypothesized solenoid of singularly-thin width knoas the Dirac string to shunt magnetic field
lines out to mathematical infinity, Dirac estabbshthat a magnetic charge strengtivould be
related to the electric charge strengtlaccording toey =277n, wheren is an integer, which
became known as the Dirac Quantization Conditio Q@) Subsequently, Wu and Yang used
gauge potentials, which are locally- but not glbpakact, to obtain the exact same DQC
without strings [14], [15]. Their approach is ca®ty summarized by Zee on pages 220-221 of
[16] and will be briefly reviewed here, becauseprbvides the methodological basis for
understanding the pattern of filling factors obsenfor the FQHE. Throughout we use the
natural units ofi =c=1.

Using the differential one formA= A dX' for the electromagnetic gauge field a.k.a.
potential and the differential two-fornfr =5 F dx“ 0dX = dA=9, A dX0 dk a magnetic

chargeu may bedefinedas the total net magnetic flux = <ﬁ> F passing through a closed two-

dimensional surfac&® which for convenience and symmetry we may takeébéoa sphere.
Differential exterior calculus in spacetime geomdtaches that the exterior derivative of an
exterior derivative is zerad=0, which means that the three-form equatitbfh= ddA=0. Thus,

via Gauss / Stokes{,ﬂO:H dF = SEJS F=u. In classical electrodynamics prior to Diracsthi

was taken to mean that the magnetic charg®e But a close consideration of gauge symmetry,
which is locally but not globally exact, tells dfdrent story.
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When a spin ¥z fermion wavefunction (which we magard to be that of the electron)
undergoes a local gauge (really, phase) transfamag(x) — ¢'(X) = €"®y( %, the gauge
field one-form transforms as

A A=A+e"dé/ i (1.1)

If we represenE in polar coordinategr,¢,6) as F =(u/4m)d cosfdg, then becaus€ = dA

anddd=0, we can deduce thaﬂ:(,u/4ﬂ) cosfdg. However,dg is not defined on the north
and south poles. So we may define a north coaelinpatch over which
A, =(u/4m)(cosf- 3dg and a south patch over whick =(u/4m)(cosf+ 3dg. But at
places where these patches overlap, these gaugatipts are not the same, and specifically, the
difference isA; — A, =(u/2m) dg, or written slightly differently:

A~ A= A= A+(ul2m) d. (1.2)

So comparing this with (1.1), we may rega#fd as a gauge-transformed stad¢ of A, for
which the gauge transformation is simply:

lenge =4 ¢ (1.3)
ie 21T

This differential equation foN and ¢ in relation toe andy is satisfied by:

exp(in) = exp{ie,u 2¢ J (1.4)

T

as can be seen simply by pluggigd from (1.4) into the left hand side of (1.3) andueing.
This relates the azimuth angée which is one of the three spacetime coordinateshe local

gauge (phase) angle, and thereby connects rotations througghn physical space to rotations
through A in the gauge space in a manner that we shall xgéoe in detail.

In polar coordinatesg =0 and ¢ =277 in (1.4) describe exactly the sarngentation
(but not entanglement) on the surfaceSof So to make sense of (1.4) at like-orientations,
must have:

exp(in) = exdiex 00 = & expiexO], (1.5)
Specifically, this means thwxp(ie,u) =1. Mathematically, the general solution for an dtum

of this form is exp(i 277n) = 1for any integern=0,+1,+ 2+ 3.., which is infinitely degenerate
but quantized. As a result, the solution to (is5)
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N =eu=2mn. (1.6)

This, of course, is the Dirac Quantization Conditizvhich may also specified in relation to the
gauge (phase) parametéx which is seen to be an quantized integer multipie 277.
Specifically, (1.6) with simple rearrangement tells that the electric charge is quantized
according to:

e= n2—”= nq=A, a.7)
H H

where then=1 “unit” (u) of electric charge i, =277/ i, defined a2/ times the inverse of the
magnetic charge. The customary interpretatioreefn(Zﬂ/y) in (1.7), ever since Dirac first
found this relationship, is that if this magneticacge “exists,” then the electric charge is
quantized in units ofg,. It is important to keep in mind that the coneers not true: the

observed quantization of electric charge doesimply that the magnetic charges do exist. In
fact, as best as is known, this magnetic chargeas not been observed to date, and the
guantization of electric charge is explained nottlom basis of these Dirac-Wu-Yang magnetic

charges, but on the basis of the charge generQer¥ /2+ I° which emerge in Yang-Mills
gauge theory following the electroweak symmetryakneg of SU(2), x U(1), down toU(1),,,.

We may then go back to the original definitipre <ﬂ> F and use (1.6) to write:

@F :ﬂZZ_ZTn:n,Uu:A, (18)
e e

where we also define an=1 unit of magnetic chargg/, =2 /e, similarly quantized. By
appropriate local gauge transformation, and spedifi by choosingh=0 which is the same as
choosing the phase angfe=0, the nonzero surface integral can be made to Iva[gsF =0.

But this does not invalidate (1.7) and (1.8) noesld prevent us from seeking to draw physical
conclusions from these. It simply means the® with no monopoles and no electric charges is
one of the permitted states. But again, the megaafrthe whole range of charges= ne for
n#0 has been physically-interpreted since Dirac, aggssting that the “existence” of a

magnetic charge would imply electric charge quanitn, with the further understanding that
the converse is not true.

In the lowest positive non-zem=1 state, from (1.6), we hav&d =eu=2mr. So if we
define a reducedh =/A\/2m, then by (1.6), the reduced gauge paraméter n is simply the
charge quantum numbar So every gauge transformation adding an ang@ofdds one unit
of electric and magnetic charge. Thus, althodgh 277,477, 67.. aremathematicallyequivalent
angles, they do appear (if these monopoles “extsthe physicallydistinguishable because of
their connectionA =n to charge quantization. This is an important olet@&n which will
show itself in a number of ways throughout theHooming development.

4
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This is how Wu and Yang obtain Dirac monopoles @edDQC without strings.

2. The Fractional DenominatorsIndicated by Dirac-Wu-Yang: arethey
Somehow Related to FQHE?

If we closely study this derivation by Wu and Yamg see that there are some additional
guantum states indicated that have not yet beesidemred. Referring to (1.5), not only do
¢ =0 and ¢ =27 describe exactly the sanmientation (sans entanglement), but so too do

g=4m, ¢ =6, ¢ =8, etc. Sowe may now extend (1.5) to:
exp(in) = 1= exffiey0) = expieyOP= expeu)3F eXpeuD)4 efkipgu0)s i) €(2.1)

Each of the above is a separate relationship of géeeral form exp(ie,u EI]) =1, where
1=1,2,3,4,5,6. is an integer not the same as thalready in use. At the same time, as noted
after (1.5), the general solution for an equatibnhgs form is exp(i 2nn) = 1 with this integer
n=0,£1+2x 3... Comparingexp(iexd)=1with exp(i 2m)= 1 means that more generally,
ey =2mm, or, restated (also usily = 27m from (1.6)):

N1
e:__:_eJ :V%:——, (22)
U
where we define a “filling factor”
; n=0,t1+x2+3..; 1= 1,2,3,4,5,6. (2.3)

So this tells us that if these monopoles “existt only is the electric (and magnetic) charge
quantized, but each unit of electric chaeye(or magnetic charges,) can be fractionalized into

anyv =n[{1/1) quantizech fraction1/1 of itself.

Taking (1.7) together with (2.2) and (2.3), thieans that if the Dirac-Wu-Yang
monopole “exists,” then all particles carrying étemagnetic charge must obey (1.7). But they
will also obey the more permissive conditions aRfavhich lead to fractionalized charges. We

then see, that (1.7)e=ne, is a special case of (2.2) and (2.3=(n/l)e with
1=1,2,3,4,5,6., in the particular circumstance whésd..

Now, one may take the view that (2.2) and (2.3)jast a “trivial” extension of (1.7),
because mathematically, it is certainly trivialtttiee anglesp = 277, 4, 651, 877, etc. have the

same trigonometric properties as the angle0, and rotational orientation is indistinguishable
as between any set of anglgs= ¢, +2/m withn=0,x1,+2+ 3.. differing from some base

5
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angle ¢, by an integer multiple o277. And this may explain why (2.2) and (2.3) do appear

to have been developed or studied in the literaturesarly the same degree as the DQC. But in
the context of (2.2) and (2.3), the fact that tinigial trigonometric concurrence gh =0 with

¢ =2m, 4, 61, 8 leads to fractional charges is anything but ttividlust as the DQC

motivates us to consider whether the Dirac monapelast and if so in what fashion and under
what circumstances, the logical extension of theCDa Wu and Yang motivates us to ask the
same questions about fractional charges which welasut Dirac monopoles, because (2.2) and
(2.3) package all of these questions inseparalggther: If these monopoles exist, thgauge
theory itselfinexorably implies that electric charge is quagdizand also that electric charge is
fractionalized This means that the DQC is really a DQFC, DiQoantization and
FractionalizationCondition. And although this emanates from soimetkhat is mathematically
trivial, namely the trigonometric indistinguishatyil of rotational anglesp =277, 4, 677, 811

etc. from one another, the fact that gauge thegly tis that the DQC is really a DQFC, is highly
non-trivial and must be explored.

So, given that the Dirac-Wu-Yang arguments do leatdonly to charge quantization, but
inexorably to thegquantization of fractionalized chargeise., to filling factorsv = n[@l/l) , and

given that fractionalized chargase experimentally observed the FQHE, one is motivated to

explore the question whether there is a connedbemveen the two. So we now pose the
guestion which will be the subject of the remaindéthis paper: might the DQFC (2.2) and
(2.3) actually be related in some way to the FQHERI if so, how?

For there to be a valid connection between thetitraalized charge states of Dirac-Wu-
Yang monopoles and the fractionalized quasipartstltes of FQHE, there are two main
problems that must be overcome, one experimenthlaathmetical, the other theoretical and
physical. First,experimentally and arithmeticallywhile the fractional charge denominators
permitted by Dirac-Wu-Yang in (2.3) may assume amgger valuel =1,2,3,4,5,6., the
denominators observed in the FQHE are more restricted: they only take thalues
1=1,2,3,5,7,9.. That is, the observed denominators are alwayd iotegers, with the

exception that the even integer 2 is also observed, see again, [6], [7], [8], [AP]. So, the
Dirac-Wu-Yang approach — if it applies at all to HER) — must be able to explain this
arithmetically-restricted experimental pattern dserved denominators. The result in (2.3) is
simply too inclusive, i.e., it includes states whare not observed alongside states which are.

Secondtheoretically and physicallyeven if the denominator patteirr1,2,3,5,7,9..

can be explained, applying the Dirac-Wu-Yang arguseto the fractionally charged
guasiparticles in FQHE systems is still physicalyntrivial. The Dirac-Wu-Yang theoretical
argument is developed within the three-dimensiqingisical space of spacetime geometry, and
is understood to apply to systems of electronstopg) and neutrons for which no fractionally
charged particles and no Dirac-Wu-Yang magneticapotes have ever been observed. But at
the level of analysis where the quasiparticle lagguapplies, the system is fundamentally two-
dimensional, because the superconducting matenmsed together with the ultra-low
temperatures and large magnetic fields appliedtitoutate the observed FQHE, combine in
some fashion to substantially remove one degrespafial freedom from the electrons and so
restrict the electrons to two space dimensionsd #insome way that needs to be understood,

6
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these all synergistically coact to produce thel, 2,3,5,7,9.. denominator pattern. Because of

this difference between the three-dimensional spad@irac-Wu-Yang and the two-dimensional
restricted space of FQHE, one might take dhariori view that there is no connection between
Dirac-Wu-Yang and FQHE. So for certain, at theyvieast, if there is some hidden, not-yet-
understood connection between these two fundanhewliffierent environments of Dirac-Wu-
Yang and FQHE, it is important for such a connectmbe carefully developed and articulated.

3. Orientation-Entanglement, and the Odd-Integer FQHE Denominators

Spinors, which includes electrons, reverse sigonug spatial rotation through an angle
@ by an odd multiple oR77. Specifically, as Misner, Thorne and Wheeler (MTpdint out in

one of the most widely-regarded discussions oftthpéc in [17] at section 41.5, the spin matrix
of a rotationR=cos(¢ /I -i(nlw) si{g /2 (see MTW [41.48]) reverses sign upon a rotation
through an odd multiple o277, as does the sign of a spinor under. &' =Ré (MTW [41.50]).

This sign reversal does not, however, appear in tthesformation law for a vector,
X 5 X' = RXR (MTW [41.49)]).

Misner, Thorne and Wheeler provide a visual, msmopic, intuitive, essentially-
topological understanding for this result by coesidg the orientation and entanglement of an
object relative to its surrounding environment, daese while orientation is restored unde27a
rotation, it takes ad/r rotation to restore the object’s state of entameglet, i.e., to restore the
complete “version” of the object. They do, howearpage 1148 of [17], make the statement:

“Whether there is also a detectable difference ha physics . . . for two
inequivalent versions of an object is not known.”

This question of whether MTW orientation-entangleimierings about detectable physics in the
study of physical systems will occupy a fair shairéhe analysis to follow in this paper.

Now, the gauge transformatiog(x) — ¢'(X) = €"®w( ¥ with which we originally
started at (1.1) acts on a Dirac fermion wavefamctiwvhich we may take to be that of an
electron. And electrons are Dirac spinors. Ssua$), the sign of this wavefunction will reverse
under any rotation from a givep to ¢ + 27 and will only be restored under two rotations,, i.e

when rotated fromg¢ to ¢+4mr. Therefore, let us suppose that some weight nezdse

ascribed to theversionof the electron and not only its orientation, a@hdrefore revisit (2.1)
where we equated the entire set of rotations dliifgirom one another by onl§/7, not 477.

Specifically, let us now explore the consequenddaling the more-restrictive view that
two termsexp(ie,u(¢ IZT)) in (1.4) may be equatetiand only if they differ from one another

by 4r. Then, let us start with a Dirac fermion in tige= 277 state, which as seen in the
derivation leading to (1.6) is the=1 state for which the DQC givesy =27r. Thus, for this

state, we haveexp(ieu (¢4 / 27)) = ex{i 27( r /Z))= . Then, because we are starting out
with a fermion oriented tap = 277, the equivalenversionswill be those for whichg =677,

7
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¢ =107, ¢ =14, etc. As a result, when we apply this entangt@mestriction to (1.4), then
in lieu of (2.1), we now obtain:

exp(in) = 1= exp{ie,uzlJ: expienO)l= exgen0)3 efpend)5 efkipuO) 7. (3.1)
T
So this consideration of entanglement in additmorientation naturally discards all of the even-

numbered states such esp(iex/[?), exp(iex ), etc.

Each of the above is now a separate relationeb(';p(iey(l+ 2)) = 1 wherel continues
to be an integer with the valuds=0,1,2,3.., so that2l +1=1,3,5,7.. is an odd integer
Comparing exp(ie,u(1+ 2)) = 1 with the mathematical relationshi@(p(i 277n) = 1 means that

e (1+21) = 27rm, or, restated:

&@=ve, (3.2)

with a redefined filling factor:

© n=0,£1+2+3... I= 0,1,2,3. (3.3)

In contrast to (2.3), this filling factowill always have an odd denominatorAnd with the
exception of the even denominator 2, this is whatiserved in FQHE.

This means that if regard two electron statesteduivalent in (1.4) only if they have the
same version i.e., differ from one another 4w not 277, then all of the fill factors will only
have an odd-integer denominator, and all even-ariteg@nominators will be excluded because
they involve inequivalent versions. Other thandkien denominator of 2, this fully accords with
the fractional charges states observed in FQHE. otBer than the question of the even-
numbered denominator of 2, this does solve @éRperimental and arithmetical problewf
matching the observed fractional charge denomirsat&ut because of the role of entanglement
in reaching this result, we are now led to entartait only whether the FQHE is in some way a
physical manifestation of the Dirac Quantizateomd FractionalizationCondition, but whether
theodd-integerdenominators in the FQHE are “also a detectalfferdnce in the physics . . . for
two inequivalent versions of an object,” whichhe tquestion Misner, Thorne and Wheeler have
posed. In short: is FQHE an experimental, detéetadanifestation not only of Dirac-Wu-Yang
monopoles and fractionalizatiobut also a_detectable physical manifestation of M3Mhor
orientation and topological entanglem&niAnd if so, how?

For ordinary systems of electron and protons aggtrons in which the electrons are
unconstrained to two-dimensions by any materiald &wor low temperatures and / or large
magnetic fields and so are operating in three-dsioeral space, neither fractionalization nor

8
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Dirac monopoles nor signs of orientation and erleangnt appear to be physically detectable.
So as to theheoretical and physical problenthe question is whether in some way, and if so
how, the physical constraints imposed by certairppestonducting materials and low
temperatures and high magnetic fields create amramaent in which fractionalization and
entanglement and even the Dirac-Wu-Yang monopdlesselves are suddenly forced to make
a physical appearance.

As to the Dirac-Wu-Yang monopoles, we keep in ntimat while the high energies of
Grand Unified Theories (GUT) have certain symmstigich are broken at lower energies, so
too, low temperaturesear absolute zero are also thought to causeagisplf certain symmetries
which become broken at higher temperatures. [18]th® question which comes to the fore is
whether an electric / magnetic symmetry of Maxveetheory in the form of Dirac-Wu-Yang
monopoles really does physically manifest fromabafluence of low-temperatures near OK for
electrons in certain superconducting materials utatge magnetic fields, and then gets broken
into the non-observation of monopoles under angtbut these limited conditions.

As to entanglement, the question which comes to ftre is whether by tightly
constraining the electrons to two rather than tllieeensions, and extracting virtually all of their
heat energy leaving them only with their Fermi gnes, we are forcing the electrons into some
highly-constrained topological condition which fescthem to reveal their entanglements and to
display an electric and magnetic monopole symmatiy a charge fractionalization which they
otherwise can keep hidden from observation.

And straddling between the experimental and aritioakeproblem and the theoretical
and physical problem laid out in section 2, is fiblléwing problem as to the boundary between
mathematics and physics: Mathematically speakamgangle ofg =257 is indistinguishable

from an angle o#rr, 677, 877, etc. But physically, for fermions, if we accodot entanglement
together with orientation, thes# =0, 477, 81 etc. form one set of “equivalent” angles, while

¢ =2m, 6, 107 etc. form a second set of “equivalent” angles, eeddo have a basis for

physically distinguishing these two sets of angles notwithditay their mathematical
indistinguishability. In (3.2) and (3.3) we usdustto force out the even-numbered fractional
denominators and only retain the odd-integer denatars which does accord with the FQHE
observations aside from tine=2 denominator still to be discussed. But thergtilsa puzzle for
the anglesvithin each of these two sets of angles

For example, an=1 state withv =1 corresponds with the azimuth= 277, while ann=1
state withv =1/3 corresponds with the azimuth=677. Even with entanglement considered, it
therefore seems as though we should still regar2/7 to be equivalent witlp =677. And yet,

from (3.2) and (3.3), these two angles are condewith two observably-different physical n=1
states namely,v =1 for ¢ =2 andv=1/3 for ¢ =677. And going further,y =1/5 for

@ =10mr, etc. So we are also required to consider thiviihg question: How it is that
geometric angles such as=2m and ¢ =677 and ¢ =107 which are equivalent under both

orientation and entanglementstill manage to lead to distinct physical statesch as the
respectivev =1, v =1/3 andv =1/5? Is there something else that is still being Sa&d' by
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the orientation-entanglement analysis which leadartgles such ag =27 and ¢ =67 and

@ =10r7 still being distinguishable from one another, ntatanding their pure trigonometric
equivalence and their like-entanglements? Puedfftly, entanglement makes thhe=0, 477,
8m etc. azimuths different from thg¢ = 277, 677, 1077 etc. azimuths, but within each azimuth
set, what might make, e.gg¢ =2 observably physically different fronpp =677 and those
observably physically different fromd =1077, etc.? As we shall develop starting in sectioalb,

of these angles are indeed distinguishable, beazuséopological “twisting” which also occurs
in relation to orientation-entanglement, but whiappears to be overlooked is the usual
discussions of this subject.

All of the foregoing questions will be considereddietail beginning in section 5. But for
the moment, having explained the odd-integer FQ&ochinators via (3.2) and (3.3) by only
equating angles with matching orientatiand entanglementwe must now address the next
experimental and arithmeticatjuestion: Why does nature also appear to pernat eben
denominator 2, in addition to the odd denominafor® in (3.3), but not permit any other even
denominators?

4. Untangled Electrons Pairing into Bosons, and them=2 FQHE
Denominators

Equation (1.7) for the non-fractionalized Diracatization Condition specifies charges
e=n(2m/u) = ng which are integer multiples of the unit charge= 277/ 4. For this set of

integer charges, (1.6) tells us that the gaugenpatex A =27m. This entire set of integer-
quantized charges= ne corresponds to the single azimuth= 277 which means that there is a

one-to-infinite quantized mapping @f to A. That is, an infinite set of gauge staifes- 2/m
can all be used to equivalently describe the sammauth stateg =277, yielding quantized
multiples of the unit charge.

Now, if we take a single fermion e.g. electroritia ¢ = 277 state and do d/7 rotation to
a ¢ =6 state which restores the electron to its origor&ntation and entanglement version,

then exp(iA) = 1= exf{iex 03 is the portion of (3.1) which describes this neates Referring
again to the general reIationsh'Ep(p(i 277n): 1, the solution iSA =2rm=3eu, restated as

e=A/3u=(n/3)(2r/u) = ng /3. This specifies integer multiplesof 1/3 of the unit charge

e,. As before, the gauge paramefer 27m, from which we earlier defined a reduced gauge
7 =n after (1.8). Similarly, if we generally defineeduced azimuthg = ¢ /27, we see that
for ¢ =67, the fractional denominatdr+ 2 is equal to the reduced azimuth; 2 = ¢ = 3. It

is readily seen that for thg =1077, ¢ =147 etc. states which also maintain the= 277 version

of the fermion, that the odd number denominator8if) and (3.3) may be written gs=1+2 .
Using this information and notation, we rewrite thieng factor of (3.3) as:
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v=%: ; A=n=0,x1+2+3...; ¢ =% P= 1,3,57,9...1 = 0,12,. (4.2)

>

So thefractionalization of charge is determined directly by the numbefwahdings”
¢ =1+ 2 in the physical space of spacetinamd the odd-integer denominators occur because
two topological windings, not one, are needed tstore a fermion to its original version.
Although the ¢ =1+ 2 =1,3,5,7,9. states all appear to be mathematically equivddesed on
their differing from one another by and so representing the same fermion versionfaitte
that these windings directly determine the fraadi@ation denominator is potentially an
observable physical effect which belies this appaeguivalence. Similarly, thguantizationof
charge into integer multiplesof a fractional chargé/¢ is related to the quantized degeneracy

of the gauge parametefr =n which describes an infinite number of equivaleauge states,
and mathematically to the fact that phase angleshwtiffer from one another by are
degenerately equivalent. Nonetheless, each “wgidim the gauge spacadds one unit to the
charge quantization number=-, and this too is a physical effect which belieis gpparent
equivalence of gauge states differing from one lzeraby 277.

This sharpens the question as to how angles whifdr §éom another by27r or by 47
and so are trivially mathematically equivalent, caonetheless yield different observable
physical results, because even disregarding fraaliation, the quantum number=# which
represents the local gauge angles £27m will most certainly be an observable if the Dirac-
Wu-Yang monopoles “exist.” It is also worth notitigat the fill factorv which is certainly
observed if it can be related to the FQHE fill tactis given simply by the ratio =A /¢ of the
gauge angle to the azimuth angle, even though thetbe angles are thought to have the same
mathematical property of indistinguishability unde@/r or a 47 rotation. Again, all of this
this would have to mean that there is something gting on in both the physical and in the
gauge spaceabove and beyond orientation-entanglememhich causes different observable
effects even when mathematically, two angles witl27a or 47 difference seem to be
indistinguishable. And again, this is a relateddiogical twisting to be develop in the next
section.

But first, let us return to the immediate businaskand, which is to understand the only
even denominator, 2, which is phenomenologicallgerted in the FQHE.

Based on (4.1), it will be easily appreciated thatenominator of 2 corresponds to a
winding numberg =2. The set of quantized states for the unit charget a fractional charge

— which we now write ag=A-(277/ ) = A€, corresponds to the winding numbgr=1. So

to get from an electron witlg =1 to some state witlg =2 we are only making one turn of the

azimuth. Thus while we are restoring orientatiome are not restoring entanglement.
Nonethelessg =2 is the only even winding number which nature p&nso we have to figure

out why we observe a state that is only one tuovelg =1.

A ¢ =1 electron will not be restored to its original vVersat ¢ =2, because fermions
need to do two windings to regain their originatsien. Only bosons can maintain equivalent
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version with one winding, because for bosons, aji¢éganent is not an issue because they are not
spinors. Again, as reviewed at the start of sacBpspinors rotate according 0 &' = R¢,

while vector bosons rotate vid - X' = RXR. So for an electron to go fromd =1 to ¢ =2,

that electron must “disguise” itself as a bosorowHmight the electron do that? By finding a
second electron to “conspire” with the first electrand “pair up” into a single boson system.
Then, that pair of electrons can be wound fraggn=1 to ¢ =2 without changing its

entanglement. And based on (4.1), the filling dactill now bev =A/.¢ =n/2, which yields
the denominator of 2.

What does this mean?: it means that while allhef permitted windings of individual
electrons yield fractional charges with the 3, 5,97 etc. odd denominators, the permitted
winding for a bosorpair of electronsyields the one permitted even denominator, nargely
While the “Cooper pairs” model of electron pairid®] may well come to mind, for the moment
let us not be that specific. Let us simply talktémms of the requirement that a first electron
needs to find some way to pair together with a sé@ectron if ag. =2 winding state and thus

a % unit of charge is to be empirically displayeter the right set of conditions — as it is at
extremely low temperatures in suitable materialsjexzied to large magnetic fields — while

leaving open the mechanism by which that pairirkg felace. So, the pairing of electrons into
boson states would appear to explain why Reignittedas an even denominator, and we know
that there is some grounding in established th&mrguch pairing to occur. Now, we have left,

for the experimental and arithmetical problem, xplain why 4, 6, 8 and even denominators
other than Zarenot permitted

The next even denominator of coursars4 which we now know corresponds to the
winding azimuth¢ =4. And we know that this fractionalizatian=n/4 is not observed So

let us start with an electron in thg =3 fractional state for whiclv =n/3. These are fractional
fermion charges, so to get them to @=4 winding which would correspond adding one
azimuth turn tog =3. This would result in an oppositely-entangledestavhich is inequivalent
to ¢ =3. So, as we did to get fronp =1 to ¢ =2, we would have to “pair up” two of these
¢ =3 fractional v =n/3 fermions into a boson state to get go=4 with a quarter-integer
fraction v =n/4. The fact that we do not obsenge=4, nor do we observe any other even
windings ¢ =6,8,10.., is nature’s way of telling us thafctional charges cannot be paired up
into boson states All boson pairs must be constructed from unfraci@ed charge units
u,=2mle. Given that fractional charges are commonly regdrds quasiparticles while unit

charges are not, this simply means that only “r@alticles, not quasiparticles, can form pairs.
This is anobservationabout what nature seems to be telling us by exuudll even
denominators except for 2; we still will wantagplain whynature does so.

Pulling together all of these results, we now seiment (3.1) withg@ =2. Thus, the
final result for the overall observed pattern is:

ve—=—; A=n=0,£1+2+3...; ¢=2 -or-¢= 1% 12;= 0,12, (4.2)
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The ¢ =1+2 odd-denominator states represent fermions exhgifractional charges; the
¢ =2 state represents a boson pair of unit chargesatieahot fractional; and the absence of
¢ =4,6,8.. states tells us that fractional charges are nmlga of forming into boson pairs. In

Figure 1 below, which is reproduced from [20] a2d][ we have annotated the unit electron
charge, thewv = A/ ¢ =1/3 fractional charge, and the ground state for a paunit electrons

forming a boson withA/ ¢ =1/2. Also added as annotations are appavenb/11, v =6/11
andv =7/9 fractional states.

2 L Fractional
c'“_' Unit Electron
Q Electron Charge
— Charge
£ 1 5 | - / Boson 2/5 13
i State
Q h 3/5 Electron
ac Pair 317

arr 12 4/91

|

r }
k J " LJ |

10 20 30

Magnetic Field (T)
Figure 1: Fractional Quantum Hall Effect, reprodié®m [20], [21], with annotation

\

It is worthwhile comparing theixr =n=1 ground state of thgg =1, ¢ =2 and ¢ =3
windings, which are the three states annotatedeabdworv =4/ ¢ =1 we of course have a
unit electron charge. For=-A/¢ =1/3 we have 1/3 fractional charge. But for the bogam
with v=4A/¢ =1/2with a 1/2 unit of fractional charge, there &mo electrons not one

contributing to the half unit of charge. Therefoeach electron actually contributes a 1/4 unit of
charge. Given that electrons naturally repel am&tteer so that any pair formation mechanism
must overcome this repulsion, it will be easier iwo electrons to assume charges of 1/4 unit
apiece and then pair into a boson, than to stdlgarunit charge state or in the 1/3 charge state
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and then pair up. It is the 1/4 charge-per-elecpaired state which minimizes the repulsion and
therefore provides the most energetically-favoreafiguration.

Finally, we return to the original definition = <ﬂ> F of the Dirac monopoles. If rewrite

e=Vve, :V(ZIT/,U) with the complete filling factor (4.2) in terms @f, then using the “unit” of
magnetic charges, = 277/ e, what we learn about the permitted monopole flugehat:

@F:vyu:(ﬁ/¢)yu; A=0,+1+2+3..; $=2 -or-¢=1%1 2:1= 0,1,2,2 (4.3)

This extended understanding of Dirac monopolesntbude fractionalized charges,
should put into a somewhat different perspectiwe bae thinks about these monopoles, at least
based on Dirac’'s quantization absent further dereknts such as t'Hooft / Polyakov
monopoles [22], [23] which rely on Yang-Mills gaugfeeory which is not needed for Dirac
monopoles alone. Although the Dirac monopoles windlig developed using Wu and Yang's
gauge approach afeactionalized as well as quantizeithese fractional charges are not observed
except under very limited conditions at extremehy temperatures in suitable superconducting
materials. Thus, to the degree that the fillingtdes (4.2) do describe a feature of the natural
world but only under these specialized conditi@am] because (4.3) is integrally related to (4.2),

it would appear that the non-zero magnetic qu><<§F:v,uu of Dirac monopoles (as

distinguished from other types of monopole) woultdycevidence themselves in nature under
equally-restricted conditions.

Therefore, from an experimental and arithmetiadp@int, we conclude that a complete
analysis of the gauge symmetries of Dirac Monop@dédewing the approach pioneered by Wu
and Yang [14], [15] results in electric and magnetharges which are quantizexhd
fractionalizedin the manner observed in the Fractional Quantuath Effect. Because fermions
rotated through an azimuth ov&rr regain their orientation but not their entangleméme 47
rotation needed to restore both orientation andregiément is responsible for the observation of
odd-integer denominators and the skipping of mosnenteger denominators. The only
observed even-integer denominator of 2 appeare tilvd result of pairing two integer-charged
fermions into a boson, and the absence of anydagen denominators appears to indicate that
only integer charges, and not fractional charges, loe so-paired. The simplicity of the fill
factor v =#A/ ¢, and the ability to derive this strictly from gautheory via Dirac-Wu-Yang
approach in view of orientation-entanglement arguimi@n an arithmetic basis that does match
experimental observation, is certainly intriguingut now we must study these results deeply
from a theoretical and physicaktandpoint to see if our suspicion that Dirac-WanRy is
connected to the FQHE is real, or illusory.

5. Twist: The Missing I ngredient from Orientation-Entanglement, and
how may lead to a Topological Under standing of Quantization

In section 3 we began to review Misner, Thorne &vleeler’s classic treatment of
orientation-entanglement (OE) in section 41.5 of][1In this section we shall continue this
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discussion, focusing on one aspect of this subydith requires further development, namely,
the topological “twisting” of the threads which aused to track orientation-entanglement.
Specifically, we do this because the questions rased as to how states which differ from one
another even by thdsr, two winding rotation needed to restore versiaiti,raight leave certain
observable signposts in the spaces of these mogatinich render these states physically and
observably-distinct from one another. Thus, wetlayfoundation for physically understanding
how, say, seemingly-equivalent rotational statethwe.g. ¢ =277 and ¢ =677 and ¢ =107

might nonetheless be connected to distinctly-oleserelated quasiparticle states with respective
inequivalent v =n andv =n/3 andv =n/5 quantized fractional charges. And in the process,
we also lay the foundation for understanding hoe Dirac-Wu-Yang arguments based on
U ()., gauge theory in three space dimensions generélhput restriction, may connect to the

FQHE observed for highly-restricted electrons fdrcmto two dimensional restraint by
superconducting materials and ultra-low temperatureler very large magnetic fields. Thus, by
developing these topological twisting featuresyfulve lay the foundation for connecting the
guantized fractional charge results in (4.2) to tR@HE, not only arithmetically and
experimentally as we have already done, but thigatlt and physically as we now must do.

D. K. Ross in [24] “hypothesize[s] that the OEatedns are important to physics [and]
represent the deep relationship between any padicmaterial body and its environment.” He
proceeds to show (reference renumbered here) Dirac [11] magnetic monopoles do not
satisfy the OE relationship” and “hypothesize[dttthis is the reason they have never been seen
despite extensive searches . . . and despite haumagural and elegant theory underlying them . .
. going back to the more natural symmetry of MaXwetquations with magnetic monopole
sources present. ” He then states that “[s]incknaiwn particles satisfy the OE relations and we
show that Dirac magnetic monopoles which have epenlseen do not satisfy these relationships,
it is hopes that this paper will stimulate furtiveork on the OE relations themselves and their
topological role in physics.” This further work tdme OE relationships is precisely the subject of
this section, and will lead us to understand thectional quasiparticles of FQHE as those
particles which “do not satisfy these [OE] relasbips.”

Figure 41.6 of MTW’s [17] which is also postedioel at [25], shows a spherical “object
connected to its surroundings by elastic threadsifideed, it is these “threads” and various
configurations of these “threads” which most dilediustrate the “deep relationship between
any particle or material body and its environmengntioned by [24]. It is also these “threads”
themselves which will be the object of the preskstussion. As is well-understood, it is always
possible following a 720° rotation or integer mpikis thereof of an object connected to its
environment with “untwisted threads,” to remove @fitanglement from the connections of an
object to its surroundings. But of particular im@anmce, as we shall now develop here, the
sequences of disentangling the “threads” from oraher arenot unique Depending upon the
sequence chosen, even after disentanglerttemtithreads” may still each maintain individual
twists or they may have all twisting removed and havenbeturned to an untwisted state.

To simplify this development without any loss affarmation, rather than use the
spherical object and the spherical environment thied“threads” employed in Figure 41.6 of
[17], let us employ a first “bar” or “stick” whichepresents the environment and a second “bar”
or “stick” which represents the object, and a péifribbons” which represent the connections of
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this object to its environment. These two waysepiresenting OE do topologically map into one
another as is shown below in Figure 2, which is wigycan use the “bars and ribbons” as an
alternative way of representing Figure 41.6 of [17]

Specifically, to verify this mapping, one may staith the OE system shown in drawing
1 from Figure 41.6 of [17], and as shown in FigB(a) below, to maintain points of reference,
may label the northern and southern hemispherteeasbject as shown, which hemispheres also
have northerly and southerly “thread” connectianthe environment. Then, as shown in Figure
2(b) below, one may topologically deform the objegtstretching it in into a vertical elongation,
while relocating the threads to the right along tloetheastern and southeastern regions of the
environment. Then, one can take the entire Fi@{b¢ and rotate it 90° counterclockwise to
arrive at Figure 2(c) below. In this final stepe&nvironmentis simply represented by a top
“bar” or a “stick” at the top of 2(c), thebjectis represented by a bottom “bar” or a “stick” fa t
bottom of 2(c) which maintains the “north” and “sldu labels and now also introduces a
directional vector running from north to south, ahd north and south thread pair are merged
together into a pair of “ribbons” which represené entanglemenbetween the object and its
environment. The benefit of employing “ribbons’t @thick “threads”) rather than thin threads
is that it is much easier with a two-sided ribbornillustrate and track any twist which may occur
in the course of performing OE operations.

o\

= =>

[N——S |

(a) (b) (c)
Figure 2: Topological Deformation of Figure 41.b7] (MTW) into a “Bar and Ribbon”
Configuration

This “bar and ribbon” configuration is often usedillustrations of the OE relationships, see, for
example, an online animation at [26]. It is easyl advisable for the interested reader to
construct a physical apparatus from Figure 2(c}aiyng two sticks or even pencils, and then
gluing or stapling two ribbons or shoelaces or mrbbands to the sticks in the configuration
illustrated. It helps to color each side of tHebons differently for monitoring twists.

So now, starting with the bar and ribbon configjora of Figure 2(c) above, let us
immobilize the top “environmental” bar, and rot#te bottom bar — which from now on we shall
simply call the bottom “vector” — by & - ¢ +4mr=¢+ 720 rotation counterclockwise about

the z axis through the anglg in the x-y plane, as shown in Figure 3(a) belawatrive at the
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configuration of Figure 3(b) below. It is worth timg that all three x, y, z dimensions are
utilized in this operation, and also worth keepingmind that for electrons frozen in two
dimensions at low temperature in superconductingenads in the FQHE environment, one
degree of spatial freedom is removed. It is alsted that this anglg is an azimuth angle of

rotation in three space dimensions, just as wastimauth angleg first introduced after (4.1)
when we write the electromagnetic field strengtrFas(/,//4ﬂ)d cosfdg .

Z E‘%
~.
/)
L

Y
__/ @ — @p+720°
/./——' A ‘\ X
—N »>S—+——) N »S

.\\'/"(5"'/. (b)

Figure 3: Environmental OE Consequences of Rotaikwgctor through 720°

In Figure 3(b), the wider lines illustrated on eaitibon are passing in front of the narrower lines
illustrated on each ribbon, and diagonal hash laresused to illustrate the opposite face of the
ribbon relative to the face shown in Figure 3(&).3(b), we reach a state in which the ribbons
are entangled with one another, with the entanghrmeming a left-handed helix as illustrated.
And in addition, each of the two individual ribboakso is twisted into a left-handed helix as
illustrated. And in addition, both the entanglemieslix and the twist helixes ad®ublehelixes,

in the sense that there are two full helix rotagioh—477=-72C, using a convention in which a
right helix has a positive sign and a left helixs llanegative sign. Now we seek to disentangle
the ribbons, while immobilizing both the environner‘bar” and the N> S vector, by moving
the ribbons around the ends of the vector.

Now, if the initial rotation in Figure 3 had betdmough only+2/7=+36C, Figure 3(b)
would contain alkingle helixes, and as is well known there would be ng teadisentangle the
two ribbons from each other using only manipulaiai the ribbons. But from Figure 3(b),
because of the double helix entanglement whichlteedtom the double winding rotation
through¢ - ¢ +4mr=¢+ 720 a.k.a.¢ - ¢ +2 using the reduced azimuth = ¢/ 277 earlier
defined, disentanglement is possible using onlgatbmanipulations. And specifically, in order
to disentangle the two ribbons using only operatiohthe ribbons with both the environment
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and the vector remaining immobile, one must perfmmribbon operations, and there are three
choices for this.

For the first choice, as shown in Figure 4 below,the first operation, one can take the
north ribbon, wind it past the north “pole,” wind it beneatretkntire vector, and then wind it
back above the vector past the south “pole.” THenthe second operation, one can take the
southribbon, wind it past the north “pole,” wind it beneattretbntire vector, and then wind it
back above the vector past the south “pole.” Thisbe done in either order, that is, one can use
the south ribbon in the first operation and thetmeibbon in the second operation and end up
with the exact same result, which, as shown in leigli below, not only disentangles the two
ribbons from each other, but also removes the iddal twists in each ribbon. We denote this
by placing the number “0” next to each ribbon tdigate that it has no residual twist.

(b)

Figure 4: The Disentanglement Operat@® — ¢+ 2 {N,S - 0,(

In either case, however, whether the north or sabtion is operated first, the ribbon windings
must go from north to soutthat is, the ribbons must be first brought arotirednorth pole, then
wound beneath the vector, then be brought backaspthe south pole. If the ribbons are wound
from south to north, they will become even furteatangled, and the net effect will be that of
having performed a - ¢ +8m a.k.a. a¢ - ¢ +4 quadruple rotation starting from Figure
3(a). The question occurs why there is this apgamsymmetry in which the ribbons must be
brought past the north pole first, but that is expdd by the fact that the Figure 3 rotation was
done counterclockwise and thus was positively sigie -~ ¢ +477. Had the rotation been
clockwise hence negative according to the custoroanyentions for defining angular rotation,
e, ¢ -~ ¢—-4mr aka. ¢ - ¢ -2, then disentanglement would have required windimg
ribbons first over the south and then over them@adle. So that in fact there is an overall
symmetry to these operations.
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We shall use the shorthan®,0- ¢+2- N/N,S/N- 0,C to represent this
operation in Figure 4 where both the north and tseilibons start with no twist9,0, the
azimuth is positively rotated through two windings+ 2, the north and then south ribbons are
wound over the north pol&l / N, S/ N, and the disentangled state also restores nost@;ét
The fact the order of ribbon operations does not ttena means that
00-¢+2-S/N,N/N-> 0,C as well. Thus,0,0-¢-2-N/S,S/S> 0, and
0,0 ¢-2-S/S, N/ S» 0,Care also operations which restore the initial mligegled state
with no twists when the initial rotation is negatiy. - ¢ —2 rather than positivegp - ¢ +2.

From here, we shall work only with positive rotai$o which means that ribbons must always go
first over the north pole to achieve disentanglemelVe also keep in mind that the final
configuration is invariant under the order in whibtle north and south ribbons are operated, i.e.,

under either temporal orderirf(dN, S) or (S, N) of the permutated ribbon sN, S} . Thus, we
can simplify the shorthand to write the Figure Zemgtion as0,0 - ¢ + 2_>{N S} - 0,(

simply indicating that eithe(N, S) or (S, N) over the north pole will restore an untangled,
untwisted state following g + 2 rotation of a vector.

For the second choice, one can take the norttomitamd wind ittwice about the north
pole, then under the vector, then back over théhspole and the ribbons will disentangle. But
here, there will be a residual twist in each ribbasmnow shown below in Figure 5.

2L

(b)

Figure 5: The Disentanglement Operat@i® — ¢+ 2 - { N ,N} - R
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Now, because we have used the ribbor{$&tN} to disentangle the ribbons, the north ribbon

maintains a double helix twist with right-handedityawhich we denote by 2R, while the south
ribbon also has a double helix twist but with llefinded parity which we denote as 2L. If we
adopt a “right-hand rule,” then we may also refethese as a double twist “up” for the north
ribbon, and a double twist “down” for the southbdm. The ribbons are fully disentangled, and
yet, the end state in Figure 5(b) is observablysmally-distinct from the end state of Figure
4(b), based wholly on the operation that was usedigentangle the ribbonsSo even though a
rotation of a vector throughp — ¢ + 4 yields the exact same orientation and the exactesa
entanglement for that vector, the final, physidates can still be different from the starting state
wholly dependent upon how the disentanglement tiparhas taken place.

It is because of this, that we can now begin toktdbout how, for example, the FQHE
filling factor v =n/1 for which ¢ =1 a.k.a.¢ =2 in (4.2), can exhibit different observable

physics from the filling facto =n/3 for which ¢ =3 a.k.a. ¢ =6 in (4.2), even though

these angles differ from one another 4w and so would be physically indistinguishable if we
only considered orientation-entanglement (OE) withiwvist. So as we now see, the complete
physics of vector rotations requires us to consmh&ntation-entanglement-twist all together,
which we abbreviate as OET, and once we do considst, then angles which differ from one
another by2rr or by 477, despite their trivial trigonometric equivaleneegall distinct based on
their OET relationships to the surrounding envirentn The a vector rotated to the angke is
different from a4 vector is different from6s7 is different from8s7 is different from107, ad
infinitum, once the OET of the vector is also taken fullipiaccount. This is a place where
physics informs and extends mathematics.

Using the notation developed above, we may 0se— ¢+ 2 {N ,N} - 2R,2L to

denote the final state of Figure 5(b) in which tiegth ribbon ends up with a double right-handed
helix and the south ribbon ends up with a doulteHanded helix. It will be apparent, however,
that the left and right twists are offsetting, whis to say that theettwist of the overall system
remains zero as it was when it started in Figueg,3nd in general, this “conservation of twist”
result will carry through to all OET disentanglert&enSo, if we know that the north ribbon has
ended up withi2R, then we automatically know that the south ribl@s ended up witRL.
Thus, we can used twist conservation under OETnthsglement to simplify the summary of

the Figure 5 operations 10,0 - ¢ + 2 - { N ,N} - 2R, showing only2R as the end state for
the north ribbon, and deducing by implication tBats therefore the twist for the south ribbon.

For the third and final choice, one can take th&tlsoibbon and wind itwice about the
north pole, then under the vector, then back olier douth pole and the ribbons will again
disentangle. But here, there will be a residuasttwn each ribbon oppositely to that shown in
Figure 5, as now shown below in Figure 6.
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9 9,
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N > S

(b)

Figure 6: The Disentanglement Operati@i® - ¢+ 2 - {SS} - 2L

Here, we have used the ribbon 4&, § to disentangle the ribbons, and the north ribbon

maintains a double helix twist but now with leftAgied parity which we denote by 2L, while the
south ribbon also has a double helix twist but vigft-handed parity which we denote as 2R.
Twist is still conserved, i.e., the net ribbon twszero, so continuing to represent the end tesul

simply by the2L state of the north ribbor),0 - ¢+ 2 {SQ - 2L now summarizes the
Figure 6 operation.

Returning to Figure 4, because we now know thasttws conserved, we further
consolidate the summary of this operation by sgtdn0 — O, that is, by using a single zero to
represent the twist state of the north ribbon Wit south ribbon implicitly also having zero

twist because of net twist conservation. Thus we mrite this asO -~ ¢+2 - {N,S - 0.
Figure 5 is therd - ¢+ 2 - {N,N} -~ 2Rand Figure 6 i9 -~ ¢+2-{S,§ - 2L

How let us now make some final changes to ourtimosta Because the non-zero twist
end results always contain a left- or right-handedble twist, let us count use the number 1 to
define a single double-twist, and let us use thesign to denote a right handed and “-” to
represent a left-handed twist, and let us refetht® quantum variable which represents the
number and handedness of double twists in theteggulorth ribbon asn'. Thus, the end state
2R - m=+1, 2L - m =-1,and0 - m =0. The numbem' is of course quantized, but there
is no mystery to this because it represents thebeurof topological twists and once OE is
restored between a vector and its environmentntimeber of double twists will always be either
zero or an integral number. Secondly, because wst mways perform a two-windingr
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rotation to be able to restore OE, let us also &d&ut this in terms of making one (1) double
turn, rather than two terns. Let us designatentimaber of double turns ds, so that in all of
Figures 4, 5 and 6, we have started out maKkirg+1 double turns. Therefore, we rewrite
$+2 as ¢ +2" with I'=+1, and we refer to all of the results in Figuressdand 6 as the

I'=+1 OET states, and we pick out the nickname “pringgpane” for thesel' = +1 states and
abbreviate this by p'.” Pulling all of this together enables us to suanize the three results

from Figures 4, 5 and 6 as follows:

{N,N} - ni=+1
pP=l'=+1: 0 ¢+2" - {{NS - nm=0 . (5.1)
{S,$—> m=-1

Now let's repeat everything we have just done, ibhstead of a single double-winding
I"'=+1, let's start with Figure 3a, and do two doubledwgs, ¢ - ¢+8m7, i.e., ¢ -~ g +4.
This is now anl’' =+2 state, and it requires four ribbon operations.t iBatead of using more
drawings, let’s just use the consolidate notatmmepresent the results. As discussed earlier,
ribbons must always be drawn first over the norld ghen over the south pole, because the
rotation is a positive rotation. Doing otherwisathwcreate further entangling, rather than
detangling. As also reviewed, the temporal ordeh which one draws the ribbons does not
matter because as with=+1 the final twist results are invariant with resptethis order. So

operational sets of ribbons that can be used intamporal permutation arN, N, N, N},
{NN,N S, {NUN,S S, {N,SS$ and{S,S S § Let us nickname thig'=+2 as

“diffuse-prime,” abbreviated!’. What we now have, in place of five more Figuags, the five
resulting states:

{
{
d=I"=+42;: 0—>¢-+2'—> {N,N,S,g—» m=0 . (52)
{
{

So now we start to see the pattern of OET. In gégné which represents the number of
double windings is an integer which always has phsitive valuel’'=0,1,2,3,.. (I'=0 is
represented by Figure 3(a) and has the single sfatd) with no twists), and the resultant twist
of the north ribbon flowing detangling ranges otrex integersm’ for which -I'sm’'<+I". So,
for example, if we go next td' =+3 with three double windings, and call this “fundantsd-
prime,” abbreviated f'. For f', with I'=+3, we have seven statesi =0,+1+2+°:
Strikingly, this is the same pattern of orbital alagy momentum and magnetization, as
represented by the quantum numdeasdm which characterize the electrons in an atom. And
also strikingly, the azimuth anglg is the same azimuth in physical three-dimensi@paice
against which angular momentum is specified.
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This leads us top two questions: Are these conooe® merely coincidental, or can OET
be used to provide a fully-topological understagdai electronic structure (and by extension
nuclear structure which is subject to the same tigeth exclusion principles)? And, how does
this all relate to the FQHE which motivated thisalission because of the need to physically-
distinguish rotational states with the same OE, s&tes differing by & rotation. Clearly,
OET provides the basis for asserting that everestahich differ by4rm rotations from one
another are not trivially-identical once all of O&hd Twist are considered, and that the
differences between these inequivalent states lplartie orbital and magnetic quantum
structures of the atom and the nucleus and thetgoanumbers which force exclusion.

This leads us to consider the possibility that eha®mic quantum numbers may in fact
be indicators of states of twist, and it will leads to propose an experiment by which the
fractional quantum Hall states are examined fopprses reminiscent of electrons in the s, p, d,
f, g, h, i, k... orbital states of electrons in atormgossibly validate or contradict these apparent
parallels.

6. Tobeadded
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