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We found new current-field equations including charge creation-annihilation fields. Although
it is difficult to treat creation and annihilation of charge pairs for Maxwell’s equations, the
new equations easily treat them. The equations cause the confinement of charge creation and
annihilation centers, which means the charge conservation for this model. The equations can treat
not only electromagnetic field but also weak and strong force fields. Weak gravitational field can be
also treated by the equations, where four current means energy and momentum. It is shown that
Klein-Gordon and Schrédinger equations and gauge transformation can be directly derived from
the equations, where the wave function is defined as complex exponential function of the energy

creation-annihilation field.
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I. INTRODUCTION

Maxwell’s equations have been used for analyses of
electromagnetic field since J. C. Maxwell found the equa-
tions in 1865[1]. A. Einstein found special relativity
in 1905[2, 3] to modify Newton’s kinetics and general
relativity in 1915[4] to treat gravitational field. E.
Schrédinger found an equation for quantum mechanics
in 1926[5], where a wave function is introduced to ob-
tain energy and momentum from boundary conditions
with potential energy. In early 1930s, E. Fermi pro-
posed modified electromagnetic field model for quantum
electro-dynamics (QED)[6-9], where he assumed that La-
grangian density includes a gauge fixing term. Gupta
and Bleuler gave subsidiary conditions to Fermi’s model
in 195010, 11]. In 1960s, Nakanishi and Lautrup pro-
posed the auxiliary field called Nakanishi-Lautrup (NL)
field[12-15] to describe Lorentz covariant electromagnetic
field model for QED. It is now included in the model
of QED and quantum chromo dynamics (QCD)[16-19].
Recently, we found that the electromagnetic field model
including a Lorentz scalar field, which is equivalent to
NL field with Feynman gauge, can easily treat creation
and annihilation of positive and negative charge pairs,
although it is difficult for Maxwell’s equations to treat
them[20-22]. The equations for the above model, which
are more symmetric than Maxwell’s equations, can also
give the relation between four current and four field
for weak, strong, and gravitational forces. We found
that Schréodinger and Klein-Gordon equations and gauge
transformation can be derived from the current-field
equations.
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Maxwell’s equations are given by
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where J and p are current and charge density, € and u are
permittivity and permeability, EE and B are electric and
magnetic field, respectively. Egs. (1) and (2) directly
give the following equation of the charge conservation,
dp
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The creation and annihilation of positive and negative
charge pairs are ordinarily described by the following
equation, which is given by semiconductor physics[23—
25],
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where p, and p, are positive and negative charge con-
centration, J, and J,, are positive and negative charge
current density, and G is charge creation-annihilation
rate. Since Maxwell’s equations satisfy the principle of
superposition[26], positive and negative charges must in-
dividually satisfy Eqgs. (1) and (2). Therefore, positive
charges satisfy
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and
pp = eVEp, (8)

where E, and B, denote electric and magnetic field in-
duced by positive charges, respectively. Eqs. (7) and (8)
directly give
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which contradicts (6) in the case of G # 0. Since this
situation is same for negative charges, it is difficult for
Maxwell’s equations to treat creation and annihilation of
charge pairs.

VI, + 2 =, (9)

II. EXTENSION OF MAXWELL’S EQUATIONS

In order to solve the above problem, we introduce a
gauge parameter « and a scalar field N, which is equiva-
lent to Nakanishi-Lautrup field except that its D’ Alam-
bertian is not always zero. The Lagrangian density of
the electromagnetic field Lgjs is given by[15]
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where J” and A” denote four current (cp,J) and four
vector potential (¢/c, A), respectively, and F** is given
by

F"™ = 9¥ A> — 92 A, (11)

The above Lagrangian density gives the following equa-
tions.
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where 7 denotes four canonical momentum density and
O is d’Alembertian defined by O = 93 — V2.
Since E and B are written by

O0A
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Egs. (1) and (2) are rewritten by Egs. (12), (15) and
(16) as
OE
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Then, the charge creation-annihilation rate is given by
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The above relation enable us to treat creation and an-
nihilation of positive and negative charge pairs. Since
N is connected with charge creation-annihilation rate G,
we call N charge creation-annihilation field in this pa-
per. It should be noticed that G = 0 needs not N’ = 0
but 0N = 0. The above equations can be simply writ-
ten as follows by using the complex electromagnetic field
E/c—B. Egs. (3), (4), (13), (15), (16), (17), and (18)
can be written by using four complex field as
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Egs. (20) and (21) are the natural extension of Maxwell’s
equations[27]. Because Maxwell’s equations are given by
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It should be noticed that Eq. (21) includes not only
Egs. (17) and (18) but also Egs. (3) and (4).

When the coordinate system has velocity v along -
axis, the Lorentz transformation of A, v, B,E, N, J, and
p are given by
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where 8 denotes v/c. Therefore, A ¢, B, E J, and p
have same transformation as original Maxwell’s equa-
tions, and N is not changed by Lorentz transformation.

Although Eq. (25) does not satisfy the gauge invari-
ance, if a scalar function x satisfies Oy = 0, E, H, and
N are not changed by the transformation of

A=A +Vy, (27)
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Next we consider about the electromagnetic field en-
ergy including the charge creation-annihilation field N.
By using Egs. (3), (4), (14), (17) and (18), ¢J¥m, is
written by
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Since the above equation is regarded as the continuity
equation for energy density, JE + c2p/N is energy anni-
hilation rate, e(E x B — NE) is momentum density, and
(E?/c*> + B? + N?)/2u is energy density. The charge
creation-annihilation field A/ induces the additional en-
ergy density of N2/2u.

III. COMPARISON OF CURRENT VALUES
BETWEEN MAXWELL’S AND THE NEW
EQUATIONS

Now we compare the calculation results given by
Maxwell’s and the new equations including charge
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FIG. 1. A silicon sphere with radius R surrounded by SiO»
under illumination or in a heating chamber.

creation-annihilation field, using a simple structure. Fig.
1 shows an example structure consisting of a silicon
sphere with radius R surrounded by SiOs under illumi-
nation or in a heating chamber, where

J=J,+7J,=0, (30)
p=pp+pn=0, (31)
E=E,+E, =0, (32)
B=B,+B, =0 (33)

E, and B, denote electric and magnetic field induced
by negative charges, respectively. Since this structure has
spherical symmetry, the magnetic field does not exist[26],

B, =B, =0. (34)

Then, the charge creation-annihilation field A/ and scalar
potential ¥ also satisfy

N =N, +N, =0, (35)

¥ =1p +Pn = 0. (36)

where N, and 1, are induced by holes and N,, and v,
are induced by electrons. It is assumed that the hole and
electron charge density p, and p,, in the silicon generated
by light or thermal energy increase linearly with time as

Pp = —Pn = { ,00(10+ i) ((:fg)), (37)

where the light or the heater is switched on at t = 0, pg
is the charge density at ¢ = 0, and the charge density
increases with the charge creation rate of pg/7. Using
spherical coordinate system and Gauss’s law, the electric
field has only radial component as

L (14 L) (r<R)
E,=-E,=1{ 2% 7 -
Y { plt (1+4) (r>R),

(38)
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where €4 and €,, are permittivity of silicon and SiOs,
respectively. Then 1, and ,, are given by
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In the case of Maxwell’s equations, the radial component
of the current .J, and J,, out of the sphere are needed by
Egs. (1), (34), and (38) as

T
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’ {_gglj; (r>R). (40)

The above result does not describe the real condition, be-
cause the hole and electron currents cannot exist in SiOs.



Maxwell’s equations cannot increase charge concentra-
tion without current because of the charge conservation
of Eq. (5). If we consider the charge creation-annihilation
field NV, and \V,, for the charge pairs creation with assum-
ing @« =1 and VA = 0, they are given by

Np _ __/\[n _ _MPO{(2£Si2i:il-3R2_EMT2} r< R)
—4got (r > R).
(41)

Since the radial component of the gradient of AV, and N,
are given by

8, =~ = i S
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the positive and negative charge current density .J, and
Jp in and out of the sphere are given by Egs. (17), (34),
(38), and (40) as
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(43)
There is no current in and out of the sphere. Then the
charge creation-annihiltion rate G is given by

G=—ton, - { P s R). (44)

The electromagnetic field model including charge
creation-annihilation field gives the reasonable result.

IV. CONFINEMENT OF CHARGE
CREATION-ANNIHILATION CENTERS

Although the charge creation-annihilation field permits
the existence of charge creation and annihilation centers
by Eq. (19), they are confined by the energy to be pro-
portional to the distance between them[28]. As shown by
Eq. (41), the field N induced by a point charge creation
or annihilation center is given by

N=- (45)

TABLE 1. Force between A and B centers with creation and
annihilation functions for positive and negative charges.

Charge-A Function-A Charge-B Function-B Force
positive creation positive annihilation attraction
positive creation negative creation  attraction
negative creation negative annihilation attraction
positive annihilation negative annihilation attraction
positive creation positive creation repulsion
negative creation negative creation repulsion
positive annihilation positive annihilation repulsion
negative annihilation negative annihilation repulsion
positive creation negative annihilation repulsion
positive annihilation negative creation repulsion

Positive charge
annihilation center

B

A

Positive charge
creation center

FIG. 2. Positive charge creation and annihilation centers with
their distance d.

where o denotes the creating charge per unit time. If
the charge creation or annihilation center is isolated, the
potential energy of the charge creation-annihilation field
Ve in a surrounding sphere with radius R is given by

R 2 2
Vea =47r/ '/;erdr: po i
0

: - (46)

Since the potential energy is proportional to R, an iso-
lated charge creation or annihilation center cannot stably
exist. However, some kinds of pairs of charge creation
and annihilation centers can stably exist. Table I shows
the force between two centers A and B that create or an-
nihilate positive or negative charges, where the upper 4
cases induce attraction and the others induce repulsion.
Only the upper 4 pairs can stably exist, because attrac-
tive force reduces the potential energy of charge creation-
annihilation field.  Fig. 2 shows the creation and an-
nihilation centers for positive charges, where d denotes
their distance. The total charge creation-annihilation
field NMpqir induced by the pair of creation and annihi-
lation centers for positive charges is given by

po (1 1
— )
P dr \r  r2+d2 —2rdcosf 47)

where the charge creation and annihilation rates are as-
sumed to be equal to o, because the difference between
the creation and annihilation rates induces similar po-
tential energy as Eq. (46). If we assume the surrounding
sphere radius R is enough larger than d (R > d), the
creation-annihilation field potential energy of the pair



Ve Apair in the sphere is given by
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Therefore the potential energy is proportional to the dis-
tance d and the attractive force between charge creation
and annihilation centers is constant. It causes the con-
finement of charge creation-annihilation centers, which
means the charge conservation in this model instead of
Eq. (5). The above discussion does not depend on the
gauge parameter .

The quark confinement has been energetically
studied[29-31] since Gell-Mann and Zweig introduced
quarks in hadron’s model in 1960s[32, 33]. Although
duality model was proposed by Nambu, t’Hooft, and
Mandelstam in 1970s[34-37], the theoretical explana-
tion of the confinement has not succeeded yet. Since
the potential dependence on the distance between cre-
ation and annihilation centers is same as the linear po-
tential of quarks based on the spinning stick model for
Regge trajectories[30], the quark confinement could be

explained by the energy of charge creation-annihilation
field.

V. DERIVATION OF KLEIN-GORDON AND
SCHRODINGER EQUATIONS

If we define matrices M and M* as

By —is 0 —idy

oy 8y —idy —idy
M=\ 5, i, -9y —ids |- (49)
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the relation among four current J = (J,icp), four fields
F = (E/c—iB,iN) and F = (E/c —iB,ia/), and four
vector potential A = (A, i1)/c) are given by

9J = MF, (51)

F=MA (52)

where g is the coupling constant, which is equal to u in
the case of electromagnetic field. The product of M* and
M is given by

M*M = MM* =01, (53)

where I denotes 4 x 4 unit matrix. Eqgs. (51) and (52) can
be regarded as geometry equations of Minkowski space-
time. Therefore, every Lorentz current vector J induces
field vector F, which consists of divergent and rotatory
fields E and B and a scalar field /. Furthermore, every
field vector F induces Lorentz vector A, where Lorentz
vectors and field vectors must satisfy Eqgs. (24) and (25)
for Lorentz boost transformation, respectively. If we ig-
nore Faddeev-Popov ghost, Lagrangian density of Yang-
Mills field Ly s is given by[18]

1
Ly = — P FNF) £ 0" AL 4+ Za(N*)? — g AL,
(54)
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where a, b, ¢ denote numbers of 1, 2, ..., N?—1 for SU(N)
group, and fup. denotes structure constant. We define
E*/c, B*, F*, and J* as

E?/c = —00A® = VA§ + gfurc A" Aj, (56)
B*=V x A" - %gfabcAb x A°, (57)
F = (E*/c—iB%iN?), (58)

T = (340 J8). (59)

Eq. (54) gives
gJ? = D*F{, —9,B°, (60)
where
D, =0, —igT"Aj}, (61)

and T® is a group generator. Then, we obtain

—Dg —iD3 iDy —i0y
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and
9J* = My F°. (63)

Therefore, electromagnetic, weak, and strong currents
and fields satisfy Eqgs. (62) and (63).

Gravitational field also satisfies Egs. (49)-(52), when
the field strength is enough small. Weak gravitational



field is given by using a tensor h,), which satisfies
|hoa] < 1, as[38]

Jux =N + hu)\a (64)
where g, is metric tensor and 7, is a tensor defined by

1 (v=A=1,2,3)

ma=4q 0 (v#A) (65)
-1 (v=Xx=0).
When we define h,\ as
_ 1 o
huA = hl/)\ - §nukh o (66)

in Lorentz gauge condition of h** , = 0, we obtain
*Buk,aa = QKTU)\; (67>

where k is Einstein’s gravitational constant and T, is
energy-momentum density tensor defined by

Tox = —poy vy, (68)

where p is density of material and v, is four veloc-
ity. Since the energy-momentum density vector J
(pv,ipc) and metric vector potential A = (A,iAp)
(iLlo, Bgo, B307 iBOQ) and g = 2KcC satisfy

9J =0A, (69

~—

gravitational field satisfies Egs. (49)-(52), where

E/C = —aoA - VAO, (70)
B=VxA, (71)
N = —VA — 9y 4,. (72)

Egs. (69)-(72) show that particle momentum P and en-
ergy U and their inducing field also satisfy Eqs. (49)-(52),
where the current vector Jg, which is a Lorentz vector,
and field F¢g are given by

jG = (Pa ZU/C)a (73)

Fo = (Eg/c — iBg,iNg). (74)

E; and Bg are divergent and rotatory gravita-
tional fields, respectively and Ng is energy creation-
annihilation field. In atomic scale, |E¢|/c and |Bg| can
be assumed much smaller than |[Ng|. Then, P and U are
directly obtained by Ng as

P = VAG, (75)

U= —CaoNG = —%NG. (76)

When we define a scalar function ¢ as

b= exp(}%./\fg), (77)
we obtain
) 7
Vo = +(VNG)6 = P, (78)
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0 i, 0 )
aQS: ﬁ(&NG)Qb:—ﬁUﬁb' (79)

If the total energy is not changed, we can assume (NG =
0 and obtain

—U? + P2¢? ) m2c?
O¢ = (CW - hDJ\@) o= "0 (30)

Eq. (80) is Klein-Gordon equation, which is equivalent to
Jo = MFq under the condition of E2/c? + BL < NE
and ONg = 0. In the case of P < mec, we obtain by
using U ~ mc? + P?/2m,
O¢ [ 2
ih— = —— . 81
ot 2mv ¢ +meg (81)
If we assume that V is potential energy and mc? is zero
level of energy, we obtain Schrodinger equation as follows,
0¢ n_,
h— = ——V V. 82
thay = =5V o+V¢ (82)
Schrédinger equation is equivalent to Jo = M Fg under
the condition of P <« mc and V2N = 0. Since this con-
dition means 9yp2Ng = 0, time dependent Schrodinger
equation might have some problems caused by time de-
pendence of energy creation-annihilation field Ng. The
wave function can be clearly defined as complex expo-
nential function of the energy creation-annihilation field.

VI. DERIVATION OF GAUGE
TRANSFORMATION

Since four vector potential A of electromagnetic field
is Lorentz vector, it can induce four field vector

Fa=(Ea —iBa,iNa), (83)
as
A= MFy. (84)
Then,
F=M*MFs=0F. (85)

Therefore, N4 changes not E and B but only N. If the
four momentum vector P = (P,iU/c) consists of elec-
tromagnetic component Pgjs and the others Poiners, we
obtain

P = PE]W + 7)othe'rs- (86)



Since Pgyys is given by the product of A and the particle
charge ¢,

Pem = qA, (87)
Ng is given by
NG = qNA +Nother.€7 (88>

because P = MFg and A = M F,. When N, changes
to Na + x, E and B do not change, but P changes as

7)/ = qA/ + Pothers = (V(NG + qX)v _ia()(NG + QX))

Therefore, the wave function ¢ changes to (59
o = el (e + ax)) = exp(“D)s. (90)
Eqgs. (89) and (90) give gauge transformation as
Ay = A, +9,x, (91)
and
o = exp(“D)s. (92)

VII. CONCLUSION

The new current-field equations including charge
creation-annihilation fields were found. They can easily
treat creation and annihilation of charge pairs in electro-
magnetic field. It was found that the potential energy
of charge creation-annihilation field for a pair of charge
creation and annihilation centers is proportional to their
distance, which causes the confinement of charge creation
and annihilation centers. It means the charge conser-
vation for this model. The current-field equations can
treat not only electromagnetic field but also weak and
strong force fields. Weak gravitational field can be also
treated by the equations, where four current means en-
ergy and momentum. It was found that Klein-Gordon
and Schrodinger equations and gauge transformation are
directly derived from the equations, where the wave func-
tion is defined as complex exponential function of the
energy creation-annihilation field.
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