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INTRODUCTION 
 

 

 

In this book I define a function which allows the 

reduction to any non-null positive integer to one of the digits 

1, 2, 3, 4, 5, 6, 7, 8 or 9. The utility of this enterprise is 

well-known in arithmetic; the function defined here differs 

apparently insignificant but perhaps essentially from the 

function modulo 9 in that is not defined on 0, also can’t have 

the value 0; essentially, the mar reduced form of a non-null 

positive integer is the digital root of this number but with 

the important distinction that is defined as a function such it 

can be easily used in various applications (divizibility 

problems, Diophantine equations), a function defined only on 

the operations of addition and multiplication not on the 

operations of subtraction and division. Some of the results 

obtained with this tool are a proof of Fermat’s last Theorem, 

cases n = 3 and n = 4, using just integers, no complex numbers 

and a Diophantine analysis of perfect numbers.  

Note: I understand, in this book, the numbers denoted by 

“abc” as the numbers where a, b, c are digits, and the numbers 

denoted by “a*b*c” as the products of the numbers a, b, c.  
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1. THE DEFINITION OF THE MAR REDUCED FORM 
 

        

Let a = a1a2...am...an be a natural number greater or equal to 1. 

 

We denote by mar a the mar reduced form of a, where: 

 

: mar a = a, for a equal to 1, 2, 3, 4, 5, 6, 7, 8 or 

9; 

 : mar a = (((a1  a2) ... am) ... an), for a ≥ 10. 

 

a1, a2 ,...,am,..., an are, obviously, digits so am  an is a map 

defined of the Cartesian product: 

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 

  

We define the composition law  : {0, 1,..., 9}  {0, 1,..., 9} 

  {0, 1,...,9}, (am, an)  am  an, by the operation table of 

 : 

 

Thus, we have mar a is equal to 1, 2, 3, 4, 5, 6, 7, 8 or 9, 

with at least a1 nonzero. 

 

Example: mar 178523 = (((((1  7)  8)  5)  2)  3) =  
 

= ((((8  8)  5)  2)  3) = 

 

= ((3  2)  3) = 5  3 = 8 

  

The  composition law is commutative on {0, 1, 2, 3, 4, 5, 6, 

7, 8, 9}: am  an = an  am (from the operation table:  

: 0  0 = 0  0 = 0, 1  0 = 0  1 = 1,..., 1  2 = 2  1 = 3  

: 1  3 = 3  1 = 4,...,7  8 = 8  7 = 6, 7  9 = 9  7 = 7 

: 9  0 = 0  9 = 9, 9  1 = 1  9 = 1,..., 9  9 = 9  9 = 9) 

 

The same composition law has a neutral element, which is 0:  

 0 1 2 3 4 5 6 7 8 9 

0 0 1 2 3 4 5 6 7 8 9 

1 1 2 3 4 5 6 7 8 9 1 

2 2 3 4 5 6 7 8 9 1 2 

3 3 4 5 6 7 8 9 1 2 3 

4 4 5 6 7 8 9 1 2 3 4 

5 5 6 7 8 9 1 2 3 4 5 

6 6 7 8 9 1 2 3 4 5 6 

7 7 8 9 1 2 3 4 5 6 7 

8 8 9 1 2 3 4 5 6 7 8 

9 9 1 2 3 4 5 6 7 8 9 
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am  0 = 0  am = am (also from the operation table) 

 

The  composition law is associative on {0, 1,..., 9}: 

(ap  am)  an = ap  (am  an), for any ap, am, an equal to 1, 
2, 3, 4, 5, 6, 7, 8 or 9 (also from the table:     

: (1  0)  9 = 1  (0  9) = 1 

: (0  7)  4 = 0  (7  4) = 2) 

 

As the  composition law is associative, we may write the mar 
reduced form without using parentheses: 

 

: mar a = a, for a equal to 1, 2, 3, 4, 5, 6, 7, 8 or 

9; 

 : mar a = a1  a2 ... am ... an, for a ≥ 10. 

 

The pair ({0, 1, ..., 9}, ) is a commutative monoid (the 

composition law  on the set {0, 1, ..., 9} satisfies the 

associability, commutability and neutral element axioms. 

 

 

2. THE SUM OF THE MAR REDUCED FORM OF TWO NATURAL NUMBERS 

 

 

The set {1, 2, 3, 4, 5, 6, 7, 8, 9} is a stable part of the set 

{0, 1, ...,9} with respect to the composition law  

 

Thus we may define the sum mar a  mar b as a map defined on 

{1, 2, ...,9}  {1, 2,..., 9}  {1, 2, ...,9}  

(where b is a natural number, say b = b1b2...bp, b  1) 

 

The addition table for mar a  mar b will be:  

 

       1 2 3 4 5 6 7 8 9 

1 2 3 4 5 6 7 8 9 1 

2 3 4 5 6 7 8 9 1 2 

3 4 5 6 7 8 9 1 2 3 

4 5 6 7 8 9 1 2 3 4 

5 6 7 8 9 1 2 3 4 5 

6 7 8 9 1 2 3 4 5 6 

7 8 9 1 2 3 4 5 6 7 

8 9 1 2 3 4 5 6 7 8 

9 1 2 3 4 5 6 7 8 9 



 6 

The composition law induced by  on {1, 2, 3, 4, 5, 6, 7, 8, 

9}, which means the composition law {1, ...,9}  {1, ..., 9}  

{1, ..., 9}, (mar a, mar b)  mar a  mar b, has the following 

properties: 

 

The composition law   on {1, 2,... , 9} is commutative: 

mar a  mar b = mar b  mar a (from the operation table). 
 

The composition law  on {1, 2, ..., 9} has a neutral 

element, and this is 9: mar a  9 = 9  mar a = mar a 

(from the operation table). 

 

Any element mar a  {1, 2, ..., 9} is invertible with 

respect to the given composition law (from the table: 1  

8 = 9 = 8  1; 2  7 = 9 = 7   2; 3  6 = 9 = 6  3; 4  

 5 = 9 = 5  4). 
       

If we denote by (mar a) the inverse of mar a, then for any 

mar a  {1, ..., 9}  we have an “opposite” (mar a) such 

that mar a  (mar a) = (mar a)  mar a = 9; also, (mar a  

 mar b) = (mar a)  (mar b). 

 

The composition law  on {1, ..., 9} is associative: 

 (mar a   mar b)  mar c = mar a  (mar b   mar c) 
 (where c is a natural number greater or equal to 1). 

 Example: 

(mar 17  mar 130)  mar 9 = mar 17  (mar 130   mar 9) 

 (8  4)  9 = 8  (4  9)  3  9 = 8  4 = 3. 
 

The pair ({1, 2, 3, 4, 5, 6, 7, 8, 9}, ) is a commutative 

field (the composition law  on the set {1, ..., 9} satisfies 

the associability, commutability, neutral element, and 

invertible elements).  

 

It follows that the simplification rules apply:  

 

: mar a  mar b = mar a  mar c  mar b = mar c (to the 

left ); 

: mar a  mar b = mar c  mar b  mar a = mar c (to the 

right). 

 

Also (as we may see from the table too), the equations  

: mar a   mar x = mar b and mar y  mar a = mar b 

have unique solutions in {1, ...,9}, which are: 

:  mar x = (mar a)  mar b, and respectively    

: mar y = mar b (mar a),  

where (mar a) is the reverse of mar a.    
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3. THE PRODUCT OF THE MAR REDUCED FORM OF TWO NATURAL NUMBERS 

 

 

We define the product mar a  mar b, as a map defined on  

{1, ..., 9}  {1, ..., 9}  with values in {1, ..., 9}. 

 

We define the composition law  on the set {1, ..., 9} through 

the following table: 

 

The composition law {1, ...,9}  {1, ..., 9}  {1, ..., 9}, 

(mar a, mar b)  mar a  mar b is commutative: 

mar a  mar b = mar b  mar a, for any a, b nonzero naturals.   

 

Ex.: 5  6 = 6  5 = 3, ..., 7    4 = 4    7 = 1, (...)   

(all other combinations may be verified from the table). 

 

The given composition law is associative: 

(mar a  mar b)  mar c = mar a  (mar b  mar c), for any 

natural c, c  1.  

 

Example:   

(mar 15  mar 3)  mar 113 = mar 15  (mar 3  mar 113)   

 (6  3)  5 = 6 (3  5)  9  5 = 6  6  9 = 9. 

 

The composition law  on {1, ..., 9} has a neutral element and 

this is 1: mar a  1 = 1  mar a = mar a (from the table: 2  

1 = 1  2 = 2, ..., 7  1 = 1  7 = 7, ...) 
 

The pair ({1, ..., 9}, ) is a commutative monoid (it satisfies 
the associability, commutability, and neutral element 

properties) in which the following computation rules apply: 

 

: (mar a)^0 = 1; (mar a)^1 = mar a; (mar a)^2 = mar a  mar a;  

(mar a)^3 = (mar a)^2  mar a = mar a  mar a  mar a; 

(...); (mar a)^n = (mar a)^(n – 1)  mar a. 

 

 1 2 3 4 5 6 7 8 9 

1 1 2 3 4 5 6 7 8 9 

2 2 4 6 8 1 3 5 7 9 

3 3 6 9 3 6 9 3 6 9 

4 4 8 3 7 2 6 1 5 9 

5 5 1 6 2 7 3 8 4 9 

6 6 3 9 6 3 9 6 3 9 

7 7 5 3 1 8 6 4 2 9 

8 8 7 6 5 4 3 2 1 9 

9 9 9 9 9 9 9 9 9 9 
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Also, for any natural numbers m and n, we have: 

: (mar a)^n  (mar a)^m = (mar a)^(n + m) and ((mar a)^n)^m = 

(mar a)^(n*m). 

 

The operation  (multiplication) is distributive with respect 

to the operation  (addition); we have: 

:  mar a  (mar b  mar c) = mar a  mar b  mar a  mar c and 

: (mar a  mar b)  mar c = mar a  mar c   mar b   mar c 

 

Example: mar 131  (mar 22  mar 7141) =   

  = mar 131  mar 22  mar 131  mar 7141  

  5 (4  4 = 5  4  5  4  5  8 = 2  2  4 = 4 

(all possible combinations of the type mar a  (mar b  mar c):  

1  (2  3), ..., 9  (9  9) may be verified by using the 

tables of the operations  and ). 
 

The set {1, 2, 3, 4, 5, 6, 7, 8, 9}, together with the 

composition laws  and , make up a commutative ring because: 

: ({1, ..., 9}, ) is a commutative field;  

: ({1, ..., 9}, ) is a commutative monoid; 

: The multiplication () is distributive with respect to 

addition ()  

 

In the ring ({1, ...,9}, , ) we have the following 

computation rules:  

: (mar a)  (mar b) = mar a  mar b, for any a, b  nonzero 

naturals, where (mar a) and (mar b) are the inverse of 

mar a and mar b respectively. Example: (mar 15)  (mar 

221) = mar 15  mar 221  3  4 = 6  5  3 = 3; 

: mar a   9 =  9  mar a = 9, for any natural a,  a  1. 

 

 

4. MAR REDUCED FORM PROPERTIES AND MAR REDUCED FORM CLASSES 

 

 

We are highlighting now the following obvious properties of the 

mar reduced form: 

 

Let a = a1a2...an, b = b1b2...bp, c = c1c2...cr, where a, b, c 

nonzero naturals; we have mar a = a1  a2  ... an, mar b = b1 

 b2  ... bp , mar c = c1  c2  ... cr. Then: 
              

:  a = b  mar a = mar b (a = b  a1 = b1, a2 = b2, ...,an = 

bp, and n = p); 

: mar (mar a) = mar a; 

: a + b = c  mar (a + b) = mar c 
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We may divide the set of all nonzero natural numbers in nine 

classes, after the value of their mar reduced form like this:  

 

: M1 = {a natural, a > 0/ mar a =  1} 

: M2 = {a natural, a > 0/ mar a =  2} 

 (...) 

: M9 = {a  natural, a > 0/ mar a = 9} 

 

Any nonzero natural number belongs to one and only one of these 

classes (the mar reduced form of a natural number being 

obviously unique). 

 

The mar reduced form classes are thus disjoint. 

 

We may call the numbers a and b congruent if they have the same 

mar reduced form; we write a  b if mar a = mar b, if a and b 

are part of the same mar reduced form class M1, M2 ,..., M8 or  

M9 

We have: a  a; a  b  b  a; a  b, b  c  a  c 

 

Obviously, all the numbers belonging to the same class are 

congruent between them. Example: mar 17 = mar 224 = 8  17   

224  8  8, 17, 224  M8 

         

We may define the addition and multiplication of the mar 

reduced form classes by: 

 

: Mx + My = Mz and Mx*My = Mw, where x, y, z, w  {1, 2, 3, 4, 

5, 6, 7, 8, 9},  such that: mar a  mar b = c and mar a   

mar b = d, where a  Mx, b  My, c  Mz and d  Mw  
 

Obviously, mar x  mar y = mar z and mar x  mar y =  mar w; x, 
y, z, w being the representatives of the classes Mx, My, Mz and  

Mw (of course x  Mx etc.) 

 

Example:  

M5 + M7 = M3 and M5*M7 = M8, because mar 5  mar 7 = 5  7  

= 3 and mar 5  mar 7 = 5  7 = 8; (3, 5, 7 and 8 are the 

representatives of the classes M3, M5, M7 and M8) 

 

We won’t be writing any tables for the addition and 

multiplication of the mar reduced form classes, as these are 

identical to the tables for the addition and multiplication of 

the representatives of the classes. 

  

The set {M1, M2, M3, M4, M5, M6, M7, M8, M9}  of the classes of 

mar reduced forms, together with the addition and 

multiplication of the mar reduced form classes make up a 

commutative ring, the ring of the mar reduced form classes. 
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     5. TWO THEOREMS 

 

 

In order to effectively use the mar reduced form in arithmetic 

problems, the following two theorems, which I named simply, The 

Sum Theorem and The Product Theorem are vital: 

 

The Sum Theorem: The mar reduced form of two nonzero natural 

numbers equals the sum of the mar reduced form of the two 

numbers: 

 

 

 

 

The Product Theorem: The mar reduced form of the product of two 

nonzero natural numbers equals the product of the mar reduced 

forms of the two numbers: 

 

 

 

 

Proof of The Sum Theorem:  

 

We initially take a particular case, which we shall extrapolate 

afterwards:  

 

Let: a = a1a2a3; a1, a2, a3  {0, ..., 9}; a1 > 0; 

b = b1b2b3; b1, b2, b3  {0, ..., 9}; b1 > 0; 

c = c0c1c2c3; c0, c1, c2, c3  {0, ..., 9}; c0 ≥ 0, 

such that a + b = c. We shall prove that mar c = mar a  mar b: 
 

Case  I.   :  a3 + b3 < 10  a3 + b3 = c3 

 

Case  I.A.  :  a2 + b2 < 10  a2 + b2 = c2 

 

Case  I.A.1. :  a1 + b1 < 10  a1 + b1 = c1  c0  =  0 

 

Thus, we have c1c2c3 = (a1 + b1)(a2 + b2)(a3 + b3)  c1c2c3 = 

(a1  b1)(a2  b2)(a3  b3), because a + b = a  b for a + 
b < 10.  

 

But mar c1c2c3 = mar (a1 + b1)(a2 + b2)(a3 + b3)  mar c1c2c3 

= mar (a1  b1)(a2  b2)(a3  b  c1  c2  c3 = a1  b1  

a2  b2  a3  b3  mar c = (a1  a2  a3)  (b1  b2  b3) 

 mar (a + b) = mar a  mar b  

 

Case  I.A.2. : a1 + b1  10  a1 + b1 = c1 + 10  c0 = 1 

 

mar (a + b) = mar a  mar b 

mar (a*b) = mar a  mar b 
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We have c0c1c2c3 = 1(a1 + b1 - 10)(a2 + b2)(a3 + b3)  mar 

c0c1c2c3 = mar 1(a1 + b1 - 10)(a2 + b2)(a3 + b3)  

     c0  c1  c2  c3 = 1  (a1 + b1  10)  a2  b2  a3  b3     

 

     But 1  (a1 + b1  10) = a1  b1 (from the table)   

for any a1 and b1 such that a1 + b1  10 

 

Case I.B.  : a2 + b2  10  c2 = a2 + b2  10 

 

Case I.B.1. : a1 + b1  9  c1 = a1 + b1  9  c0 = 1 

 

So, we have c0c1c2c3 = 1(a1 + b1 - 9)(a2 + b2 - 10)(a3 + b3) 

  mar c0c1c2c3 = 1  (a2 + b2  10)  (a1 + b1  9)  a3   

b3  c0  c1  c2  c3 = a2  b2  (a1 + b1  9)  a3  b3  
 

But a1 + b1  9 = a1  b1 for any a1 and b1 such that a1 + b1 

> 9, and a1 + b1  9 = 0 for a1 and b1 such that a1 + b1 = 9 

 

Thus, we have c0  c1  c2  c3 = a2  b2  a1  b1  a3  

b3  mar c = mar a  mar b  mar (a + b) = mar a  mar b, 

or we have c0  c1  c2  c3 = a2  b2  0  a3  b3, which 

is equivalent with c0  c1  c2  c3 = a2  b2  a3  b3  

9, because e = (a2   b2  a3  b3) > 0, and e  0 = e  9  

= e, for any e  {1, 2, 3, 4, 5, 6, 7, 8, 9}. So c0  c1  

c2  c3 = a2  b2  a3  b3  9 = a2  b2  a3  b3  a1   

b1  mar c = mar a  mar b  mar (a + b) = mar a  mar b  

 

Case I.B.2. : a1 + b1 < 9  c1 = a1 + b1 + 1  c0  =  0 

 

We have c1c2c3 = 1(a1 + b1 + 1)(a2 + b2 - 10)(a3 + b3)  mar 

c1c2c3 = (a1 + b1 + 1)  (a2 + b2  10)  a3  b3 

 

But (a1 + b1 + 1)  (a2 + b2  10) = a1  a2  b1  b2 for 

a1 + b1 < 9 and a2 + b2  10 (from the table)  
 

So c1  c2  c3 = a1  a2  a3  b1  b2  b3  mar c = mar 

a  mar b  mar(a + b) = mar a   mar b 

 

Case  II. : a3 + b3  10  a3 + b3 = c3 + 10  c3 = a3 + b3  

10 
 

Case  II.A. : a2 + b2  9  c2 = a2 + b2  9 

 

Case  II.A.1. : a1 + b1  9  c1 = a1 + b1  9  c0 = 1  
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We have c0c1c2c3 = 1(a1 + b1 - 9)(a2 + b2 - 9)(a3 + b3 - 10) 

 c0  c1  c2  c3 = 1  (a3 + b3  10)  (a1 + b1  9)  

(a2 + b2  9) 
 

     But 1  (a3 + b3  10) = a3  b3 for a3 + b3  10; 

(a1 + b1  9) = a1  b1 for a1 + b1 > 9 and  

(a1 + b1  9) = 0 for a1 + b1 = 9 
 

So c0  c1  c2  c3 = a1  b1  a2  b2  a3  b3 for a1 + 

b1 > 9, a2 + b2 > 9  mar (a + b) = mar a   mar b 

 

Or c0  c1  c2  c3 = a3  b3  0  0 for a1 + b1 = 9 ; a2 

+ b2 = 9  c0  c1  c2  c3 = a3  b3  9  9  c0  c1   

c2  c3 = a3  b3  9  9 (a3 > 0 and b3 > 0, so a3 + 9 = a3 

+ 0 = a3 and b3 + 9 = b3 + 0 = b3) 

 

So c0  c1  c2  c3 = a3  b3  (a1 + b1)  (a2 + b2) = a3 

 b3  a1  b1  a2  b2  mar (a + b) = mar a   mar b 

(a1 + b1 = a1  b1 for a1 + b1 = 9, actually for any a1 + b1 

< 10)     

 

Case II.A.2. : a1 + b1 < 9  c1 = a1 + b1 + 1  c0 = 0 

 

We have c1c2c3 = (a1 + b1 + 1)(a2 + b2 - 9)(a3 + b3 - 10)  

c1  c2  c3 = (a1 + b1 + 1)  (a3 + b3  10)  (a2 + b2  
9) 

 

But a2 + b2  9 = a2   b2 for a2 + b2 > 9 or a2 + b2  9 =  

0 for a2 + b2 = 9 

 

and (a1 + b1 + 1)  (a3 + b3  10) = a1  b1  a3  b3 for  

a1 + b1 < 9 and a3 + b3  10 
 

    So mar c = mar a  mar b  mar (a + b) = mar a  mar b 
 

Case II.B  : a2 + b2 < 9  c2 = a2 + b2 + 1 

 

Case II.B.1. : a1 + b1  10  c1 = a1 + b1  10  c0 = 1 

 

We have c0c1c2c3 = 1(a1 + b1 - 10)(a2 + b2 + 1)(a3 + b3 - 10) 

 

But 1  (a1 + b1  10) = a1  b1 (from the table for a1 + b1 

 10) 

and (a2 + b2 + 1)  (a3 + b3  10) = a2  b2  a3   b3 for  

a2 + b2 < 9 and a3 + b3  10 

 

    So mar (a + b) = mar a  mar b 
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Case II.B.2. : a1 + b1 < 10  c1 = a1 + b1  c0 = 0 

 

We have c1c2c3 = (a1 + b1)(a2 + b2 + 1)(a3 + b3 - 10) 

 

But (a2 + b2 + 1)  (a3 + b3  10) = a2  b2  a3  b3 for  

a2 + b2 < 9 and a3 + b3  10 

 

Conclusion:  

We proved that mar (a + b) = mar a  mar b for any a and 

b, a = a1a2a3 and b = b1b2b3. We had these cases: 

 

: c0 = 0: c1c2c3 = (a1 + b1)(a2 + b2)(a3 + b3), a1 + b1 < 10,  

a2 + b2 < 10, a3 + b3 < 10; 

 

 c1c2c3 = (a1 + b1 + 1)(a2 + b2 - 10)(a3 + b3), a1 + 

b1 < 9, a2 + b2  10, a3 + b3 < 10; 

 

c1c2c3 = (a1 + b1 + 1)(a2 + b2 - 9)(a3 + b3 - 10), 

a1 + b1 < 9, a2 + b2  9, a3 + b3  10; 
 

c1c2c3 = (a1 + b1)(a2 + b2 + 1)(a3 + b3 - 10), a1 + 

b1 < 10, a2 + b2 < 9, a3 + b3  10; 
 

: c0 = 1: c0c1c2c3 = 1(a1 + b1 - 10)(a2 + b2)(a3 + b3), a1 + 

b1  10, a2 + b2 < 10, a3 + b3 < 10; 
 

 c0c1c2c3 = 1(a1 + b1 - 9)(a2 + b2 - 10)(a3 + b3), a1 

+ b1  9, a2 + b2  10, a3 + b3 < 10; 

 

c0c1c2c3 = 1(a1 + b1 - 9)(a2 + b2 - 9)(a3 + b3 - 

10), a1 + b1  9, a2 + b2  9, a3 + b3  10; 

 

c0c1c2c3 = 1(a1 + b1 - 10)(a2 + b2 + 1)(a3 + b3 - 

10), a1 + b1  10, a2 + b2 < 9, a3 + b3  10; 

 

 

Let a = a1a2...an...am, b = b1b2...bn...bm, c = c1c2...cn...cm, 

where a + b = c. 

 

Take the case c0 = 0: 

 

 We have a1a2...an...am + b1b2...bn...bm = c1c2...cn...cm; 

 

The mar reduced form of the natural number c1c2...cn...cm is 

a mar sum of  “bulks” of the type: 

 

    (1) (an + bn), an + bn < 10 
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(2) (an + bn +1)  (an+1 + bn+1  10), an + bn < 9, an+1 + 

bn+1  10 and 

(3) (an + bn + 1)  (an+1 + bn+1  9)  ...  (an+p1 + bn+p1 

 9)  (an+p + bn+p  10), an + bn < 9, an+1 + bn+1  9, 

..., an+p1 + bn+p1  9, an+p + bn+p  10 

 

     The mar sum of the “bulk” (i) is an   bn 

 

The mar sum of the “bulk” (ii) is an  bn  an+1  bn+1  and 
 

The mar sum of the “bulk” (iii) is an  bn  an+1  bn+1  

...  an+p1  bn+p1  an+p  bn+p 

 

We proved that mar c = mar a  mar b  mar (a + b) = mar 

a  mar b for any a + b = c of the given type: a, b and c 
have the same number of digits. 

 

Take the case c0 = 1: 

 

 We have a1a2...an...am + b1b2...bn...bm = c0c1c2...cn...cm; 

 

The mar reduced form of the natural number c0c1c2...cn...cm 

is a mar sum of  “bulks” of the type: 

 

     (1) (an + bn), an + bn < 10 

 

(2) (an + bn + 1)  (an+1 + bn+1  10), an + bn < 9, an+1 + 

bn+1  10   

(3) (an + bn + 1)  (an+1 + bn+1  9)  ...  (an+p1 + bn+p1 

 9)  (an+p + bn+p  10), an + bn < 9, an+1 + bn+1  9, 

..., an+p1 + bn+p1  9, an+p + bn+p   10 
 

(4) 1  (an + bn  10), an + bn  10    

and 

 

(5) 1  (an + bn  9)  ...  (an+p1 + bn+p1  9)  (an+p + 

bn+p  10), an + bn  9, ..., an+p1 + bn+p1  9, an+p + 

bn+p  10 
 

     The mar sum of the “bulk” (4) is an  bn 
          

The mar sum of the “bulk” (5) is an  bn  ...  an+p1   

bn+p1  an+p  bn+p 
 

We proved that mar c = mar a  mar b  mar (a + b) = mar 

a  mar b for any a + b = c of the given type. 
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It can be shown easily that, in the case when a and b have 

a different number of digits, the mar sum of a and b 

contain the same type of “bulks”, and additional digits an 

or bn (depending on which of the two numbers is greater and 

thus has more digits). Thus, mar (a + b) = mar a  mar b 

in this case also. 

 

We mention that in the proof of The Sum Theorem we used the 

following properties of the mar sum (from the operation table): 

 

: a + b = a  b, for a + b < 10 
 

: a + b  9 = a  b, for a + b > 9 
 

: 1  (a + b  10) = a  b, for a + b  10 and 
 

: (a1 + b1 + 1)  (a2 + b2  10) = a1  b1  a2  b2, for  a1 

+ b1 < 9 and a2 + b2  10 

 

 

Proof of The Product Theorem: mar (a*b) = mar a  mar b, where 

a and b are nonzero naturals, so mar a and mar b are nonzero. 

 

 

We have: mar (a*b) = mar (a + a + ... + a) [b times]  

according to the Sum Theorem  mar (a*b) = mar a  mar a 

 ...  mar a [b times] 
                           

But mar a  {1, , 3 , 4, 5, 6, 7, 8, 9}  we have these 

cases: 

 

: mar a = 1  mar (a*b) = 1  1  ...  1 [b times]; 

: mar a = 2  mar (a*b) = 2  2  ...  2 [b times]; 

 (...) 

: mar a = 9  mar (a*b) = 9  9  ...  9 [b times]. 

 

Take the case mar a = 1: 

       

: Let b = 1  mar b = 1  mar (a*b) = 1 = 1  1 = mar 

a  mar b; 

 

: Let b = 2  mar b = 2  mar (a*b) = 1  1 = 1  2 = 

mar a  mar b; 

 

: Let b = 3  mar b = 3  mar (a*b) = 1  1  1 = 1  

3 = mar a  mar b 
  (...) 
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: Let b = 9  mar b = 9  mar (a*b)= 1  1  ...  1 

[9 times] = 1  9 = mar a  mar b. 

               

The same proof for the cases mar a = 2, mar a = 3, ..., mar a  

= 9 , for b  {1, 2, 3, 4, 5, 6, 7, 8, 9} 
 

For b > 9 we use in the proof this helping theorem: 

 

      

       

for any nonzero natural n.  

              

 Proof of the helping theorem: 

: mar 9*n = mar (n + n + ... + n)[9 times] = mar a  

mar n  ...  mar n [9 times]. But mar a  mar n  

...  mar n [9 times] is always reduced to the 

following sums, which are always 9: 1  1  ...  1 

[9 times], 2  2  ...  2 [9 times],..., 9  9  

...  9 [9 times].  

 

 A consequence of the helping theorem: 

: Any natural number greater or equal to 9 may be 

written as one of these forms: 9*n, 9*n + 1, 9*n + 2, 

..., 9*n + 8, where n  1. And also, mar 9*n = mar 9 

= 9; mar (9*n + 1) = mar 9*n  mar 1 = 9  mar 1 = 

mar 1 = 1; mar (9*n + 2) =  mar 9*n  mar 2 = 9  mar 

2 = mar 2 = 2; ...; mar (9*n + 8) = mar 9*n  mar 8 = 

9  mar 8 = mar 8 = 8.  

 

Take the case mar a = 1, b  10;  

 

: Let b of the type 9*n + 1  mar b = 1  mar (a*b) = 

1  1  ...  1 [(9*n + 1) times] = 1  1  ...  1 

[9*n times]  1 = (1  1  ...  1 [9*n times]  ... 

 1  1  ...  1 [9*n times])  1 = 9  9  ...  

9 [n times]  1 = 9  1 = 1 = mar a  mar b; 

 

: Let b of the type 9*n + 2  mar b = 2  mar (a*b) = 

1  1  ...  1 [(9*n + 2) times] = 1  1  ...  1 

[9*n times]  1  1 = 9  9  ...  9 [n times]  2 

= 9  2 = 2 = mar a  mar b. 
 

We have an analogue proof for b of the type 9*n + 3, 9*n + 4, 

..., 9n + 8, and then for mar a = 2, mar a = 3, ..., mar a = 9. 

 

Thus we proven that  mar (a*b) = mar a  mar b. 

 

  mar (9*n) =  mar 9 = 9 
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6. THE MAR REDUCED FORM OF A NATURAL NUMBER RAISED TO A NATURAL 

POWER 

 

From the product table of mar a  mar b, we see that mar a^2 = 

mar(a*a) = mar a  mar a may only be 1, 4, 7 or 9.   

   

Precisely, we have: 

 

 

 

 

Now let’s see what values mar a^3, mar a^4, ..., mar a^8 may 

take: 

 

mar a^3 = mar a^2  mar a and mar a^4 = mar a^3  mar a 

 

 1 2 3 4 5 6 7 8 9   1 2 3 4 5 6 7 8 9 

1 1          1 1         

4  8         8  7        

9   9        9   9       

7    1       1    4      

7     8      8     4     

9      9     9      9    

4       1    1       7   

1        8   8        1  

9         9  9         9 

mar a^5 = mar a^4  mar a and mar a^6 = mar a^5  mar a 

 1 2 3 4 5 6 7 8 9 

1 1         

2  4        

3   9       

4    7      

5     7     

6      9    

7       4   

8        1  

9         9 

mar a   1   2   3   4   5   6   7   8   9 

mar a^2    1   4   9   7   7   9   4   1   9 

 1 2 3 4 5 6 7 8 9   1 2 3 4 5 6 7 8 9 

1 1          1 1         

4  8         8  7        

9   9        9   9       

7    1       1    4      

7     8      8     4     

9      9     9      9    

4       1    1       7   

1        8   8        1  

9         9  9         9 
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mar a^7 = mar a^6  mar a and mar a^8 = mar a^7  mar a 

 

We see that mar a^8 = mar a^2  mar a^9 = mar (a*a^8) = mar a^8 

 mar a = mar a^2  mar a = mar a^3; 
 

Analogously, mar a^10 = mar a^4; mar a^11 = mar a^5; mar a^12  

= mar a^6; mar a^13 = mar a^7; mar a^14 = mar a^8  mar a^6 = 

mar a^2  mar a^6 = mar a^8 = mar a^2 etc. 

 

Let n and m nonzero naturals. We have mar a^(6*n) = mar 

(a^6*a^6*...*a^6)[n times] = (mar a^6  mar a^6  ...  mar 

a^6) [n times]   

  

But mar a^6 may only be (we see from the table) 1 or 9  

   

 mar a^(6*n) = 1  1  ...  1 [n times] = 1 or 9  9   

...  9 [n times] = 9  

    

 mar a^(6*n) = 1 = mar a^6 for mar a = 1 or mar a^(6*n)  

= 9 = mar a^6 for mar a = 9  

 

  

 

Also,  

mar a^(6*n + 1) = mar (a*a^(6*n)) = mar a^(6*n)  mar a = 

mar a^6  mar a = mar a^7;  
 

     mar a^(6*n + 2) = mar a^8 = mar a^2, 

 

     mar a^(6*n + 3) = mar a^9 = mar a^3, 

 

     mar a^(6*n + 4) = mar a^10 = mar a^4, 

 

mar a^(6*n + 5) = mar a^11 = mar a^5, 

 

 On the other hand we have: 
 

 1 2 3 4 5 6 7 8 9   1 2 3 4 5 6 7 8 9 

1 1          1 1         

1  2         2  4        

9   9        9   9       

1    4       4    7      

1     5      5     7     

9      9     9      9    

1       7    7       4   

1        8   8        1  

9         9  9         9 

 mar a^(6*n) = mar a^6 



 19 

mar 9*m = mar 9  mar m = 9  mar m = 9 ,  

 

mar (9*m + 1) = mar 9*m  mar 1 = 9  1 = 1, 
 

mar (9*m + 2) = mar 9*m  mar 2 = 9  2 = 2, 
 

Analogously, mar(9*m + 3) = 3, mar (9*m + 4) = 4, mar (9*m + 5) 

= 5, mar (9*m + 6) = 6, mar (9*m + 7) = 7, mar (9*m + 8) = 8 

 

 Thus, we may write the following powers tables: 
 

 

 

  

  

   

 

mar 

a 

  

1 

  

2 

  

3 

  

4 

  

5 

  

6 

  

7 

  

8 

  

9 

mar 

a^2 

  

1 

  

4 

  

9  

  

7 

  

7 

  

9 

  

4 

  

1 

  

9 

mar 

a^3 

  

1 

  

8 

  

9 

  

1 

  

8 

  

9 

  

1 

  

8 

  

9 

mar 

a^4 

  

1 

  

7 

  

9 

  

4 

  

4 

  

9 

  

7 

  

1 

  

9 

mar 

a^5 

  

1 

  

5 

  

9 

  

7 

  

2 

  

9 

  

4 

  

8 

  

9 

mar 

a^6 

  

1 

  

1 

  

9 

  

1 

  

1 

  

9 

  

1 

  

1 

  

9 

mar 

a^7 

  

1 

  

2 

  

9 

  

4 

  

5 

  

9 

  

7 

  

8 

  

9 

 a= 

9m 

+1 

a= 

9m 

+2 

a= 

9m 

+3 

a= 

9m 

+4 

a= 

9m 

+5 

a= 

9m 

+6 

a= 

9m 

+7 

a= 

9m 

+8 

a= 

9m  

mar a^(6*n + 2)   

1   

  

4   

  

9   

  

7   

  

7    

  

9   

  

4    

  

1   

  

9     

mar a^(6*n + 3)   

1 

  

8 

  

9 

  

1 

  

8 

  

9 

  

1 

  

8 

  

9 

mar a^(6*n + 4)   

1 

  

7 

  

9 

  

4 

  

4 

  

9 

  

7 

  

1 

  

9 

mar a^(6*n + 5)   

1 

  

5 

  

9 

  

7 

  

2 

  

9 

  

4 

  

8 

  

9 

mar a^(6*n)   

1 

  

1 

  

9 

  

1 

  

1 

  

9 

  

1 

  

1 

  

9 

mar a^(6*n + 1)   

1 

  

2 

  

9 

  

4 

  

5 

  

9 

  

7 

  

8 

  

9 
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Take, for example, the mar reduced form of a natural number of 

the type a = 9*m + 7, raised to the power 6*n + 5 (with m and 

n naturals), is: mar (9*m + 7)^(6*n + 5) = 4. 

 

Let’s compute, for example, the mar reduced form of 4413^5678; 

we have: 4413 = 490*9 + 3 and 5678 = 946*6 + 2; then mar 

4413^5678 = mar (9*m + 3)^(6*n + 2) = 9. 

 

 

7. APPLICATIONS OF THE MAR REDUCED FORM IN THE ARITHMETHICS OF 

NATURAL NUMBERS 

 

 

The most obvious and reasonable arithmetic applications of the 

mar reduced form are in problems concerning squares and cubes, 

in divisibility problems and especially in Diophantine 

equations. But before we begin solving these sorts of problems, 

we state a very important consequence of The Sum Theorem: 

 

 

Proof:  

 

Let  a1a2 ...an be a nonzero natural number and S the sum 

of its digits; we have: S = a1  + a2 + ... + an  mar S = 

mar (a1 + a2 + ... +an) = a1  a2  ...  an = mar a1a2 ...an  

 

Example: Take the number 789342. We have mar 789342 = 7  

8  9  3  4  2 = 6. But the sum of the digits of  
789342 is S = 7 + 8 + 9 + 3 + 4 + 2, so mar S = mar (7 + 8 

+ 9 + 3 + 4 + 2) = 7  8  9  3  4  2 = 6 

 

In exercises, we may compute the mar reduced form of the sum of 

the digits of the number instead of the mar reduced form of 

that number: mar 789342 = mar S = mar (7 + 8 + 9 + 3 + 4 + 2) = 

mar 33 = 3  3 = 6. 

 

  

8. SQUARES AND CUBES  

 

 

(1) A number is a square. Prove that the sum of its digits, 

either is divisible by 9, or by division by 3 we get 

modulus 1. 

 

We have x^2 square   mar x^2  is 1, 4, 7 or 9 (this can 

be seen from the powers table), for any natural nonzero x. 

 

The mar reduced form of the sum of the digits of a 

number equals the mar reduced form of the number 
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(We will denote mar x^2 = {1/4/7/9}  mar x^2 is equal to 

one from the values 1, 4, 7 or 9) 

 

From mar x^2 = {1/4/7/9}  x^2 is of the type 9*k + 1 or 

9*k + 4 or 9*k + 7 or 9*k. 

       

But we know that the mar reduced form of the sum of the 

digits of a number equals the mar reduced form of the 

number  the mar reduced form of the sum of the digits of 

the number x^2  is  1, 4, 7 or 9    the sum of the digits 

of the number x^2 is also a number of the type 9*h + 1 or 

9*h + 4 or 9*h + 7 or 9*h. 

 

Denote the sum of the digits of x^2 by S and we take these 

cases : 

      

: S is of the type 9*k + 1: obviously, S modulo 3 is 1; 

 

: S is of the type 9*k + 4 = 3*(3*k + 1) + 1   

 

   S modulo 3 is 1; 

 

: S is of the type 9*k + 7 = 3*(3*k + 2) + 1  

 

   S modulo 3 is 1; 

 

: S is of the type 9*k  S is divisible by 9. 

 

(2) Prove that the sum of the cubes of any 3 consecutive 

natural numbers is divisible by 9. 

 

We have:  (n  1)^3 + n^3 + (n + 1)^3 = n^3  3*n^2 + 3*n  

1 + n^3 + 3*n^2 + 3*n  + 1 = 3*n^3 + 6*n for 

natural n, n > 1 

 

    That leaves to prove 3*n^3 + 6*n is divisible by 9. 

 

Denote 3*n^3 + 6*n = m, m natural, m > 0  mar (3*n^3 + 

6*n) = mar m  mar 3*n^3   mar 6*n = mar m  3  mar n^3  

 6  mar n = mar m  3  {1/8/9}  6  mar n = mar m. 

 

(As I mentioned above I denote x = {1/8/9} when x can have 

one from the values 1, 8 or 9). 

 

     We have these cases:  

 

 

:mar n^3 = 1   mar n = 1, 4 or 7  3  1  6  

{1/4/7} = mar m  mar m = 3  6 = 9  m is 
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of the type 9*k, k  natural, k > 0  3*n^3 

+ 6*n is divisible by 9; 

 

:mar n^3 = 8   mar n = 2, 5 or 8  3  8  6  

{2/5/8} = mar m  mar m = 6  3 = 9  m is 

of the type 9*k, k  natural, k > 0  3*n^3 

+ 6*n is divisible by 9; 

 

:mar n^3 = 9   mar n = 3, 6 or 9  3  9  6  

{3/6/9} = mar m  mar m = 9  9 = 9  m is 

of the type 9*k, k  natural, k > 0  3*n^3 

+ 6*n is divisible by 9; 

 

(3) We have three square natural numbers. If the sum of these 

three numbers is divisible by 9, then we can choose two of 

them whose difference is divisible by 9. 

 

We have x^2, y^2, z^2 naturals such that x^2 + y^2 + z^2 =  

9*k, k natural, k  0  mar (x^2 + y^2 + z^2) = mar 9*k   

mar x^2  mar y^2  mar z^2 = 9  {1/4/7/9}  {1/4/7/9}  

{1/4/7/9} = 9. 

 

We have these cases:  

 

A: 1  1  7 = 9  mar x^2 = mar y^2 = 1; mar z^2 = 7 

B:   1  4  4 = 9  mar y^2 = mar z^2 = 4; mar x^2 = 1 

     C:  7  7  4 = 9  mar x^2 = mar y^2 = 7; mar z^2 = 4 

D:  9  9  9 = 9  mar x^2 = mar y^2 = mar z^2 = 9 

               

     Take case A: we have: mar x^2 = mar y^2 = 1   

 

: mar x^2 = mar y^2  9  x^2 – y^2 = 9*k  x^2 – y^2 

is divisible by 9 or 

: mar y^2 = mar x^2  9  y^2 – x^2 = 9*k  y^2 – x^2 

is divisible by 9. 

      

Take case B: we have: mar y^2 = mar z^2 = 4   

 

: mar y^2 = mar z^2  9  y^2 – z^2 = 9*h  y^2 – z^2 

is divisible by 9 or 

: mar z^2 = mar y^2  9  z^2 – y^2 = 9*h  z^2 – y^2 

is divisible by 9. 

 

The same proof is for case C. 

 

Take case D: mar x^2 = mar y^2 = mar z^2 = 9  x^2, y^2,  

z^2 are divisible by 9  the absolute value of the 
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difference between any two of these numbers is divisible 

by 9. 

 

(4) Prove that the number N = 1978^1 + 1978^2 + 1978^3 + 

1978^4 + 1978^5 is not a square. 

  

We have: mar N = mar 1978^1  mar 1978^2  mar 1978^3  

mar 1978^4  mar 1978^5 

 

But: 

mar 1978^1 = mar (219*9 + 7) = mar (9*k + 7) = 7; 

 

mar 1978^2 = mar (9*k + 7)^2 = 4; 

 

mar 1978^3 = mar (9*k + 7)^3 = 1; 

 

mar 1978^4 = mar (9*k + 7)^4 = 7; 

 

mar 1978^5 = mar (9*k + 7)^5 = 4. 

 

    (From the powers table). 

 

So, we have: mar N = 7  4  1  7  4 = 5  N is not a 

square (we know that the mar reduced form of a square may 

only be 1, 4, 7 or 9). 

 

(5) Prove that the sum of the digits of a square number can’t 

be 5*k  0. 

 

Let n natural, n  0, n square and S the sum of the digits 

of n. 

 

We saw that the sum of the digits of a number has the same 

mar reduced form as that number. But mar n may only be 1, 

4, 7 or 9 (from the powers table for any n = x^2, x  0)    

mar S  may only be 1, 4, 7 or 9  S is of the type 9*k + 

1, 9*k + 4, 9*k + 7 or 9*k  S  5. 

 

(6) Let N = 5*n^2  20*n + 23; show that N can’t be a square. 
 

We have: N + 20*n = 5*n^2 + 23  mar N  2  mar n = 5  

mar n^2  5 

 

Take mar n = 1   mar n^2 = 1  mar N  2  1 = 5  1   

5  mar N  2 = 1  mar N = 8 

 

Take mar n = 2  mar n^2 = 4  mar N  2  2 = 5  4   

5  mar N  4 = 7  mar N = 3 
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Take mar n = 3  mar n^2 = 9  mar N  2  3 = 5  9   

5  mar N  6 = 5  mar N = 8 

 

Take mar n = 4  mar n^2 = 7  mar N  2  4 = 5  7   

5  mar N  8 = 4  mar N = 5 

 

Take mar n = 5  mar n^2 = 7  mar N  2  5 = 5  7   

5  mar N  1 = 4  mar N = 3 

 

Take mar n = 6  mar n^2 = 9  mar N  2  62 = 5  9   

5  mar N  3 = 5  mar N = 2 

 

Take mar n = 7  mar n^2 = 4  mar N  2  7 = 5  4   

5  mar N  5 = 7  mar N = 2 

 

Take mar n = 8  mar n^2 = 1  mar N  2  8 = 5  1   

5  mar N  7 = 1  mar N = 3 

 

Take mar n = 9  mar n^2 = 9  mar N  2  9 = 5  9   

5   mar N  9 = 5  mar N = 5 

 

We obtained mar N = 2, 3, 5 or 8  mar N  1, 4, 7 or 9   

N can’t be a square. 

 

(7) Prove that the square of any natural number is of the type 

3*m or 3*m + 1. 

 

Let n = x^2 natural, n  0: mar x^2 may be 1, 4, 7 or 9   

n = x^2 is of the type 9*h + 1. 9*h + 4, 9*h + 7 or 9*h  

3*(3*h) + 1, 3*(3*h + 1) + 1, 3*(3*h + 2) + 1 or 3*(3*h)  

 n is of the type 3*m or 3*m + 1. 

 

(8) Prove that the sum of the squares of three consecutive  

natural numbers can’t be a square.   

 

Let n natural, n > 1 and S = (n  1)^2 + n^2 + (n + 1)^2 = 

n^2  2*n + 1 + n^2 + n^2 + 2*n + 1 = 3*n^ + 2 

      

But mar S = mar (3*n^2 + 2) = mar 3*n^2  mar 2 = 3  mar 

n^2  2 = 3  {1/4/7/9}  2 = {3/3/3/9}  2 = {5/5/5/2} ≠ 
{1/4/7/9} 

           

We proved that mar S = mar (3*n^2 + 2)  1, 4, 7 or 9 for 

any natural n, n > 1  S, so the sum of the squares of 

three consecutive natural numbers can’t be a square (we 

know that the mar reduced form of a square may only be 1, 

4, 7 or 9). 
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(9) Prove that: E = (9*a + 1)^4 +(9*a + 2)^4 +(9*a + 3)^4 + 

(9*a + 4)^4 +(9*a + 5)^4 +(9*a + 6)^4 + (9*a + 7)^4 + (9*a 

+ 8)^4 can’t be square for n natural. 

 

We have, according with the powers table: mar (9*a + 1)^4 

= 1; mar (9*a + 2)^4 = 7; mar (9*a + 3)^4 = 9; mar (9*a + 

4)^4 = 4; mar (9*a + 5)^4 = 4; mar (9*a + 6)^4 = 9; mar 

(9*a + 7)^4 = 7; mar (9*a + 8)^4 = 1. 

 

But   E  = (9*a + 1)^4 +(9*a + 2)^4 +(9*a + 3)^4 + (9*a + 

4)^4 +(9*a + 5)^4 +(9*a + 6)^4 + (9*a + 7)^4 + (9*a + 8)^4 

implies mar E = mar ((9*a + 1)^4 + ... + (9*a + 8)^4))                      

 mar E = mar (9*a + 1)^4 + ... + mar (9*a + 8)^4)   mar 

E = 1  7  9  4  4  9  7  1 = 6  mar E  1, 4, 7  

or 9  E can’t be a square. 

 

(10) Prove that the number 1*2*3*...*n + 5 can’t be a square, 

for any natural n. 

 

Let N = 1*2*3*...*n + 5. We have N = n! + 5  mar N = mar 

(n! + 5)  mar N = mar n!  mar 5  mar N = mar n!   5 
 

But we know that mar n! is 1 for n = 1, 2 for n = 2, 3 for 

n = 5, 6 for n = 3, 6 for n = 4 respectively 9 for n ≥ 6. 

      

For n = 1, n = 2, n = 3, n = 4, n = 5 we have: N = 6, N = 

7, N = 11, N = 29, N = 125, N is not square. For n  6 we 

have mar N = 9  5 = 5  mar N  1, 4, 7 or 9  N can’t 

be a square. 

     

 

9. DIVISIBILITY PROBLEMS 

  

 

(1) Prove that n^3  n is divisible by 3 for any natural n, n 

 0. 

 

Denote: n^3  n = m  mar n^3 = mar (n + m) = mar n  mar 
m. But mar n^3 may only be 1, 8 or 9, for any natural 

nonzero n. 

 

Take the case when mar n^3 = 1  

 mar n = 1, 4 or 7 (from the powers table). We have 

the following cases:  

   : mar n = 1  1 = 1  mar m   mar m =  9 

  : mar n = 4  1 = 4  mar m   mar m =  6 

: mar n = 7  1 = 7  mar m   mar m =  3 

       

Take the case mar n^3  =  8    
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 mar n = 2, 5 or  8. We have: 

: mar n = 2  8 = 2  mar m  mar m = 6 

: mar n = 5  8 = 5  mar m  mar m = 3 

: mar n = 8  8 = 8  mar m  mar m = 9 

 

Take the case mar n3  =  9    

 mar n = 3, 6 or 9. We have:  

   : mar n = 3  9 = 3   mar m  mar m = 6 

: mar n = 6  9 = 6   mar m  mar m = 3 

: mar n = 9  9 = 9   mar m  mar m = 9 

 

We get that mar m may be 3, 6 or 9  m is of the type 9*k 

+ 3, 9*k + 6 or 9*k  m = n^3  n is divisible by 3. 
 

(2) Prove that n^3 + 11*n is divisible by 6 for any natural n, 

n  0. 
 

It’s obvious that n^3 + 11*n is divisible by 2 (from n 

even it follows that n^3 + 11*n is even; for n odd, we 

have n^3 and 11*n odd  n^3 + 11*n is even). 

 

That only leaves us to prove that n^3 + 11*n is divisible 

by 3. 

 

Denote: n^3 + 11*n = m (m natural, m > 0)  mar (n^3 + 

11*n) = mar m  mar n^3  mar 11*n = mar m  mar n^3  

mar 11  mar n = mar m  mar n^3  2  mar n = mar m 

 

     But mar n^3 may only be 1, 8 or 9, for any n natural  

 

Take the case mar n^3 = 1  mar n = 1, 4 or 7. We have 

these cases: 

: mar n = 1  mar n^3  2  mar n = mar m  1  

2  1 = mar m  mar m = 3 

: mar n = 4  1  2  4 = mar m  mar m = 9 

: mar n = 7  1  2  7 = mar m  mar m = 6 

 

We obtained mar m = 3, 6 or 9  m = n^3 + 11*n is 

divisible by 3. 

 

Take the case mar n^3 = 8  mar n = 2, 5 or 8. We have: 

      : mar n = 2  8  2  2 = mar m  mar m = 3 

: mar n = 5  8  2  5 = mar m  mar m = 9 

: mar n = 8  8  2  8 = mar m  mar m = 6 

 

  Take the case mar n^3 = 9  mar n = 3, 6 or 9. We have: 

         : mar n = 3  9  2  3 = mar m  mar m = 6 
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: mar n = 6  9  2  6 = mar m  mar m = 3 

: mar n = 9  9  2  9 = mar m  mar m = 9 

 

We obtained mar m = 3, 6 or 9, for any n natural, n  0   

 m is divisible by 3  We proved what we needed to 

prove. 

 

(3) Prove that 7^n  1 is divisible by 6 for any natural n  0. 

 

Obviously 7^n  1 is divisible by 2 (7^n odd  7^n  1  

even). It remains to prove that 7^n  1 is divisible by 3. 

 

Denote: 7^n  1 = m, m natural, m > 0  7^n = m + 1   

mar 7^n = mar (m + 1)  mar 7^n = mar m  mar 1 = mar m  

 1. But mar 7^n may only be 1, 4 or 7 (from the powers 

table). Thus, we have:  

 

mar 7^n = mar m  1  mar m  1 = 1, 4 or 7  mar m = 

{3/6/9}  m is of the type 9*k + 3, 9*k + 6 or 9*k, k 

natural, k > 0  m = 7^n – 1 is divisible by 3  

 

(denote mar m = {3/6/9}  mar m is equal to 3, 6 or 9, as 

I mentioned few times above) 

 

(4) Prove that 4^n + 15*n  1 is divisible by 9, for any n  

natural, n  0 . 

       

Denote 4^n + 15*n  1 = m  4^n + 15*n = m + 1  mar (4^n 

+15*n) = mar (m + 1)  mar 4^n  6  mar n = mar m  1  
  

     But mar 4^n may only be 1, 4 or 7. 

            

Take the case mar 4^n = 1  

 n may only be of the type 6*k + 3 or 6*k (from the 

powers table)  n = 3*h, h natural, h  > 0. We have 1 

 6  mar 3*h = mar m  1  6  3  mar h = mar m    

 9  mar h = mar m  mar m = 9  m is divisible by 

9. 

                       

   Take the case mar 4^n = 4  

 n may only be of the type 6*k + 4 or 6*k + 1. We 

have:  

: 4  6  mar (6*k + 4) = mar m  1  4  6  (6 

 mar k  4) = mar m  1  mar m = 3  6  

({3/6/9}  4) or, respectively, 
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: 4  6  mar (6*k + 1) = mar m  1  4  6  (6 

 mar k  1) = mar m  1  mar m = 3  6  

({3/6/9}  1), 

from both cases above resulting that mar m = 3  6   

{1/4/7}  mar m = 9  m = 4^n + 15*n  1 is  

divisible by 9 

      

     Take the case mar 4^n = 7  

 n is of the type 6*k + 2 or 6*k + 5 (from the 

powers table). We have: 

: 7  6  mar (6*k + 2) = mar m  1  7  6  

{3/6/9}  6  {2/5} = mar m  1, or, 

respectively, 

: 7  6  mar (6*k + 5) = mar m  1  7  6  

{3/6/9}  6  {2/5} = mar m  1, 

resulting that mar m = 6  9  3 = 9  m is  

divisible by 9.     

 

(5) Prove that 7^n + 30*n  1 is divisible by 18, for any n 

natural, n  0. 
      

Denote 7^n + 30*n  1 = m, m natural, m > 0; we have 7^n + 

30*n = m + 1  mar 7^n  mar 30*n = mar m   mar 1  mar 

7^n  3  mar n = mar m  mar 1 
 

We have these cases: 

 

: n = 1  7  3  1 = mar m  1  mar m  1 = 1  

mar m = 9 

: n = 2  4  3  2 = mar m  1  mar m  1 = 1  

mar m = 9 

: n = 3  1  3  3 = mar m  1  mar m  1 = 1  

mar m = 9 

: n = 4  7  3  4 = mar m  1  mar m  1 = 1  

mar m = 9 

: n = 5  4  3  5 = mar m  1  mar m  1 = 1  

mar m = 9 

: n = 6  1  3  6 = mar m  1  mar m  1 = 1  

mar m = 9 

: n = 7  7  3  7 = mar m  1  mar m  1 = 1  

mar m = 9 

: n = 8  4  3  8 = mar m  1  mar m  1 = 1  

mar m = 9 

: n = 9  1  3  9 = mar m  1  mar m  1 = 1  

mar m = 9 
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For n > 9, all cases are reduced to one of the cases n <  

9, according to the powers table  mar m = 9  m = 7^n +  

30*n  1 is divisible by 9, for any nonzero natural n. 
 

It’s easy to prove that m is divisible by 2  m is 

divisible by 18. 

 

(6) Prove that 2^(2^1959)  1 is divisible by 3. 
     

We have: 2^1959 =  2^(326*6 + 3) = 2^(6*k + 3), where k  

natural, k  0  mar 2^1959 = 8 (from the powers table)        

 2^1959 is of the type 9*h + 8, h natural,  h different 

from zero. We have: 2^(2^1959)  1 = 2^(9*h + 8)  1. But 

h is even (9*h = 2^1959  8 is equal to the difference of 

two even numbers)  h = 2*r, with r natural, r  0  9*h 

+ 8 = 18*r + 8 = 6*m + 2 (with m natural, m  0). So   

2^(2^1959)  1 = 2^(6*m + 2)  1 = n, n  natural, n  0    

 2^(6*m + 2) = n + 1  mar 2^(6*m + 2) = mar n  1     

 4 = mar n  1  mar n = 3  n is divisible by 3. 

 

(7) Prove that, if a + b + c is divisible by 6, then a^3 + b^3  

+ c^3 is divisible by 6 (a, b, c naturals). 

 

We have a + b + c = 6*k, k natural, k  0. But a^3 + b^3 + 

c^3 = (a + b + c)^3  6*a*b*c  3 (a*b^2 + a^2*b + a*c^2 + 

a^2*c + b*c^2 + b^2*c)  (a^3 + b^3 + c^3) + 3*(2*a*b*c + 

a*b^2 + a^2*b + a*c^2 + a^2*c + b*c^2 + b^2*c) = (a + b + 

c)^3 = (6*k)^3 = 9*n, with n natural, n  0. We have (a^3 

+ b^3 + c^3) + 3*(2*a*b*c + a*b^2 + a^2*b + a*c^2 + a^2*c 

+ b*c^2 + b^2*c) = 9*n  (a^3 + b^3 + c^3) + 3*m = 9*n ,  

with  m  natural, m  0  mar (a^3 + b^3 + c^3)  3   

mar m = 9  mar m  mar (a^3 + b^3 + c^3)  {3/6/9} = 9     

  mar (a^3 + b^3 + c^3) = 3, 6 or 9  a^3 + b^3 + c^3 is 

divisible by 3. It’s easy to prove that a^3 + b^3 + c^3 is 

divisible by 2  a^3 + b^3 + c^3 is divisible by 6. 

 

(8) Using the digits 1, 2, 3, 4, 5, 6, 7 one takes all the 7 

digit numbers which contain these digits exactly once. 

Prove that the sum of all these numbers is divisible by 9. 

 

Let N the number of 7 digit numbers that are obtained by 

arranging the digits. We have N = 7
7A  = 1*2*3*4*5*6*7 = 

5040. 

 

On the other hand, the mar reduced form of any of these N 

numbers is 1  2  3  4  5  6  7 = mar (1 + 2 + 3 + 4 

+ 5 + 6 + 7) = mar 28 = 1 
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Let S be the sum of the N numbers. The mar reduced form of 

S equals the sum of the mar reduced form of the N numbers: 

 

Mar S = 1  1  ...  1 [N times] = 1  1  ...  1 [5040 

times] = mar 5040  1= 9  1 = 9 
 

We proved that mar S = 9  the sum of all the considered 7 

digit numbers is divisible by 9.  

 

(9) Show that 1971^5 + 1972^4 + 1973^3 is a multiple of 9. 

 

    We have E = 1971^5 + 1972^4 + 1973^3  mar E = mar 1971^5 

  mar 1972^4  mar 1973^3. But: 

 : mar 1971^5 = mar (9*219)^5 = mar (9*k)^5 = 9 

 : mar 1971^4 = mar (9*219 + 1)^4 = mar (9*k + 1)^4 = 1 

 : mar 1971^3 = mar (9*219 + 2)^3 = mar (9*k + 2)^3 = 8 

 

So mar E = 9  1  8 = 9  E is of the type 9*h, h  

natural, h > 0  E is a multiple of 9. 

 

(10) Find S such that S = 1980 + 19a8b is divisible by 18 and  

a  b. We have S is divisible by 9  mar S = 9. So S = 

1980 + 19a8b  mar S = mar 1980   mar 19a8b  9 = 9   

mar 19a8b  mar 19a8b = 9. But mar19a8b = 1  9  a  8  

 b = a  b  9. So a  b  9 = 9  a  b = 9. 

 

If a and b are different, we have these possibilities: 

 

{(1  8 = 9)/(2  7 = 9)/(3  6 = 9)/(4  5 = 9)}   

{(1  8 = 9)/(2  7 = 9)/(3  6 = 9)/(4  5 = 9)} 

 

(I denote by this way of writing, with paranthesis, that 

one of the values from the left term of the equality above 

implies one of the values from the right term) 

 

The possibilities are: [a, b] = [1, 8]; [a, b] = [8, 1]; 

[a, b] = [2, 7]; [a, b] = [7, 2]; [a, b] = [3, 6]; [a, b] 

= [6, 3]; [a, b] = [4, 5]; [a, b] = [5, 4]. 

 

The solutions are: S = 1980 + 19188; S = 1980 + 19881; S = 

1980 + 19287; S = 1980 + 19782; S = 1980 + 19386; S = 1980 

+ 19683; S = 1980 + 19485; S = 1980 + 19584. 

 

Accounting that S is also divisible by 2 we have these 

final solutions: S = 1980 + 19782 = 21762; S = 1980 + 

19386 = 21366; S = 1980 + 19584 = 21564. 
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10. DIOPHANTINE EQUATIONS 

 

 

(1) Show that the equation x^2 + 3*y^2 = 1976 has no natural 

solutions. 

 

We have x^2 + 3*y^2 = 1976  mar (x^2 + 3*y^2) = mar 1976  

 mar x^2  mar 3*y^2 = mar 1976  mar x^2  3  mar y^2 

= 1  9  7  6  mar x^2  3  mar y^2 = 5 
 

But mar x^2 and mar y^2 may only be 1, 4, 7 or 9 (from the 

powers table). Thus, we obtain: {1/4/7/9}  3  {1/4/7/9} 

= 5  {1/4/7/9}  {3/9} = 5  {1/3/4/7/9} = 5, which is 

impossible  the given equation has no natural solutions. 

  

(2) Show that the Diophantine equations: 

 

(A) x^3 + y^3 + z^3 = 1578964 

     (B) x^3 + y^3 + z^3 = 3277463 

     have no natural solutions. 

 

(A) We have x^3 + y^3 + z^3 = 1578964  mar (x^3 + y^3 + 

z^3) = mar 1578964  mar x^3  mar y^3  mar z^3 =  

4. But  mar x^3, mar y^3 and  mar z^3 may only be 1, 

8 or 9 (from the powers table). So mar x^3  mar y^3  

 mar z^3 = {1/8/9}  {1/8/9}  {1/8/9} =  

{1/2/3/6/7/8/9}  4   x^3 + y^3 + z^3  1578964 

               

       We’ve considered the following combinations: 

 

: 1  1  1 = 3; 1  1  8 = 1; 1  8  8 = 8; 1  

1  9 = 1; 1  9  9 = 1; 1  8  9 = 9; 8  8  8 

= 6; 8  8  9 = 7; 8  9  9 = 8; 9  9  9 = 9 . 
 

(B) From the proof at point (A) we see that mar x^3  mar 

y^3  mar z^3  5. 

     

(3) Solve the equation (1 + x!)*(1 + y!) = (x + y)! in the set 

of natural numbers 

 

Let’s see what is the value of the mar reduced form of n!. 

We have: 

 : 1! = 1  mar 1! = mar 1 = 1; 

: 2! = 1*2  mar 2! = mar 2 = 2; 

: 3! = 1*2*3  mar 3! = mar 6 = 6; 

: 4! = 1*2*3*4  mar 4! = mar 24 = 6; 

: 5! = 1*2*3*4*5  mar 5! = mar 120 = 3; 

: 6! = 1*2*3*4*5*6  mar 6! = mar 720 = 9. 
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As n! = (n  1)!*n  7! = 6!*7  mar 7! = mar 6!  mar 7  

= 9  7 = 9; 8! = 7!*8  mar 8! = mar 7!  mar 8 = 9  8  

= 9. Obviously, mar n! will be 9 for any n  6. 

 

Thus, we have: (1 + x!)*(1 + y!) = (x + y)!  1 + x!+ y! + 

x!*y! = (x + y)!  1  mar x!  mar y!  mar x!*y! =  mar 

(x + y)!. For x  6 and y  6, we have: 1  mar x!  mar 

y!  mar x!*y! = mar (x + y)!  1  9  9  9 = 9  1 = 

9, which is impossible  for x  6 and y  6 the given 

equation has no natural solutions. 

 

For x < 6 and y < 6 we have the solutions (x = 1, y = 2) 

and (x = 2, y = 1). 

 

(4) Find x such that  2^5*9^x = 259x 

 

We have 2^5*9^x = 259x  mar 2^5*9^x = mar 259x  mar 2^5  

 mar 9^x = mar 259x  5  9 = 2  5  9  x  9 = 7    

x  x = 2. Indeed, 2^5*9^2 = 2592. 

 

(5) Find a and b nonzero naturals, such that: 

 

  9ab = 909 + a^2 + b^2 

 

We have 9ab = 909 + a^2 + b^2  mar 9ab = mar (909 + a^2 + 

b^2)  mar 9ab = mar 909  mar a^2  mar b^2                                

 9  a  b = 9  a^2  b^2  a  b = a^2  b^2. 
      

We look in the powers table and we see that the only 

combinations that satisfy the equality are: 

 

: 1^2  9^2 = 1  9  (a = 1, b = 9) or (a = 9, b = 1) 

: 3^2  4^2 = 3  4  (a = 3, b = 4) or (a = 4, b = 3) 

: 3^2  6^2 = 3  6  (a = 3, b = 6) or (a = 6, b = 3) 

: 4^2  7^2 = 4  7  (a = 4, b = 7) or (a = 7, b = 4) 

: 6^2  7^2 = 6  7  (a = 6, b = 7) or (a = 7, b = 6) 

 

We go back to the initial equation and we have the 

following possibilities: 

 

: 919 = 909 + 1 + 81; 991 = 909 + 1 + 81; 

: 934 = 909 + 9 + 16; 943 = 909 + 9 + 16; 

: 936 = 909 + 9 + 36; 963 = 909 + 9 + 36; 

: 947 = 909 + 16 + 49; 974 = 909 + 16 + 49; 

: 967 = 909 + 36 + 49; 976 = 909 + 36 + 49. 

 

    From these, the only valid possibilities are: 
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: 991 = 909 + 1 + 81; 

: 934 = 909 + 9 + 16; 

: 974 = 909 + 16 + 49. 

 

The solutions of the equation are: (a = 9, b = 1); (a = 3, 

b = 4); (a = 7, b = 4). 

 

(6) Prove that the equation 1!  2! + 3!  4! + ... + (1)^(n – 
1)*n! = k^2 has no natural nonzero solutions. 

      

We know that mar n! = 9 for n  6. 
 

We have 1!  2! + 3!  4! + ... + (1)^(n – 1)*n! = k^2               

 1! + 3! + 5! + 7! + (...) = k^2 + 2! + 4! + 6!+ (...)   

 mar (1! + 3! + 5! + 7! + ...) = mar (k^2 + 2! + 4! + 6! 

+ ...)  mar 1!  mar 3!  mar 5!  mar 7!  mar (...)    

mar k^2  mar 2!  mar 4!  mar 6!  mar (...)  1  6  

3  9  (9  ...  9) = {1/4/7/9}  2  6  9  (9  ... 

 9)  1 = {1/4/7/9}  8  1 = 3, 6, 8 or 9, which is 

impossible  the given equation has no nonzero natural 

solutions. 

 

(7) Solve this equation in the set of natural numbers:  

2^x + 7 = 3^y  

 

    For y = 1, the equation hasn’t any solutions. 

 

For y  2, we have 2^x + 7 = 3^y  mar (2^x + 7) = mar 3^y        

 mar 2^x   mar 7 = mar 3^y  mar 2^x  7 = 9  mar 2^x 

= 2  x = 1 or x = 6*k + 1, k natural, k > 0. 

    

For x = 1 we have 3^y = 9  (x = 1, y = 2) is a solution 

for the equation. 

  

    For y > 2, the equation becomes 2^(6*k + 1) + 7 = 3^y. 

 

: We take the case when k is even, y is even, k = 2*h, 

y = 2*z, h > 0, z > 0. We have 2^(12*h + 2) + 7 =  

3^(2*z)  (2^(6*h + 1))^2  3^(2*z) = 7  (3^z  
2^(6*h + 1))*( 3^z + 2^(6*h + 1)) = 7. Obviously, in 

this case we have no natural solutions.   

 

: We take the case when k is even, y is odd, k = 2*h, y 

= 2*z + 1, h > 0, z > 0. We have 2^(12*h + 2) + 7 =  

3^(2*z + 1)  mar (2^(12*h + 2) + 7) = mar 3^(2*z + 

1)   mar 2^(12*h + 2)  mar 7 = mar 3^(2*z + 1)    

4  7 = 9  2 = 9, which is impossible  the case 

has no natural solutions. 
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: We take the case when k is odd, y is even, k = 2*h + 

1, y = 2*z, h > 0, z > 0. We have 2^(12*h + 7) + 7 =  

3^(2*z)  2^(12*h)*2^7 + 7 = 3^(2*z)  2^(12*h)*2^7 

 2 = 3^(2*z)  9  2*(2^(12*h)*2^6  1) = 3^(2*z)  

3^2  2*(2^(6*h)*2^3  1)*(2^(6*h)*2^3 + 1) = (3^z   

3)*(3^z + 3 ). But (3^z  3) is divisible by 2 and 

(3^z + 3) is also divisible by 2, it follows that 

(3^z  3)*(3^z + 3) is divisible by 4, while 

2*(2^(6*h)*2^3  1)*(2^(6*h)*2^3 + 1) is divisible 

only by 2  in this case we have no natural 

solutions. 

 

: We take the case when k is odd, y is odd, k = 2*h + 

1, y = 2*z + 1, h > 0, z > 0. We have 2^(12*h + 7) + 

7 =  3^(2*z + 1)  2^(12*h)*2^7 + 4 = 3^(2*z)*3  3 

 4*(2^(12*h)*2^5 + 1) = 3*(3^(2*z)   1)*(3^(2*z) +  

1). But (3^(2*z)  1) is divisible by 2 while ( 

3^(2*z) + 1) is divisible by 4, or (3^(2*z)  1)  is 

divisible by 4 while (3^(2*z) + 1) is divisible by 2. 

It follows that 3*(3^(2*z)  1)*(3^(2*z) + 1) is 

divisible by 8, while 4*(2^(12*h)*2^5 + 1) is 

divisible only by 4  the equation hasn’t any natural 

solutions in this case either. 

 

(8) Solve in the set of natural numbers the equation: 

2^x  7 = 3^y 
 

     We have 2^x  7 = 3^y  2^x = 3^y + 7 

 

For y = 0 we have 2^x = 8, so (x = 3, y = 0) a solution of 

the equation. 

 

    For y = 1 we have 2^x = 10, so there are no solutions. 

       

For y > 1 we have 2^x = 7 + 3^y  mar 2^x = mar (7 + 3^y)  

 mar 2^x = 7  9 = 7  x = 4 or x = 6*k + 4, k natural, 

k > 0  mar 2^x = 7  9 = 7  x = 4 or x = 6*k + 4, k 

natural, k > 0.                  

      

For x = 4 we have 16 = 7 + 9  (x = 4, y = 2) is a 

solution of the equation. 

 

For y > 1, x ≠ 4, the initial equation becomes 2^(6*k + 4) 

= 3^y + 7. 

 

: Take the case when k is even, y is even, k = 

2*h, y = 2*z, h > 0, z > 0. We have 2^(12*h + 4) 

= 3^(2*z) + 7  (2^(6*h + 2))^2  3^(2*z) = 7  
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(2^(6*h + 2)  3^z)*(2^(6*h + 2) + 3^z) = 7. 

Obviously, in this case there are no natural 

solutions. 

 

: Take the case when k is even, y is odd, k = 2*h, 

y = 2*z + 1, h > 0, z > 0. We have 2^(12*h + 4) 

= 3^(2*z + 1) + 7  2^(12*h + 4)  6 = 3^(2*z + 

1) + 1  2*(2^(12*h + 3)  3) = (3  + 

1)*(3^(2*z)  3^(2*z – 1) + ...  3 + 1)  

2*(2^(12*h + 3)  3) = 4*(3^(2*z)  3^(2*z – 1) + 

...  3 + 1). But (2^(12*h + 3)  3) is not 

divisible by 2  the equality is impossible. 

 

: Take the case when k is odd, y is even, k = 2*h 

+ 1, y = 2*z, h > 0, z > 0. We have 2^(12*h + 

10) = 3^(2*z) + 7  (2^(6*h + 5)  3^z)*(2^(6*h 

+ 5) + 3^z) = 7, which is impossible  in this 

case we have no natural solutions.  

 

: Take the case when k is odd, y is even, k = 2*h 

+ 1, y = 2*z, h > 0, z > 0. We have 2^(12*h + 

10) = 3^(2*z + 1) + 7  2^(12*h + 10)  6 = 

3^(2*z + 1) + 1  2*(2^(12*h + 9)  3) = (3 + 

1)*(3^(2*z)  3^(2*z – 1) + ...  3 + 1)  

2*(2^(12*h + 9)  3) = 4*(3^(2*z)  3^(2*z – 1) + 

... + 1). But (2^(12*h + 9)  3) is not 

divisible by 2  the equality is impossible. 

 

(9) Solve the equation in the set of natural numbers: 

x^2  6*x*y + y^2 = 1 

 

We have x^2 + y^2 = 6*x*y + 1  mar (x^2 + y^2) = mar 

(6*x*y + 1)  mar x^2  mar y^2 = 6  mar x*y  1. But mar 

x^2 and mar y^2 may only be 1, 4, 7 or 9, and 6  mar n is 

3, 6 or 9 for any natural n, n  0. So: {1/4/7/9}  

{1/4/7/9} = {3/6/9}  1  {2/5/8/9} = {1/4/7}, which is 

impossible  the equation has no natural solutions. 

 

(10) Solve this equation in the set of natural numbers:  

(x + y)^5 = x^4  + y^4  

 

For x = 0 we have (x = 0, y = 0) trivial solution of the 

equation. 

 

For x > 0, y > 0 we have (x + y)^5 = x^4 + y^4  mar (x +  

y)^5 = mar (x^4 + y^4 )  mar (x + y)^5 = mar x^4  mar 
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y^4. But mar x^4 and  mar y^4 may only be 1, 4, 7 or 9     

 mar (x + y)^5 = {1/4/7/9}  {1/4/7/9} = {2/5/8/9} 

   

     We have the following cases:  

 

(1) mar (x + y)^5 = 1  1 = 2 

(2) mar (x + y)^5 = 4  7 = 2 

(3) mar (x + y)^5 = 1  4 = 5 

(4) mar (x + y)^5 = 7  7 = 5 

(5) mar (x + y)^5 = 1  7 = 8 

(6) mar (x + y)^5 = 4  4 = 8 

(7) mar (x + y)^5 = 9  9 = 2 
 

Take the case 1: we have mar (x + y)^5 = 2  mar (x + y) = 

5. But mar x^4 = mar y^4 = 1  mar x and mar y may only be 

1 or 8. So mar (x + y) = mar x  mar y = {1/8}  {1/8} = 

{2/7/9} ≠ 5  the case is impossible. 

 

Take the case 2: we have mar (x + y)^5 = 2  mar (x + y)  

= 5. But mar x^4 = 4  mar x may only be 4 or 5, and mar 

y^4 = 7  mar y may only be 2 or 7. So  mar (x + y) = mar 

x  mar y = {4/5}  {2/7} = {2/3/6/7} ≠ 5  the case is 

impossible. 

 

A similar proof is for cases (3), (4), (5) and (6). The 

case (7) is reduced to one of the previous cases (after 

simplification by 9). 

 

 

11. COMPARED SOLUTIONS 

 

 

We’ve seen a few of the applications of the mar reduced form in 

problems which are usually solved by means of induction, modulo 

n classes, or by unsystematic, somewhat empirical but standard 

methods, such as the value of the last digit of a number, the 

sum of the digits of a number etc. By choosing and solving the 

exercises until now, I didn’t press for showing of the mar 

reduced form uses in contrast with the traditional methods, I 

just presented a working alternative for them. In fact, most of 

the presented exercises could have been solved easier using the 

traditional methods. In spite of that, compared with each of 

those methods, using mar reduced form has its advantages: it is 

simpler than some of the methods, more synthetic and less 

arbitrary than the others. Actually, the mar reduced form is an 

intrinsic, invariant and easy to compute characteristic of a 

natural number. It offers a fixed starting point, at least for 

the basic approach of arithmetic problems: it supplies easy 

results which we can process in secondary steps by other 
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methods, or it may often lead us to a result. In the chapter 

COMPARED SOLUTIONS we shall solve the same type of problems 

that we did in the previous applications chapters, but this 

time every exercise will also have a traditional solution. The 

title of this chapter is a little wrong, as the comparisons 

won’t be made explicitly, for each solution, at least not by 

the author. I just put together one solution after another, 

hoping that the readers will make the called for comparisons. 

The problems and the traditional solutions were picked from 

problem books and Math journals, published in my country from 

1978 to 1998. Most of the problems and their solutions are 

classical, and don’t belong to specific authors. But even if 

I’m wrong, I take the liberty and responsibility of not 

mentioning anyone, considering the comparison with the 

traditional methods, in general, and not with someone’s 

particular methods. 

 

(1) Show that the equation x^3  2*y^3  4*z^3 = 0 has no 

natural solutions except x = y = z = 0. 

 

Proof using the mar reduced form: 

 

We have x^3  2*y^3  4*z^3 = 0  x^3 = 2*y^3 + 4*z^3  

mar x^3 = mar (2*y^3 + 4*z^3)   mar x^3 = mar 2*y^3  

mar 4*z^3  mar x^3 = 2  mar y^3  4  mar z^3 

 

But  mar x^3, mar y^3 and mar z^3 may only be 1, 8 or 9  

{1/8/9} = 2  {1/8/9}  4  {1/8/9}  {1/8/9} = {2/7/9} 

 {4/5/9} 

 

The only possible combination is 9 = 9  9   mar x^3 = 

mar y^3 = mar z^3 = 9   x^3, y^3 and z^3 are divisible by 

9, which leads to two cases: either by simplifying the 

equation by 9, we end up in another combination, or x^3,  

y^3 and z^3 are same order powers of 9. Obviously, both 

cases are impossible  the given equation has no nonzero 

natural solutions. 

 

Classical proof: 

 

The equation may be written as: x^3 = 2*(y^3 + 2*z^3), so 

it follows that 2 is a divisor of x. 

 

Denote x = 2*x1 and we substitute; we get: 8*x1^3 = 2*(y^3 

+ 2*z^3)  y^3 = 2*(2*x1^3  z^3)  2 is a divisor of y. 

  

Denote y = 2*y1 and we substitute; we get: 4*y1^3 = 2*x1^3 

- z^3  z^3 = 2*(x1^3  2*y1^3)  2 is a divisor of z. 
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We obtained that x, y and z are even numbers. The same 

proof is for x/2, y/2 and z/2 even and so on. It follows 

that x, y and z are divisible by any power of 2, which is 

possible only if x = y = z = 0. 

 

(2) Prove that N = 1^t + 2^t + 3^t + ... + 9^t  3*(1^t + 6^t 

+ 8^t) is divisible by 18 for any natural t. 

      

Proof using the mar reduced form: 

 

    We have, according to the power table: 

 

: mar (1^t + 2^t + 3^t + ... + 9^t) = 1  2  4  5  

7  8  9  9  9 = 9, for t of the type 6*n + 1 or  

6*n + 5, n natural; 

: mar (1^t + 2^t + 3^t + ... + 9^t) = 1  1  4  4  

7  7  9  9  9 = 6, for t of the type 6*n + 2 or  

6*n + 4, n natural; 

: mar (1^t + 2^t + 3^t + ... + 9^t) = 1  1  1  8  

8  8  9  9  9 = 9, for t of the type 6*n + 3,  n  
natural; 

: mar (1^t + 2^t + 3^t + ... + 9^t) = 1  1  1  1  

1  1  9  9  9 = 6, for t = 6 or t of the type 

6*n, n natural, n  0. 
 

   On the other hand, we have: 

 

: mar (1^t + 6^t + 8^t) = 1  1  9 = 2, for t of the 

type 6*n + 2, 6*n + 4 or 6*n; 

: mar (1^t + 6^t + 8^t) = 1  8  9 = 9, for t of the 

type 6*n + 1, 6*n + 3 or 6*n + 5. 

 

So N + 3*(1^t + 6^t + 8^t) = 1^t + 2^t + 3^t + ... + 9^t 

which means: 

 

: mar N  3  2 = 6  mar N = 9 for t of the type 6*n 

+ 2, 6*n + 4, 6*n; 

: mar N  3  9 = 9  mar N = 9 for t of the type  6*n 

+ 1, 6*n + 3 or 6*n + 5. 

       

But mar N = 9  N is divisible by 9. As N is divisible by 

2 also (is the difference of two odd numbers)  N is 

divisible by 18. 

 

Classical proof: 

 

In the sum 1^t + 2^t + 3^t + ... + 9^t there are 5 odd 

numbers and 4 even numbers, so the sum is odd. The number 
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3*(1^t + 6^t + 8^t) is odd, so N is even. Let’s prove that 

9 is a divisor of N. 

 

   Consider the cases: 

 

(A) t is odd. For t = 1 we get N = 0 so 9 is a divisor of 

N. 

 

We may assume that t  3. Then 3^t, 6^t, 9^t are 

divisible by 9, and N  ((1^t + 8^t) + (2^t + 7^t) + 

(4^t + 5^t)  3 (1^t + 8^t))(mod 9) 

 

As t is odd, each parenthesis is divisible by 9  N 

is divisible by 9. 

 

(B)  t is even, t = 2*p, p  1, N  1^p + 2*(4^p + 7^p) + 

1^p  3*(1^p  + 1^p) = 2*(4^p + 7^p  2)  0(mod 
9) 

 

         To prove the last identity we use induction. 

 

For p = 1 we have 4^1 + 7^1  2 = 9  0(mod 9). 

 

Suppose that 4^p + 7^p  2  0(mod 9). Then: 4^(p + 1) 

+ 7^(p + 1)  2  =  4*(4^p + 7^p  2) + 3*(7^p + 2)  
0(mod 9). 

 

The first parenthesis is divisible by 9 according to 

the induction hypothesis, and the second is divisible 

by 3 because 7^p  1(mod 3).  
 

So 9 is a divisor of N and, as 2 is a divisor of N, it 

follows that 18 is a divisor of N. 

 

(3) Prove that the equation x^3  3*x*y^2 + y^3 = 2891 has    

no natural solutions.  

 

Proof using the mar reduced form: 

      

We have x^3 + y^3 = 3*x*y^2 + 2891  mar (x^3 + y^3) = mar 

(3*x*y^2 + 2891)  mar x^3  mar y^3 = 3  mar x*y^2   
mar 2891. But mar x^3 and mar y^3 may only be 1, 8 or 9, 

for any x and y naturals, and 3  mar z may only be 3, 6  

or 9, for any z  natural. So mar x^3  mar y^3 = 3  mar 

x*y^2   mar 2891  {1/8/9}  {1/8/9} = {3/6/9}  2. 

 

    The only combinations that satisfy the equality are: 
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: (i) 1    1  =  9    2 

: (ii) 8    9  =  6    2 

: (iii)9    8  =  6    2 

 

Take the case (i): we have mar x^3 = mar y^3 = 1  mar x  

is 1, 4 or 7; mar y is 1, 4 or 7  mar 3*x*y^2 = 3  

{1/4/7}  {1/4/7} = 3  {1/4/7} = 3 ≠ 9  the combination 

is impossible. 

       

Take the cases (ii) and (iii): we have mar x^3 = 9 and mar 

y^3 = 8 or mar x^3 = 8 and mar y^3 = 9, so mar x = 3, 6 or 

9 and mar y^2 = 2, 5 or 8 or mar x = 2, 5 or 8 and mar y^2  

= 9. We get: 

 

     : mar 3*x*y^2 = 3  {3/6/9}  {2/5/8} = 9 ≠ 6 

  or 

 : mar 3*x*y^2 = 3  9  {2/5/8} = 9 ≠ 6  

 

  these combinations are impossible  the equation has 

no natural solutions. 

       

Classical proof: 

 

The proof is done by using “modulo something”. By using 

modulo 2 we don’t get anywhere, but by using modulo 3, we 

eventually obtain the desired result. For any modulo 3 

class, denoted by u, we have u^3 = u, and as 2891 equals 

2(mod 3), we get x + y = 2(mod 3). 

     

So there are three possible cases:    

 

: (i)  x = y = 1( mod 3) 

: (ii) x = 0(mod 3);  y = 2(mod 3) 

: (iii)x = 2(mod 3);  y = 0(mod 3) 

 

We see that, if the given equation has a solution, it will 

have it in the second case, so x = 3*m, y = 3*k  1, with 
m and k naturals. By substituting in the equation we 

obtain 9*r  1 = 2891, which contradicts the hypothesis 

that 2891 = 9*s + 2 (r and s naturals). 

 

(4) Let A be the sum of the digits of 4444 4444 , and B the sum 

of the digits of A. Find the sum of the digits of B. 

 

Solution using the mar reduced form: 

 

Because the sum of the digits of B is not bigger than 9, 

the unknown is the mar reduced form of B. But we know that 

the mar reduced form of the sum of the digits of a number 
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is equal to the mar reduced form of the number, so the 

unknown is really the mar reduced form of A. 

 

    We have: 

 

mar A = mar 4444^4444 = mar (493*9 + 7)^(740*6 + 4) = mar 

(9*k + 7)^(6*n + 4), k = 493 and n = 740 naturals.  

 

From the powers table we see: mar (9*k + 7)^(6*n + 4) =  

7, so 7 is the solution. 

 

Classical solution: 

 

We see that because 4444^4444 < 10000^4444, the number of 

digits of 4444^4444 doesn’t exceed 4444*4 + 1 < 20000. 

 

It follows that A < 9*20000  A < 180000, and B < 9*5 =  

45. 

 

If we denote by C the sum of the digits of B, we get C <  

4 + 9 = 13. 

 

We see that the by dividing sum of the digits of a number 

by 9 we get the same modulus as for dividing the number 

itself. It follows that 4444^4444  C(mod 9). 
 

On the other hand, 4444  7(mod 9)  4444^4444  

7^4444(mod 9)  4444^4444  (2)^(3*1481)*7  (8)^1481*7  

 7(mod 9). 
 

    Considering the previous relations, we obtain C = 7. 

 

(5) Prove that the equality x^2 + y^2 + z^2 = 2*x*y*z is 

possible for natural numbers only if x = y = z = 0. 

 

Proof using the mar reduced form: 

 

For x > 0, y > 0, z > 0 we have  x^2 + y^2 + z^2 = 2*x*y*z 

 mar x^2  mar y^2  mar z^2 = mar 2*x*y*z 

 

But mar x^2, mar y^2, mar z^2 may only be 1, 4, 7 or 9  

{1/4/7/9}  {1/4/7/9}  {1/4/7/9} = 2  mar x  mar y  

mar z 

  

Take the case mar x^2, mar y^2, mar z^2 are 1, 4 or 7.  

 

We have: {1/4/7}  {1/4/7}  {1/4/7} = {1/2/4/5/7/8} 

    

(In this case 2  mar x  mar y  mar z  3, 6 or 9) 
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But this is not possible, as {1/4/7}  {1/4/7}  

{1/4/7} = {3/6/9} 

 

Take the case when one or two of mar x^2, mar y^2, mar z^2 

are 9 (the case when all are 9 is reduced to one of the 

cases discussed after simplifying the equation by 3). 

 

We get: 9  {1/4/7}  {1/4/7} = {3/6/9} or 9  9  

{1/4/7} = {3/6/9} 

 

Both cases are impossible  the equality is impossible   

the given equation has no nonzero natural solutions. 

 

Classical solution: 

 

x = y = z = 0 verifies the equality. One of the numbers 

zero implies that all numbers are zero. 

 

Let x > 0, y > 0, z > 0. As the right side is an even 

number, the left side should also be even. We have the 

following cases: 

 

(i) x, y  odd;  z  even 

(ii) x, y, z even 

 

In the first case the right side is a multiple of 4 and 

the left side is a multiple of 4 plus 2; the equality is 

not possible. 

  

So, let x = 2^a*h1, y = 2^b*h2, z = 2^c*h3; h1, h2, h3 odd;  

a, b, c  1. By substituting in the equation we get: 

2^(2*a)*h1^2 + 2^(2*b)*h2^2 + 2^(2*c)*h3^2 =  2^(a + b + c 

+ 1)*h1*h2*h3. Let a = Min (a, b, c); we have: 2^(2*a)*(h1^2 

+2^(2*(b – a))*h2^2 + 2^(2*(c – a))*h3^2) = 2^(a + b + c + 

1)*h1*h2*h3 

 

If b > a and c > a it follows that a + b + c + 1 > 2 and, 

as the parenthesis is an odd number, the equality is 

impossible. 

 

We can’t have a = b = c because, after simplifying by  

2^(2*a), the left side is odd and the right side is even. 

            

If b = a and c > a, we can extract 2^1 as common divisor 

and nothing more. But in this case a + b + c + 1 > 2*a + 1 

 

It means that the equality is possible only if x = y = z =   

0. 
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(6) Prove that the equation x^3 + y^3 + z^3 = 1969^2 has no 

natural solutions. 

 

Proof using the mar reduced form: 

 

We have  x^3 + y^3 + z^3 = 1969^2  mar x^3  mar y^3    

mar z^3 = mar 1969^2  

 

But mar x^3, mar y^3, mar z^3 may only be 1, 8 or 9 (from 

the table of powers), and mar 1969^2 = mar (218*9 + 7)^2 =  

4 

 

So, we have {1/8/9}  {1/8/9}  {1/8/9} = 4, which is, as 

you may see, impossible as the left side can only have the 

values 1, 2, 3, 6, 7, 8 and 9. 

 

Classical solution: 

 

   Let x, y and z integers such that x^3 + y^3 + z^3 = 1969^2 

  

The modulus of the division of 1969^2 by 9 is 4. We will 

analyze the modulus obtained from division by 9 of numbers 

of the type x^3  

 

     The case (i):  

: x = 3*k. The modulus of the division of  x^3 by 

9 will be r = 0 

     The case (ii): 

: x = 3*k +1. Then  x^3 = 3^3*k^3 + 3*3^2*k^2 + 

3*3*k + 1. The considered modulus is r = 1 

The case (iii) :  

: x = 3*k +2. Then x^3 = 3^3*k^3  3*3^2*k^2 + 

3*3*k  1. The considered modulus is r = 8 
 

By dividing  x^3, y^3, z^3 by 9 we obtain the modulus 0, 1 

or 8. If we divide the sum r1 + r2 + r3 by 9, the three 

terms having the values 0, 1 or 8, we can’t obtain the 

modulus 4, which proves the statement. 

 

(7) Show that if 9 is a divisor of a^3 + b^3 + c^3, with a, b 

and c naturals, that at least one of the numbers a, b or c 

is divisible by 3. 

 

Proof using the mar reduced form: 

 

Let E = a^3 + b^3 + c^3; E is divisible by 9  mar E = 9    

 mar E = mar (a^3 + b^3 + c^3) = 9  mar a^3  mar b^3 

mar c^3 = 9  {1/8/9}  {1/8/9}  {1/8/9} = 9 (we know 
that mar x^3 may only be 1, 8 or 9, for any x  natural). 
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The possible combinations are (having in mind that the 

equation is symmetrical): 

 

: 1  1  1 = 3  9;       

: 8  8  8 = 6  9; 

: 1  1  8 = 1  9;       

: 8  8  1 = 8  9; 

: 1  1  9 = 2  9;       

: 8  8  9 = 7  9; 

: 1  9  9 = 1  9;       

: 8  9  9 = 8  9; 

: 1  8  9 = 9. 

 

We see that only the last combination satisfies the 

equality, and this is equivalent with mar a^3 = 9, mar b^3  

= 9 or mar c^3 = 9   mar a, mar b or mar c is 3, 6 or 9     

 at least one of the numbers a, b or c is divisible by 3. 

       

Classical solution: 

 

The cube of a natural number which is not divisible by 9 

is of the type 9*k + 1. 

    

If none of the numbers a, b or c is divisible by 9, then 

a^3 + b^3 + c^3 is of the type:  

: 9*k + 1 + 1 + 1 = 9*k + 3; 

: 9*k  1  1  1 = 9*k  3; 

: 9*k + 1  1  1 = 9*k  1;   

: 9*k + 1 + 1  1 = 9*k + 1 . 
 

For none of these combinations of signs a^3 + b^3 + c^3 is 

a multiple of 9. 

 

(8) Prove that, if n  2, then 3 is not a divisor of 2
nC  + 1. 

 

Proof using the mar reduced form: 

  

   We have 2
nC  = n!/(2!*(n – 2)!) = n*(n – 1)/2 

Denote N = 2
nC  + 1 

We have 2*N = (n  1)*n + 2  2*N = n^2  n + 2  2   

mar N  mar n = mar n^2  2 

 

    We will take three cases: 

 

(i) mar n = 1, 4 or 7 (N is of the type 9*k + 1, 9*k + 4  

or 9*k + 7) 

(ii) mar n = 2, 5 or 8 (N is of the type 9*k + 2, 9*k + 5  

or 9*k + 8) 
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(iii)mar n = 3, 6 or 9 (N is of the type 9*k + 3, 9*k + 6   

or 9*k)  

 

   Take the case (i): 

We have: 2  mar N  {1/4/7} = {1/4/7}  2 = {2/5/8} 

 mar N = 2, 5 or 8  mar N  3, 6 or 9  N is not 

divisible by 3. 

 

Take the case (ii): 

We have: 2  mar N  {2/5/8} = {1/4/7}  2 = {3/6/9} 

 mar N = 2, 5 or 8  mar N  3, 6 or 9  N is not 

divisible by 3. 

 

Take the case (iii): 

We have: 2  mar N  {3/6/9} = 9  2 = 2  2  mar N  

= 2, 5 or 8  mar N = {1/4/7}  mar N  3, 6 or 9    

 N is not divisible by 3. 

 

Classical solution: 

 

We have:  2*N = n^2  n + 2; let n = 6*k + r; we take the 

cases: 

 

: r = 1 :   

we have 2*N = (6*k + 1)^2  (6*k + 1) + 2  2*N 

= 36*k^2 + 6*k + 2  N = 18*k^2 + 3*k + 1   3 

is not a divisor of N 

: r = 2 :  

we have 2*N = (6*k + 2)^2  (6*k + 2) + 2  2*N 

= 36*k^2 + 18*k + 4  N = 18*k^2 + 9*k + 2  3 

is not a divisor of N 

: r = 3 :  

we have 2*N = (6*k + 3)^2  (6*k + 3) + 2  2*N 

= 36*k^2 + 30*k + 8   N = 18*k^2 + 15*k + 4   

3 is not a divisor of N 

: r = 4 :  

we have 2*N = (6*k + 4)^2  (6*k + 4) + 2  2*N 

= 36*k^2 + 42*k + 14  N = 18*k^2 + 21*k + 7   

3 is not a divisor of N 

: r = 5 :  

we have 2*N = (6*k + 5)^2  (6*k + 5) + 2  2*N 

= 36*k^2 + 60*k + 22  N = 18*k^2 + 30*k + 11  

3 is not a divisor of N 

: r = 0 :  

we have 2*N = (6*k)^2  (6*k) + 2  2*N = 36*k^2   

 6*k + 2  3 is not a divisor of N 

 

   We proved that N is not divisible by 3, for any n  natural 
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(9) Prove that, if a and b are natural numbers which are not 

divisible by 3, then either a - b or a + b is divisible by 

3. 

 

Proof using the mar reduced form: 

 

a and b are not divisible by 3    mar a and mar b  3, 6 
or 9. 

 

Take the cases: 

 

(i) mar a = 1, 4 or 7; mar b = 1, 4 or 7; we have: 

{1/4/7} = {1/4/7}  {3/6/9}  mar a = mar b  

{3/6/9}   mar (a  b) = 3, 6 or 9  (a  b) is 

divisible by 3 

 

(ii) mar a = 2, 5 or 8; mar b = 2, 5 or 8; we have: 

{2/5/8} = {2/5/8}  {3/6/9}  mar a = mar b  

{3/6/9}  mar (a  b) = 3, 6 or 9  (a  b) is 

divisible by  3 

 

(iii)mar a = 1, 4 or 7; mar b = 2, 5 or 8; we have: 

{1/4/7}  {2/5/8} = {3/6/9}  mar a  mar b = 

{3/6/9}   mar (a + b) = 3, 6 or 9  (a + b) is 

divisible by 3 

 

Classical solution: 

 

Take a = 3*m + p and b = 3*n + r; m and n naturals, p, r = 

1 or 2 

 

    We have: 

 

(i) p = 1 and r = 1  a = 3*m + 1 and b = 3*n + 1  (a  

 b) = 3*(m  n)  (a  b) is divisible by 3 
 

(ii) p = 1 and r = 2  a = 3*m + 1 and b = 3*n + 2  (a  

+ b) = 3*(m + n + 1)  (a + b) is divisible by 3 

 

(iii)p = 2 and r = 1 (equivalent with the case (ii), 

because the equation is symmetrical)  (a + b)  is 

divisible by 3 

 

(iv) p = 2 and r = 2  a = 3*m + 2 and b = 3*n + 2  (a  

 b) = 3*(m  n)  (a  b) is divisible by 3. 
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12. A SPECIAL DIOPHANTINE EQUATION 

 

 

We want to solve separately a Diophantine equation for two 

reasons: first, because it is famous, belonging to Fermat 

(1601-1665), and, second, because the well-known proof is not 

elementary, but involves concepts as complex numbers, Euclidian 

rings etc. The equation is proved (in the mentioned manner) in 

the book “Elemente de aritmetică” by Mariana Vraciu and 

Constantin Vraciu, published in Romania by the publishing house 

“B.I.C. ALL” in 1998. Finally, this equation is: y^2 + 2 = x^3. 

We shall treat this Diophantine equation from the point of view 

of natural solutions only. As you have already seen, 

generalizing the definition of the mar reduced form on the set 

of integers is not our purpose here. 

 

Prove that the only natural solution of the equation y^2 + 2 = 

x^3 is [x, y] = [3, 5]. 

       

Proof: 

 

For x = 0 and y = 0 the equation has no natural solutions. 

 

For x > 0 and y > 0 we have y^2 + 2 = x^3   mar (y^2 + 2) = 

mar x^3  mar y^2  2 = mar x^3 
 

We know that mar y^2 may only be 1, 4, 7 or 9, for any y  

natural, y > 0 and mar x^3 may only be 1, 8 or 9, for any x 

natural, x > 0. 

 

Thus, we have: {1/4/7/9}  2 = {1/8/9} 
 

The only combination that satisfies the equality is 7  2 = 9 

 mar y^2 = 7 and mar x^3 = 9  mar y is equal to 4 or 5 and 

mar x is equal to 3, 6 or 9. It follows that y is of the type 

9*k + 4 or 9*k + 5, k natural and x is of the type 3*m, m non-

null natural. 

 

Take the case y = 9*k + 4, x = 3*m;  we have: 

y^2 + 2 = x^3  (9*k + 4)^2 + 2 = 27*m^3 

 

For k = 0 we get 18 = 27*m^3  no natural solutions. 

 

Take the case when k is even, k = 2*h, h > 0; m even, m = 

2*n, n > 0. We have: (18*h + 4)^2 + 2 = 27*8*n^3          

4*(9*h + 2)^2 + 2 = 27*8*n^3  2*(9*h + 2)^2 + 1 = 

27*4*n^3. But the right side of the equality is divisible 

by 2, and the left side is not divisible by 2  the 

equality is impossible. 
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Take the case when k is even, k = 2*h, h > 0; m odd, m = 

2*n + 1. We have: (18*h + 4)^2 + 2 = 27*(2*n + 1)^3. This 

time, the left side of the equality is divisible by 2, 

while the right side isn’t  the equality is impossible. 

      

Take the case when k is odd, k = 2*h + 1; m even, m = 2*n, 

n > 0. We have: (18*h + 13)^2 + 2 = 27*8*n^3. The right 

side of the equality is divisible by 2, and the left side 

is not divisible by 2  the equality is impossible. 

 

The case when k is odd, k = 2*h + 1; m odd, m = 2*n  + 1 

we leave it for last (it requires special treatment). 

 

Take the case y = 9*k + 5, x = 3*m;  we have: 

y^2 + 2 = x^3  (9*k + 5)^2 + 2 = 27*m^3 

 

For k = 0 we get 25 + 2 = 27*1  (x = 3, y = 5) is indeed 

a solution of the equation. 

 

Take the case when k is even, k = 2*h, h > 0; m even, m = 

2*n, n > 0. We have: (18*h + 5)^2 + 2 = 27*8*n^3 . It’s 

easy to see that the left side of the equality is not 

divisible by 2, and the right side is  the equality is 

impossible. 

 

The case when k is even, k = 2*h, h > 0; m odd, m = 2*n + 

1 we leave it for last (for reasons mentioned above). 

 

Take the case when k is odd, k = 2*h + 1; m even, m  = 

2*n, n > 0. We have: (18*h + 14)^2 + 2 = 27*8*n^3    

4*(9*h + 7)^2 + 2 = 27*8*n^3  2*(9*h + 7)^2 + 1 = 

27*4*n^3. It’s easy to see that the right side of the 

equality is divisible by 2, and the left side isn’t  the 

equality is impossible. 

 

Take the case when k is even, k = 2*h + 1; m odd, m  = 2*n 

+ 1. We have: (18*h + 14)^2 + 2 = 27*(2*n + 1)^3  4*(9*h 

+ 7)^2 + 2 = 27*(2*n + 1). But the left side of the 

equality is divisible by 2, and the right side isn’t. 

 

We now consider the two remaining cases; we have: 

 

(18*h + 13)^2 + 2 = 27*(2*n + 1)^3  

and 

(18*h +  5)^2 + 2 = 27*(2*n + 1)^3  

 

But (18*h + 13) may be written as (18*h  5)  the cases are: 
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(18*h - 5)^2 + 2 = 27*(2*n + 1)^3  

and 

(18*h + 5)^2 + 2 = 27*(2*n + 1)^3  

 

We go on in parallel with them; we have: 

18^2*h^2  18*10*h + 25 + 2 = 27*(2*n + 1)^3, equivalent with: 

18^2*h^2  18*10*h = 27*(2*n + 1)^3 - 27  
 

We simplify both equalities by 9; we have: 18*2*h^2  20*h = 
3*(2*n + 1)^3 – 3. So 3 should be a divisor of h; denote h = 

3*r, r natural, r > 0; we have: 

18*2*9*r^2  20*3*r = 3*(2*n + 1)^3  3 
 

We simplify the equalities by 3; we have: 

6*2*9*r^2  20*r = (2*n + 1)^3  1 = 8*n^3 + 12*n^2 + 6*n 
 

We simplify the equalities by 2; we have: 

6*9*r^2  10*r = 4*n^3 + 6*n^2 + 3*n 

 

It’s easy to see that n must be divisible by 2; denote n = 2*p, 

p  natural, p > 0; 

54*r^2  10*r = 4*8*p^3 + 6*4*p^2 + 3*2*p 

 

We simplify the equalities by 2; we have: 

27*r^2   5*r = 16*p^3 + 12*p^2 + 3  
 

Take the second degree equation with unknown r: 

27*r^2  5*r  (16*p^3 + 12*p^2 + 3*p) = 0 
 

For this equation to have natural roots  in order to have an r 

such that the equalities are true, the discriminant of the 

equation must be the square of a natural number; let D be the 

discriminant of the equation. We have: 

 

D = 25 + 4*27*(16*p^3 + 12*p^2 + 3*p) = z^2, z  natural 

 

     We obtained this third degree equation with unknown p: 

 

     4*27*16*p^3 + 4*27*12 p^2 + 4*27*3*p + 25  z^2 = 0 

 

Denote by c1, c2, c3, c4 the coefficients of p; we solve the 

equation using Cardano’s  formulas: 

 

We have c1 = 64*27, c2 = 48*27, c3 = 12*27 and c4 = 25*z^2, 

also 3*u = (3*c1*c3 – c2^2)/(3*c1^2) and 2*v = 

(2*c2^3)/(27*c1^3) - (c2*c3)/(3*c1^2) + c4/c1 which is 

equivalent with 3*u = (3*64*27*12*27*48^2*27^2). 
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We have D = v^2 + u^3 > 0  the equation has a real root 

(and two complex conjugate roots). The only real root of 

the equation is w = w1 + w2, where w1 = (-v + 

D^(1/2))^(1/3) and w2 = (-v - D^(1/2))^(1/3)   

 

But w1 = (-v + v)^(1/3) = 0 and w2 = (-v – v)^(1/3) 

 

We have w = w1 + w2 = (-2*v)^(1/3)  w^3 = -2*v = (z^2 + 

2)/(27*4^3) which is equivalent with z^2 + 2 = w^3*3^3*4^3 

   

Subtract 6 from each side of the obtained equality; we 

have: Z^2 – 4 = w^3*3^3*4^3 – 6  (z + 2)*(z – 2) = 

6*(w^3*3^2*2^5 – 1) 

      

We notice that the left side of the equality either isn’t 

divisible by 2, or is at least divisible by 4, while the 

right side is always divisible with two and at most with 

two. 

 

We have proven what we wanted, which is that the only natural 

solution of the equation y^2 + 2 = x^3 is (x = 3, y = 5). 

 

 

13. INTRODUCTION TO FERMAT’S LAST THEOREM 

 

 

Well-known to all mathematicians and not only to them, 

rightfully the most famous and most discussed Diophantine 

equation of all times is the so-called “Fermat’s last Theorem”, 

which states that there aren’t any nonzero integers x, y and z 

for which x^n + y^n = z^n, where n integer, n > 2. Intriguing 

by the simplicity of its statement, along with the systematic 

failure of all attempts to solve it that have spanned along 

four centuries (the Theorem was proved in 1995 by Andrew 

Wiles), Fermat’s last Theorem has always been in the twilight 

zone of mathematics, defying, like the Egyptian Pyramids, all 

the evolutionistic theories that state that with piling of 

years and concepts, science moves closer to the truth. 

 

It is also very well known the interest of a series of standing 

mathematicians – Euler and Gauss, to nominate just a few – 

towards this Theorem. Many others have tried and succeeded in 

proving partially Fermat’s Theorem: for n = 2, n = 3, n < 100, 

n < 100000 and so on. The history of mathematics mentions all 

and all their results, no matter how modest. Anyway, if they 

hadn’t succeeded in giving a general proof of Fermat’s Theorem, 

they succeeded in return in creating new and more and more 

powerful methods and instruments. We mention here Ernst Kummel 

(1810-1893), whose results in proving the Theorem are the basis 

of The Algebraic Theory of Numbers. 
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Also not unimportant to the legend aura surrounding Fermat’s 

Theorem are other few thousands anonymous (the so-called 

fermatists), idealists, less respected, less learned, who 

dreamed of the glory and – why not? – of the money they could 

earn by proving this Theorem (indeed, at the beginning of the 

twentieth century, a German millionaire had offered a DM 100000 

prize to whom would had proved Fermat’s Theorem). 

 

We wouldn’t rush into despising those people, with respect to 

their perhaps debatable and inadequate, but surely simplistic 

methods, but would rather compare them with the characters of 

the famous American Gold Rush. Armed with just a pickaxe and 

determination you have a chance (no matter how slim) to find a 

vein. Just the same you may use diamond-head drills and may 

plough the mud in vain. 

 

As far as we’re concerned, we confess that the dream of proving 

Fermat’s last Theorem made us create this arithmetic 

instrument, the mar reduced form. 

 

For the moment, the mar reduced form helped us proved Fermat’s 

Theorem just for the n = 3 and n = 4 cases (and, implicitly 

those which may be reduced to these cases). Better used, by us 

or by someone else, this instrument will surely have more to 

say in the elementary approach (and why not, in the proof) of 

Fermat’s last Theorem. 

 

       

14. PROOF OF FERMAT’S LAST THEOREM: CASE N = 3 

 

 

We have a^3 + b^3 = c^3  mar (a^3 + b^3) = mar c^3  mar a^3 

 mar b^3 = mar c^3. From the mar a^n table we see that mar 

a^3, mar b^3, mar c^3 may only take the values 1, 8 and 9: mar 

a^3  {1, 8, 9}, mar b^3  {1, 8, 9}, mar c^3  {1, 8, 9}. 

 

The equation a^3 + b^3 = c^3 may take natural solutions only if 

mar a^3  mar b^3 = mar c^3, which is possible only in one of 

these cases: 

(A) 1  9 = 1 (mar a^3 = mar c^3 = 1, mar b^3 = 9) 

(B) 8  9 = 8 (mar a^3 = mar c^3 = 8, mar b^3 = 9) 

(C) 9  9 = 9 (mar a^3 = mar b^3 = mar c^3 = 9) 

(D) 1  8 = 9 (mar a^3 = 1, mar b^3 = 8, mar c^3 = 9) 
 

We take the cases (A) and (B): 

 

We have: mar b^3 = 9  b is of the type 9*k + 3, 9*k + 6 

or 9*k  b is divisible by 3  b^3 is divisible by 3^3 = 

27. 
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    Denote b = 3*p (p natural, p > 0). We have b^3 = 27*p^3 

 

On the other hand, b^3 = c^3  a^3 = (c  a)*(c^2 + a*c + 
a^2) = 27*p^3 

 

We have the following possibilities: 

  

 

 

      

 

 

 

   

 

 

Suppose that c^2 + a*c + a^2 is divisible by 27.  

 

Denote c^2 + a*c + a^2 = 27*r, where r nonzero 

natural. 

 

Thus, we have: c^2 + a*c + a^2 = (c  a)^2 + 3*a*c =  

= 27*r  (c  a)^2 = 27*r  3*a*c = 3*(9*r  a*c)   

c  a = (3*(9*r – a*c))^(1/2) 

 

(we shall use the notation a^(1/2) for sqrt a and 

a^(1/3) for third root of a) 

 

If c – a is a natural number  (3*(9*r – a*c))^(1/2) 

is natural  (9*r  a*c) is divisible by 3  a*c is 

divisible by 3  mar (a*c) is 3, 6 or 9. But mar 

(a*c) = mar a  mar c, and mar a^3 may be: 

 :  1  mar a is 1, 4 or 7 

 or 

 : 8  mar a is 2, 5 or 8. 

      

       We have (in the considered cases) mar a^3 = mar c^3    

:    mar (a*c) = mar a  mar c = {1/4/7}   
{1/4/7} for mar a^3 = mar c^3 = 1 

   and 

: mar (a*c) = mar a  mar c = {2/5/8}   
{2/5/8} for mar a^3 = mar c^3 = 8 

             

(we mention again that we denote mar x = {1/4/7}, for 

instance, when mar x is equal to 1 or 4 or 7) 

 

Finally, mar (a*c) may be 1  1 = 1, 1  4 = 4, 1  

7 = 7, 4  4 = 7, 4  7 = 1, 7  7 = 4, respectively 

c  a c^2 + a*c + a^2 

  divisible with 27 

divisible  with 3 divisible with 9 

divisible  with 9 divisible with 3 

 divisible  with 27               
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2  2 = 4, 2  5 = 1, 2  8 = 7, 5  5 = 7, 5  8 = 

4, 8  8 = 1. 

 

In all of these cases, mar (a*c) is not 3, 6 or 9  3 

is not a divisor of a*c  the initial assumption that 

27 is a divisor of (c^2 + a*c + a^2) is false. 

 

Suppose that  c^2 + a*c + a^2 is divisible by 9      

 

Denote c^2 + a*c + a^2 = 9*r, where r nonzero 

natural. 

 

       We have: c^2 + a*c + a^2 = (c  a)^2 + 3*a*c = 9*r 

  

But c  a is divisible by 3 because 27*p^3 =(c  

a)*(c^2 + a*c + a^2 ) 

 

       Denote c  a = 3*m (m nonzero natural) 

 

We have: (c  a)^2 + 3*a*c = 9*r  9*m^2 + 3*a*c = 

9*r  3*m^2 + a*c = 3*r  a*c = 3*(r  m^2)  3 is 

a divisor of a c  a or c is divisible by 3 

 

But mar a^3 = mar c^3 = 1 or mar a^3 = mar c^3 = 8. 

So, we have mar a = 1, 2, 4, 5, 7 or 8 and mar c = 1, 

2, 4, 5, 7 or 8  a and c are of the type 9*k + 1, 

9*k + 2, 9*k + 4, 9*k + 5, 9*k + 7 or 9*k + 8  

neither a, nor c are divisible by 3  3 is not a 

divisor of a c  the initial assumption that c^2 + 

a*c + a^2 is divisible by 9 is false. 

 

We proved that c^2 + a*c + a^2 is not divisible by 27, not 

even by 9  c^2 + a*c + a^2 is divisible, at most, by 3. 

We’ll prove that, actually, c^2 + a*c + a^2 is always 

divisible by 3: 

 

We have: c^2 + a*c + a^2 is divisible by 3  mar (c^2 + 

a*c + a^2) = 3, 6 or 9  mar c^2  mar (a*c)  mar a^2 =   

3, 6 or 9  mar c^2  mar a  mar c  mar a^2 = 3, 6 or  

9. But mar a^3 = mar c^3 = 1 or mar a^3 = mar c^3 = 8  

  

:  mar a^2 = 1, 4 or 7, mar a = 1, 4 or 7; mar c^2 

= 1, 4 or 7, mar c = 1, 4 or 7 

 or 

:  mar a^2 = 1, 4 or 7, mar a = 2, 5 or 8; mar c^2 

= 1, 4 or 7, mar c = 2, 5 or 8 

 

Then,  
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: mar (c^2 + a*c + a^2) = mar c^2  mar a  mar c 

 mar a^2 = {1/4/7}  {1/4/7}  {1/4/7}  

{1/4/7} = {1/4/7}  {1/4/7}  {1/4/7} = {3/6/9} 

 or 

: mar (c^2 + a*c + a^2) = mar c^2  mar a  mar c 

 mar a^2 = {1/4/7}  {2/5/8}  {2/5/8}  

{1/4/7} = {1/4/7}  {1/4/7}  {1/4/7} = {3/6/9} 

  

   Indeed, mar (c^2 + a*c + a^2) may be equal with:  

   

  :  1  4  7 = 3  

  : 1  1  1 = 3; 4  4  4 = 3; 7  7  7 = 3 

: 1  1  4 = 6; 4  4  7 = 6; 7  7  1 = 6 

: 1  1  7 = 9; 4  4  1 = 9; 7  7  4 = 9 

 

So mar (c^2 + a*c + a^2) = 3, 6 or 9  c^2 + a*c + a^2 is 

divisible by 3. 

 

Thus, we have b^3 = c^3  a^3 = (c  a)*(c^2 + a*c + a^2)  

= 27*p^3, and c^2 + a*c + a^2 is divisible by 3, but isn’t 

divisible by 9. It follows that c  a is divisible by 9. 
 

Denote c  a = 9*m, where m nonzero natural. We have b = 

3*p and c – a = 9*m  c = a + 9*m 

     

We have: a^3 + b^3 = c^3  a^3 + 27*p^3 = (a + 9*m)^3           

 a^3 + 27*p^3 = a^3 + 27*a^2*m + 243*a*m^2 + 729*m^3    

 27*a^2*m + 243*a*m^2 + 729*m^3  27*p^3 = 0  

 a^2*m + 9*a*m^2 + 27*m^3  p^3 = 0 
 

We have the third degree equation with unknown m: 27*m^3 + 

9*a*m^2 + a^2*m  p^3 = 0 

 

Denote by c1, c2, c3, c4 the coefficients of m; we 

solve the equation: 

 

 We have c1 = 27, c2 = 9*a, c3 = a^2, c4 = -p^3 and 

 3*x = (3*c1*c3 – c2^2)/(3*c1^2) and 

 2*y = (2*c2^3)/(27*c1^3) – (c2*c3)/(3*c1^2) + c4/c1 

which eventually gives us the solutions [x, y] = [0, 

-(a^3 + 27*p^3)/(2*27^2)       

     

We have D = y^2 + x^3 = y^2 > 0  the equation has a 

real root (and two complex conjugate roots). 

 

The only real root of the equation is: m = u + v, 

where u = (-y + D^(1/2))^(1/3) and v = (-y - 
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D^(1/2))^(1/3) which gives us u = 0 and v = (-

2*y)^(1/3) 

 

We have: m = u + v = (-2*y)^(1/3)  m^3 = 2*y = (a^3 

+ 27*p^3)/27^2  27^2*m^3 = a^3 + 27*p^3 

 

But 27^2*m^3 = a^3 + 27*p^3  mar(27^2*m^3) = mar 

(a^3 + 27*p^3)  mar 27^2  mar m^3 = mar a^3   mar 

27  mar p^3  9  mar m^3 = mar a^3  9  mar p^3  

 9 = mar a^3  9 
 

But mar a^3 = 1 or mar a^3 = 8  the equality mar a^3   

9 = 9 is impossible  there aren’t any a, b, c naturals 

which satisfy the equation a^3 +  b^3 =  c^3, cases (A) 

and (B). 

 

We take the case (C):  

 

We have mar a^3 = mar b^3 = mar c^3 = 9  a, b and c are 

of the type 9*k + 3, 9*k + 6 or 9*k (k nonzero natural)   

a, b and c are divisible by 3, so they may be written as a 

= 3*a, b = 3*b, c = 3*c. 
 

The equation a^3 + b^3 = c^3  (3*a)^3 + (3*b)^3 = 

(3*c)^3  27*a^3 + 27*b^3 = 27*c^3  a^3 + b^3 = c^3 

 

If a, b and c are all divisible by 3, we repeat the 

simplification; eventually, we will obtain an equation a^3  

+ b^3 = c^3, where a, b and c are not all divisible by 

3 (it’s obvious that a, b, and c can’t all be powers of 

3). Solving the equation a^3 + b^3 = c^3  is reduced to 
one of the cases (A), (B) or (D). 

 

We take the case (D):  

 

So a^3 + b^3 = c^3  mar a^3  mar b^3 = mar c^3  1  8 
= 9 (mar a^3 = 1, mar b^3 = 8, mar c^3 = 9). 

 

We have mar c^3 = 9  mar c = 3, 6 or 9  c is of the 

type 9*k + 3, 9*k + 6 or 9*k (k  nonzero natural)  c  is 

divisible by  3, so it may be written as c = 3*m, where m 

nonzero natural. 

 

So, we have c^3 = a^3 + b^3 = (a + b)*(a^2 – a*b + b^2) =  

27*m^3.  

 

Let’s see if a^2  a*b + b^2 is divisible by 3. 
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Let a^2 – a*b + b^2 = r  a^2 + b^2 = r + a*b  mar 

(a^2 + b^2 ) = mar (r + a*b)  mar a^2  mar b^2 = 

mar r  mar a  mar b. We have mar a^3 = 1  mar a = 

1, 4 or 7  mar a^2 = 1, 4 or 7 and mar b^3 = 8  

mar b = 2, 5 or 8  mar b^2 = 1, 4 or 7. 

 

        So mar a^2  mar b^2 = mar r  mar a  mar b   

   {1/4/7}  {1/4/7} = mar r  {1/4/7}  {2/5/8}   

   {2/5/8} = mar r  {2/5/8}  mar r = {3/6/9} 

 

So r is of the type 9*k + 3, 9*k + 6 or 9*k (k  

nonzero natural)  r = a^2  a*b + b^2 is divisible 

by 3. 

 

   Let’s see if r = a^2  a*b + b^2 is divisible by 9. 

 

So r divisible by 9  mar r = mar (a^2  a*b + b^2) =  

9. So, we have 2  9 = 2, 5  9 = 5 and 8  9 = 8, 

where mar a^2  mar b^2 = mar a  mar b = {2/5/8}, 

the only combinations that comply with the condition 

mar r = 9. 

 

Take the case 2  9 = 2  

 mar a^2  mar b^2 = mar a  mar b = 2. We 

have {1/4/7}  {1/4/7} = {1/4/7}  {2/5/8} = 2. 
The combination isn’t satisfied by any of the 

possibilities: 

: 1  1 = 1  2 = 2  mar a^2 = mar b^2 = 1 

 mar a ≠ 2, mar b ≠ 2 

: 4  7 = 1  2 = 2  mar a^2 = 4, mar b^2 = 

7  mar a ≠ 1, mar b ≠ 1 

: 7  4 = 1  2 = 2  mar a^2 = 7, mar b^2 = 

4  mar a ≠ 1, mar b ≠ 1 

: 1  1 = 4  5 = 2  mar a^2 = mar b^2 = 1 

 mar a ≠ 4 or 5, mar b ≠ 4 or 5 

: 4  7 = 4  5 = 2  mar a^2 = 4, mar b^2 = 

7  mar a ≠ 4, mar a ≠ 5 

: 7  4 = 4  5 = 2  mar a^2 = 7, mar b^2 = 

4  mar b ≠ 4, mar b ≠ 5 

: 1  1 = 7  8 = 2  mar a^2 = mar b^2 = 1 

 mar a ≠ 7, mar b ≠ 7 

: 4  7 = 7  8 = 2  mar a^2 = 4, mar b^2 = 

7  mar a ≠ 8, mar b ≠ 8 

: 7  4 = 7  8 = 2  mar a^2 = 7, mar b^2 = 

4  mar a ≠ 8, mar b ≠ 8 
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      Take the case 5  9 = 5    

 mar a^2  mar b^2 = mar a  mar b = 5. We 

have {1/4/7}  {1/4/7} = {1/4/7}  {2/5/8} = 5. 

The combination isn’t satisfied by any of the 

possibilities: 

: 1  4 = 1  5 = 5  mar a^2 = 1, mar b^2 = 

4  mar a ≠ 5, mar b ≠ 5 

: 7  7 = 1  5 = 5  mar a^2 = mar b^2 = 7 

 mar a ≠ 1, mar b ≠ 1 

: 1  4 = 4  8 = 5  mar a^2 = 1, mar b^2 = 

1  mar a ≠ 4, mar b ≠ 4 

: 7  7 = 4  8 = 5  mar a^2 = mar b^2 = 7 

 mar a ≠ 8, mar b ≠ 8 

: 1  4 = 7  2 = 5  mar a^2 = 1, mar b^2 = 

4  mar a ≠ 7, mar b ≠ 2 

: 7  7 = 7  2 = 5  mar a^2 = mar b^2 = 7 

 mar a ≠ 2 or 7, mar b ≠ 2 or 7 

 

Take the case 8  9 = 8    

 mar a^2  mar b^2 = mar a  mar b = 8. We 

have {1/4/7}  {1/4/7} = {1/4/7}  {2/5/8} = 8. 

The combination isn’t satisfied by any of the 

possibilities: 

: 1  7 = 1  8 = 8  mar a^2 = 1, mar b^2 = 

7  mar b ≠ 1, mar b ≠ 8 

: 1  7 = 4  2 = 8  mar a^2 = 1,mar b^2 = 

7  mar a ≠ 2, mar b ≠ 2 

: 4  4 = 1  8 = 8  mar a^2 = mar b^2 = 4 

 mar a ≠ 1 or 8, mar b ≠ 1 or 8 

: 4  4 = 4  2 = 8  mar a^2 = mar b^2 = 4 

 mar a ≠ 4, mar b ≠ 4 

 

: 1  7 = 7  5 = 8  mar a^2 = 1, mar b^2 = 

7  mar a ≠ 7, mar b ≠ 7 

: 4  4 = 7  5 = 8  mar a^2 = mar b^2 = 4 

 mar a ≠ 5, mar b ≠ 5 

 

We have proved that mar r = mar (a^2  a*b + b^2)  9      

 a^2  a*b + b^2 isn’t divisible by 9  a + b is 

divisible by 9, as  c^3 = (a + b)*(a^2  a*b + b^2) = 
27*m^3.  

 

We have c = 3*m and a + b = 9*p  b = 9*p - a 

 

     We have a^3 + b^3 = c^3  a^3 +(9*p  a)^3 = 27*m^3  
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 a^3 + 729*p^3  243*a*p^2 + 27*a^2*p  a^3 = 27*m^3      

 729*p^3  243*a*p^2 + 27*a^2*p = 27*m^3  27*p^3  

9*a*p^2 + a^2*p = m^3  27*p^3  9*a*p^2 + a^2*p  m^3 = 0 

 

We have a third degree equation with the unknown p, which 

we’ll solve using Cardano’s formulas. Denote by c1, c2, c3, 

c4 the coefficients of p; we have: 

 

 :  c1 = 27, c2 = -9*a, c3 = a^2, c4 = -m^3; 

 : 3*x = (3*c1*c3 – c2^2)/(3*c1^2) and 

  2*y = (2*c2^3)/(27*c1^3) – (c2*c3)/(3*c1^2) + c4/c1 

 

which eventually gives us the solutions [x, y] = [0, 

(a^3 - 27*m^3)/(2*27^2)       

     

We have D = y^2 + x^3 = y^2 > 0  the equation has a 

real root (and two complex conjugate roots). 

 

The only real root of the equation is: p = u + v, 

where u = (-y + D^(1/2))^(1/3) and v = (-y - 

D^(1/2))^(1/3) which gives us u = 0 and v = (-

2*y)^(1/3) 

 

We have: p = u + v = (-2*y)^(1/3)  m^3 = 2*y = 

(27*p^3 – a^3)/27^2  27^2*p^3 = 27*m^3 – a^3  a^3 

+ 27^2*p^3 = 27*m^3  mar a^3  9 = 9, which is 
impossible because mar a^3 = 1. 

 

We have proved Fermat’s last Theorem for n = 3. 

 

 

15. PROOF OF THE FERMAT’S LAST THEOREM: CASE n = 4 

 

 

We have a^4 + b^4 = c^4 where a, b, c natural. But a^4 + b^4 = 

c^4  mar (a^4 + b^4) = mar c^4  mar a^4  mar b^4 = mar c^4. 
We’ve seen from the table that mar a^4, mar b^4 and mar c^4 can 

only have the values 1, 4, 7 or 9. 

 

The equation a^4 + b^4 = c^4 has natural solutions only if mar 

a^4  mar b^4 = mar c^4, which is only possible in one of the 

cases: 

(A) 1  9 = 1 (mar a^4= mar c^4= 1, mar b^4= 9) 

(B) 4  9 = 4 (mar a^4 = mar c^4 = 4, mar b^4 = 9) 

(C) 7  9 = 7 (mar a^4 = mar c^4 = 7, mar b^4 = 9) 

(D) 9  9 = 9 (mar a^4 = mar b^4 = mar c^4 = 9) 

It’s obvious that the last combination, 9  9 = 9, redresses to 

one of the other combinations, as a, b, c  can’t all be powers 

of 3. 
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We take the cases (A), (B) and (C): 

      

We have mar b^4 = 9   b^4 is divisible by 9  b is divisible 

by 3  b^4 is divisible by 3^4. On the other hand, we have mar 

a^4 = mar c^4 = {1/4/7}  mar a ≠ 3, 6 or 9 and mar c ≠ 3, 6 or 

9. 

 

We denote b^4 = 3^4*p^4 and b = 3*p 

 

We have a^4 + b^4 = c^4    b^4 = c^4 - a^4  b^4 = (c^2   
a^2)*(c^2 + a^2) = 3^4*p^4. 

 

From mar a ≠ 3, 6 or 9 and mar c ≠ 3, 6 or 9 results that mar 

a^2 = 1, 4 or 7 and mar c^2 = 1, 4 or 7  mar (a^2 + c^2) = mar 

a^2  mar c^2 = {1/4/7}  {1/4/7} = {2/5/8}  mar (a^2 + c^2) 

 3, 6 or 9  a^2 + c^2 isn’t divisible by 3  the only 

possibility is that c^2  a^2 is divisible by 3 . 
 

But as b^4 = 3^4*p^4 = (c^2  a^2)*(c^2 + a^2)  c^2  a^2  is 

divisible by 3^4; thus, we have c^2  a^2 = (c  a)*(c  + a) is 

divisible by 3^4. 

 

Let’s prove now that (c  a) isn’t divisible by 3^4 either; 

 

As a and c aren’t divisible by 3, it’s obvious that (c + a) and 

(c - a) can’t be simultaneously divisible by 3. The only 

possibility left is that (c + a) is divisible by 3. 

 

So, we suppose that (c - a) is divisible by 3^4, which is 

equivalent with c  a = 3^4*r,  where r is nonzero natural. 
 

We have: 

: c – a = 3^4*r 

: c + a = 3^4*r + 2*a 

: c^2 + a^2 = (c + a)^2 – 2*a*c = (3^4*r + 2*a)^2 – 2*a*(a + 

3^4*r)  

 

So b^4 = c^4  a^4  3^4*p^4 = (c  a)*(c + a)*(c^2 + a^2)  

 p^4 = (3^4*r^2 + 2*a*r)*(3^8*r^2 + 2*a^2 + 2*3^4*a*r*)    

 p^4 = 3^12*r^4 + 2*3^4*a^2*r^2 + 2*3^8*a*r^3 + 2*3^8*a*r^3 + 

4*a^3*r + 4*3^4*a^2*r^2  p^4 = 3^12*r^4 + 4*3^8*a*r^3 + 

6*3^4*a^2*r^2 + 4*a^3*r 

 

We have this third degree equation with unknown a: 

 

4*r*a^3 + 6*3^4*r^2*a^2 + 4*3^8*r^3*a + 3^12*r^4  p^4 = 0 
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Denote by c1, c2, c3, c4 the coefficients of a; we solve the 

equation by using Cardano’s formulas: 

 

:  c1 = 4*r, c2 = 6*3^4*r^2, c3 = 4*3^8*r^3, c4 = 3^12*r^4 – 

p^4; 

: 3*x = (3*c1*c3 – c2^2)/(3*c1^2) and 

: 2*y = (2*c2^3)/(27*c1^3) – (c2*c3)/(3*c1^2) + c4/c1 

 

which eventually gives us the solutions [x, y] = [(3^7*r^2)/4, 

(-p^4)/(8*r)       

     

We have D = y^2 + x^3 > 0  the equation has only one real 

root, a = (-y + D^(1/2))^(1/3) + (-y - D^(1/2))^(1/3)  

 

Denote by E1 and E2 the expressions (-y + D^(1/2))^(1/3) and (-y 

- D^(1/2))^(1/3) 

       

We have a = E1 + E2; raise to the third and we have a^3 = (E1 + 

E2)^3 =  E1^3 + E2^3 + 3*E1*E2*(E1 + E2) = E1^3 + E2^3 + 3*a*E1*E2 

 

  a^3 = - y + D^(1/2) – y – D^(1/2) + 3*a*(-(D^(1/2) + y)* 

(D^(1/2) - y))^(1/3)     

 a^3 = -2*y – 3*a*(D – y^2)^(1/3)   

 a^3 = (-p^4)/(4*r) – (3^8*a*r^2)/4  

 4*r*a^3 = p^4 – 3^8*a*r^3    

 p^4 = a*r*(4*a^2 + 3^8*r^2)    

 

    p^4 is divisible by a          

 b^4 is divisible by a            

    c^4 is divisible by a      

 

  a, b and c aren’t and can’t be relatively prime   

nonsense  there aren’t any naturals a, b and c which 

satisfy the equation a^4 + b^4 = c^4 in the considered 

case ((c  a) divisible by 3^4)     

 

 We have proved Fermat’s last Theorem for n = 4. 

 

(The case (c + a) is divisible by 3^4 has an analogue solution)  

 

 

16. INTRODUCTION TO PERFECT NUMBERS 

 

 

We know that a natural number n is called perfect if f(n) = 

2*n, where f(n) is the sum of the natural divisors of n. 

Examples of such perfect numbers are 6, 28, 496. Indeed: 
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f(6) = 1 + 2 + 3 + 6 = 12 = 2*6 

 

 f(28) = 1 + 2 + 4 + 7 + 14 + 28 = 56 = 2*28 

 

f(496) = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 + 496 =  

992 = 2*496 

 

As you may see, the given examples are even natural numbers: at 

this time we don’t know if there are any odd perfect numbers or 

not. 

 

For the even perfect natural numbers we have a reference 

formula and this is: 

 

: An even number n is perfect if and only if there is a 

natural number m such that n = 2^m*(2^(m + 1) – 1) and 

2^(m + 1) – 1 are prime numbers. 

 

We won’t insist on this formula, we’ll just mention that it was 

obtained by expressing the sum of the different divisors of n 

with respect to the decomposition of n in prime factors. 

 

The classical Diophantine analysis of perfect numbers is thus 

based on prime numbers (a connection between the set of even 

perfect numbers and the set of prime numbers, i.e. Mersenne 

primes). 

 

Next, we will try to obtain, using the mar reduced form, some 

interesting conclusions about the characteristics of perfect 

numbers. 

 

 

17. PERFECT NUMBERS: A DIOPHANTINE ANALISYS 

 

 

(A) We take the perfect numbers with the mar reduced form equal 

to 2, so the numbers of the type n = 9*m + 2, m natural.  

 

We have f(9*m + 2) = 2*(9*m + 2) and the following cases: 

 

(i) f(9*m + 2) = 1 + a1 + a2 + ... + ap + bp + ... + b2 + 

b1 + (9*m + 2) 

(ii) f(9*m + 2) = 1 + a1 + a2 + ... + ap-1 + ap + bp-1 + ... 

+ b2 + b1 + (9*m + 2) 

 

We denoted by a1 and b1, a2 and b2, ..., ap and bp, the 

complementary divisors of the considered number (n = 9*m + 2), 

such that we have, obviously, for 

 (i) a1*b1 = a*b2 = ... = ap*bp = 9*m + 2, and for 

 (ii) a1*b1 = a*b2 = ... = ap-1*bp-1 = ap^2 = 9*m + 2 
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Take the case (i); we have: 

 

f(9*m + 2) = 1 + a1 + a2 + ... + ap + bp + ... + b2 + b1 + 

(9*m + 2) = 2*(9*m + 2) 

 

From  a1*b1 = a*b2 = ... = ap*bp = 9*m + 2  mar (a1*b1) = 

mar (a2*b2) = ... = mar (ap*bp) = 2 

 

    But from f(9*m + 2) = 2*(9*m + 2)  

 mar f(9*m + 2) = mar (2*(9*m + 2)). So we have 1   mar 

a1  mar a2    ...   mar b2  mar b1  2 = 2  2 = 4    

3  (mar a1  mar b1)  ...  (mar ap  mar bp) = 4 

 

As mar a1  mar b1 = ... = mar ap  mar bp = 2, the only 

possible combination is: {1/4/7}  {2/5/8} = ...{1/4/7}  

{2/5/8} = 2, where mar a1 = {1/4/7} and mar b1 = {2/5/8} or 

the opposite, ..., mar ap = {1/4/7} and mar bp = {2/5/8} or 

the opposite. 

  

Anyway, mar a1  mar b1 = ... = mar ap  mar bp = {3/6/9} 

so mar f(9*m + 2) = mar (2*(9*m + 2)) becomes mar f(9*m + 

2) = 3  {3/6/9}  ...  {3/6/9} = 4 {3/6/9} = 4, which 

is obviously impossible  in the case (i) there is no 

perfect number of the type 9*m + 2 

 

In order not to break the reasoning, we haven’t considered 

separately the case when n has only 2 different divisors. 

In this case, we will have 1  2 = 4, so 3 = 4, which is 

obviously impossible. 

 

Take the case (ii); we have: 

 

f(9*m + 2) = 1 + a1 + a2 + ... + ap-1 + ap + bp-1 + ... + b2 + 

b1 + (9*m + 2) = 2*(9*m + 2) 

 

From  a1*b1 = a*b2 = ... = ap-1*bp-1 = ap^2 = 9*m + 2  mar 

(a1*b1) = mar (a2*b2) = ... = mar (ap-1*bp-1) = mar ap^2 = 2 

 

But mar ap^2 = 2 is impossible (mar x2 may only be 1, 4, 7 

or 9 for any natural nonzero x)  there aren’t any perfect 

numbers of the type 9*m + 2 in the case (ii) either. 

 

We have thus reached an interesting conclusion, which is that 

there are no perfect numbers of the type 9*m + 2, m natural. 

 

In a similar manner can be shown that there are no perfect 

numbers of the type 9*m + 5 respectively 9*m + 8. 

      

 


