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I. Introduction 

In 1942 Haskell B. Curry presented what is now called 
Curry's paradox [1]. The paradox I have in mind can be 
found in a logic independently of its stand on negation. The 
deduction appeals to no particular principles of negation, as it 
is negation-free. Any deduction must use some inferential 
principles. 

Here are the principles needed to derive the paradox. 

A transitive relation of consequence: we write this by ⊢ 
and take ⊢ to be a relation between statements, and we 
require that it be transitive: if  ࡭	 ⊢ 	࡮ and ࡮	 ⊢         then ࡯	
	࡭ ⊢ 	.࡯	

Conjunction and implication: we require that the 
conjunction operator ∧ be a greatest lower bound with 
respect to ⊢. That is, ࡭	 ⊢ 	࡭ and ࡮	 ⊢          if and only if ࡯	
	࡭ ⊢ 	࡮	 ∧  .࡯	

Furthermore, we require that there be a residual for 
conjunction: a connective  → such that ࡭	 ∧ 	࡮	 ⊢  if and ࡯	
only if A ⊢ B → C. 

Unrestricted Modus Ponens rule : 

,࡭                          	࡭ → 	࡮	 ⊢ 	(1.1)                                 .࡮	

Unrestricted Modus Tollens rule: 

	ࡼ                             → 	ࡽ൓,ࡽ	 ⊢ 	൓(1.2)                            .ࡼ 

A paradox generator: we need only a very weak paradox 
generator. We take the ࢀ scheme in the following 
enthymematic form: ࢀሾ࡭ሿ ∧ 	࡯ ⊢ ;	࡭	 	࡭	 ∧ 	࡯	 ⊢  ሿ for࡭ሾࢀ	
some true statement ࡯. The idea is simple: ࢀሾ࡭ሿ need not 
entail ࡭. Take ࡯ to be the conjunction of all required 
background constraints. 

Diagonalisation. To generate the paradox we use a technique 
of diagonalisation to construct a statement શ such that શ is 
equivalent to ࢀሾશሿ 	→  is any statement you ࡭ where ,࡭
please. 

Curry’s paradox, is a paradox within the family of so-called 
paradoxes of self-reference (or paradoxes of circularity). 
Like the liar paradox (e.g., ‘this sentence is false’) and 
Russell’s  paradox, Curry’s paradox challenges familiar naive 
theories, including naïve truth theory (unrestricted ࢀ-schema) 
and naive set theory (unrestricted axiom of abstraction), 
respectively. If one accepts  naive truth theory (or naive set 
theory), then Curry’s paradox becomes a direct challenge to 
one’s theory of logical implication or entailment. Unlike the 
liar and Russell paradoxes Curry’s paradox is negation-free; 
it may be generated irrespective of one’s theory of negation. 

There are basically two different versions of Curry's paradox, 
a truth-theoretic (or proof-theoretic) and a set-theoretic 
version; these versions will be presented below. 

Truth-theoretic version. 

Assume that our truth predicate satisfies the following          
  :schema-ࢀ

ሿ࡭ሾࢀ                                  	↔ 	,࡭	



Assume, too, that we have the principle called Assertion 
(also known as pseudo modus ponens): 

Assertion:  ሺ࡭ ∧	ሺ࡭	 → ሻሻ࡮	 	→  ࡮	

By diagonalization, self-reference we can get a sentence ࡯ 
such that ࡯	 ↔ ሺ	ࢀሾ࡯ሿ 	→  .is anything you like ࡲ ሻ, whereࡲ	
(For effect, though, make ࡲ something obviously false, e.g. 
ࡲ ≡ ૙ ൌ ૚) By an instance of the ࢀ-schema ሺ”ࢀሾ࡯ሿ 	↔  ሻ”࡯	
we immediately get: ࢀሾ࡯ሿ 	↔ 	 ሺࢀሾ࡯ሿ 	→  ,ሻࡲ	

Again, using the same instance of the ࢀ-Schema, we can 
substitute  ࡯ሾࢀ,  .ሿ in the above to get (1)࡯ሾࢀ ሿ forࡲ

(1) ⊢ ,ࢀሾ࡯	 ሿࡲ ↔ 	 ሺ࡯ሾࢀ, ሿࡲ 	→     schema and-ࢀ ሻ [byࡲ	
Substitution] 

(2)  ⊢ 	 ሺ࡯ሾࢀ, ሿࡲ 	∧ 	 ሺ࡯ሾࢀ, ሿࡲ 	→ ሻሻࡲ	 	→  by] ࡲ	
Assertion] 

(3) ⊢ 	 ሺ࡯ሾࢀ, ሿࡲ 	∧ ,ࢀሾ࡯	 ሿሻࡲ 	→  by Substitution, from] ࡲ	
2] 

(4) ⊢ C[T,F] → F [by Equivalence of ࡯ and ࡯	 ∧  ,࡯	
from 3] 

(5) ⊢ ,ࢀሾ࡯	  ሿ [by Modus Ponens, from 1 and 4]ࡲ

(6) ⊢  [by Modus Ponens, from 4 and 5] ࡲ	

Letting ࡲ be anything entailing triviality Curry’s paradox 
quickly ’shows’ that the world is trivial. 

Set-Theoretic Version 

The same result ensues within naive set theory. Assume, in 
particular, the 

(unrestricted) axiom of abstraction (or naive comprehension 
(NC)): 

Unrestricted Abstraction: ࢞	 ∈ 	 ሼ࡭|࢞ሺ࢞ሻሽ 	↔  .ሻ࢞ሺ࡭	

Moreover, assume that our conditional, →, satisfies 
Contraction (as above), 

which permits the deduction of ሺ࢙	 ∈ 	࢙	 →  ሻ from࡭	

	࢙	 ∈ 	࢙	 → 	 ሺ࢙	 ∈ 	࢙	 → 	.ሻ࡭

In the set-theoretic case, let ࡯ሾࡲሿ, ሼ࢞|࢞	 ∈ 	࢞	 →  ࡲ ሽ, whereࡲ	
remains as you please (but something obviously false, e.g. 
ࡲ ≡ ૙ ൌ ૚). From here we reason thus: 

(1)  ⊢ 	࢞	 ∈ ሿࡲሾ࡯	 	↔ 	 ሺ࢞	 ∈ 	࢞	 →  ሻ [by Unrestrictedࡲ	
Abstraction] 

(2) ⊢ ሿࡲሾ࡯	 	∈ ሿࡲሾ࡯	 	↔ 	 ሺ࡯ሾࡲሿ 	∈ ሿࡲሾ࡯	 	→  ሻ [by Universalࡲ	
Specification, from 1] 

(3) ⊢ ሿࡲሾ࡯	 	∈ ሿࡲሾ࡯	 	→ 	 ሺ࡯ሾࡲሿ 	∈ ሿࡲሾ࡯	 	→    ሻ [byࡲ	
Simplification, from 2] 

(4) ⊢ ሿࡲሾ࡯	 	∈ ሿࡲሾ࡯	 	→  [by Contraction, from 3] ࡲ	

(5) ⊢ ሿࡲሾ࡯	 	∈       ,ሿ [by Unrestricted Modus Ponensࡲሾ࡯	
from 2 and 4] 

(6) ⊢  [by Unrestricted Modus Ponens, from 4 and 5] ࡲ	

So, coupling Contraction with the naive abstraction schema 
yields, via Curry’s  paradox, triviality. 

This is a problem. Our true ࡯ሾࡲሿ entails an arbitrary ࡲ.This 
inference arises independently of any treatment of negation. 
The form of the inference is reasonably well known. It is 
Curry’s paradox, and it causes a great deal of trouble to any 
non-classical approach to the paradoxes. In the next sections 
we show how the tools for Curry’s paradox are closer to hand 
than you might think. 

II. Relevant First-Order Logics in 
General 

Relevance logics are non-classical logics [2]-[15]. Called  
“relevant logics” in Britain and Australasia, these systems 
developed as attempts to avoid the paradoxes of material and 
strict implication. It is well known that relevant logic does 
not accept an axiom scheme ࡭	 → 	 ሺ൓࡭	 →       ሻ and the rule࡮	
	࡭൓,࡭ ⊢  Hence, in a natural way it might be used as basis .࡮
for contradictory but non-trivial theories, i.e. paraconsistent 
ones. Among the paradoxes of material implication are:        
	࢖ → 	 ሺࢗ	 → 	࢖ሻ,൓࢖	 → 	 ሺ࢖	 → ,ሻࢗ	 ሺ࢖	 → ሻࢗ	 	∨ 	ሺࢗ	 →  .ሻ࢘
Among the paradoxes of strict implication are the following: 
ሺ࢖ ∧ ൓࢖ሻ 	→ ,ࢗ	 	࢖ → 	 ሺࢗ	 → ,ሻࢗ	 	࢖ → ሺࢗ ∧ ൓ࢗሻ. Relevant 
logicians point out that what is wrong with some of the 
paradoxes (and fallacies) is that is that the antecedents and 
consequents (or premises and conclusions) are on completely 
different topics. The notion of a topic, however, would seem 
not to be something that a logician should be interested in — 
it has to do with the content, not the form, of a sentence or 
inference. But there is a formal principle that relevant 
logicians apply to force theorems and inferences to “stay on 
topic”. This is the variable sharing principle. The variable 
sharing principle says that no formula of the form ࡭	 →  ࡮	
can be proven in a relevance logic if ࡭ and ࡮ do not have at 
least one propositional variable (sometimes called a 
proposition letter) in common and that no inference can be 
shown valid if the premises and conclusion do not share at 
least one propositional variable. 



III. Curry’s Paradox Resolution 
Using Canonical Systems of 
Relevant Logic 

In the work of Anderson and Belnap [3] the central systems 
of relevance logic were the logic E of relevant entailment 
and the system R of relevant implication. The relationship 
between the two systems is that the entailment connective of 
E was supposed to be a strict (i.e. necessitated) relevant 
implication. To compare the two, Meyer added a necessity 
operator to R (to produce the logic NR). 

It well known in set theories based on strong relevant logics, 
like E and R, as well as in classical set theory, if we add the 
naive comprehension axiom, we are able to derive any 
formula at all. Thus, naive set theories based on systems such 
as E and R are said to be “trivial” by Curry Paradox. 

The existence of this paradox has led Grishen, Brady, Restall, 
Priest, and others to abandon the axiom of contraction    
which we have dubbed       

              K:    		ሺሺ࡭	 → 	 ሺ࡭	 → ሻሻ࡮	 	→ 	 ሺ࡭	 → 			.ሻሻ࡮

Brady has shown that by removing contraction, plus some 
other key theses, from R we obtain a logic that can accept 
naive comprehension without becoming trivial [4],[16],[17]. 

However, it is not just W that we must avoid. Shaw-Kwei 
[21] shows that a variant of Curry's paradox can trivialise a 
chain of weaker naive truth theories. Let us use the notations 

࣐                        →ሺ૙ሻ ࣐  and ࣒ →ሺ࢔ା૚ሻ  ࣒

to mean ࣒ and  ቀ࣐ → ൫࣐ →ሺ࢔ሻ  .൯ቁ correspondingly࣒

Then the following axioms also lead to triviality 

࣐ቀ      :࢔ࡷ              → ൫࣐ →ሺ࢔ሻ ൯ቁ࣒ → ൫࣐ →ሺ࢔ሻ  .൯࣒

We choose now a sentence ࢔ࢽ via the diagonal lemma, that 
satisfies [22]: 

࢔ࢽ                           ↔ ൫࢘ࢀ൫࢔ࢽฏ൯ →ሺ࢔ሻ  ,൯࣐

where the notations   °ฎ  to mean an fixed Godel numbering. 

Then by full intersubstitutivity one obtain the equivalence 

࢔ࢽ    :࢔ࡱ                              ↔ ൫࢔ࢽ →ሺ࢔ሻ  ,൯࣐

which by postulate ࢔ࡷ reduces to  ൫࢔ࢽ →ሺ࢔ሻ                               ൯  and by࣐
࢔ࢽ and ࢔ࢽ But from .࢔ࢽ to ࢔ࡱ →ሺ࢔ሻ     by ࣐ one can deduce ࣐
n applications of unrestricted modus ponens (1.1). For 

example, a natural implicational logic without contraction is 
Ƚukasiewicz's 3-valued logic: Ƚ૜. Although logic  Ƚ૜ does not 
contain K, it does contain ࡷ૛. In general the n+1-valued 
version of Ƚukasiewicz logic, Ƚ࢔ା૚, validates ࢔ࡷ and is thus 
unsuitable for the same reason [22],[23]. 

However, it well known that contraction is not the only route 
to triviality . There are logics which are contraction free that 
still trivialize  naive comprehension schema (NC) [18].  
Abelian logic with axiom of relativity which we have dubbed 

࢖൫ሺ	:ࡾ                                  → ሻࢗ → ൯ࢗ →  .࢖

Let ࢇ ൌ ሼ࣐|࢞ሺ࢞ሻሽ and ࣐ሺ࢞ሻ ൌ ࢖ → ࢞ ∈  Then as instance .࢞
of NC one obtain ሺ࢖ → ࢇ ∈ ሻࢇ → ࢇ ∈  Thus we obtain .ࢇ

(1) ⊢ ሺ࢖ → ࢇ ∈ ሻࢇ → ࢇ ∈  [by NC]       ࢇ

(2) ⊢ ൫ሺ࢖ → ࢇ ∈ ሻࢇ → ሺࢇ ∈ ሻ൯ࢇ →  by instance  of]  ࢖
   ሿࡾ

(3) ⊢  .[by 1,2 and Unrestricted Modus Ponens (1.1)]   ࢖

 

IV. Relevant First-Order Logic ۾ۺ# 

In order to avoid the results mentioned in II and III, one 
could think of restrictions in initial formulation of the rule 
Unrestricted Modus Ponens (1.1). The postulates (or their 
axioms schemata) of propositional logic ۾ۺ#ሾ܄ሿ are the 
following [19]: 

I. Logical postulates: 

	࡭  (1) → 	 ሺ࡮	 →  ,ሻ࡭	

(2) ሺ࡭	 → ሻ࡮	 	→ 	 ሺሺ࡭	 → 	 ሺ࡮	 → ሻሻ࡯	 	→ 	 ሺ࡭	 →  ,ሻሻ࡯	

(3) A → (B → A∧ B), 

	࡭ (4) ∧ 	࡮	 →  ,࡭	

	࡭ (5) ∧ 	࡮	 →  ,࡮	

	࡭ (6) → 	 ሺ࡭	 ∨  ,ሻ࡮	

	࡮ (7) → 	 ሺ࡭	 ∨  ,ሻ࡮	

(8) (A → C) → ((B → C) → (A ∨ B → C)), 

	࡭ (9) ∨ 	൓࡭, 



	࡮ (10) → 	 ሺ൓࡮	 →  .ሻ࡭	

II. Restricted Modus Ponens rule: 

,࡭	         	࡭ → 	࡮	 ⊢ 	࡭	܎܎ܑ	࡮ ∉   (1.3)   .ࢂ	

or  

,࡭	         	࡭ → 	࡮	 ⊢ 	࡮	܎܎ܑ	࡮ ∉   (1.4)   .ࢂ	

which we have write for short  

,࡭	       	࡭ → 	࡮	 ࢘⊣ ,࡭  or  ࡮ 	࡭ → 	࡮	 ࢂ,࢘⊣    .࡮

 

V. Curry’s Paradox and Shaw-
Kwei's paradox Resolution 
Using Relevant First-Order 
Logic ۾ۺ# 

In my paper [19] was shown that by removing only 
Unrestricted Modus Ponens rule (1.1) (without removing 
contraction etc.), plus some other key theses, from classical 
logic we obtain a logic that can accept naive comprehension 
without becoming trivial. 

Let us consider Curry’s paradox in a set theoretic version 
using Relevant First-Order Logic ۾ۺ#  with Restricted 
Modus Ponens rule (1.3). Let ࡯ሾࡲሿ ൌ 	 ሼ࢞|࢞	 ∈ 	࢞	 →   ሽ andࡲ	
 ሿ is a closed a well formed formula of ZFC  (cwff) suchࡲሾࢻ
that:  ࢻሾࡲሿ 	↔ ሿࡲሾ࡯ 	∈  ሻ࡯ࡲࢆሺ࢔࢕࡯ . We assume now	ሿࡲሾ࡯	
and denote by ઢ a set of all cwff such that ࢼ ∈ ઢ ↔
൓࢔࢕࡯ሺ࡯ࡲࢆ ൅ 		set	a	ઢࢃ	symbol	by	denote	us	Let	ሻ.ࢼ

ઢࢃ                        ൌ ሼ	࡯ሾࡲሿ	|ࡲ	 ∈ ઢ	ሽ	.	

We set now in (1.3). ࢂ ൌ  ઢ From definition above weࢃ
obtain the Restricted Modus Ponens rule: 

,࡭	         	࡭ → 	࡮	 ⊢ 	࡭	܎܎ܑ	࡮ ∉   (1.5)   .ࢤࢃ	

Let ࡲ	 ∈ 	ઢ.	From here we reason thus: 

(1)  ⊢ 	࢞	 ∈ ሿࡲሾ࡯	 	↔ 	 ሺ࢞	 ∈ 	࢞	 →  ሻ [by Unrestrictedࡲ	
Abstraction] 

(2) ⊢ ሿࡲሾ࡯	 	∈ ሿࡲሾ࡯	 	↔ 	 ሺ࡯ሾࡲሿ 	∈ ሿࡲሾ࡯	 	→  ሻ [by Universalࡲ	
Specification, from 1] 

(3) ⊢ ሿࡲሾ࡯	 	∈ ሿࡲሾ࡯	 	→ 	 ሺ࡯ሾࡲሿ 	∈ ሿࡲሾ࡯	 	→    ሻ [byࡲ	
Simplification, from 2] 

(4) ⊢ ሿࡲሾ࡯	 	∈ ሿࡲሾ࡯	 	→  [by Contraction, from 3] ࡲ	

࢘⊬ (5) ሿࡲሾ࡯ 	∈  ,ሿ [by Restricted Modus Ponens (1.5)ࡲሾ࡯	
from 2 and 4] 

Let us denote by symbol ࢃේઢ a set  

ේઢࢃ                        ൌ ሼ	࡯ሾࡲሿ	|ࡲ	 ∉ ઢ	ሽ	. 

Therefore	

,࡭	              	࡭ → 	࡮	 ⊢ 	࡭	܎܎ܑ	࡮ ∈   (1.6)                  .ࢤේࢃ

Let ࡲ	 ∉ 	ઢ.	From here we reason thus: 

(1)  ⊢ 	࢞	 ∈ ሿࡲሾ࡯	 	↔ 	 ሺ࢞	 ∈ 	࢞	 →  ሻ [by Unrestrictedࡲ	
Abstraction] 

(2) ⊢ ሿࡲሾ࡯	 	∈ ሿࡲሾ࡯	 	↔ 	 ሺ࡯ሾࡲሿ 	∈ ሿࡲሾ࡯	 	→  ሻ [by Universalࡲ	
Specification, from 1] 

(3) ⊢ ሿࡲሾ࡯	 	∈ ሿࡲሾ࡯	 	→ 	 ሺ࡯ሾࡲሿ 	∈ ሿࡲሾ࡯	 	→    ሻ [byࡲ	
Simplification, from 2] 

(4) ⊢ ሿࡲሾ࡯	 	∈ ሿࡲሾ࡯	 	→  [by Contraction, from 3] ࡲ	

(5) ⊢ ሿࡲሾ࡯	 	∈          ,ሿ [by Restricted Modus Ponens (1.6)ࡲሾ࡯	
from 2 and 4] 

(6) ⊢  [by Restricted Modus Ponens (1.6), from 4 and 5] ࡲ	

Let us consider now Curry’s paradox in a set theoretic 
version using Relevant First-Order Logic ۾ۺ#  with 
Restricted Modus Ponens rule (1.4). We set now in (1.4). 
ࢂ ൌ  ઢ From definition above we obtain the Restrictedࢃ
Modus Ponens rule: 

,࡭	                       	࡭ → 	࡮	 ⊢ 	࡮	܎܎ܑ	࡮ ∉   ઢ.                (1.7)ࢃ	

Let ࡲ	 ∈ 	ઢ.	From here we reason thus: 

(1)  ⊢ 	࢞	 ∈ ሿࡲሾ࡯	 	↔ 	 ሺ࢞	 ∈ 	࢞	 →  ሻ [by Unrestrictedࡲ	
Abstraction] 

(2) ⊢ ሿࡲሾ࡯	 	∈ ሿࡲሾ࡯	 	↔ 	 ሺ࡯ሾࡲሿ 	∈ ሿࡲሾ࡯	 	→  ሻ [by Universalࡲ	
Specification, from 1] 

(3) ⊢ ሿࡲሾ࡯	 	∈ ሿࡲሾ࡯	 	→ 	 ሺ࡯ሾࡲሿ 	∈ ሿࡲሾ࡯	 	→    ሻ [byࡲ	
Simplification, from 2] 

(4) ⊢ ሿࡲሾ࡯	 	∈ ሿࡲሾ࡯	 	→  [by Contraction, from 3] ࡲ	

࢘⊬ (5) ሿࡲሾ࡯ 	∈  ,ሿ [by Restricted Modus Ponens (1.7)ࡲሾ࡯	
from 2 and 4] 



Let us consider now Curry’s paradox in a set theoretic 
version using Abelian logic with axiom of relativity and 
Restricted Modus Ponens (1.4). We set now in (1.4). ࢂ ൌ ઢ 
From definition above we obtain the Restricted Modus 
Ponens rule: 

,࡭	                       	࡭ → 	࡮	 ⊢ 	࡮	܎܎ܑ	࡮ ∉ 	ઢ.                (1.8) 

Let ࡯ሾࡲሿ 	ൌ ሼ࣐|࢞ሺ࢞ሻሽ and ࣐ሺ࢞ሻ ൌ ࡲ → ࢞ ∈  and let ࢞
	ࡲ ∈ 	ઢ. Then as instance of NC one obtain ሺࡲ → ሿࡲሾ࡯ ∈
ሿሻࡲሾ࡯ → ሿࡲሾ࡯ ∈  ሿ. Thus we obtainࡲሾ࡯

(1)  ⊢ ሺࡲ →	 ሺ࡯ሾࡲሿ ∈ ሿሻሻࡲሾ࡯	 → 	 ሺ࡯ሾࡲሿ ∈         ሿሻࡲሾ࡯
[by NC] 

(2) ⊢ ሺሺࡲ →	 ሺ࡯ሾࡲሿ ∈ ሿሻሻࡲሾ࡯	 → 	 ሺ࡯ሾࡲሿ ∈ ሿሻሻࡲሾ࡯ →   ࡲ
[by instance  of ࡾ]   

࢘⊬  (3)  by 1,2 and Restricted Modus Ponens]        ࡲ
(1.7)]. 

Let us consider now Curry’s paradox in a truth theoretic 
version using Relevant First-Order Logic ۾ۺ#  with 
Restricted Modus Ponens rule (1.4). We set now in (1.4). 
ࢂ ൌ ઢ From definition above we obtain the Restricted 
Modus Ponens rule: 

,࡭	                       	࡭ → 	࡮	 ⊢ 	࡮	܎܎ܑ	࡮ ∉ 	ઢ.                (1.9) 

By diagonalization, self-reference we can get a sentence ࡯ 
such that ࡯	 ↔ 	 ሺࢀሾ࡯ሿ 	→ ࡲ ሻ, whereࡲ	 ∈ 	ઢ.	 

By an instance of the ࢀ-schema ሺ”ࢀሾ࡯ሿ 	↔  ሻ we”࡯	
immediately get: ࢀሾ࡯ሿ 	↔ 	 ሺࢀሾ࡯ሿ 	→  ,ሻࡲ	

Again, using the same instance of the ࢀ-Schema, we can 
substitute  ࡯ሾࢀ,   .ሿ in the above to get (1)࡯ሾࢀ ሿ forࡲ

(1)   ⊢ ,ࢀሾ࡯	 ሿࡲ ↔	 ሺ࡯ሾࢀ, ሿࡲ 	→     schema and-ࢀ ሻ [byࡲ	
Substitution] 

(2) 	⊢ 	 ሺ࡯ሾࢀ, ሿࡲ 	∧ 	 ሺ࡯ሾࢀ, ሿࡲ 	→ ሻሻࡲ	 	→  by] ࡲ	
Assertion] 

(3) ⊢ 	 ሺ࡯ሾࢀ, ሿࡲ 	∧ ,ࢀሾ࡯	 ሿሻࡲ 	→  by Substitution, from] ࡲ	
2] 

(4) ⊢ ,ࢀሾ࡯	 ሿࡲ 	→ 	࡯ and ࡯ by Equivalence of] ࡲ	 ∧  ,࡯	
from 3] 

(5) ⊢ ,ࢀሾ࡯	  ሿ [by Restricted Modus Ponens (1.9), fromࡲ
1 and 4] 

 by Restricted Modus Ponens (1.9), from 4] ࡲ ࢘⊬ (6)

and 5]. 

It easy to see that by using logic with appropriate  restricted  
modus ponens rule (1.4)  Shaw-Kwei's paradox disappears 
by the same reason.  

VI. The Resolution of ૑-
Inconsistency  Problem for  the 
Infnite Valued Łukasiewicz 
Logic Ƚஶ. Logic ۾ۺሼ࣓ሽ

# . 

It well known that in the infinite valued Łukasiewicz logic, 
Łஶ, every instance of  ࢔ࡷ is invalid, and in fact Łஶ can 
consistently support a naive truth predicate [23]-[24]. 
However, Łஶ is plagued with an apparently distinct problem 
– it is ࣓-inconsistent. This fact was first shown model 
theoretically by Restall in [25] and demonstrated a proof 
theoretically by Bacon in [24]. 

An classical extension of Peano Arithmetic is said to be       
࣓ –inconsistent iff ⊢ ⊣  ሿ for each n, but࢞/࢔ሾ࣐        .ሿ࢞ሾ࣐൓࢞∃
(1.10) 

Note that while an ࣓ -inconsistent theory is not formally 
inconsistent. However ࣓ -inconsistency is generally 
considered to be an undesirable property, generally 
considered to be an undesirable property. It is generally 
considered undesirable if the theory becomes inconsistent in 
࣓ –logic. In other words, if it cannot be consistently 
maintained in the presence of the infinitary ࣓ -rule:   

                         ሼ࣐ሾ࢞/࢔ሿ|࢔ ∈ ࣓ሽ ⊢  ሿ.            (1.11)࢞ሾ࣐	࢞∀

Clearly ࣓ -inconsistency entails inconsistency with the           
࣓ –rule (1.11), but the converse does not hold in general.   
We have dubbed any Logic ۾ۺ#  with the  ࣓ –rule (1.11)    
by ۾ۺሼ࣓ሽ

# .  

Definition 6.1. [23]. Weak ࣓ –inconsistency means: 

ሿ࢞/࢔ሾ࣐                 ⊢ for each ࢔, but ⊢  ሿ.       (1.12)࢞ሾ࣐࢞∃

Definition 6.2. [23]. Strong ࣓ –inconsistency means: 

           ⊢ ⊣  but ,࢔ ሿ for each࢞/࢔ሾ࣐ ሿ࢞ሾ࣐ሺ࢞∃ →٣ሻ.       (1.13) 

Note that without the rule of reduction one cannot derive 
strong ࣓ -inconsistency from weak ࣓ -inconsistency [23]. 

Definition 6.3. [23]. By a classical “naive truth theory"  
(CNTT) we shall mean any set of first order sentences in the 
language of arithmetic with a truth predicate which, in 
addition to being closed under modus ponens, has the 
following properties: 



(1) Standard syntax: it contains all the arithmetical 
consequences of classical Peano arithmetic.  

(2) Intersubstitutivity: it contains   ࣐if and only if it 
contains ࣐ቂ࢘ࢀ ቀ࣒ฎቁ  .࣐  ቃ for any sentence࣒/

(3) Compositionality: it contains ࢘ࢀሺ࢞ሻ →  ሻ if࢟ሺ࢘ࢀ
and only if it contains ࢘ࢀሺ࢞ →ሶ  .ሻ࢟

(4) Unrestricted Modus Ponens rule: it closed under 
unrestricted modus ponens rule (1.1). 

(i) If ࣐ ⊢ ࣐࢞∃ then  ࣒ ⊢  	,࣒࢞∃

(ii) ሺ࣐ → ሻ࣒࢞∃ ⊢ ࣐ሺ࢞∃ →  .ሻ࣒

Note that by using the diagonal lemma we can construct a 
sentence ࢽ  satisfying 

ࢽ                           ↔ ࢘ࢀ࢔∃ ቀࢌ൫࢔,  ฎ൯ቁ,                           (1.14)ࢽ

where the notations   °ฎ  to mean an fixed Gödel numbering 
and a function ࢌ  is defined arithmetically by recursion [23]: 

,ሺ૙ࢌ      ሻ࢞ ൌ ࢞ →ሶ ٣ሶ  and  ࢌሺ࢔ ൅ ૚, ሻ࢞ ൌ ࢞ →ሶ ,࢔ሺࢌ  .ሻ࢞

Theorem 6.1. [23]. Any classical naive truth theory closed 
under (1),(2),(3), (i) and (ii) can prove ࢽ. 

Theorem 6.2. [23]. Any naive truth theory closed under  (i) 
and (ii) is weakly ࣓-inconsistent. 

Proof. By theorem 6.1 one obtain  

                       CNTT ⊢ ࢘ࢀ࢔∃ ቀࢌ൫࢔,   .ฎ൯ቁࢽ

By arithmetic and full intersubstitutivity we obtain that 

࢘ࢀ ቀࢌ൫࢔, ฎ൯ቁࢽ ⊢ ࢽ →ሺ࢔ሻ٣. 

Since we have ⊢  by theorem 2.1, by n applications of ࢽ
unrestricted modus ponens we obtain 

ࢽ                                        →ሺ࢔ሻ٣	⊣	٣.                            (1.15) 

So we have in general ࢘ࢀ ቀࢌ൫࢔, ฎ൯ቁࢽ ⊢ for any n, and 

                                  ⊢ ࢘ࢀ࢔∃ ቀࢌ൫࢔,   .ฎ൯ቁࢽ

Theorem 6.3. [23]. Any naive truth theory closed under (i) 
and (ii) is strongly ࣓-inconsistent. 

Theorem 6.4. [25]. Infinitely valued Łukasiewicz logic, Łஶ, 

is strongly ࣓-inconistent. 

Definition 6.4. By a non-classical or generalized “naive truth 
theory"  (GCNTT) we shall mean any set of first order 
sentences in the language of arithmetic with a truth predicate 
which, in addition to being closed under modus ponens, has 
the following properties: 

(1) Standard syntax: it contains all the arithmetical 
consequences of classical Peano arithmetic.  

(2) Intersubstitutivity: it contains  ࣐ if and only if it 
contains ࣐ቂ࢘ࢀ ቀ࣒ฎቁ  .࣐  ቃ for any sentence࣒/

(3) Compositionality: it contains ࢘ࢀሺ࢞ሻ →  ሻ if࢟ሺ࢘ࢀ
and only if it contains ࢘ࢀሺ࢞ →ሶ  .ሻ࢟

(4) Infinitary ࣓ -rule: ሼ࣐ሾ࢞/࢔ሿ|࢔ ∈ ࣓ሽ ⊢   .ሿ࢞ሾ࣐	࢞∀

(5) Restricted Modus Ponens rules: it closed under 
restricted modus ponens rule (1.3) or (1.4)  

Definition 6.5. Weak ࣓ –consistency means: 

          ⊢ ⊬		but	,࢔	each	for	ሿ࢞/࢔ሾ࣐ ሿ࢞ሾ࣐ሺ࢞∃ →٣ሻ.       (1.16) 

Definition 6.6. [23]. Strong ࣓ –consistency means: 

          	⊢ ⊬  but ,࢔ ሿ for each࢞/࢔ሾ࣐  ሿሻ.           (1.17)࢞ሾ࣐൓ሺ࢞∃

Theorem 6.5. Any consistent GCNTT closed under restricted 
modus ponens rule (1.3) is strongly ࣓ –consistent. 

Theorem 6.6. 

 

 

 

 

 

V.II. Applications to da Costa’s 
Paraconsistent Set Theories. 

da Costa [27] introduced a Family of paraconsistent logics 
,࢔࡯ ૚ ൑ ࢔ ൑ ࣓, with unrestricted modus ponens rule (3) 
[28], designed to be able to support set theories ࡯࢔ࡲࡺ, 
respectively,	૚ ൑ ࢔ ൑ ࣓,incorporating  unrestricted 
Comprehension Schema: 



⊢ ࢞ሾ࢟∀࢞∃ ∈ ࢟ ↔  ሻሿ,                                             (18)࢞ሺࡲ

where ࡲሺ࢞ሻ is any formula in which y is not free but x may 
be, and ࡲሺ࢞ሻ does not contain  any sub formula of the form   
࡭ →  ࡮

Axiom of Extensionality: 

⊢ ࢠሺࢠ∀ሾ࢟∀࢞∀ ∈ ࢞ ↔ ࢠ ∈ ሻ࢟ → ࢞ ൌ  ሿ                     (19)࢟

Since Russell’s paradox could be reproduced in these set the-
ories, their underlying logics in the absence classical rule  
࡭൓,࡭ ⊬  had to be capable of tolerating such theorems as	࡮
⊢ ज ∈ ज ↔ ൓ज ∈ ज without collapse into triviality [29] but 
which is hardly less disastrous ⊢ ࢞ሾሺ࢟∀࢞∀ ∈ ሻ࢟ ∧ ሺ࢞ ൌ  .ሻሿ࢟

Definition 7.1.[29].~࡭ iff ࡭ → ࢞ሾሺ࢟∀࢞∀ ∈ ሻ࢟ ∧ ሺ࢞ ൌ 	.ሻሿ࢟

Theorem 7.1. [29]  In  ,࡯࢔ࡲࡺ	ܖܗܑܜ܉܏܍ܖ 	~ is a minimal 
intuitionistic negation. 

Theorem 7.2. [29]. (Cantor’s Theorem)                                   
⊢ ࢻ൫~ൣࢻ∀ ൌ  .ሻ൯൧ࢻሺࡼ

Definition 7.2. [29].   The universal set ࢂ is defined as:  
࢞ሾ࢞∀ ∈ ࢂ ↔ ሺ࢞ ൌ  ሻሿ࢞

Theorem 7.3. [29]. (Cantor’s Paradox)                                           
⊢ ൫ࢂ ൌ ሻ൯ࢂሺࡼ ∧ ~൫ࢂ ൌ   .ሻ൯ࢂሺࡼ

Theorem 7.4.[29].  

(i) ∀࢟∀࢞ሾሺ࢞ ൌ ሻ࢟ ∧ ~ሺ࢞ ൌ  ,ሻሿ࢟

(ii)  ∀࢟∀࢞ሾሺ࢞ ∈ ሻ࢟ ∧ ~ሺ࢞ ∈  ,ሻሿ࢟

(iii) ∀࢟∀࢞ሾሺ࢞ ∈ ሻ࢞ ∧ ~ሺ࢞ ∈  .ሻሿ࢞

Proof. (i). By theorem 7.3 one obtain  

                      ⊢ ሺࢂ ൌ ሻࢂ ∧ ~ሺࢂ ൌ                        (20)	ሻ.ࢂ

 

From (20) and definition 7.1 one obtain 

ࢂ ൌ ࢂ → ࢞ሾሺ࢟∀࢞∀ ∈ ሻ࢟ ∧ ሺ࢞ ൌ  ሻሿ.                        (21)࢟

Therefore, as  ࢂ ൌ ⊣ then ,ࢂ ࢞ሺ࢟∀࢞∀ ൌ                         ሻ and࢟
⊢ ࢞ሺ࢟∀࢞∀ ∈   .ሻ࢟

Note that statement (i) of the theorem 7.4 is called      
paradox of identity. 

Definition7.3. Let us define paraconsistent  da Costa type 
logics ࢔࡯#, ૚ ൑ ࢔ ൏ ࣓, with restricted modus ponens rule 
such that  

,࡭	                       	࡭ → 	࡮	 ⊢ 	࡮	܎܎ܑ	࡮ ∉   (22)                 ,ࢂ	

                ሾ∀࢟∀࢞ሺ࢞ ൌ ሻሿ࢟ ∧ ሾ∀࢟∀࢞ሺ࢞ ∈ ሻሿ࢟ ∈  (23)      ࢂ

for support set theories ࢔ࡲࡺ#, respectively,	૚ ൑ ࢔ ൏ ࣓,		  
incorporating unrestricted Comprehension Schema (18). 

From the proof of the theorem 7.3 it follows directly that 
logics ࢔࡯#, ૚ ൑ ࢔ ൏ ࣓,	in fact, provide an effective way of 
circumventing   paradox of identity. 

Arruda in [29] introduced  a Family of  set theories ࢔ࡲࢆ, 
૚ ൑ ࢔ ൑ ࣓, in which any canonical axiom of ࡯ࡲࢆ:  the 
axiom of pairing, axiom of union etc., are postulated  in 
general and in which also postulated the existence of the 
Russell’s set ࣬.  

Definition7.4. [29].   ൓࢔
࡭iff  ൓ ࡭∗ ∧  .ሻ࢔ሺ࡭

Note that ൓࢔
∗  is a classical negation. 

Theorem 7.5. [29].Any set theories	࢔ࡲࢆ, ૚ ൑ ࢔ ൑ ࣓ are 
trivial. 

Proof. By axiom of separation there exist subset ज࢔ of ࣬	
such	that	ሺ1ሻ ∀࢞ൣ࢞ ∈ ज࢔ ↔ ሺ࢞ ∈ जሻ ∧ ሺ࢞ ∈  ሻ൧. From࢔ሻሺ࢞
(1) we obtain (2)  ज࢔ ∈ ज࢔ ↔ ൓ሺज࢔ ∈ ज࢔ሻ ∧ ሺज࢔ ∈
ज࢔ሻ

ሺ࢔ሻ. From (2) we obtain 

                             ሺज࢔ ∈ ज࢔ሻ ∧ ൓࢔
∗ ሺज࢔ ∈ ज࢔ሻ.             (24)  

But formula (24) trivializes the system ࢔ࡲࢆ. 

Definition7.5. Let us define paraconsistent  da Costa type 
logics ࡯ෙ࢔#, ૚ ൑ ࢔ ൏ ࣓, with restricted modus ponens rule 
such that  

,࡭	                   	࡭ → 	࡮	 ⊢ ࢔൓࡭	܎܎ܑ	࡮
	࡭∗ ∉   (25)                .࢔ࢂ	

                     ሺज࢔ ∈ ज࢔ሻ ∧ ൓࢔
∗ ሺज࢔ ∈ ज࢔ሻ ∈  (26)             ࢔ࢂ

for support set theories ࡲࢆේ࢔
#, respectively,	૚ ൑ ࢔ ൏ ࣓, 

incorporating  unrestricted Comprehension Schema  (18).  

From the proof of the theorem 7.5 it follows directly that 
logic ࡯ෙ࢔#, ૚ ൑ ࢔ ൏ ࣓,in fact, provide an effective way of 
circumventing Russell’s paradox. 

Arruda and da Costa [30] introduced a Family of sentential 
logics, ࡶ૚ to ࡶ૞, designed to be able to support set theories, 



respectively ࡲࢆ૚ to ࡲࢆ૞ ,incorporating an unrestricted 
Comprehension Schema (18). These ࡶ logics are interesting 
in that they do not have modus ponens, but still seem to 
contain a lot of theorems that might be expected if modus 
ponens was included.  

Theorem 7.6. [32]. ⊢A is a theorem of positive intuitionistic 
logic if and only if →  .૚ࡶ  is a theorem of ࡭

The basic version of Curry’s paradox shows that any such set 
theory is trivial if its underlying logic contains the rules of 
Unrestricted Modus Ponens (1) and Contraction, in addition 
to the usual Instantiation rules for the quantifiers and 
Simplification. Arruda and da Costa instead constructed their 
 systems without modus ponens. Arruda and da Costa [27]-ࡶ
announced that ࡭ ≡ ൓࡭ ⊢ ࡮ ⊃  ૞ forࡶ ૛ toࡶ is derivable in ࡯
all formulas A, B and C. Consequently, by Russell’s paradox, 
the set theories: ࡲࢆ૚ to ࡲࢆ૞ contain  ⊢ ࡮ ⊃  for all B and ࡯
C. In the absence of modus ponens, this does not quite 
amount to triviality. It is rather a variant which can be called 
⊃-triviality, but which is hardly less disastrous: ∀ܡ∀ܠሺܠ ൌ
 ሻ directly follows by Axiom of Extensionality (19). Notingܡ
only that ࡭ ≡ ൓࡭ ⊢ ࡮ ⊃  .૚ࡶ is not similarly derivable in ࡯
Arruda and da Costa [31] left open the question whether the 
sole remaining set theory ࡲࢆ૚ is acceptably non-trivial, and 
thus whether the strategy of restricting modus ponens in the 
manner of the ࡶ -systems does in fact provide an effective 
way of circumventing Curry's paradox. These questions 
answered in the negative by the following variant of the 
Russell’s paradox [33]: 

                               ज ∈ ज ≡ ሺज ∈ ज ⊃                     (27)	ሻ.࡯

Theorem 7.7. [33].	ࡲࢆ૚ܑܛ ⊃-trivial. 

In addition to Contraction, Simplification and lnstantiation 
rules, ࡶ૚ contains the rules of Weakening, ࡮ ⊢ ࡭ ⊃  and ,࡮
Transitivity, ࡭ ⊃ ࡮,࡮ ⊃ ࡯ ⊢ ࡭ ⊃  .࡯

Definition7.6. Let us define paraconsistent  logic ࡶ૚
#, with 

restricted Weakening rule such that  

࡮                            ⊢ ࡭ ⊃ 	࡮   iff ࡮ ∉  (28)                       ,ࢂ	

                               ሺज ∈ ज ⊃ ሻ࡯ ∈  (29)                            .ࢂ

For support set theory ࡲࢆ૚
#	, incorporating unrestricted 

Comprehension Schema (18). 

From the proof of the theorem 7.7 it follows directly that 
logic ࡶ૚

#in fact, provide an effective way of circumventing 
Curry's paradox. 

V.III.  Paraconsistent Nonstandard 
Analysis 

Definition 8.1. Let us define paraconsistent  da Costa type 
logics ࡯෩࢔#, ૚ ൑ ࢔ ൏ ࣓, with restricted modus ponens rule 
such that  

,࡭	           	࡭ → 	࡮	 ⊢ ࢔൓࡭	܎܎ܑ	࡮
	࡭∗ ∉ ࡮ and ࢔ࢂ	 ∉    (30)    ,࢔ࢂ

                ሾ∀࢟∀࢞ሺ࢞ ൌ ሻሿ࢟ ∧ ሾ∀࢟∀࢞ሺ࢞ ∈ ሻሿ࢟ ∈  (31)         ,࢔ࢂ

                    ሺज࢔ ∈ ज࢔ሻ ∧ ൓࢔
∗ ሺज࢔ ∈ ज࢔ሻ ∈  (32)              .࢔ࢂ

Definition 8.2. Let us define now paraconsistent  logic ࡯෩ஶ#   
with infinite hierarchy levels of contradiction [20]: 

#෩ஶ࡯                                     	ൌ ⋃ ழ࣓࢔.#࢔෩࡯   

for support set theory ࡯ࡲࢆஶ# , in which any canonical axiom 
of ࡯ࡲࢆ:  the axiom of pairing, axiom of union etc., are 
postulated  in general and in which also postulated the 
existence of the Universal set ܄.       

In this subsection, we will to distinguish: (1) the relations         
(i) strong (consistent) equality denoted by ሺ∙ൌ࢙∙ሻ ,(ii) weak 
equality denoted by ሺ∙ൌ࢝∙ሻ, (iii) weak paraconsistent equality 
denoted by ൫∙ൌ࢝૚∙൯,  and  

(2)  the relations  (i) strong (consistent) membership relation 
denoted by  ∈࢙ and (ii)  weak membership relation denoted 
by  ∈࢝,(iii) weak paraconsistent membership relation 
denoted by  ∈࢝૚[20]. 

Remark8.1.We note, that in  ࡯ࡲࢆஶ#  valid: 

ሺܑሻ	∀࢞, :࢟ ሺ࢞ ൌ࢙ ሻ࢟ ∧ ൓ሺ࢞ ൌ࢙ ሻ࢟ ⊢ ,࡮ ࢔ ൌ ૚, ૛, … 
ሺܑܑሻ	∃࢞, :࢟ ሺ࢞ ൌ࢝ ሻ࢟ ∧ ൓࢔

∗ ሺ࢞ ൌ࢝ ሻ࢟ ⊬ ࡮,࡮ ∈ ,ࢂ ࢔ ൌ ૚, ૛, … 
ሺܑܑܑሻ	∀࢞, :࢟ ሺ࢞ ࢙∋ ሻ࢟ ∧ ൓ሺ࢞ ࢙∋ ሻ࢟ ⊢ ,࡮ ࢔ ൌ ૚, ૛,… 
ሺܑܞሻ	∃࢞, :࢟ ሺ࢞ ࢝∋ ሻ࢟ ∧ ൓࢔

∗ ሺ࢞ ࢝∋ ሻ࢟ ⊬ ࡮,࡮ ∈ ,ࢂ ࢔ ൌ ૚, ૛, … 

Designations 8.1. We will write: 

(i) ࢞ ൌ࢝૚ ࢞for  ሺ ࢟ ൌ࢝ ሻ࢟ ∧ ൓ሺ࢞ ൌ࢝  ,ሻ࢟

(ii) ࢞ ൌ ࢞for ሺ ࢟ ൌ࢙ ሻ࢟ ∨ ሺ࢞ ൌ࢝ ሻ࢟ ∨ ൫࢞ ൌ࢝૚   ,൯࢟

(iii) ࢞ ૚࢝∋ ࢞for  ሺ 	࢟ ࢝∋ ሻ࢟ ∧ ൓ሺ࢞ ࢝∋  ,ሻ࢟

(iv) ࢞ ∈ ࢞for ሺ ࢟ ࢙∋ ሻ࢟ ∨ ሺ࢞ ࢝∋ ሻ࢟ ∨ ൫࢞ ૚࢝∋  	,൯࢟

Definition	8.3.	ሺ1ሻ	By		∈‐	consistent	set		we	shall	mean	a	
set	ࢄ	such	that	there	does	not	exist	any	weak	element	ࢠ	of		
ࢠሺࢠ∃൓	e.g.,	,	ࢄ ࢝∋ ሻࢄ ∨ ൫ࢠ ૚࢝∋ 		and		൯ࢄ

ሺ2ሻ	there	exist	at	least	one	strong	element	of	ࢄ,	e.g.,	
࢞ሺ࢞∃ ࢙∋ 	.ሻࢄ



Designations	8.2.	We	will	write:	ܖܗ܋ሺࢄሻ	if	ࢄ	is	∈‐	
consistent	set.	

Assumption.	ሺPostulate	of	the	existence	the	Universe	of	
the	all	∈‐	consistent	setsሻ	We	assume	now	that,	there	exist	
a	set	ܖܗ܋܄	such	that	∀ܺሾܿ݊݋ሺܺሻ → ܺ ∈௦ ܸ௖௢௡ሿ.	

Definition	8.4.Let	ࢄ	and	ࢅ	be	a	set.	

ሺiሻ	ܺ ൌ௦ ܻ iff  ∀ݖሺݖ ∈௦ ܺ ↔ ݖ ∈௦ ܻሻ, 

ሺiiሻ	ܺ ൌ௪ ܻ iff  ∀ݖሺݖ ∈௪ ܺ ↔ ݖ ∈௪ ܻሻ, 

ሺiiiሻ	ܺ ൌ௪భ ܻ iff  ∀ݖ൫ݖ ∈௪భ ܺ ↔ ݖ ∈௪భ ܻ൯, 

ሺivሻܺ ⊆௦ ܻ iff   ∀ݔሾݔ ∈௦ ܺ → ݔ ∈௦ ܻሿ,  

 

Definition 8.5.		

ሺiሻ 	By consistent empty set we shall mean a set 
∅௦	such that there does not exist any strong 
element ݖ of  ∅௦	e.g., ൓∃ݖሺݖ ∈௦ ∅௦ሻ. 

ሺiiሻ By a weakly consistent empty set we shall 
mean a set ∅௪	such that there does not exist any 
weak element ݖ of ∅௪ e.g., ൓∃ݖሺݖ ∈௪ ∅௪ሻ ∨
൫ݖ ∈௪భ ∅௪൯. 

ሺiiiሻ By inconsistent empty set we shall mean a set 
∅௪భ	 such that ∀ݖ൫ݖ ∈௪భ ܺ൯. 

Definition 8.6. The superstructure over Universal set ܄, 
denoted by ܅ሺ܄ሻ, is defined by the following canonical 
recursion: 

ሻ܄૙ሺ܅         ൌ ሻ܄ା૚ሺ࢔܅ ,܄	 ൌ ሻ܄ሺ࢔܅ ∪       ,ሻ൯܄ሺ࢔܅൫ࡼ

ሻ܄ሺ܅                           ൌ ⋃ ழ࣓࢔.ሻ܄ሺ࢔ࢃ                             (33) 

Remark8.2.Note that  ܅ሺ܄ሻ ൌ                                                           .܄
The language ࡸ which describes ܅ሺ܄ሻ consists of logical 
connectives ൓,	∧, ∨, →, quantifiers ∀, ∃, individual 
variables ࢞૚, ࢛ for all ࢛࡯ ૛,…, individual constants࢞ ∈   ሻ܄ሺ܅
and two binary predicate constants ൌ,∈. A formula of 
language ࡸ is constructed from the above constituents in the 
usual way. We will use the following abbreviations, called 
bounded quantifiers: ሺ∀࢞ ∈ ࢞ሺ࢞∀ means ࣐ሻ࢟ ∈ ࢟ →  ,ሻ࣐
ሺ∃࢞ ∈ ࢞൫ሺ࢞∃means ࣐ሻ࢟ ∈ ሻ࢟ ∧  ൯. A bounded formula is a࣐
formula in which every quantifier occurs as a bounded 
quantifier. We will write ࣐ሾ࢛૚, ,૛࢛ … ,  ሿ for࢔࢛
,૚࢛࡯ൣ࣐ ,૛࡯ … ,    .൧࢔࢛࡯

For any formula ࣐ in  ࡸ, the relation ܅ሺ܄ሻ ⊨  is defined ࣐
by the following rules: 

ሻ܄ሺ܅ (1) ⊨ ૚࢛࡯ ൌ࢙ ૚࢛  if and only if	૛࢛࡯ ൌ࢙  .૛  hold࢛

ሻ܄ሺ܅ (2) ⊨ ૚࢛࡯ ࢙∋ ૚࢛   if and only if	૛࢛࡯ ࢙∋  .૛  hold࢛

ሻ܄ሺ܅ (3) ⊨ ૚࢛࡯ ൌ࢝ ૚࢛  if and only if	૛࢛࡯ ൌ࢝   ૛࢛
hold. 

ሻ܄ሺ܅ (4) ⊨ ૚࢛࡯ ࢝∋ ૚࢛  if and only if	૛࢛࡯ ࢝∋  .૛  hold࢛

ሻ܄ሺ܅ (5) ⊨ ૚࢛࡯ ൌ ૚࢛    if and only if	૛࢛࡯ ൌ࢙  ૛  or࢛
૚࢛ ൌ࢝  .hold	૛࢛

ሻ܄ሺ܅ (6) ⊨ ૚࢛࡯ ∈ ૚࢛    if and only if	૛࢛࡯ ࢙∋     ૛  or࢛
૚࢛ ࢝∋  .hold	૛࢛

ሻ܄ሺ܅	 (7) ⊨ ൓൫࢛࡯૚ ൌ࢙ ૚࢛  if and only if	૛൯࢛࡯ ൌ࢙   ૛࢛
does not hold.	 

ሻ܄ሺ܅ (8) ⊨ ൓൫࢛࡯૚ ࢙∋ ૚࢛   if and only if	૛൯࢛࡯ ࢙∋   ૛࢛
does not hold. 

ሻ܄ሺ܅ (9) ⊨ ૚࣐ ∧ ሻ܄ሺ܅ ૛ if and only if࣐ ⊨  ૚ and࣐
ሻ܄ሺ܅ ⊨  ૛࣐

ሻ܄ሺ܅ (10) ⊨ ૚࣐ ∨ ሻ܄ሺ܅ ૛ if and only if࣐ ⊨  ૚ or࣐
ሻ܄ሺ܅ ⊨  ૛࣐

ሻ܄ሺ܅ (11) ⊨ ૚࣐ → ሻ܄ሺ܅  if and only if	૛࣐ ⊨ ૚࣐ →
ሻ܄ሺ܅ ⊨    .૛ hold࣐

ሻ܄ሺ܅  (12) ⊨ ሻ܄ሺ܅ ሻ if and only if࢞ሺ࣐࢞∀ ⊨  ሿ for࢛ሾ࣐
all ࢛ in ܅ሺ܄ሻ. 

ሻ܄ሺ܅  (13) ⊨ ሻ܄ሺ܅ ሻ if and only if࢞ሺ࣐࢞∃ ⊨  ሿ for࢛ሾ࣐
an ࢛ in ܅ሺ܄ሻ. 

Definition 8.3. Let ࢌ be a function defined on a set ࢄ ⊆  ܄
and taking values in a set ࢅ ⊆  is said to be an ࢌ Then .܄
paraconsistent injection (or injective map, or embedding) if, 
whenever (1) ࢌሺ࢞ሻ ൌ࢙ ࢞ ሻ, it must be the case that࢟ሺࢌ ൌ࢙  ࢟
and (2) ࢌሺ࢞ሻ ൌ࢝ ࢞ሻ, it must be the case that ሺ࢟ሺࢌ ൌ࢙ ሻ࢟ ∨
ሺ࢞ ൌ࢝  .ሻ࢟

Definition 8.4. Paraconsistent nonstandard universe is a 
triple 〈܅ሺ܄ሻ,܅ሺ܄ᇱሻ, #〉 consisting of superstructures ܅ሺ܄ሻ, 
ሻ܄ሺ܅:# and a map	ᇱሻ܄ሺ܅ →  ሻ  satisfying the′܄ሺ܅
following conditions:  

(1) (Paraconsistent Transfer Principle) The map 
ሻ܄ሺ܅:# →  ᇱሻ is an paraconsistent injective܄ሺ܅
mapping from ܅ሺ܄ሻ into ܅ሺ܄ᇱሻ, and for any 



bounded formula ࣐ሺ࢞૚, ,૛࢞ … ,  ࡸ ሻ in࢔࢞

ሻ܄ሺ܅ ⊨ ,૚࢛ሾ࣐ …,૛࢛ , ሿ࢔࢛ ⟹ 

ᇱሻ܄ሺ܅                           ⊨ ൣ࣐ ૚࢛
# , ૛࢛

# , … , ࢔࢛
# ൧              (33)   

                  for any  ࢛૚, …,૛࢛ ,     ሻ܄ሺ܅ in  ࢔࢛

܄ (2) ൌ ᇱ܄ ൌ #.܄  

Theorem 8.1.[36]. There exist paraconsistent nonstandard 
universe 〈܅ሺ܄ሻ,܅ሺ܄ᇱሻ, #〉 as required above. 

Definition 8.5. An inconsistent filter ऐܑ܋ܖ over ܄ is a family 
of subsets of ܄ satisfying the following properties: 

ሺ૚ሻ	ሺiሻ	܄ ࢙∋ ऐܑ࢙∅ ,܋ܖ ࢙∌ ऐࢉ࢔࢏, ሺiiሻ	∅ ∈௪ ࣠௜௡௖ ∧ ∅ ∉௪ ࣠௜௡௖,  

 

ሺ૛ሻ	∀࢔ ∈ Գ: …,૚࡭	܎ܑ , ࢔࡭ ∈ ऐܑ܋ܖ, then  

૚࡭                                ∩ …∩ ࢔࡭ ∈ ऐܑ܋ܖ.  

࢔∀	(3) ∈ Գ:࡭૚, … , ࢔࡭ ࢙∋ ऐܑ܋ܖ → ૚࡭ ࢙∩ ࢙∩… ࢔࡭ ࢙∋ ऐܑ܋ܖ.   

࢔∀	(4) ∈ Գ: …,૚࡭܎ܑ , ࢔࡭ ࢝∋ ऐܑ܋ܖ, then    

૚࡭	                               ࢝∩ ࢝∩… ࢔࡭ ࢝∋ ऐܑ܋ܖ.  

Let us consider now paraconsistent nonstandard extension of 
Թ. Let ऐܑ܋ܖ be a free inconsistent ultrafilter on ܄ and 
introduce an paraconsistent equivalence relation on functions 
in Թ܄ as 

࢏iff ሼ  ࢍ܋ܖܑ~ࢌ                   ∈ ሻ࢏ሺࢌ|܄ ൌ ሻሽ࢏ሺࢍ ∈ ऐ(34)          ࢉ࢔࢏   

We will to distinguish the relations: 

	ሺܑሻ	܏ܖܗܚܜܛ (consistent) equivalence relation denoted by 
ሺ∙ ࢙~ ∙ሻ  

࢏iff ሼ  ࢍܛ~ࢌ                 ࢙∋ ሻ࢏ሺࢌ|܄ ൌ ሻሽ࢏ሺࢍ ࢙∋ ऐ(35)          ,ࢉ࢔࢏   

ሺܑܑሻ	ܡܔܓ܉܍ܟ consistent equivalence relation denoted by 
ሺ∙ ࢝~ ∙ሻ 

࢏iff ሼ  ࢍ࢝~ࢌ             ࢝∋ ሻ࢏ሺࢌ|܄ ൌ ሻሽ࢏ሺࢍ ࢝∋ ऐࢉ࢔࢏  and         

                         	ሼ࢏ ࢝∋ ሻ࢏ሺࢌ|܄ ൌ ሻሽ࢏ሺࢍ ࢙∌ ऐ(36)               ,ࢉ࢔࢏                                          

ሺܑܑܑሻ	ܑܜܖ܍ܜܛܑܛܖܗ܋ܖ  equivalence relation denoted by 

൫∙ ૚࢝~ ∙൯ 

࢏iff ൛  ࢍ૚࢝~ࢌ          ૚࢝∋ ሻ࢏ሺࢌ|܄ ൌ ሻൟ࢏ሺࢍ ૚࢝∋ ऐ
(37)        .ࢉ࢔࢏                    

Definition 8.6. If ࢌ ∈ Թ܄ (i) we denoted by ሾࢌሿ࢙ a set   

        ሾࢌሿ࢙ ൌࢌࢋࢊ ሼࢍ࢙~ࢌ|ࢍሽ,                           (38)   

(ii) we denoted by ሾࢌሿ࢝ a set    

                             ሾࢌሿ࢝ ൌࢌࢋࢊ ሼࢍ࢝~ࢌ|ࢍሽ,                          (39)   

(iii) we denoted by ሾࢌሿ࢝૚ a set    

                           ሾࢌሿ࢝૚ ൌࢌࢋࢊ ൛࢝~ࢌ|ࢍ૚ࢍൟ.                        (40)  

   Թ܄ divided out by the paraconsistent equivalence relation 
#gives us the paraconsistent nonstandard extension Թ ܋ܖܑ~ , 
the #-hyperreals; in symbols, Թ# ൌ Թ܄/ऐࢉ࢔࢏. 

Remark8.4. We note that every element in Թ#  is only of the 
form (i)	ሾࢌሿ࢙ , (ii)	ሾࢌሿ࢝ or (iii) ሾࢌሿ࢝૚ for some	ࢌ ∈ Թ܄. 

Definition 8.7. For any real number  ࢘ ∈ Թ   

(i) we denoted by  ࢙࢘ the constant function in Թ܄ 
with  value ࢘ and  ࢙࢘ሺ࢏ሻ 	ൌ ࢏  for all ,࢘	 ࢙∋  .܄
We then have a natural consistent embedding 

Թ:࢙#                                    → Թ#࢙ ⊂ Թ#                        (41) 

                        by setting ࢘ ൌ ሾ࢙࢘ሿ࢙
࢙# , for all ࢘ ∈ Թ,    

        (ii)         we denoted by  ࢝࢘ the constant function in Թ܄                 

                      with value ࢘ and  ࢝࢘ሺ࢏ሻ 	ൌ ࢏  for all ,࢘	 ࢝∋   .܄

                     We then have a natural weakly consistent                       

                      embedding 

Թ:࢝#                                  → Թ#࢝ ⊂ Թ#                        (42) 

                     by setting ࢘ ൌ ሾ࢝࢘ሿ࢝
࢝# , for all ࢘ ∈ Թ,    

(iii) we denoted by  ࢝࢘૚ the constant function in Թ܄ 
with value ࢘ and  ࢝࢘૚ሺ࢏ሻ 	ൌ ࢏  for all ,࢘	 ૚࢝∋  .܄
We then have a natural inconsistent embedding 

૚:Թ࢝#                                          → Թ
૚࢝# ⊂ Թ#               (43) 

                     by setting ࢘ ൌ ૚,࢝૚൧,࢝࢘ൣ
૚,࢝# , for all ࢘ ∈ Թ.   



       (iv)         we denoted a set  Թ ∪ Թ#࢙#࢝   by  Թ
࢝,࢙#             

                      we then have embedding :   

Թ:࢝,࢙#                                           → Թ
࢝,࢙# ⊂ Թ# ,            (44) 

        (v)          we denoted a set  Թ ∪ Թ ࢙#࢝#∪ Թ
૚࢝#   by  Թ#      

                        we then have embedding :   

                                                  #:Թ → Թ# .                      (45) 

As an algebraic structure, Թ is a complete ordered field, i.e., 
a structure of the form 

                                       〈Թ,൅,ൈ,ൌ,൏, ૙, ૚〉,                     (46) 

where Թ is the set of elements of the structure, ൅ and ൈ are 
the binary operations of addition and multiplication, ൏ is the 
ordering relation, and ૙ and ૚ are two distinguished elements 
of the domain. And it is complete in the sense that every 
nonempty set bounded from above has a least upper bound. 

Remark8.5. We note that: 

(i) the #࢙-embedding of (41) sends ૙ to ሾ૙ሿ࢙ ൌࢌࢋࢊ ૙࢙    
and 1 to ሾ૚ሿ࢙ ൌࢌࢋࢊ ૚࢙, we denoted ૙࢙ by ૙ and ૚࢙ 
by 1; 

(ii) the #࢝-embedding of (42) sends ૙ to ሾ૙ሿ࢝ ൌࢌࢋࢊ ૙࢝    
and 1 to ሾ૚ሿ࢝ ൌࢌࢋࢊ ૚࢝; 

(iii) the #࢝૚-embedding of (43) sends ૙ to  

ሾ૙ሿ࢝૚ ൌࢌࢋࢊ ૙࢝૚ and 1 to ሾ૚ሿ࢝૚ ൌࢌࢋࢊ ૚࢝૚; 

We must lift now the operations and relations of Թ to Թ# .  

Definition 8.8. We get the clue from (35)-(37), which tells us 
when any two elements  of Թ#  are “equal”: 

(i) two elements ሾࢌሿ࢙ and ሾࢍሿ࢙ of Թ#  are ࢙-equal:  

     		ሾࢌሿ࢙ ൌ࢙ ሾࢍሿ࢙ iff ሼ࢏ ࢙∋ ሻ࢏ሺࢌ|܄ ൌ ሻሽ࢏ሺࢍ ࢙∋ ऐ(47)  ,ࢉ࢔࢏   

(ii) two elements ሾࢌሿ࢝ and ሾࢍሿ࢝ of Թ#  are           
  :equal-࢝

    		ሾࢌሿ࢝ ൌ࢝ ሾࢍሿ࢝ iff ሼ࢏ ࢙∋ ሻ࢏ሺࢌ|܄ ൌ ሻሽ࢏ሺࢍ ࢝∋ ऐ(48)     ,ࢉ࢔࢏ 

(iii) two elements ሾࢌሿ࢝૚ and ሾࢍሿ࢝૚ of Թ#  are 

  :૚-equal࢝              

   		ሾࢌሿ࢝૚ ൌ࢝૚ ሾࢍሿ࢝૚ iff ሼ࢏ ࢙∋ ሻ࢏ሺࢌ|܄ ൌ ሻሽ࢏ሺࢍ ૚࢝∋ ऐ
 (49) ,ࢉ࢔࢏

(iv)  two elements ሾࢌሿ࢙ and ሾࢍሿ࢙ of Թ#  are             

  :equal- ࢝    

   		ሾࢌሿ࢙ ൌ࢝ ሾࢍሿ࢙ iff ሼ࢏ ࢝∋ ሻ࢏ሺࢌ|܄ ൌ ሻሽ࢏ሺࢍ ࢝∋ ऐ(50)        ,ࢉ࢔࢏ 

(v) two elements ሾࢌሿ࢙ and ሾࢍሿ࢙ of Թ#  are             

  :૚ -equal࢝               

   		ሾࢌሿ࢙ ൌ࢝૚ ሾࢍሿ࢙ iff ൛࢏ ૚࢝∋ ሻ࢏ሺࢌ|܄ ൌ ሻൟ࢏ሺࢍ ૚࢝∋ ऐ
 (51)     ,ࢉ࢔࢏

(vi) two elements ሾࢌሿ࢝ and ሾࢍሿ࢝ of Թ#  are           
  :૚-equal࢝

    		ሾࢌሿ࢝ ൌ࢝૚ ሾࢍሿ࢝ iff ൛࢏ ૚࢝∋ ሻ࢏ሺࢌ|܄ ൌ ሻൟ࢏ሺࢍ ૚࢝∋ ऐ
 (52) .ࢉ࢔࢏

Definition 8.9. In a similar way we extend ൏ to Թ#  by 
setting: 

      	ሾࢌሿ࢙ ൏࢙ ሾࢍሿ࢙ iff ሼ࢏ ࢙∋ ሻ࢏ሺࢌ|܄ ൏ ሻሽ࢏ሺࢍ ࢙∋ ऐ(53)         ,ࢉ࢔࢏   

     		ሾࢌሿ࢝ ൏࢝ ሾࢍሿ࢝ iff ሼ࢏ ࢝∋ ሻ࢏ሺࢌ|܄ ൏ ሻሽ࢏ሺࢍ ࢝∋ ऐ(54)     ,ࢉ࢔࢏ 

      ሾࢌሿ࢝૚ ൏࢝૚ ሾࢍሿ࢝૚ iff ሼ࢏ ࢙∋ ሻ࢏ሺࢌ|܄ ൏ ሻሽ࢏ሺࢍ ૚࢝∋ ऐ
 (55) ,ࢉ࢔࢏

ሾࢌሿ࢙ ൏࢝ ሾࢍሿ࢙ iff ሼ࢏ ࢝∋ ሻ࢏ሺࢌ|܄ ൏ ሻሽ࢏ሺࢍ ࢝∋ ऐ(56)      ,ࢉ࢔࢏ 

ሾࢌሿ࢙ ൏࢝૚ ሾࢍሿ࢙ iff ൛࢏ ૚࢝∋ ሻ࢏ሺࢌ|܄ ൏ ሻൟ࢏ሺࢍ ૚࢝∋ ऐ
 (57)  ,ࢉ࢔࢏

       ሾࢌሿ࢝ ൏࢝૚ ሾࢍሿ࢝ iff ൛࢏ ૚࢝∋ ሻ࢏ሺࢌ|܄ ൏ ሻൟ࢏ሺࢍ ૚࢝∋ ऐ
 (58) .ࢉ࢔࢏

With this definition of ൏ in Թ#  we easily show that the 
extended domain *R is linearly ordered. As an example we 
verify transitivity of ൏ in Թ# : let 	ሾࢌሿ࢙ ൏࢙ ሾࢍሿ࢙ and           
ሾࢍሿ࢙ ൏࢙ ሾࢎሿ࢙, ܑ.  ,.܍

              ℘૚ ൌ ሼ࢏ ࢙∋ ሻ࢏ሺࢌ|܄ ൏ ሻሽ࢏ሺࢍ ࢙∋ ऐࢉ࢔࢏ and 

              ℘૛ ൌ ሼ࢏ ࢙∋ ሻ࢏ሺࢍ|܄ ൏ ሻሽ࢏ሺࢎ ࢙∋ ऐࢉ࢔࢏. 

By the finite intersection property from definition 8.5.(3),  
℘૚ ∩ ℘૛ ࢙∋ ऐࢉ࢔࢏. If ࢏ ࢙∋ ℘૚ ∩ ℘૛, then ࢌሺ࢏ሻ ൏  ሻ and࢏ሺࢍ
ሻ࢏ሺࢍ ൏ ሻ࢏ሺࢌ ,ሻ. Therefore by transitivity of ൏ in Թ࢏ሺࢎ ൏
ሻ. And thus ℘૚࢏ሺࢎ ∩ ℘૛ ࢙⊇ ሼ࢏ ࢙∋ ሻ࢏ሺࢍ|ࢂ ൏ ሻሽ࢏ሺࢎ ࢙∋ ऐࢉ࢔࢏, 
i.e.,	ሾࢌሿ࢙ ൏࢙ ሾࢍሿ࢙.  

Theorem 8.2. 

(i)  Let 	ሾࢌሿ࢙ ൏࢙ ሾࢍሿ࢙ and  ሾࢍሿ࢙ ൏࢙ ሾࢎሿ࢙ then ሾࢍሿ࢙ 
൏࢙ ሾࢎሿ࢙ 



(ii)  

 

Definition 8.10.  

(i)  A (positive) consistent infinitesimal ࢿ in Թ#   is 
an element  ࢿ ∈ Թ#࢙  such that ૙#࢙ ൏࢙ ࢿ ൏࢙ ࢙#࢘  
for all ࢘ ൐ ૙, ࢘ ∈ Թ.  

(ii) A (positive) consistent infinite number ૑ in Թ#   
is an element  ૑ ∈ Թ#࢙  such that ࢙#࢘ ൏࢙ ૑ for 
all ࢘ ൐ ૙, ࢘ ∈ Թ. 

(iii) A (positive) weakly consistent infinitesimal ࢿ in 
Թ#   is an element  ࢿ ∈ Թ#࢝  such that 
૙#࢝ ൏࢝ ࢿ ൏࢝ ࢝#࢘  for all ࢘ ൐ ૙, ࢘ ∈ Թ. 

(iv) A (positive) weakly consistent infinite number 
૑ in Թ#   is an element  ૑ ∈ Թ#࢝  such that 
࢝#࢘ ൏࢝ ૑ for all ࢘ ൐ ૙, ࢘ ∈ Թ. 

(v) A (positive) inconsistent infinitesimal ࢿ in Թ#   
is an element  ࢿ ∈ Թ

૚࢝#  such that 
૙

૚࢝# ൏#࢝૚
ࢿ ൏#࢝૚

࢘
૚࢝#  for all ࢘ ൐ ૙, ࢘ ∈ Թ. 

(vi) A (positive) inconsistent infinite number ૑ in 
Թ#   is an element  ૑ ∈ Թ

૚࢝#  such that 
࢘

૚࢝# ൏#࢝૚
૑ for all ࢘ ൐ ૙, ࢘ ∈ Թ. 

It remains to extend the operations ൅ and ൈ to Թ# . 

Definition 8.11.  

(i)  ሾࢌ૚ሿ࢙ ൅ሾࢌ૛ሿ࢙ ൌ࢙ ሾࢍሿ࢙ iff 

           ሼ࢏ ࢙∋ ሻ࢏૚ሺࢌ|܄ ൅ ሻ࢏૛ሺࢌ ൌ ሻሽ࢏ሺࢍ ࢙∋ ऐࢉ࢔࢏,   

ሺܑܑሻ            ሾࢌ૚ሿ࢙ ൈ ሾࢌ૛ሿ࢙ ൌ࢙ ሾࢍሿ࢙ iff 

                   ሼ࢏ ࢙∋ ሻ࢏૚ሺࢌ|܄ ൈ ሻ࢏૛ሺࢌ ൌ ሻሽ࢏ሺࢍ ࢙∋ ऐࢉ࢔࢏,    

       ሺܑܑܑሻ         ሾࢌ૚ሿ࢝ ൅ሾࢌ૛ሿ࢝ ൌ࢝ ሾࢍሿ࢝ iff 

            ሼ࢏ ࢝∋ ሻ࢏૚ሺࢌ|܄ ൅ ሻ࢏૛ሺࢌ ൌ ሻሽ࢏ሺࢍ ࢝∋ ऐࢉ࢔࢏,   

        ሺܑܞሻ            ሾࢌ૚ሿ࢝ ൈ ሾࢌ૛ሿ࢝ ൌ࢝ ሾࢍሿ࢝ iff 

                   ሼ࢏ ࢝∋ ሻ࢏૚ሺࢌ|܄ ൈ ሻ࢏૛ሺࢌ ൌ ሻሽ࢏ሺࢍ ࢝∋ ऐࢉ࢔࢏,    

        ሺܞሻ          ሾࢌ૚ሿ࢝૚ ൅ሾࢌ૛ሿ࢝૚ ൌ࢝૚ ሾࢍሿ࢝૚ iff 

                   ൛࢏ ૚࢝∋ ሻ࢏૚ሺࢌ|܄ ൅ ሻ࢏૛ሺࢌ ൌ ሻൟ࢏ሺࢍ ૚࢝∋ ऐ
   ,ࢉ࢔࢏

        ሺܑܞሻ            ሾࢌ૚ሿ࢝૚ ൈ ሾࢌ૛ሿ࢝૚ ൌ࢝૚ ሾࢍሿ࢝૚ iff 

                   ൛࢏ ૚࢝∋ ሻ࢏૚ሺࢌ|܄ ൈ ሻ࢏૛ሺࢌ ൌ ሻൟ࢏ሺࢍ ૚࢝∋ ऐ
    .ࢉ࢔࢏

With these definitions one can prove easily that Թ#  is an 
paraconsistent ordered field extension of Թ. 

Definition 8.12. Let ࡲ be an ࢔-ary function on Թ, i.e.,           
࢔Թ:ࡲ → Թ. We introduce now:  

(i) the extended consistent function ࢙#ࡲ  by the 
strong equivalence   

,࢙૚ሿࢌሺሾࡲ                  … , ሾ࢔ࢌሿ࢙ሻ ൌ࢙ ሾࢍሿ࢙
࢙#  iff              (59) 

                 ൛࢏ ࢙∋ ,ሻ࢏૚ሺࢌ൫ࡲ|܄ … , ሻ൯࢏ሺ࢔ࢌ ൌ ሻൟ࢏ሺࢍ ࢙∋ ऐࢉ࢔࢏,   

(ii) the extended weakly consistent function ࢝#ࡲ  
by the weakly consistent equivalence   

,࢝૚ሿࢌሺሾࡲ                   … , ሾ࢔ࢌሿ࢝ሻ ൌ࢝ ሾࢍሿ࢝
࢝#  iff             

(60) 

                   ൛࢏ ࢝∋ ,ሻ࢏૚ሺࢌ൫ࡲ|܄ … , ሻ൯࢏ሺ࢔ࢌ ൌ ሻൟ࢏ሺࢍ ࢝∋ ऐࢉ࢔࢏,   

(iii) the extended inconsistent function ࡲ
૚࢝#  by the 

inconsistent equivalence   

,૚࢝૚ሿࢌ൫ሾࡲ                   … , ሾ࢔ࢌሿ࢝૚൯ ൌ࢝૚ ሾࢍሿ࢝૚
૚࢝#  iff    

(61) 

                   ൛࢏ ૚࢝∋ ,ሻ࢏૚ሺࢌ൫ࡲ|܄ … , ሻ൯࢏ሺ࢔ࢌ ൌ ሻൟ࢏ሺࢍ ૚࢝∋ ऐ
   .ࢉ࢔࢏

Definition 8.13. Let ࡾ ⊆ Թ࢔ be an ࢔-ary relation on  Թ. We 
introduce now: 

(i) the extended consistent relation ࢙#ࡾ  by the 
consistent condition   

                〈ሾࢌ૚ሿ࢙, … , ሾ࢔ࢌሿ࢙〉 ࢙∋ ࢙#ࡾ      iff 

                    ሼ࢏ ࢙∋ ,ሻ࢏૚ሺࢌ〉|܄ … , 〈ሻ࢏ሺ࢔ࢌ ∈ ሽࡾ ࢙∋ ऐࢉ࢔࢏,   

(ii) the extended weakly consistent relation ࢝#ࡾ  
by the weakly consistent condition   

                〈ሾࢌ૚ሿ࢝, … , ሾ࢔ࢌሿ࢝〉 ࢝∋ ࢝#ࡾ      iff 

                    ሼ࢏ ࢝∋ ,ሻ࢏૚ሺࢌ〉|܄ … , 〈ሻ࢏ሺ࢔ࢌ ∈ ሽࡾ ࢝∋ ऐࢉ࢔࢏,   

(i) the extended inconsistent relation ࡾ
૚࢝#  by the 

inconsistent condition   



                〈ሾࢌ૚ሿ࢝૚, … , ሾ࢔ࢌሿ࢝૚〉 ૚࢝∋ ࢙#ࡾ      iff 

                    ൛࢏ ૚࢝∋ ,ሻ࢏૚ሺࢌ〉|܄ … , 〈ሻ࢏ሺ࢔ࢌ ∈ ൟࡾ ૚࢝∋ ऐ
   .ࢉ࢔࢏

Remark8.6. Note a few elementary observations on the         
#-extensions of subsets of Թ:  

(i) ∅#࢙ 	is the consistent empty set in Թ# ,	e.g., 
ࢠ∀ ࢙∋ Թ# ൓൫ࢠ ࢙∋ ࢙#∅ ൯,  

(ii) ∅#࢝ 	is the weakly consistent empty set in 
Թ# ,	e.g., ∀ࢠ ࢝∋ Թ# ൓൫ࢠ ࢝∋ ࢝#∅ ൯,  

(iii) ∅
૚࢝# 	is the inconsistent empty set in Թ# ,	e.g., 
ࢠ∀ ૚࢝∋ Թ# ൓൫ࢠ ૚࢝∋ ࢝#∅ ൯,  

(iv) if  ࡱ ⊆ Թ then ࢙#࢘ ࢙∋ Թ#  for all ࢘ ∈ Թ, 

(v) if  ࡱ ⊆ Թ then ࢝#࢘ ࢝∋ Թ#  for all ࢘ ∈ Թ, 

(vi) if  ࡱ ⊆ Թ then ࢘
૚࢝# ૚࢝∋ Թ#  for all ࢘ ∈ Թ, 

Remark8.7. Note that # is a Boolean homomorphism in the 
sense that for any sets ࡱ૚, ૛ࡱ ⊆ Թ:  

ሺiሻ ሺࡱ૚ ࢙∪ ૛ሻࡱ
࢙# ൌ࢙	 ૚ࡱ

࢙# ࢙∪ ૛ࡱ
࢙# , 

ሺiiሻ 	 ሺࡱ૚ ࢙∩ ૛ሻࡱ
࢙# ൌ࢙	 ૚ࡱ

࢙# ࢙∩ ૛ࡱ
࢙# , 

ሺiiiሻ ሺࡱ૚ ࢝∪ ૛ሻࡱ
࢝# ൌ࢝	 ૚ࡱ

࢝# ࢝∪ ૛ࡱ
࢝# , 

ሺivሻ 	 ሺࡱ૚ ࢝∩ ૛ሻࡱ
࢝# ൌ࢝	 ૚ࡱ

࢝# ࢝∩ ૛ࡱ
࢝# , 

ሺvሻ ൫ࡱ૚ ૚࢝∪ ૛൯ࡱ
૚࢝# ൌ࢝૚	 ૚ࡱ

૚࢝# ૚࢝∪ ૛ࡱ
૚࢝# , 

ሺviሻ ൫ࡱ૚ ૚࢝∩ ૛൯ࡱ
૚࢝# ൌ࢝૚	 ૚ࡱ

૚࢝# ૚࢝∩ ૛ࡱ
૚࢝# . 

Remark8.8. Note that for any sets ࡱ૚, ૛ࡱ ⊆ Թ  

(i)  ࡱ૚
࢙# ൌ࢙ ૛ࡱ

࢙#  iff ࡱ૚ ൌ  ,૛ࡱ

(ii)  

 

Remark8.9.By virtue of (59)-(61) the absolute-value 
function |°| has an extension to Թ#  that we will denote by 
the usual |°| rather than the “correct” |°|# . 

Definition8.14.  

(i)  An element ࢞ ࢙∋ Թ#࢙  is called ࢙-finite if 

|࢞| ൏ 	 ࢙#࢘  for some ࢘ ∈ Թ, ࢘	 ൐ 	૙, 

 

 

 

 

Definition 8.15.  

 

(1) An element  ࢛ ࢙∋  standard set-࢙ is called an	ᇱሻ܄ሺ܅
if there is ࢞ ࢙∋ ሻ܄ሺ܅ ൌ ࢛ such that ܄ ൌ࢙ ࢙#.࢞  

(2)  

(3) An element  ࢛ ∈  is called an internal set if	ᇱሻ܄ሺ܅
there is ࢞ ∈ ሻ܄ሺ܅ ൌ ࢛ such that ܄ ∈ #.࢞  

Remark8.3. Note that: (i) any standard set is internal set and                   
(ii) ܅ሺ܄ᇱሻ ⊆ ሻ܄ሺ܅ ൌ  	.܄

Theorem 8.2. Any element  ࢛ ∈  .ᇱሻ  is internal set܄ሺ܅

Proof. Assume that ࢛ ∈ ࢛ ᇱሻ. Then܄ሺ܅ ∈ ܄ ൌ ᇱ܄ ൌ #܄ 		and 
therefore  ࢛ ∈ #܄ .	

For a set ࡿ, let  ࡿ ൌ࣌ ሼ ࢙|࢙ ∈ ࣌ࡿ ሽ. We identify any ࢠ#  with ࢠ 
for all ࢠ in ԧ.	Hence,	 ࡿ ൌ࣌ 	,.e.g	ԧ,	of	subset	a	is	S	if	ࡿ
ԧ ൌ࣌ ԧ,	 Թ ൌ࣌ Թ,	etc.		

Designations	8.4.	Let	Թା,	 Թ, Թା,## Թ૙
# ,	 Թ# ૙

ା, Թ# ஶ
ା , Գ# ,	

	 Գஶ,
# ܖܑ܎	 Թା ൌ# Թା/ Թ# ஶ

ା ,# 		denote	the	sets	of	positive	
real	numbers,	hyperreal	numbers,	positive		hyperreal	
numbers,	infinitesimal	hyperreal	numbers,	positive	
infinitesimal	hyperreal	numbers,	positive	infinite	
hyperreal	numbers,	hypernatural	numbers,	infinite	
hypernatural	numbers		and	finite	positive	hyperreal	
numbers	respectively.		

Designations 8.6. Let Թ෩ ൌ Թ ∪ ሼേ∞ሽ. 

Remark8.5. Note that: Թ# ஶ
ା ൌ Թା/# Թା, Գஶ

# ൌ Գ/# Գ, 

Թ෩# ൌ Թ# ∪ ሼേ∞ሽ ൌࢌࢋࢊ Թ# ∪ ൛േ ∞# ൟ# .  

Theorem 8.3. (i) Every nonempty internal subset of Գ#        
has a ൏ െleast element at least in inconsistent sense. (ii) 
Every nonempty internal subset of Թ#  with an upper bound 
has a ൏ െleast upper bound at least in inconsistent sense. 
Proof. We prove (i), so let ࡭ ⊆ Գ#   be internal. Then  



࡭ ∈ ૛܅
# ሺ܄ሻ. One can express the fact that any nonempty 

internal subset ࢄ of Գ#  has a least element by the condition 
૎ቀ Գ# , ૛܅

# ሺ܄ሻቁ ൌࢌࢋࢊ ࢄ∀ ∈ ૛܅
# ሺ܄ሻൣሺࢄ ് ∅ሻ ∧

൫ࢄ ⊆ Գ# ൯ → ࢇ	ܛ܉ܐ	ࢄ ൏ െܜܛ܉܍ܔ	ܜܖ܍ܕ܍ܔ܍	൧,  where we 
write ࢞ ൏ ࢞for ሺ ࢟ ൏࢙ ሻ࢟ ∨ ሺ࢞ ൏࢝  ሻ. The condition that any࢟
ࢄ ⊆ Գ  has a ൏-least element are: ࣐൫Գ,܅૛ሺ܄ሻ൯ ൌࢌࢋࢊ ࢄ∀ ∈
࢞∃ሻ܄૛ሺ܅ ∈ ࢟∀ሾࢄ ∈ ࢟൓ሺࢄ ൏  ሻሿ. We thus have a condition࢞
 ሻ. By܄૛ሺ܅ ሻ൯ is true in܄૛ሺ܅,൫Գ࣐ ሻ൯ such that܄૛ሺ܅,൫Գ࣐
paraconsistent transfer ૎ቀ Գ# , ૛܅

# ሺ܄ሻቁ is true in ܅૛
# ሺ܄ሻ 

at least in inconsistent sense. 

Theorem 8.4. (i) The subset of infinite hypernatural numbers  
Գஶ ⊂# Գ#  has a ൏࢝૚െleast element. 

(ii) The subset of positive real numbers Թା ⊂ Թ#  
has a ൏࢝૚െleast upper bound.  

(iii) Proof. Immediately follows by theorem 8.2 and 
theorem 8.3. 

Remark8.5. Let  Գෙஶ  be a ൏࢝૚െleast element of Գஶ.
#   

It is clear that Գෙஶ satisfy inconsistent properties:  

(i)   Գෙஶ െ ࢔ ൏࢝૚ Գෙஶ	and		

(ii) 		൓൫Գෙஶ െ ࢔ ൏࢝૚ Գෙஶ൯ , where ࢔ ∈ Գ.  

However by restricted modus ponens 

  ൫Գෙஶ െ ࢔ ൏࢝૚ Գෙஶ	൯ ∧ ൓൫Գෙஶ െ ࢔ ൏࢝૚ Գෙஶ൯ ⊬  .࡭

Theorem 8.5. Peano induction postulate valid for  Գ# , e.g., 

ࢄ∀ ⊆ Գ# ൣ૚ ∈ ࢄ ∧ ࢞ሾ࢞∀ ∈ ࢄ → ࢞ ൅ ૚ ∈ ሿࢄ → ࢄ ൌ
Գ# ൧(34) 

at least in inconsistent sense. 

Proof. The condition ࣐ቀ Գ# , ૛܅
# ሺ܄ሻቁ that for any ࢄ ⊆ Գ#  

Peano induction postulate valid for  Գ#  are: 

ቀ࣐                            Գ# , ૛܅
# ሺ܄ሻቁ ൌ(35)                           ࢌࢋࢊ 

ࢄ∀ ∈ ૛܅
# ሺ܄ሻൣ૚ ∈ ࢄ ∧ ࢞ሾ࢞∀ ∈ ࢄ → ࢞ ൅ ૚ ∈ ሿࢄ → ࢄ ൌ

Գ# ൧.	     

The condition ࣐൫Գ,܅૛ሺ܄ሻ൯ that for any ࢄ ⊆ Գ Peano 
induction postulate valid for Գ are: 

ሻ൯܄૛ሺ܅,൫Գ࣐                                   ൌ(36)                          ࢌࢋࢊ 

ࢄ∀ ∈ ሻሾ૚܄૛ሺ܅ ∈ ࢄ ∧ ࢞ሾ࢞∀ ∈ ࢄ → ࢞ ൅ ૚ ∈ ሿࢄ → ࢄ ൌ Գሿ.  

By paraconsistent transfer ࣐ቀ Գ# , ૛܅
# ሺ܄ሻቁ is true in 

૛܅
# ሺ܄ሻ at least in inconsistent sense. 

Remark8.5. Note that by other hand, theorem 8.5 follows 
directly from theorem 8.3. Proof. Assume that:  

(i)  there exist some ࢄ ⊆ Գ#  such that ૚ ∈ ࢄ ∧
࢞ሾ࢞∀ ∈ ࢄ → ࢞ ൅ ૚ ∈   ሿ andࢄ

(ii)  ࢄ ് Գ#  even in inconsistent sense, e.g., there 
exist some ࢔ ∈ Գ#  such that:                         
൫࢔ ∈ Գ# ൯ ∧ ሺ࢔ ∈ ሻࢄ ⊢   .࡭

Let ࢅ ⊆ Գ#  be a set: 

ࢅ                 ൌ ൛࢓ ∈ Գ|൫࢓ ∈ Գ# ൯ ∧ ሺ࢓ ∈ ሻࢄ ⊢ #࡭ ൟ.     (37) 

By theorem 8.3 a set ࢅ has a ൏࢝૚െleast element ࢘ ∈  at) ࢅ
least in inconsistent sense) and therefore by statement (i) we 
obtain  ࢘ െ ૚ ∈  at least in inconsistent sense. Then again ࢄ
by statement (i) we obtain ሺ࢘ െ ૚ሻ ൅ ࢘ ൌ ࢘ ∈  By .ࢄ
definition (37) finally we obtain that there exist ࢘ ∈  and ࢄ
࢘ ∈ ࢄ ⊢  .But this is a contradiction .࡭

Definition 8.6. A hypersequence is a function whose domain 
is a hypernatural number or Գ# . A shypersequence whose 
domain is some hypernatural number  ࢔ ∈ Գ#  is called a 
hyperfinite sequence of length ࢔. 

Definition 8.7. A function ࢚ ∶ 	 ሺ࢓	 ൅ 	૚ሻ 	→  is called an ࡭	
૙࢚ if ࢍ and ࢇ step computation based on-࢓ 	ൌ  and for all ,ࢇ	
	such that ૙ ࢑ ൑ 	࢑ ൏ ,࢓	 ା૚࢑࢚ 	ൌ ,࢑࢚ሺࢍ	  .ሻ࢑

Definition 8.8. For any set ࡭ ⊆ Գ#  and any function 
ࢌ ∶ ࡭	 ൈ Գ# → ࡭		 ∶	 

(i) Function ࢌ are called a weakly consistent, if 
whenever  ࢌሺ࢞ሻ ൌ࢝  ሻ, it must be the case࢟ሺࢌ
that ࢞ ൌ࢝ ሻ࢞ሺࢌand both statements ൓ሺ ࢟ 	ൌ
࢞ሻሻ and ൓ሺ࢟ሺࢌ	 ൌ࢝  ሻ does not true in࢟
૛܅
# ሺ܄ሻ. 

(ii) Function ࢌ are called inconsistent, if   
ሻ࢞ሺࢌ ൌ࢝ ࢞ ሻ, it must be the case that࢟ሺࢌ ൌ࢝  ࢟
and both statement ൓ሾሺࢌሺ࢞ሻ 	ൌ ሻሻ࢟ሺࢌ	 ∧
ሺ࢞ ൌ࢝ ૛܅ ሻሿ is true in࢟

# ሺ܄ሻ. 

Definition 8.9. For any set ࡭ ⊆ Գ#  and any functions 

ࢌ ∶ ࡭	 ൈ Գ# → ,	࡭		 ࢍ ∶ ࡭	 ൈ Գ# →   :࡭		

(i) Functions ࢌ and ࢍ are called compatible if 
ሻ࢞ሺࢌ 	ൌ ࢞ ሻ for all࢞ሺࢍ	 ∈ ࢌ	ܕܗ܌ ∩   .ࢍ	ܕܗ܌

(ii) A set of functions ࡲ is called a compatible 
system of functions if any two functions ࢌ and 



 .are compatible ࡲ from ࢍ

(iii) Functions ࢌ ∈ ૛܅
# ሺ܄ሻ and ࢍ ∈ ૛܅

# ሺ܄ሻ are 
called a strongly compatible if ࢌሺ࢞ሻ 	ൌ  ሻ࢞ሺࢍ	
for all ࢞ ∈ ࢌ	ܕܗ܌ ∩  and statement ࢍ	ܕܗ܌
൓ሺࢌሺ࢞ሻ 	ൌ ૛܅ ሻሻ does not true in࢞ሺࢍ	

# ሺ܄ሻ. 

(iv) A set of functions ࡲ is called a strongly 
compatible system of functions if any two 
functions ࢌ and ࢍ from ࡲ are strongly 
compatible. 

Theorem 8.6.(1) If ࡲ is a compatible system of 
functions, then ∪   is a function with ࡲ

∪ሺܕܗ܌ ሻࡲ ൌ ⋃ሼࢌܕܗ܌	ࢌ| ∈    .ሽࡲ

The function ܕܗ܌ሺ∪ ࢌ ሻ  extends allࡲ ∈  .ࡲ

(2)If ࡲ is a strongly compatible system of functions, then ∪  ࡲ
is a function with ܕܗ܌ሺ∪ ሻࡲ ൌ ⋃ሼࢌܕܗ܌	ࢌ| ∈    .ሽࡲ

 

Theorem 8.7. (Recursion Theorem) (I) For any set ࡭ ⊆
Գ# , any ࢇ ∈ ࢍ and any function ,࡭	 ∶ ࡭	 ൈ Գ# →  there ,࡭		

exists a hypersequence  ࢌ ∶ 	 Գ# →  such that ࡭		

૙ࢌ (1) ൌ  ࢇ

ା૚࢔ࢌ (2) ൌ ,࢔ࢌሺࢍ ࢔∀ ሻ࢔ ∈ Գ#  

Proof. (The existence of ࢌ) 

Let ࢇ ∈ ࢍ and ,࡭	 ∶ ࡭	 ൈ Գ# →                 Let .࡭		

	ࡲ  ൌ ሼ࢚ ∈ ࡺሺࡼ ൈ ࢓	ܖ܉	ܛܑ	࢚	|	ሻ࡭ െ  		ܖܗܑܜ܉ܜܝܘܕܗ܋	ܘ܍ܜܛ

࢓	܍ܕܗܛ	ܚܗ܎	ࢍ	܌ܖ܉	ࢇ	ܖܗ ∈ Գ# ሽ. Let ࢌ ൌ	∪  .ࡲ

Claim 1: ࢌ is a function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IX.Carleson's theorem and 
generalizations in dimentions ࡺ ൒ ૚. 

Carleson's celebrated theorem of 1965 [38] asserts the 
pointwise convergence of the partial Fourier sums of square 
integrable functions. The Fourier transform has a formulation 
on each of the Euclidean groups Թ,Ժ and લ. Carleson's 
original proof worked on Τ. Fefferman's proof translates very 
easily to Թ. Mate [39] extended Carleson's proof to Ժ. Each 
of the statements of the theorem can be stated in terms of a 
maximal Fourier multiplier theorem [40]. Inequalities for 
such operators can be transferred between these three 
Euclidean groups, and was done P. Auscher and M.J. Carro 
[41]. But L. Carleson's original proof and another proofs very 
long and very complicated. A very short proof Carleson's 
theorem using Paraconsistent Transfer Principle is given in 
[36]. In contrast to Carleson's method, which is based on 
profound properties of trigonometric series, the proposed 
approach is quite general and allows to research a wide class 
of analogous problems for the general orthogonal series. Let 
us consider any general orthogonal series in Hilbert space 
૛ሺષሻ,ષࡸ ⊆ Թ: 

 

Conclusions 



We pointed out that appropriate resolution of Curry’s 
Paradox and Shaw-Kwei's paradox resolution can be given 
without rejection any contraction postulate. 
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