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Association of spatial information about targets is convention-

ally based on measures such as the Euclidean or the Mahalanobis

distance. These approaches produce satisfactory results when tar-

gets are more distant than the resolution of the employed sensing

principle, but is limited if they lie closer. This paper describes an

association method combined with classification enhancing perfor-

mance. The method not only considers spatial distance, but also

information about class membership during a post-processing step.

Association of measurements that cannot be uniquely associated to

only one estimate, but to multiple estimates, is achieved under the

constraint of conflict minimization of the combination of mutual

class memberships.

With Monte Carlo simulations the performance of this new

method is compared with a Kalman filter. This evaluation is per-

formed in a multi-target environment with unknown correspon-

dence between measurements and targets. The evaluation can not

be only based on the root mean square error (RMSE) of the position

estimate, but requires a performance assessment of the underlying

target number estimation and the association. Therefore, two new

measures are introduced.

The new method outperforms the Kalman filter approach with

respect to association performance and RMSE.
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1. INTRODUCTION

This paper describes the improvement of localization
of targets through information fusion. In particular,
information about static targets is fused, that are closely
lying below surface, for so named Ground Penetrating
Localization (GPL).
GPL is used in various fields such as in geology,

mine sweeping, and Urban Search and Rescue (USAR).
This paper focuses on USAR. The employed methods
for GPL can be classified into three categories illus-
trated in Fig. 1: detection, localization, and verification
methods.

Fig. 1. Ground-penetrating localization (GPL) of targets ti by

different types of methods in xz-plane: Detection, Localisation, and

Verification. In the scan volume of the detection method, two targets

can not be discerned because they lie within the resolution of the

sensing principle.

Detection methods produce a binary result with a
given detection probability of whether there is a target
within their scan volume. The detection probability
density is uniform within the scan volume as detection
methods are unable to localize targets. A detection is
determined by the signal to noise ratio and the detection
threshold. An example detection method is a search dog
sniffing out a victim.
In contrast, a localization method not only detects

(with a given detection probability) a target within its
scan volume, but can also localize its position. Local-
ization can consist of a one-dimensional range measure-
ment, a direction, or three-dimensional coordinates. Ex-
amples for localization methods are: Ground Penetrating
Radar (GPR) systems [29], cellular phone localiza-
tion [13].
Whereas both of the previous methods can only

produce uncertain results with respect to the exis-
tence of a target, verification methods can provide ev-
idencethrough visual or physical inspection. The prob-
lem with verification methods consists of knowing
where evidence about a target has been collected. This is
often not trivial during ground-penetrating exploration
that is often operated in an unknown environment with-
out a map. Endoscopes and rescue robots can for in-
stance be classified under verification methods since
they can penetrate into a rubble pile and provide evi-
dence about the whereabouts of victims [15].
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GPL with detection and localization methods corre-

sponds to remote sensing because the perceptive organs

or devices remain at the surface while the targets are

in the ground (see Fig. 1). In such remote sensing sit-

uation, a single sensor often only provides an incom-

plete, imprecise, and uncertain (for definitions refer to

[5]) picture about the target location. Therefore, it is

common practice to employ multiple sensors of differ-

ent types–i.e., heterogeneous sensors–and to fuse the

readings. However, if multiple targets lie close to each

other, the resolution capabilities are limited to that of

each single sensor.

The idea behind the proposed performance enhance-

ment solution is that the sensing by heterogeneous sen-

sors is based on target attributes that are not necessar-

ily the same among all targets and can be sensed by

search methods. These attributes are for instance the

health condition, respiration frequency, and size of a

buried victim. For instance, the GPR is capable of mea-

suring the respiration frequency which might be differ-

ent for every individual. Association is compromised

if a measurement can be associated to multiple closely

lying position estimates of a target. In this case, if the

association method not only considers spatial aspects

but previously detected unique attributes of the targets

as well, measurements can be unambiguously attributed

to the appropriate targets. The hypothesis is that imple-

menting this idea enhances localization performance.

Unknown material between the surface and the tar-

get impedes not only the target position estimation, but

also the fundamental detection accuracy. The scan vol-

ume is commonly unknown as well. The sensing range

corresponds to the maximal distance between target and

surface for which a true-positive detection occurs with

sufficient probability. Resolution expresses the minimal

mutual distance at which two targets can be detected

individually. For instance, the distribution of steel re-

inforced walls may be unknown, but will influence the

range and resolution of GPR. If the localization method,

despite some expectable position measurement error, is

capable of identifying the targets within its scan vol-

ume, the distinction of targets is easy, but this is often

not possible. In order to circumvent these limitations,

sensing can be carried out multiple times at different

locations and orientations, as presented in Fig. 1.

When errors are random, redundant fusion may be

used to increase the reliability, accuracy of and con-

fidence in the information [21]. Systematic errors can

be minimized using heterogeneous GPL methods. For

instance, a systematic error may only affect one sensor

type, but not others. Applying multiple sensing princi-

ples may allow decreasing, or even detecting and elim-

inating systematic errors.
In terms of the Joint Directors of Laboratories (JDL)

Data Fusion Working Group, this paper is limited to
Level 1 Object Refinement [12]. In multi-target track-
ing applications using multiple sensors, several fusion
architectures exist [11, 21]. The particularity of the

Association with Classification (AC) method presented
in this paper, is that it combines centralized fusion of

locational and feature information. However, we restrict

the focus to features that do not allow for the identifi-

cation of a target. AC only demonstrates its full poten-

tial, if the sensing by heterogeneous sensors is based on

multiple attributes. It is applicable for GPL of multiple,

unique targets, such as USAR of trapped victims or for

geologic exploration.

In Section 2, the state of the art is presented. In Sec-

tion 3, the problem of uncertain and imprecise informa-

tion association is formulated. The AC method based on

an initial probabilistic association and post-processing

using a possibilistic approach, is presented in Section 4.

The simulation environment and the performance mea-

sures used for benchmarking AC with a Kalman Filter

with an association gate are described in Section 5. The

results of a Monte Carlo simulation are presented in

Section 6 and discussed in Section 7.

2. STATE OF THE ART

Combining data originating from different sources

with the goal to improve the quality of information, is

called data fusion [28]. In pattern recognition, the data

originates mostly from a single source and is “complete”

when processed [16]. This paper focuses on scenarios

where information can be “incomplete” because it is

collected on demand.

Data fusion techniques have been developed for

tracking mobile targets. Hence, they are particularly

suited for dynamic worlds. In early work, the filters

were restricted to situations where a single target is be-

ing monitored. At every time step, only one measure-

ment was selected to update the state. Filters such as

Nearest Neighbor or Strongest Neighbor satisfied these
requirements. However, multiple observations may be

available to improve the accuracy of the estimate for the

single target. The Probabilistic Data Association (PDA)
filter is an “all-neighbor” approach that uses all neigh-

boring observations within some gated region and im-

proves the state estimation ([2], p. 299). However, the

tracking performance of multiple targets using the PDA

filter is poor, since “: : : the computation of the associ-
ation probabilities separately for each target is not ef-

fective in the presence of a neighboring target.” ([3],

p. 325) The stability of target tracks while crossing is

compromised by the persistent interference of the mea-

surements of neighboring targets. This applies also to

static worlds.

The Joint PDA (JPDA) filter suggested by Bar-

Shalom jointly calculates the probability of measure-

ments belonging to targets, to overcome the mentioned

limitations of PDA filters. However, the underlying as-

sumption of a JPDA filter is that a measurement only

originates from one target at every time step of a scan.

In static worlds, multiple measurements may sup-

port a single target. The bijective constraint between

measurement and target has to be withdrawn to be able
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to associate multiple measurements with a single tar-

get. Probabilistic association techniques for multi-target

environments in data fusion systems rely on validation

gates.1 The gates around position estimates allow the

association of measurements based on a probabilistic

approach. An alternative is Multiple Hypothesis Tracker

(MHT) that represents a measurement centric approach.

Because it is difficult to consider all association vectors,

this approach requires pruning [27]. Furthermore, it is

designed to make a single inference on one target ob-

ject [17]. Hence, it would need to be extended to handle

multiple targets.

To overcome the resolution limitation in dense multi-

target environments, the JPDA with Merged measure-
ments filter (JPDAM) has been suggested. It accounts

for situations where a measurement may have originated

from the detection of multiple targets that are indistin-

guishable. The membership of a merged measurement

to a track is calculated depending on its respective sig-

nal strength ([3], p. 366), i.e., an unresolved or merged

measurement carries less information (relative to its sig-

nal strength) than a resolved measurement. In GPL this

approach is often not possible since a measurement’s

relative signal strength can not be expressed. Hence,

hard association is favored.

The possibilistic association of Ayoun, et al. [1]

based on the Transferable BeliefModel (TBM) of Smets

[24] is limited on the one hand by a discretized resolu-

tion grid and on the other by the computational effort

[14], but has the interesting distinction of allowing to

search for the target location based on conflict min-

imization within a finite set of measurements. Possi-

bilistic approaches of association based on class mem-

bership for target type estimation are presented in Chap-

ter 13 of [23], but are limited to a single target and are

designed for dynamic worlds.

Clustering methods such as k-means are inappropri-

ate because they require the number of expected tar-

gets which is unknown. There are methods to iteratively

evaluate the measurements with varying estimated tar-

get number and choose the one which minimizes or

maximizes a given measure. However, this represents

a bigger computational burden which decreases effi-

ciency. Furthermore, the results of k-means clustering

are not reproducible since they are dependent upon the

initial conditions. Methods of statistical pattern recog-

nition such as Expectation Maximization or density es-

timation have the advantage of considering class mem-

bership, but need a considerable amount of information

1The validation gate is depicted by an ellipse centered about the nom-

inal position estimate that represents the contour of constant probabil-

ity (in two dimensions) for a multivariate Gaussian distribution [26].

To filter measurements that are not associated with an estimate (i.e.,

the information source) is the purpose of a validation gate that corre-

sponds to the volume around the position estimate ([20], p. 157). If

the Mahalanobis distance between an estimated target and a measure-

ment is smaller than a predefined threshold, the latter is associated

with the former.

to work properly, their computational effort is greedy

[16]. Furthermore, their design is particularly adapted

for static fusion and not for dynamic fusion.

3. FORMULATION OF THE ASSOCIATION
PROBLEM

The association aims to link measurements to a po-

sition estimate (M2E). A measurement ~r and a position

estimate ~̂r are both described by a position (x,y,z) and
a class membership mass function m. In the following,
the vector sign is omitted.

The challenge in M2E association lies in initiating

and revising a position estimate.2 If the sparsity of a

scenario (i.e., the minimal distance between targets) is

smaller than the resolution, accurate position estimates

are challenging3 [6].

The description of the association problem will be

twofold. First, we explain the processing of measure-

ments without considering their class membership, rep-

resented by the orientation of the shapes of the mea-

surements in Fig. 2. Second, the same case is revisited

considering the class membership.

Association without classification: The following

example is based on Bar-Shalom’s terminology [3] and

illustrates the complexity of the association problem

without classification consideration. The binary valida-

tion matrix −ij (see Eq. 2) expresses all feasible asso-
ciation events between measurements r and estimates
r̂ and is illustrated in Fig. 2. The rows represent the
measurements (r1, : : : ,ri, : : : ,r8 from top to bottom), the

middle column the estimate r̂1, and the right column
r̂2. The left column of the matrix indicates that every
measurement may originate from a spurious source. A

conjunctive area (A\B) is determined by intersecting
validation gates. Measurements that are within this area,

such as r5,r6,r7 in Fig. 2, require particular attention be-
cause there is more than one possible way of associating

them.

A measurement that could be simultaneously asso-

ciated to multiple estimates is called unresolved mea-

surement and is member of set Cur. A measurement

which can be associated to only one estimate r̂j is called
resolved measurement and is member of set Crej . Conse-
quently, if there is no associated estimate the measure-

ment is called unassociated measurement and is member

of set Cua (see r4 in Fig. 2). Whether r4 will initiate a
new estimate is determined by its detection probability.

The cases in following expression reflect these three

conditions quantitatively. The distinction is based on a

sum for a row of the validation matrix over the columns

from the first estimated target to the total estimated

number of targets N̂t.

2Tracking of mobile targets i.e., a dynamic state consists of revising

the state up to date, since it changes. However, the belief about the

static state is revised (not updated), because the state does not change.
3See measurements r5,r6,r7 in Fig. 2 which could be associated either

to estimate r̂1, to r̂2, to both, or to none.
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Fig. 2. Measurements (triangles ri) originating from two unknown targets (squares: t1 from top class and t2 from left class). Intersecting

validation regions (solid circles) around position estimates r̂1 (not filled triangle) categorized as top class member and uncategorized r̂2
(not filled star) based on resolved measurements (xy-plane). The validation regions A, B have the same size because the distribution of

measurements is unknown and presumed to be equal for any estimate.

ri 2

8>>>>>>>>>>>><>>>>>>>>>>>>:

Crej if

N̂tX
j=2

−ij = 1;

Cur if

N̂tX
j=2

−ij > 1;

Cua if

N̂tX
j=2

−ij = 0:

(1)

Association with classification: This processing re-
duces the feasible association events as presented in
Eq. 2:

−ij =

2666666666666664

1 1 0

1 0 1

1 0 1

1 0 0

1 1 1

1 1 1

1 1 1

1 1 0

3777777777777775
processing¡! −¤ij =

2666666666666664

1 1 0

1 0 1

1 0 1

1 0 0

1 1 1

1 1 0

1 0 1

1 1 0

3777777777777775
: (2)

In the following, three mutually exclusive classes
will be examined corresponding to the orientation of
the triangles in Fig. 2: top, bottom, left.
The relative complement areas of AnB and of BnA

are predominant for classification of estimates r̂1 and
r̂2, respectively. The measurements r1 and r8 are located
in the predominant area of estimate r̂1 (AnB). Based
on its membership to the top class, it can be inferred
that the estimate r̂1 most likely belongs to class top as
well. In contrast, no stringent inference on the class
membership of estimate r̂2 can be achieved, because
in its predominant region (BnA), conflicting classes
are present: left and bottom of r2 and r3, respectively.
However, it can be assumed that with an increasing
number of measurements present in the predominance
area, the classification errors become negligible.

Unresolved measurements for which association is

not unique can actually be assessed with respect to the

estimates’ class that was determined by the resolved

measurements. Top, unresolved measurement r6 can be

associated uniquely to r̂1 and becomes resolved. For
measurement r7 the situation is more complex since r̂2
has conflicting class membership. r̂2 could be left or
bottom. However, the left class corresponds more to

r̂2 than to r̂1. Hence, unresolved measurement r7 can be
associated uniquely to r̂2, and thus is resolved.
The class membership of measurement r5 is not

known. Hence, it can not be associated uniquely to any

of the two estimates and remains unresolved.

− becomes −¤ (see Eq. 2) when considering class
membership. It contains less feasible association events

than −.
These examples convey the complexity of associa-

tion considering class membership. Resolved measure-

ments must allow the determination of the estimate’s

class. The estimates must be of different classes in

order to be able to associate unresolved measurements

uniquely. If these constrains are fulfilled, unresolved

measurements in the conjunctive area can be resolved.

4. DESCRIPTION OF AC METHOD

Before presenting the two main steps of the AC

method, which consist of an initial probabilistic associ-

ation followed by a post-processing of unresolved mea-

surements, the underlying assumptions and simplifica-

tions will be explained.

4.1. Assumptions and Simplifications

The presented method can only be applied under the

following assumptions:

The localization performed by the sensors may be

based on different attributes of the targets. Since these

attributes may not be common to all targets, classi-

fication becomes feasible depending on the detected

attributes of the target. A sensor may be able to de-

tect multiple attributes at once, or heterogeneous sensor

technologies can be employed, which offer the opportu-

nity for complementary fusion,4 and can thus recognize

different classes. In this preliminary paper, the classi-

fication capability of sensors is assumed to be perfect

even if this can not be expected in reality.

4Definition provided in [8].
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Furthermore, not only do the sensors need to recog-

nize different classes, but targets must be of different

classes. It is also presumed that a measurement only

originates from one information source, unlike with a

JPDAM filter where (to some extent) the model tries to

associate a measurement to two targets.

The distribution of measurements around a target is

unknown, but is constant in static worlds, and its estima-

tion depends upon the number of measurements avail-

able. The measurement noise is usually modeled by a

Gaussian distribution ([27], p. 154). An erroneous esti-

mation of the number and position of targets can have

two sources. Either there are not enough measurements

concerning all targets, or the processing is incorrect.

In order to focus on latter, we consider only situations

where sufficient measurements for each target are avail-

able to determine their number and position.

In situations where not many measurements are to

be expected such as during USAR, the initiation can not

be based on multiple measurements. Hence, a position

estimate is initiated as soon as a new measurement is

generated that can not be associated.

4.2. Initial Step of Association Method

Association of measurements is based on the Maha-

lanobis distance, and consists of finding the correlation

between measurements and an information source. This

statistical squared distance indicates the probability that

measurement ri belongs to estimate r̂j . In the follow-
ing, matrices are represented by uppercase letters while

vectors are lowercase.

Assuming that a positional error of a measurement

r in two dimensions (x,y) can be described with a
Gaussian distribution, the following covariance matrix

can be used, where ½ is the correlation coefficient for x
and y [26]:

C =

Ã
¾2x ½¾x¾y

½¾x¾y ¾2y

!
: (3)

Since the distribution of measurements around the

target is unknown but constant, it is assumed to be

Gaussian. The validation gate is based on an estimate

of this distribution. The distance between measurement

and estimate is based on the sum of the covariance

matrices of the gate G and of the measurement Ri.
Unlike Kalman filters, G remains constant. Otherwise

it would converge, because fusion leads to a reduction

of uncertainty ([3], p. 444), i.e., the fused uncertainty

ellipse is strictly contained in the intersection of the

two ellipses prior to fusion (see Eq. 6). Hence, for an

increasing number of measurements, the probability of

association would decrease considerably and hinder the

association.

The Mahalanobis distance d2ij is defined in Eq. 4.
The gate threshold ° gives the maximal distance for the
association of measurements to an estimate.

d2ij = (ri¡ r̂j)T(Ri+G)¡1 (ri¡ r̂j)| {z }
innovation

· °: (4)

Following Smith and Cheeseman [26] the revision

of an estimate’s position r̂0j is calculated by:

r̂0j = r̂j +Ri(Ri+§j)
¡1(ri¡ r̂j) (5)

and its corresponding covariance matrix expressing im-

precision is:

§0j = Ri¡Ri(Ri+§j)¡1Ri: (6)

The standard application of Kalman filters is to process

random signals that are represented “: : :as the output
of a linear dynamic system excited by independent

or uncorrelated random signals (“white noise”)” [18].

This application differs from the standard application,

because it is not a dynamic system.

The processing order of measurements fusion, par-

ticularly when targets are spaced close together, influ-

ences the association and leads to erroneous associa-

tions. This is especially true with unresolved measure-

ments. In order to correct these erroneous associations,

a post-processing step is performed.

4.3. Post-Processing of Initial Association

The post-processing is based on fusion of class

membership information, where the chosen framework

is TBM. The advantage of this approach is that inference

from contradictory class information is possible. There-

fore, the finite set of propositions £ is extended to the

set of all subsets 2£ by conjunction and to the empty

set. The set of all subsets is also called frame of discern-

ment. With this extension, the exhaustive and the ex-

clusive assumptions on the proposition framework can

be disregarded. This disregard is equivalent to the open

world assumption. This assumption accepts that none of

the propositions may be true [24]. No matter how large

the frame of discernment is, it contains three different

proposition classes: the empty set Ø, the atomic proposi-

tions corresponding to £, and conjunctive propositions
(number: 2£¡£¡1). Belief in a proposiiont is quan-
tized by a function called basic belief assignment (bba)

m(A), A 2£. Let m : 2£! [0,1], where following con-

straints hold:X
Aμ£

m(A) = 1, m(Ø) = 0: (7)

(8)

It is worth noting that the conjunction of all atomic

propositions corresponds to the vacuous function, also

referred to as total ignorance. The main difference of

the seminal proposition of Dempster and Shafer [22] is

that the conjunctive combination of beliefs

m12(A) =
X
B\C=A

m1(B)m2(C) (9)
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in the TBM is not normalized, since:X
B\C=Ø

m1(B)m2(C)> 0: (10)

For this reason, TBM is able to express conflict

among beliefs. The conflict is given by the mass al-

located to the empty set. It is advantageous that the

combination is commutative and associative. Conflict,

reliability and uncertainty can be expressed quantita-

tively.

The method is also attractive because of the ease of

implementation by matrices, as presented in [25].

4.3.1. Class Membership of Predominant Areas
Class membership is computed by combining all

class membership mass vectors mi of the resolved mea-
surements (ri 2 Crej ) (i.e., measurements in the predom-
inant area of an estimate). The result is again a class

membership mass vector for r̂j : m
p
j . If estimates are very

close, there are most likely no resolved measurements

available. This will prove to be a limitation, and will be

evaluated in Monte Carlo simulations.

4.3.2. Resolving Unresolved Measurement
To determine the most likely association, the mass

vector m of an unresolved measurement (r 2 Cur) is
combined with the mass vector mpj of each r̂j , and the
minimal conflict is determined. The bijective association

is given by the combination with the minimum conflict.

mcij =mi ¢mpj 8ri 2 Cur: (11)

−ij =

½
1 if j =minmcij(Ø);

0 if j 6=minmcij(Ø):
(12)

ALGORITHM 1 Association with classification (AC)

Input: association threshold °, ri
Output: position estimates r̂j

1: Evaluate number N̂t and r̂j 8fri 2 Crej g
2: −ij Ã 1 if d2ij · °
3: if 9ri 2 Cur then
4: mpj Ãmi ¢mpj 8fri 2 Crej g
5: for 8ri 2 Cur do
6: for j = 1 to N̂t do
7: mcij Ãmi ¢mpj

fSave the association of minimal conflictg
8: if minmcij(Ø) then
9: kÃ j
10: end if

11: end for

fResolve measurementg
12: −¤ij Ã 0 8j 6= k^ j > 1
13: end for

14: end if

15: return r̂j Ã r̄i

8
½
ri j −¤ij = 1^

PN̂
t

j=2−
¤
ij = 1

¾

Fig. 3. Measurements (Nm = 20 with normal spatial error ¾e = 1 m)

around two targets (squares, distance dt = 4 m). The difference in

the class of the measurements (circle or dot) indicates the original

target (xy-plane).

The estimates’ positions of the post-processed mea-

surements are calculated by taking the average instead

of using Eq. 5, as for Kalman filters.

5. SIMULATION

The evaluation of the performance of the proposed

fusion method AC will be carried out in a Monte Carlo

simulation. It is compared with a Kalman filter approach

which is called Kalman Gating (KG). It corresponds

to the AC method, with the difference that the post-

processing step is omitted. The position of the estimates

is calculated using the sequential Kalman update Eq. 5.

Two targets will be considered in this simulation, but

the methods can cope with multiple targets. The distance

dt between the two targets is the main evaluation vector,
because it simulates various densities which may occur

in real scenarios. The scale of the scenario is assumed

to be in the order of meters.

Parameters determining AC and KG are the standard

deviation ¾ = 1 m of the constant gate covariance matrix
G and the gate threshold ° = 4.

5.1. Generation of Simulated Measurements about the
World State

Measurements around targets are presumed to be

subject to a normal measurement error with standard de-

viation ¾e. Each target is supported by the same number
of measurements. Each measurement’s spatial uncer-

tainty is assumed radially symmetric, and is expressed

by a covariance matrix Ri.
There are no outliers and no classification errors.

Only two classes are considered. Figure 3 represents

such a scenario.

The scenario and the simulation parameters are

given in Tables I and II, respectively.

5.2. Performance Measures

The quantitative evaluation of fusion methods re-

quires performance measures which are general enough

to be applied to all types of scenarios, including those

with more than two targets. The determination of the

estimates’ positions relies on a consecutive order of pro-
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TABLE I

Parameters of the GPL Scenario

Nt Nm ¾ of Ri=m ¾e=m

2 20 0.4 0.5

TABLE II

Parameters of the Monte Carlo Simulation

dt=m Step Size/m Repititions

0—5.5 0.1 1500

cessing steps. First, the number of targets has to be esti-

mated. Then the measurements have to be associated to

these estimates and finally, the positions of the estimates

are calculated based on the associated measurements.

The accuracy of the position estimate is expressed with

the RMSE, which depends on the correct estimation of

the number of targets and the correct association of mea-

surements to the estimates.

It is worth noting that the performance can only be

evaluated if all knowledge about the world is available.

The so called ground truth gives information about the

target position and the origin of a measurement.

Even if the RMSE is conditioned by the underlying

association performance, the performance of estimating

the number of targets and of associating measurements

to these position estimates will be evaluated individu-

ally.

5.2.1. Target Estimation

The fusion methods may generate a number of posi-

tion estimate N̂t that do not correspond to the real num-
ber of targets Nt.
A method’s performance in estimating the correct

number of targets is given by T: the quotient of the
number of estimated N̂t over the number of real targets
Nt as given in Eq. 13. For values T < 1 the method un-
derestimates and for T > 1 it overestimates the number
of targets.

T =
N̂t
Nt
: (13)

5.2.2. Association

The association performance A is the quotient of

the correctly associated measurements (Nm¡Nerr) over
the total measurements Nm originating from a target

(Eq. 14). A is strictly bound in the interval (1=Nt,1].

A=
Nm¡Nerr
Nm

: (14)

The evaluation of Nerr requires particular attention.
When the measurements are created, the index of their

original target is saved in an array. The aim of any as-

sociation method is to reconstruct this array (or “code

word”), but there are two complicating factors. First,

there might be Nerr errors that must be detected in the re-
constructed code and second, the sequence could possi-

bly be generated with a different character concordance.

For instance, following two code words5 c1 =
123123 and c2 = 321321 contain the same informa-
tion. However, characters “1” and “3” in c1 correspond
to character “3” and “1” in c2, respectively. The code
words use different permutations of the character set ª :

©1 = [1,2,3] 6=©2 = [3,2,1]:
Since the concordance is unknown, the generated

code word is transcribed with any possible concor-

dances that are all possible permutations ofª . The num-
ber of all possible permutation is: q! (in the example:
3! = 6).

For each of these possible permutations, the

Damerau-Levenshtein distance dDL is computed [4, 9].
The Damerau-Levenshtein distance is particularly suited

for the evaluation of q-ary codes. The number of asso-

ciation errors corresponds to the smallest dDL distance

between these transcribed code words c
©
i
trans and the orig-

inal code word corig (see Eq. 15).

Nerr = min
i
dDL(corig,c

©
i
trans) 8©i 2ª: (15)

5.2.3. Root Mean Square Position Error

The position estimate error is given by the mean of

the root mean square distance between estimated posi-

tions r̂j and target positions tk given in Eq. 16. Since in
GPL practice, the correspondence between estimate and

target remains unknown, only the most likely associa-

tion can be considered. At most, the presumption can be

made that the correct correspondence is the one with the

minimal Euclidean distance among their positions. The

significance of the RMSE is limited, even if the number

of estimated targets corresponds to the number of targets

(N̂t =Nt) because two estimates can be associated with
the same target. It is even more detrimental if the esti-

mation of the number is erroneous (N̂t 6=Nt), which is
why previously presented performance indicators about

target estimation and association are crucial.

RMSE=

vuuut 1

N̂t¡ 1

N̂
tX

j=1

min
k
(kr̂j ¡ tkk)2: (16)

6. RESULTS

The results of the Monte Carlo simulation are pre-

sented in Figs. 4, 5, and 6. The analysis of the results

represented in Figs. 4 and 5 is performed by comparison

with the cumulative intersection distribution function

Pint, i.e., the separation of two Gaussian distributions.
Eq. 17 expresses the cumulative intersection probabil-

ity of two uni-variate normal distributions with equal

5Length n= 6, character set ª = f1,2,3g, character set cardinality
q= jª j= 3.
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Fig. 4. The target estimation performance T evaluated through a

Monte Carlo simulation is represented over the distance dt between

two targets for the method KG and AC (lines interpolated). The

intersection probability Pint represents the overlap of the

measurements’ distribution. The methods’ performances are

identical.

Fig. 5. The association performance A is represented over the

distance dt between two targets for the KG and the AC method (lines

interpolated). AC outperforms the KG with respect to A when their

validation intersect, but do not match.

Fig. 6. The RMSE is represented over the distance dt between two

targets for KG and AC (lines interpolated). The characteristic peak in

the RMSE is dependent on the methods’ capability to detect the two

targets.

standard deviation ¾ as a function of dt:

Pint = 1¡ erf
μ

dt

2
p
2¾2

¶
: (17)

As AC is based on the KG for target number estima-

tion, their performances with respect to T are identical

as visible in Fig. 4. The graph is classified into two

regions depending on whether the target number Nt is
underestimated (region I) or overestimated (region II).

The AC method enhances the performance of cor-

rect association to estimates whenever validation gates

intersect, but do not match. An increase in the distance

dt in region I (see Fig. 5) improves the association per-
formance A. The maximal difference in association per-
formance (¢A) is reached at an intersection probability
of Pint = 3%.
The positional RMSE for both methods increases

in region I with an increasing distance dt. However,
the maximal error is reached for both methods before

the limit of region I. AC reaches its maximum RMSE

around dt = 1:0 m and KG around dt = 1:3 m. After
the maximum the RMSE monotonically decreases. The

RMSE of AC is always smaller that of KG.

7. DISCUSSION AND OUTLOOK

The performance of any parametric fusion method

depends upon an accurate estimation of parameters. To

avoid, for instance, an overestimation of the number of

targets (T > 1), the standard deviation of the measure-
ments ¾e around the targets has to correspond to the
standard deviation of validation gate G. If ¾ of G is

larger than ¾e, the association performance A deterio-
rates. In contrast, if ¾ of G is smaller than ¾e, the number
of estimates Nt is overestimated at a smaller distance of
dt, enhancing A.
Comparing Fig. 5 with Fig. 6 allows to reason that

the smaller RMSE of AC in region II–in average 0.25 m

better–is not due to better association performance,

since in region II, A converges to the optimum for

both. Hence, the smaller position RMSE must be due

to the difference on how the estimates’ position is

evaluated. In region I however, there is an improvement

of association performance with ACwhich explains why

the maximal RMSE is reached at smaller dt and why it
constantly decreases in comparison to KG.

The presented method is based on Kalman filtering

which intrinsically is based on a motion model for the

targets. Despite the focus of this paper on static states,

the authors hope to extend the presented framework to

dynamic states where situations of limited resolution

may also arise. The Kalman filter in the static case

behaves like a median or low-pass filter.

The evaluation of the position error (Eq. 16) could

be based on an optimal assignment method such as

the Hungarian method [19]. However, the Hungarian

method may as well produce unsatisfactory results due

to its global optimization nature, especially in cases

where the estimated target number does not correspond

to the true one.

The revisable reasoning characteristic of the TBM

method is questionable because the mass of the empty

set corresponding to the conflict is a strictly monotonic

increasing function. More combinations of conflicting
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class information decrease the specificity of informa-

tion. Robust combination rules such as suggested by

Florea or Dezert might be beneficial [7, 10]. What is

missing in the TBM combination rule is an expression

of the reliability dependent on the total amount of fused

information.

8. CONCLUSION

This paper demonstrates the potential of basing asso-

ciation not only on spatial aspects, but on classification

attributes as well. The post-processing of the ACmethod

enhances the association performance for closely lying

targets while diminishing the RMSE. The belief com-

bination framework of the TBM is a valuable tool to

quantitatively express conflict, and to infer from class

membership even for contradictory class information,

which is to be expected for closely lying targets.
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