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Abstract – Generally, there are problems with any form 

of recursive fusion based on belief functions. An open 

world is often required but the empty set can become 

greedy where, over time, all of the mass will become 

assigned to it where conjunctive combination is used. 

With disjunctive combination, all of the mass will move 

toward the ignorant set over time. In real world 

applications often the problem will require an open 

world but due to these limitations it is forced into a 

closed world solution. GRP1 works iteratively in an 

open world in a temporally conscious fashion, allowing 

more recent measurements to have more of an impact. 

This approach makes it ideal for fusing and classifying 

streaming data. 

 

Keywords: recursive, iterative, fusion, transferable belief 

model. 

 

1 Introduction 

Sensing devices can classify an enemy target from a 

selection of ‘known’ objects. This may be from human 

intelligence, radar, LADAR etc. This object classification 

can occur iteratively over time providing a new 

measurement, or classification, at regular time intervals. 

To obtain a more informed overall classification, all 

sensors’ measurements need to be fused at each time 

interval and recursively over time, as shown in Equation 

1. From this fused data a better classification of the object 

can be made. 

 

  S1..t = S1..t-1 + st         (1) 

 

Where S is the fused sensor measurements and s is the 

sensor measurement at time t 

 

A classification can then be made from S1..t. Current set 

based methods are inadequate in this scenario due to the 

fusion method used. GRP1 overcomes these problems by 

providing a much more intelligent form of fusion method, 

designed specifically for iterative situations.  

 

1.1 Scenario 

Within Dempster-Shafer Theory (DST) based methods, 

such as the Transferable Belief Model (TBM), we are 

given a world of possible outcomes to choose from. This 

generally contains everything that we know. For instance 

when fusing data from sensors to classify a target we will 

have all of the possible targets in our world that we can 

identify  

 

Ω ={Pedestrian, Car, Amphibious Light Tank (ALT), 

Light Tank (LT),Main Battle Tank (MBT)} 

         (2) 

 

As well as accounting for all outcomes that we are 

aware of there is also the empty set, ∅. Generally this is 

used to signify conflict in the data being passed to the 

system, which in itself is often a marker that the problem 

has been poorly modelled, a sensor is malfunctioning or 

that there we are in fact looking at something outside of 

our model space. 

 

Our world of all possible outcomes, Θ, is made up of ∅ 

and all the possible combinations of Ω. There will be 2 

elements such that 

 

Θ = {{Pedestrian}, {Car},…,{ALT, LT},…,{Pedestrian, 

Car, ALT, LT, MBT}, ∅} 

(3) 

 

The sensors can assign a mass (which shows their belief 

in that being the actual truth) to each of these sets. 

Assigning mass to a set with one element {Car} is a 

definite decision, where as assigning mass to {Pedestrian, 

Car, ALT, LT, MBT} is showing complete vagueness. The 

set {Pedestrian, Car, ALT, LT, MBT} is saying that the 

truth is within that set, but we have no idea which element 

it is. 

 

If we have two sensors providing data about what they 

think the target is then we will have two belief 

assignments for our world. It is these belief assignments 

that we wish to fuse together using a combination rule.  
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It is this fusion operator that we are going to describe 

and discuss. 

 

1.2 Open and Closed Worlds 

Within set theoretic approaches, there exists a notion of 

open and closed worlds. If we accept that we know 

everything about our world then we must also accept that 

the empty set has no meaning. There is nothing that we 

haven’t accounted for, there is no ‘anything else’. 

Contrary to this is the open world, which is that other 

things do, or could, exist that we haven’t accounted for, 

and these are signified by the empty set. 

 

 

2 Set theoretic approaches 

Early work by both A. P. Dempster [1] and Glenn Shafer 

[2] later became known as Dempster Shafer Theory 

(DST). DST is a generalisation of Bayesian Theory and it 

states: 

 

i) beliefs are created from subjective 

probabilities 

ii) information is fused using Dempster’s 

rule of combination 

 

The basis of the work in the DST has been taken and 

extended by other parties [3,4] and so this basic 

framework has evolved into various mutations, but they 

share the same core idea. One such framework is the TBM 

[3] and we shall base the rest of the discussion on this to 

highlight the empty set issues; where appropriate we will 

compare and contrast to other approaches.  

 

 

2.1 Basic Elements of the Transferable 

Belief Model 

 

The TBM is a set theoretic approach, such as the ones 

discussed in previous sections. The TBM splits the set 

theory into two stages. Firstly, the credal level where 

beliefs are entertained and quantified by belief functions. 

Secondly, the pignistic level where those beliefs are used 

to make decisions and are quantified by probability 

functions.  

 

If we take a weather example then all of the possible 

weather types that we are going to account for in our 

world are wind, rain, and sun. The set of all the possible 

types of weather we know about is given by 

},,{ sunrainwind=Ω . To this we apply a basic belief 

assignment (bba) ]1,0[2: →Ωm  with ∑
Ω⊆

=
A

Am 1)(  where 

m(A) is the basic belief mass (bbm) given to A. This is a 

method of assigning masses to each of the subsets of Ω to 

signify our belief, or that there is evidence showing that 

the truth is somewhere within that set, not necessarily 

equal to but, within that set. Each of these sets is in fact a 

hypothesis. Any set that has a bbm > 0 is called a focal set, 

and any focal set that only has one member is called a 

singleton set. The more members within a focal set the 

more the ignorance, or uncertainty about which single 

state is true.  

 

If we recall one of the possible subsets of Θ is the empty 

set ∅ . Values assigned to it carry various meanings, 

these meanings depend on if we are working within an 

open or closed world. If the world is closed then we 

should not be assigning bbm to the empty set as we claim 

that Ω is exhaustive and covers all possible outcomes. 

Within an open world we can assign bbm to the empty set 

and it shows how much we believe that the truth is not in 

Ω. These are two very important concepts. It can be a very 

dangerous assumption to make that Ω is exhaustive; it can 

cause an unfair normalisation that is poor for decision 

making and limits our means of analysing the data and our 

fusion process [5].  

 

DST has always worked within the closed world. When 

applied to fusion tasks it can appear that all is well within 

this model, allowing data to conveniently be fused and 

decisions to be made. The closed world assumption 

manages to mask any issues that are occurring due to 

improper problem modelling, which in turn, forces the 

user to make an impaired and naїve decision. The TBM 

and Dezert Smarandache Theory (DSmT) [9] allow for the 

possibility that Ω is not exhaustive. 

 

2.2 Set theoretic combination of data, or 

Fusion. 

 

If we have more than one piece of data from either the 

same source over time or multiple sources, or even 

multiple sources over time then it is normal that we will 

want to combine all of this data. This combination will 

enable us to make a more informed decision using all 

available information, as opposed to just looking at a 

single piece of evidence. An example of such a task would 

be classifying an object where we receive data 

continuously over time from a variety of sensors, and thus 

want to recursively combine, or fuse, this data, before we 

make a decision on the classification.  

 

Each piece of evidence will give us a bba over Θ such that 

bbm’s are applied to the various sets within Θ. This will 

show where we think the truth is. If this evidence is very 

certain then the singleton sets within Θ will get more 

mass, if we are uncertain then the set Ω will get more 

mass. Coincidently the set that shows complete ignorance 

to which is the correct outcome is Ω, assigning a mass of 
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value 1 to this set is showing complete ignorance. A 

completely naïve state would apply all of the bbm to Ω. 

To fuse data we must combine these bba’s to create a new 

bba. There are a multitude of methods to accomplish this 

[6,8]. The original work on the DST used Dempster’s 

(conjunctive) rule of combination  

 

k

CmBm
Am CB

−
=∑ ∩

⊗
1

)()(
)(

21

21  

 

where      ∑
∅=∩

=
CB

CmBmK )()( 21
    (4) 

. 

 

and A, B, and C are sets within Θ . It can be seen that K is 

in fact a normalisation factor that redistributes any mass 

assigned to the empty set after combination. If we are to 

remove the normalisation we get Dempster’s un-

normalised rule of combination as used in the TBM [3] as 

shown below  

 

)()()( 2121 CmBmAm
CB∑ ∩⊗ =     (5) 

 

As well as the conjunctive rule of combination there is 

also a disjunctive rule of combination which is a lot more 

cautious with its approach as it uses the disjunction of two 

sets rather than the conjunction, this allows for [3] 

 

)()()( 2121 CmBmAm
CB∑ ∪⊕ =

    (6) 

2.3 Convergence 

 

Issues that have been highlighted previously [5] show that 

unnormalised conjunctive, and disjunctive combination, is 

ineffective at any form of iterative and recursive 

combination. Convergence happens very quickly where all 

the mass will tend toward either the empty set, for 

conjunctive combination, or the ignorant set, for 

disjunctive combination. This convergence can make the 

system become unresponsive to any new, or differing 

inputs, and ultimately fail in its task. Previously it has 

been suggested that convergence protection [7] is a means 

to prevent this. This is quite a crude method that simply 

caps the limit that any set can reach enabling the system to 

retain a degree of flexibility, and thus not converge 

completely. 

 

2.4 Convergence Avoidance 

 

If we take both the conjunctive and disjunctive 

combination rules and find the average [6,8] of the two 

then we have a fusion operator that wont instinctively, or 

unnecessarily, converge to the ignorant or empty set when 

used in a recursive manner. Unlike the conjunctive rule of 

combination, shown in Equation 5, it can recover from a 

situation where it incorrectly thinks it knows the truth, 

while at the same time not being too vague, as can happen 

with the disjunctive rule of combination as shown in 

Equation 6. 

 

The arithmetic mean is calculated using 

 

 

∑
=

=
M

j

jmean Am
M

Am
1

)(
1

)(

      (7) 

 

where M is the number of sets you are finding the mean 

across 

3 Vagueness in the system 

 

Our world, Θ, will receive beliefs either from a sensor (of 

some sort), or by fusing two other worlds. If we look at 

how that belief is distributed throughout the world, Θ, we 

can ascertain how vague our world is. If values are 

assigned to the singleton sets, which have only one 

element, then the world is precise and any decisions are 

well educated. If beliefs are given to the uncertain set, Ω, 

then the world is vague and any decisions made from this 

are uneducated. 

 

This notion of precision (educatedness) is quite important, 

and can be used to determine how we fuse incoming 

information. If the world is showing a high degree of 

precision then we are certain in our beliefs and thus it 

should take a lot more effort to alter our belief. 

Alternatively, if we are completely vague about our 

knowledge and beliefs then we should be more accepting 

of new information. This concept needs to be accounted 

for when we are fusing information. 

 

We have the ability to ‘discount’ incoming information 

[9]. This discounting process will weight the incoming 

data and is a measure of how much it is to be trusted, or 

how much impact it will have. 

 

Smets [10] describes the discounting of data through 

Equation 8. 

 

( ) ( ) ( )AmxAm ⋅−= αα 1|
  

Ω≠Ω⊆∀ AA ,
 

( ) ( ) ( )[ ] ααα +⋅−= AmxAm 1|
  Ω=A    (8) 

 

where x is some prior knowledge about the validity of the 

information that that entity is providing, and is accounted 

for by α. This works perfectly well when we are dealing 

with the conjunctive combination rule as the masses are 

passed toward the uncertain set, Ω. For the disjunctive rule 

this will only force it to be vaguer and encourage 
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convergence toward the uncertain set, Ω. When using the 

disjunctive combination rule you must discount as with 

Equation 9. This will allow the discounted mass to be 

passed to the empty set, which when fused with the 

cautious disjunctive combination rule allows for the mass 

to be redistributed evenly across the system. 

 

 

 

( ) ( ) ( )AmxAm ⋅−= αα 1|
  

∅≠Ω⊆∀ AA ,
  

( ) ( ) ( )[ ] ααα +⋅−= AmxAm 1|   ∅=A    (9) 

 

 

4 Dynamic Discounting 

 

The degree that we choose to discount by is of course 

related to the degree of precision (educatedness) in our 

world Θ, and shows how much we can be influenced by 

incoming data. 

 

If  Ω = {a, b, c, d} then Θ is shown by the following 

diagram 

 

 
 

We can measure the precision, p, using Equation 10 [11] 

 

( ) ( )∑ ×
−Ω

−Ω
=Θ Am

A
p

1
  Θ⊆∅≠∀ AA ,   

 (10) 

 

Any value added to the empty set is treated as adding to 

the vagueness. This is a point of argument as to whether 

the empty set is making the system vaguer or is adding 

precision, or if in fact it should be ignored. If the empty set 

is adding precision then  

 

( ) ( ) ( )∅+









×

−Ω

−Ω
=Θ ∑ mAm

A
p

1
   

 
Θ⊆∅≠∀ AA ,

             (11) 

 

 

If we want to ignore any belief given to the empty set and 

normalise then we can use Equation 12 

 

( ) ( )
( )( )∑ ∅−

×
−Ω

−Ω
=Θ

m

AmA
p

11
     

 
Θ⊆∅≠∀ AA ,

             (12) 

4.1 GRP1 process 

 

The GRP1 algorithm can be utilised using the following 

steps 

 

1. Set up our knowledge as ignorant for fused 

measurement, Θf or use initial prior information 

2. Receive measurement from sensor 

3. Put measurement into world Θm 

4. Calculate precision, p(Θf), using Equation 10,  11, 

or 12 

5. Discount Θm by  p(Θf) using Equation 8 to get 

Θmc 

6. Discount Θm by  p(Θf) using Equation 9 to get 

Θmd 

7. Disjunctively combine Θf with Θmd to get Θfd 

using Equation 6 

8. Conjunctively combine Θf with Θmc to get Θfc 

using Equation 5 

9. Combine  Θfd and Θfc with the arithmetic mean 

operator from Equation 7 to get a new Θf 

10. Return to 2 

 

 

Steps 1,2,3,7,8,9 and 10 constitute to algorithm GRP1 

Steps 4, 5 and 6 are Dynamic Discounting 

 

 

5 Results 

Data was acquired from previous work involving a 

classification task over time [12]. The data was produced 

from a simulation of a light amphibious tank travelling 

over road, grass, and water.  Classification at each time 

step takes place within the TBM. Belief assignments are 

conditional upon the current estimate of the speed of the 

target and terrain that the target is travelling over. 

 

From the start of the simulation to approximately time step 

225, the target travels quickly along a road. It then slows 

down, turns at a junction, travels along a short stretch of 

road and some grass before initiating a river crossing at 

time step 375. The river crossing finishes at approximately 

time step 450, where the target travels over more grass. 

 

Figure 1 shows the output from the sensor classification 

where the possible target types that the sensor understands 

are given in Equation 2. Other objects will exist outside of 

abcd 

abc bcd acd abd 

ab bd ac bd ad cd 

a c d b 

Vague 

Precise 

Distribution of Beliefs 

= Θ 
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this model and so an assumption of a closed world is 

incorrectly modeling the problem. For the sake of 

argument we will include results that show a closed world 

where the empty set is normalised, in either a simplistic 

manner or a more intelligent one. 

 

Figure 2 shows the results of recursively fusing the data 

given in Figure 1 using the conjunctive combination rule. 

It shows how the system very quickly converges to a state 

where a set is dominant, i.e. approaches a mass of 1, as 

indicated by the high BetP. In the open world this is even 

more of an issue as the empty set becomes dominant. Any 

decisions that are made from this result will be incorrect. 

Through normalization we are forcing what is really an 

open world problem into a closed world solution. Results 

for this appear to be more promising and the system is 

suggesting a very high confidence in a particular target. 

This target classification may not only be incorrect, but the 

normalization artificially raises the confidence levels and 

gives a false sense of security.  

 

Figure 3 shows the results of combining the sensor outputs 

recursively using PCR5 [13], which is a much more 

intelligent combination rule, with respect to how the 

empty set can be redistributed. We can see that this works 

well with the recursive nature of the fusion process and the 

noise of the data. It also does not converge and become 

unresponsive over time. The implementation of PCR5 

within the TBM framework means that there is no facility 

to cater for the notion of the target being something 

outside of the world that we know, so there are still the 

original issues of normalization occurring, even if it does 

take place in a more intelligent manner than the 

conjunctive rule of combination. This is not the case if it is 

implemented within the DSmT framework.  

 

Figure 4 and Figure 5 show the fused results of using 

GRP1 with dynamic discounting turned on and off. The 

stability of these operators working with the open world 

and with noisy data is an improvement over previous 

attempts at open world fusion within the TBM. Previous 

attempts, as shown in Figure 2, were poor to say the least, 

and were not able to cope with iterative and recursive 

fusion. The dynamic discounting has the effect of making 

a much more stable output. Table 1 shows the percentage 

of correct classification (PT76 Tank), where the 

classification is taken as the max BetP. The rates are very 

similar for both GRP1 methods and PCR5. The mean 

squared error, where error is BetP-(max BetP), is also very 

similar for both GRP1 methods, but with a noticeable 

difference to PCR5. Due to the normalization and lack of 

an empty set a useful comparison cannot be made, but the 

results are included for completeness.  

 

 

 

 

 

 

Figure 1. Object classification data received from sensor over time 
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Figure 2. Normalised conjunctive combination 

 

Figure 3. BetP after PCR5, Intelligent empty set redistribution 
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Figure 4. BetP after GRP1 without dynamic discounting 

 

 

 

Figure 5. BetP after GRP1 with dynamic discounting 
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Correct 

Classification 

Mean Squared 

Error 

PCR5 80.3% 0.16 

GRP1 79.1% 0.41 

GRP1 with dynamic 

discounting 
80.8% 0.40 

Table 1. Comparison of fusion operators 

 

6 Conclusions 

It has been shown that GRP1 will effectively fuse together 

information in a recursive manner over time retaining the 

empty set and the open world. This was not previously 

possible with the conjunctive or disjunctive combination 

rules unless normalisation took place. Dynamic 

discounting allows the algorithm to determine how much 

bias should be placed on the new and incoming 

information . This allows for a much more stable output 

from which decisions can be made. 
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