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Introduction: The Beal’s Conjecture was discovered by Andrew Beal 

in 1993. Later the conjecture was announced in December 1997 issue of 

the Notices of the American Mathematical Society. Yet, it is still both 

unproved and un-negated a conjecture hitherto.  

Abstract   

First, we classify A, B and C according to their respective odevity, and ret 

rid of two kinds from A
X
+B

Y
=C

Z
. Then, affirm A

X
+B

Y
=C

Z 
such being the 

case A, B and C have a common prime factor by concrete examples. After 

that, prove A
X
+B

Y
≠C

Z
 such being the case A, B and C have not any 

common prime factor by the mathematical induction with the aid of the 

symmetric law of odd numbers after the decomposition of the inequality. 

Finally, reached such a conclusion that the Beal’s conjecture can hold 

water after the comparison between A
X
+B

Y
=C

Z
 and A

X
+B

Y
≠C

Z
 under the 

given requirements.    
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The Proof  

The Beal’s Conjecture states that if A
X
+B

Y
=C

Z
, where A, B, C, X, Y and 

Z are positive integers, and X, Y and Z are all greater than 2, then A, B 

and C must have a common prime factor.   

We consider limits of values of above-mentioned A, B, C, X, Y and Z as 

given requirements for hinder equalities and inequalities concerned.   

First, we classify A, B and C according to their respective odevity, and 

remove following two kinds from A
X
+B

Y
=C

Z
.  

1. If A, B and C, all are positive odd numbers, then A
X
+B

Y 
is an even 

number, yet C
Z 

is an odd number, evidently there is only A
X
+B

Y
≠C

Z 

according to an odd number ≠ an even number.   

2. If any two in A, B and C are positive even numbers, and another is a 

positive odd number, then when A
X
+B

Y
 is an even number, C

Z
 is an odd 

number, yet when A
X
+B

Y
 is an odd number, C

Z
 is an even number, so 

there is only A
X
+B

Y
≠C

Z 
according to an odd number ≠ an even number.  

Thus we continue to have merely two kinds of A
X
+B

Y
=C

Z
 under the 

given requirements, as listed below.   

1. A, B and C all are positive even numbers.   

2. A, B and C are two positive odd numbers and a positive even number.  

For indefinite equation A
X
+B

Y
=C

Z
 under the given requirements plus 

aforementioned either qualification, in fact, it has many sets of solutions 

of positive integers. Let us instance respectively two concrete equations 
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to prove two such propositions below.  

When A, B and C, all are positive even numbers, if let A=B=C=2, 

X=Y=3, and Z=4, then indefinite equation A
X
+B

Y
=C

Z
 is exactly equality 

2
3
+2

3
=2

4
. Evidently A

X
+B

Y
=C

Z
 has a set of solution of positive integers 

(2, 2, 2) here, and A, B and C have common even prime factor 2.  

In addition, if let A=B=162, C=54, X=Y=3, and Z=4, then indefinite 

equation A
X
+B

Y
=C

Z
 is exactly equality 162

3
+162

3
=54

4
. Evidently 

A
X
+B

Y
=C

Z
 has a set of solution of positive integers (162, 162, 54) here, 

and A, B and C have two common prime factors, i.e. even 2 and odd 3.  

When A, B and C are two positive odd numbers and a positive even 

number, if let A=C=3, B=6, X=Y=3, and Z=5, then indefinite equation 

A
X
+B

Y
=C

Z
 is exactly equality 3

3
+6

3
=3

5
. Manifestly A

X
+B

Y
=C

Z
 has a set 

of solution of positive integers (3, 6, 3) here, and A, B and C have 

common prime factor 3.  

In addition, if let A=B=7, C=98, X=6, Y=7, and Z=3, then indefinite 

equation A
X
+B

Y
=C

Z
 is exactly equality 7

6
+7

7
=98

3
. Manifestly A

X
+B

Y
=C

Z
 

has a set of solution of positive integers (7, 7, 98) here, and A, B and C 

have common prime factor 7.  

Thus it can seen, indefinite equation A
X
+B

Y
=C

Z
 under the given 

requirements plus aforementioned either qualification can hold water 

according to above-mentioned four concrete examples, but A, B and C 

must have at least one common prime factor.   
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By now, if we can prove that there is only A
X
+B

Y
≠C

Z
 under the given 

requirements plus the qualification that A, B and C have not any common 

prime factor, then we proved completely the conjecture.  

Since A, B and C have common prime factor 2 when A, B and C all are 

positive even numbers, so these circumstances that A, B and C have not 

any common prime factor can only occur under the prerequisite that A, B 

and C are two positive odd numbers and a positive even number.  

If A, B and C have not any common prime factor, then any two of them 

have not any common prime factor either, because any two of them have 

a common prime factor, namely A
X
+B

Y
 or C

Z
-A

X
 or C

Z
-B

Y
 have a 

common prime factor, yet another has not the prime factor, then it would 

lead to A
X
+B

Y
≠C

Z 
or C

Z
-A

X
≠B

Y
 or C

Z
-B

Y
≠A

X 
according to the unique 

factorization theorem of natural number.  

Since it is so, if we can prove A
X
+B

Y
≠C

Z
 under the given requirements 

plus the qualification that A, B and C have not any common prime factor, 

then the Beal’s conjecture is surely tenable, otherwise it will be negated.  

Unquestionably, let following two inequalities add together, are able to 

replace completely A
X
+B

Y
≠C

Z
 under the given requirements plus the 

qualification that A, B and C are two positive odd numbers and a positive 

even number, and they have not any common prime factor.    

1. AX
+B

Y
≠2

Z
G Z under the given requirements plus the qualifications that 

A and B are two positive odd numbers, and A, B and 2G have not any 
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common prime factor.  

Let us analyze A
X
+B

Y
≠2

Z
G

Z
 later. When G=1, it is exactly A

X
+B

Y
≠2

Z
.  

When G>1: if G is a positive odd number, then the inequality changes not, 

namely it is still A
X
+B

Y
≠2

Z
G Z; if G is a positive even number, then either 

the inequality can express as A
X
+B

Y
≠2

W
, or can express as A

X
+B

Y
≠2

W
H

Z
, 

where W=Z+NZ, N ≥ 1, and H is an odd number ≥3.   

Undoubtedly A
X
+B

Y
≠2

W
 can represent A

X
+B

Y
≠2

Z
, and A

X
+B

Y
≠2

W
H

Z
 can 

represent A
X
+B

Y
≠2

Z
G

Z
, where W=Z+NZ, N≥1, and H is an odd number 

≥3. So A
X
+B

Y
≠2

Z
G

Z 
is expressed into two inequalities as the follows.  

(1) A
X
+B

Y
≠2

W
, where A and B are positive odd numbers without any 

common prime factor, and X, Y and W are integers ≥3.  

(2) AX
+B

Y
≠2

W 
H

Z
, where A, B and H are positive odd numbers without 

any common prime factor, X, Y and Z are integers ≥3, W=Z+NZ, N≥1, 

and H ≥3.  

2. AX
+2

Y
D

Y
≠C

Z
 under the given requirements plus the qualifications that 

A and C are two positive odd numbers, and A, C and 2D have not any 

common prime factor.  

We analyze A
X
+2

Y
D

Y
≠C

Z
 later too. When D=1, it is exactly A

X
+2

Y
≠C

Z
. 

When D>1: if D is a positive odd number, then the inequality changes not, 

namely it is still A
X
+2

Y
D

Y
≠C

Z
; if D is a positive even number, then either 
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the inequality can express as A
X
+2

W
≠C

Z
, or can express as A

X
+2

W
R

Y 
≠C

Z
, 

where W=Y+NY, N≥1, and R is an odd number ≥3.  

Undoubtedly A
X
+2

W
≠C

Z
 can represent A

X
+2

Y
≠C

Z
, and A

X
+2

W
R

Y
≠C

Z
 can 

represent A
X
+2

Y
D

Y
≠C

Z
, where W=Y+NY, N≥1, and R is an odd number 

≥3. So A
X
+2

Y
D

Y
≠C

Z
 is expressed into two inequalities as the follows.  

(3) A
X
+2

W
≠C

Z
, where A and C are positive odd numbers without any 

common prime factor, and X, W and Z are integers ≥3.  

(4) AX
+2

W
R

Y
≠C

Z
, where A, R and C are positive odd numbers without 

any common prime factor, X, Y and Z are integers ≥3, W=Y+NY, N≥1, 

and R ≥3.  

We regard values of A, B, C, H, R, X, Y, Z and W in aforementioned four 

inequalities, added to their respective co-prime relation as known 

requirements for hinder concerned inequalities plus equalities.    

 So proving A
X
+B

Y
≠C

Z
 under the given requirements plus the qualification 

that A, B and C have not any common prime factor is changed to prove 

the above-listed four inequalities under the known requirements.   

Before prove above-listed inequalities, we must expound bases relating to 

proving these inequalities, so as to understand each such proof easier.   

Let us first divide all positive odd numbers into two kinds of A plus B, 

namely the form of A is 1+4n, and the form of B is 3+4n, where n≥0.  

Odd numbers of A plus B from small to great arrange respectively below.    
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A: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61…1+4n …  

B: 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63…3+4n …  

Then, again divide all odd numbers of A into two kinds, i.e. A1 and A2, 

and again divide all odd numbers of B into two kinds, i.e. B1 and B2.  

Or rather, the form of A1 is 1+8n; the form of B1 is 3+8n; the form of A2 

is 5+8n and the form of B2 is 7+8n, where n≥0.  

Such four kinds of odd numbers are all positive odd numbers. They are 

arranged as follows respectively.  

A1: 1, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105…1+8n …    

B1: 3, 11, 19, 27, 35, 43, 51, 59, 67, 75, 83, 91, 99, 107…3+8n …   

A2: 5, 13, 21, 29, 37, 45, 53, 61, 69, 77, 85, 93, 101, 109…5+8n …  

B2: 7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 95, 103, 111…7+8n …  

We list from small to great seriate positive odd numbers and label a 

belongingness of each of them, well then you would discover that 

permutations of four kinds of odd numbers are possessed of a certain law.  

1
k
, A1; 3, B1; 5, A2; 7, B2; (2

3
);9, A1; 11, B1; 13, A2; 15, B2; (2

4
);

 
 

17, A1; 19, B1; 21, A2; 23, B2; 25, A1; 3
3
, B1; 29, A2; 31, B2; (2

5
);

 
 

33, A1; 35, B1; 37, A2; 39, B2; 41, A1; 43, B1; 45, A2; 47, B2;  

49, A1; 51, B1; 53, A2; 55, B2; 57, A1; 59, B1; 61, A2; 63, B2; (2
6
);

 
 

65, A1; 67, B1; 69, A2; 71, B2; 73, A1; 75, B1; 77, A2; 79, B2;  

3
4
, A1; 83, B1; 85, A2; 87, B2; 89, A1; 91, B1; 93, A2; 95, B2;  
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97, A1; 99, B1; 101, A2; 103, B2; 105, A1; 107, B1; 109, A2; 111, B2;   

113, A1; 115, B1; 117, A2; 119, B2; 121, A1; 123, B1; 5
3
, A2; 127, B2; (2

7
);

 
 

129, A1; 131, B1; 133, A2; 135, B2; 137, A1; 139, B1; 141, A2; 143, B2;  

145, A1; 147, B1; 149, A2; 151, B2; 153, A1; 155, B1; 157, A2; 159, B2; 

161, A1; 163, B1; 165, A2; 167, B2; 169, A1; 171, B1; 173, A2; 175, B2;  

177, A1; 179, B1; 181, A2; 183, B2; 185, A1; 187, B1; 189, A2; 191, B2;  

193, A1; 195, B1; 197, A2; 199, B2; 201, A1; 203, B1; 205, A2; 207, B2;  

209, A1; 211, B1; 213, A2; 215, B2; 217, A1; 219, B1; 221, A2; 223, B2; 

225, A1; 227, B1; 229, A2; 231, B2; 233, A1; 235, B1; 237, A2; 239, B2;  

241, A1; 3
5
, B1; 245, A2; 247, B2; 249, A1; 251, B1; 253, A2; 255, B2; (2

8
);  

257, A1; 259, B1; 261, A2; 263, B2; 265, A1; 267, B1; 269, A2; 271, B2; …  

From the above-listed sequence of odd numbers, we can see that 

permutations of seriate positive odd numbers from small to great are 

infinitely many cycles of A1B1A2B2.  

To wit: A1B1A2B2 A1B1A2B2A1B1A2B2A1B1A2B2A1B1A2B2A1B1A2B2…  

By now, list seriate kinds of odd numbers which have a common odd base 

number, and label a belongingness of each of them, below.        

1
1
, A1;       3

1
=3, B1;          5

1
=5, A2;         7

1
=7, B2; (2

3
);     

1
2
, A1;       3

2
=9, A1;          5

2
=25, A1;        7

2
=49, A1;        

1
3
, A1;       3

3
=27, B1;         5

3
=125, A2;       7

3
=343, B2;       

1
4
, A1;       3

4
=81, A1;         5

4
=625, A1;       7

4
=2481, A1;      

1
5
, A1;       3

5
=243, B1;        5

5
=3125, A2;      7

5
=16807, B2;     
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1
6
, A1;       3

6
=729, A1;        5

6
=15625, A1;     7

6
=117609, A1;     

…          …               …               …  

9
1
=9, A1;    11

1
=11, B1;      13

1
=13, A2;      15

1
=15, B2; (2

4
);   

9
2
=81, A1;   11

2
=121, A1;     13

2
=169, A1;     15

2
=225, A1;      

9
3
=729, A1;   11

3
=1331, B1;    13

3
=2197, A2;    15

3
=3375, B2;    

9
4
=6561, A1; 11

4
=14641, A1;   13

4
=28561, A1;   15

4
=50625, A1;     

9
5
=59049, A1; 11

5
=161051, B1; 13

5
=371293, A2;   15

5
=759375, B2;    

9
6
=531441, A1; 11

6
=1771561, A1; 13

6
=4826809, A1; 15

6
=11390625, A1;  

…          …              …              …       

17
1
=17, A1;     19

1
=19, B1;     21

1
=21, A2;    23

1
=23; B2…  

17
2
=289, A1;    19

2
=361, A1;    21

2
=441, A1;   23

2
=529; A1…  

17
3
=4193, A1;   19

3
=6859, B1;   21

3
=9261, A2; 23

3
=12167; B2…   

17
4
=83521, A1; 19

4
=130321, A1;   21

4
=194481, A1; 23

4
=279841; A1… 

17
5
=1419857, A1; 19

5
=2476099, B1; 21

5
=4084101, A2; 23

5
=6436343, B2…  

17
6
=24137569,A1;19

6
=47045881,A1;21

6
=85766121, A1;23

6
=148035889, A1..  

…            …             …             …   

From above-listed kinds of odd numbers which have a common odd base 

number, we are not difficult to see, on the one hand, all odd numbers 

whereby A1 to act as a base number belong still within A1; all odd 

numbers whereby B1 to act as a base number belong within B1 plus A1, 

and one of B1 alternates with one of A1; all odd numbers whereby A2 to 

act as a base number belong within A2 plus A1, and one of A2 alternates 
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with one of A1; and all odd numbers whereby B2 to act as a base number 

belong within B2 plus A1, and one of B2 alternates with one of A1.  

On the other hand, we classify them into set four kinds of odd numbers 

according to their respective belongingness, well then, all odd numbers of 

even exponents and odd numbers 1+8n of odd exponents belong within 

A1; odd numbers 3+8n of odd exponents belong within B1; odd numbers 

5+8n of odd exponents belong within A2; and odd numbers 7+8n of odd 

exponents belong within B2, where n ≥ 0.   

Excepting common odd base number 1, two adjacent odd numbers which 

have a common odd base number >1 are an even number apart, but also 

such even numbers are getting greater and greater along which exponents 

of the adjacent odd numbers are getting greater and greater.     

At all events, whether odd numbers of odd exponents or odd numbers of 

even exponents, all of them are included and dispersed within 

aforementioned four kinds of odd numbers, thus they conform to a 

symmetric law of odd numbers we shall define later.     

We add 2
W-1

, 2
W

, 2
W-1

H
Z
 and 2

W
H

Z
 among the sequence of odd numbers, 

and regard each of them as a center of symmetry of odd numbers. Well 

then, odd numbers on the left side of the center and partial odd numbers 

on the right side of the center are one-to-one bilateral symmetries. For 

example, regard 2
W-1

 as a symmetric center, then 2
W-1

-1∊B2 and 

2
W-1

+1∊A1, 2
W-1

-3∊A2 and 2
W-1

+3∊B1, 2
W-1

-5∊B1 and 2
W-1

+5∊A2, 
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2
W-1

-7∊A1 and 2
W-1

+7∊B2 etc are bilateral symmetry respectively. See also 

their symmetric permutation as follows.    

A1B1A2B2…A1B1A2B2 (2
W-1

) A1B1A2B2A1B1A2B2…A1B1A2B2    

We consider such symmetric permutations of odd numbers for symmetric 

center 2
W-1

H
Z as a symmetric law of odd numbers at the sequence of odd 

numbers, or as the symmetric law of odd numbers for short, where W, Z 

and H are positive integers, W≥3, and Z≥3.    

Pursuant to preceding basic concepts, we set to prove aforementioned 

four inequalities at the sequence of odd numbers, one by one. Of course, 

what we need first to prove is A
X
+B

Y
≠2

W 
under the known requirements 

because this result will lay foundations of proving others.   

 

Firstly, Prove A
X
+B

Y
≠2

W
 under the known requirements.   

After regard 2
W-1

 as a symmetric center, if leave from 2
W-1

, then both 

there are finitely many cycles of B2A2B1A1 leftwards until 7(B2) 5(A2) 

3(B1) 1(A1), and there are infinitely many cycles of A1B1A2B2 rightwards 

up to infinite.  

According to the symmetric law of odd numbers, two distances from a 

symmetric center to each other’s symmetric two odd numbers are an 

equivalent in length.   

Consequently, on the one hand, a sum of every two symmetric odd 

numbers is equal to the double of the value of the symmetric center. On 
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the other hand, a sum of any two non-symmetric odd numbers is unequal 

to the double of the value of the symmetric center absolutely.   

Moreover, odd numbers on an identical distance which departs from 2
W-1

 

on the either side of 2
W-1

, all belong to a kind and the same, where W-1 is 

equal to each and every integer ≥ 3.   

A and B in A+B =2
W

 are bilateral symmetric odd numbers whereby 2
W-1

 

to act as the center of the symmetry, so either A or B is greater than 2
W-1

, 

yet another is smaller than 2
W-1

, thus let A< 2
W-1

 and B >2
W-1

 thereinafter.  

Besides, before making the proof, let us make a stipulation that for an 

integer, if its exponent is greater than or equal to 3, then the exponent is 

called a greater exponent; if its exponent is equal to 1 or 2, then the 

exponent is called a smaller exponent. The stipulation suits every such 

wording after this hereafter.    

We are about to prove A
X
+B

Y
≠2

W
 under the known requirements by the 

mathematical induction.  

Indeed, the proof is on the basis of A1+B2 =2
W

 where A
X∊B2 and B

Y∊A1; 

of B2+A1=2
W

 where A
X∊A1 and B

Y∊B2; of A2+B1=2
W

 where A
X∊A2 and 

B
Y∊B1; and of B1+A2 =2

W
 where A

X∊B1 and B
Y∊A2, additionally A1, B2, 

A2 and B1 under their respective definiendum are one another’s-disparate 

odd numbers. But, we need not to make several such minute proofs.     

(1) When W-1=3, each other’s symmetric odd numbers on two sides of 

2
3
 are listed below.  
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1
3
, 3, 5, 7, (2

3
), 9, 11, 13, 15   

To wit: A1B1A2 B2 (2
3
) A1 B1 A2 B2    

It is clear at a glance, that there are not two odd numbers of the greater 

exponents altogether on two odd places of every bilateral symmetry 

whereby 2
3
 to act as the center of the symmetry. So we get A

X
+B

Y
≠2

4
.  

When W-1=4, each other’s symmetric odd numbers on two sides of 2
4
 are 

listed below.  

1
4
, 3, 5, 7, 9, 11, 13, 15, (2

4
) 17, 19, 21, 23, 25, 3

3
, 29, 31   

To wit: A1B1A2 B2 A1B1A2 B2 (2
4
) A1B1A2 B2 A1B1A2 B2    

Evidently there are not two odd numbers of the greater exponents 

altogether on two odd places of every bilateral symmetry whereby 2
4
 to 

act as the center of the symmetry. So we get A
X
+B

Y
≠2

5
.  

When W-1=5 and W-1=6, each other’s symmetric odd numbers on two 

sides of 2
6
 including 2

5
 are listed below.   

1
6
, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 3

3
, 29, 31, (2

5
), 33, 35, 37, 39, 

41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, (2
6
), 65, 67, 69, 71, 73, 75, 

77, 79, 3
4
, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 

113, 115, 117, 119, 121, 123, 5
3
, 127  

To wit: A1B1A2B2A1B1A2B2A1B1A2B2A1B1A2B2 (2
5
) A1B1A2B2A1B1A2B2 

A1B1A2B2 A1B1A2 B2 (2
6
) A1B1A2B2A1B1A2B2A1B1A2B2A1B1A2B2A1B1A2 

B2 A1B1A2B2A1B1A2B2A1B1A2B2    

Likewise there are not two odd numbers of the greater exponents 
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altogether on two odd places of every bilateral symmetry whereby 2
6
 or 

2
5 

to act as the center of the symmetry. So we get A
X
+B

Y
≠2

6
 and 

A
X
+B

Y
≠2

7
. 

(2) Suppose that when W-1=K, and K≥6, there are not two odd numbers 

of the greater exponents altogether on two odd places of every bilateral 

symmetry whereby 2
K 

to act as the center of the symmetry. Namely there 

is A
X
+B

Y
≠2

K+1
 under the known requirements, where K≥6.   

(3) Prove that when W-1=K+1, there are not two odd numbers of the 

greater exponents altogether either on two odd places of every bilateral 

symmetry whereby 2
K+1

 to act as the center of the symmetry. That is to 

say, need us to prove A
X
+B

Y
≠2

K+2
 under the known requirements.  

 
 

Proof * We know that permutations of odd numbers on two sides of 2
W-1

 

including 2
K
 plus 2

K+1 
conform to the symmetric law of odd numbers, 

please, see permutations of odd numbers on two sides of 2
K
 and of 2

K+1
:    

A1B1A2B2…B1A2B2A1B1A2B2 (2
K
) A1B1A2B2A1B1A2…A1B1A2B2 →  

A1B1A2B2…B1A2B2A1B1A2B2 (2
K+1

) A1B1A2B2A1B1A2…A1B1A2B2→  

Since A and B within A+B=2
K+1

, one of them is greater than 2
K
, yet 

another is smaller than 2
K
, so we let B >2

K
 and A < 2

K
. Then, each of 

A1B1A2B2…A1B1A 2B2A1B1A 2B2 on the left side of 2
K
 expresses A, and 

one of symmetry with each A expresses B, on the right side of 2
K
.  

Since all odd numbers on the left side of 2
K+1 

are exactly all odd numbers 

of one-to-one bilateral symmetry whereby 2
K
 to act as the center of the 
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symmetry, thus each of one-to-one symmetric odd numbers for symmetric 

center 2
K
 expresses A after a symmetric center from 2

K
 is changed to 2

K+1
, 

and one of symmetry with each A expresses B, on the right side of 2
K+1

.  

Overall, for symmetric center 2
W-1

, each of odd numbers on the left side 

of 2
W-1 

expresses A, and one of symmetry with each A expresses B, on the 

right side of 2
W-1

.       

If divide all odd numbers of bilateral symmetry whereby 2
K+1

 to act as the 

center of the symmetry into four equivalent segments per 2
K-1

 seriate odd 

numbers by 2
K
, 2

K+1
 and 3×2

K
, and number an ordinal of each segment 

from left to right as №1, №2, №3 and №4. Then odd numbers at №1 

segment and odd numbers at №4 segment are one-to-one bilateral 

symmetry whereby 2
K+1

 to act as the center of the symmetry, also odd 

numbers at №2 segment and odd numbers at №3 segment as well.   

Now that A and B on two sides of 2
W-1

 at the sequence of odd numbers 

are bilateral symmetric odd numbers whereby 2
 W-1

 to act as the center of 

the symmetry, then each other’s symmetric A1 and B2 away from 2
 W-1

 is 

respectively 1+8n; each other’s symmetric B1 and A2 away from 2
 W-1

 is 

respectively 3+8n; each other’s symmetric A2 and B1 away from 2
 W-1

 is 

respectively 5+8n; and each other’s symmetric B2 and A1 away from 2
 W-1

 

is respectively 7+8n, where n ≥ 0.    

Whether symmetric center is 2
W-1

 where W-1 ≤ K or symmetric center is 

2
K+1

, there are one-to-one same symmetric permutations amongst such 
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four kinds of odd numbers. Yet all odd numbers of bilateral symmetries 

whereby 2
K
 to act as the center of symmetry are turned into all odd 

numbers on the left side of 2
K+1

, and on the right side of 2
K+1 

odd numbers 

of symmetries with the left odd numbers, they are formed from 2
K+1 

plus 

each and every left odd number. 
 
  

Thus for odd numbers of bilateral symmetries whereby 2
K+1

 to act as the 

center of symmetry, a half of them retains still original places, and the 

half lies on the left of 2
K+1

, while another half is formed from 2
K+1 

plus 

each and every left odd number.  

Suppose that A
X
 and B

Y
 are any a pair of bilateral symmetric odd 

numbers whereby 2
K
 to act as the center of the symmetry. Since there are 

not two odd numbers of the greater exponents altogether on two odd 

places of every bilateral symmetry for symmetric center 2
K
 according to 

second step of the mathematical induction, so we let A
X 

as an odd number 

of the greater exponent, and let B
Y 

as an odd number of the smaller 

exponent, i.e. let X≥3 and Y<3.   

By now, let B
Y
 plus 2

K+1
 makes B

Y
+2

K+1
. Since A

X
 and B

Y
 are bilateral 

symmetric odd numbers for symmetric center 2
K
, additionally 0 and 2

K+1
 

are bilateral symmetry for symmetric center 2
K
 too, therefore the distance 

from B
Y
 to 2

K+1
 is equal to the distance from 0 to A

X
, i.e. A

X
, then the 

distance from A
X
 to 2

K+1
 is equal to B

Y
 due to 2

K+1
-A

X
=A

X
~B

Y
+B

Y
~2

K+1 

=A
X
~B

Y
+A

X
=B

Y
.  
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In addition, the distance from 2
K+1

 to B
Y
+2

K+1
 is equal to B

Y
 due to 

(B
Y
+2

K+1
)-2

K+1
=B

Y
.  

Now that from A
X
 to 2

K+1
 is equal to B

Y
 and from 2

K+1
 to B

Y
+2

K+1
 is 

equal to B
Y
 too, so A

X 
and B

Y
+2

K+1 
are bilateral symmetry for symmetric 

center 2
K+1

, and thus get A
X
+ (B

Y
+2

K+1
) =2

K+2
, where X≥3 and Y<3.    

After regard 2
K+1

 as the symmetric center, 0 and 2
K+2

 are bilateral 

symmetry, then A
X 

and 2
K+2

-A
X
 are bilateral symmetry.  

Now that A
X 

and B
Y
+2

K+1 
are bilateral symmetry and A

X 
and 2

K+2
-A

X
 are 

bilateral symmetry for symmetric center 2
K+1

, consequently, we get 

B
Y
+2

K+1
=2

K+2
-A

X
, where X≥3 and Y<3.   

Please, see a simple illustration at the number axis as follows.    

 

                                        A
X
+2

K+1
              B

Y
+2

K+1
           

1, 3...    A
X
      2

K
      B

Y
      2

K+1     
2

K+2
-B

Y
 

    
 3ⅹ2

K        
2

K+2
-A

X    
   2

K+2  
 

 

Since when X≥3 and Y<3, there is B
Y
+2

K+1
=2

K+2
-A

X
, then when X≥3 and 

Y≥3, B
Y
+2

K+1
 must lies on the right side of 2

K+2
-A

X
 such being the case the 

value of B is unchanged, so B
Y
+2

K+1
 where Y≥3 is greater than B

Y
+2

K+1
 

where Y<3, of course, B
Y
+2

K+1
 where Y≥3 is greater than 2

K+2
-A

X
 too.   

But, since A
X
+B

Y
≠2

K+1
 where X≥3 and Y≥3, namely A

X
 and B

Y 
are not 

symmetry for symmetric center 2
K
, then A

X 
and B

Y
+2

K+1 
are not symmetry 

for symmetric center 2
K+1

 either.  

We have got the conclusion that a sum of any two non-symmetric odd 

numbers is unequal to the double of the value of the symmetric center 
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absolutely, in above.   

Therefore, there is only A
X
+ (B

Y
+2

K+1
) ≠ 2

K+2
, where X≥3 and Y≥3. 

After regard 2
K+1 

as the symmetric center, B
Y
+2

K+1
 on the right of 2

K+1 

expresses B
Y
 according to the preceding stipulation, thus aforesaid equality 

A
X
+ (B

Y
+2

K+1
) =2

K+2
 is changed into A

X
+B

Y
= 2

K+2
 where X≥3 and Y<3, 

and inequality A
X
+ (B

Y
+2

K+1
) ≠ 2

K+2
 is changed into A

X
+B

Y
 ≠ 2

K+2
 where 

X≥3 and Y≥3.  

In reality, we can also directly deduce B
Y
+2

K+1
=2

K+2
-A

X
 from A

X
+B

Y
=2

K+1
 

due to (A
X
+B

Y
) +2

K+1
-A

X
= (2

K+1
) +2

K+1
-A

X
, i.e. B

Y
+2

K+1
=2

K+2
-A

X
, where 

X≥3 and Y<3.   

Owing to A
X
+B

Y
=2

K+1
 where X≥3 and Y<3, then for B

Y
+2

K+1 
on the left 

side of B
Y
+2

K+1
=2

K+2
-A

X
,
 
there is B

Y
+2

K+1
=A

X
+2B

Y
; for 2

K+2
-A

X 
on the 

right side of B
Y
+2

K+1
=2

K+2
-A

X
, there is 2

K+2
-A

X
=2

K+1
+2

K+1
-A

X
=2

K+1
+B

Y
= 

A
X
+2B

Y
, where X≥3 and Y<3.   

Since A
X 

and 2
K+2

-A
X
 i.e. B

Y
+2

K+1
 i.e. A

X
+2B

Y
 are bilateral symmetric odd 

numbers for symmetric center 2
K+1

, thus A
X
+[A

X
+2B

Y
] =2[A

X
+B

Y
] =2

K+2
, 

where X≥3 and Y<3. 

But then, we have proven A
X
+B

Y
≠2

K+1
,
 
where X≥3 and Y≥3, thus there is 

A
X 

+ [A
X
+2B

Y
] =2[A

X
+B

Y
] ≠2

K+2
,
 
where X ≥3 and Y ≥3.   

After regard 2
K+1 

as the symmetric center, then A
X
+2B

Y 
on the right of 2

K+1
 

expresses B
Y
 according to the preceding stipulation.   

After substitute B
Y
 for A

X
+2B

Y
 in aforesaid two expressions, get A

X
+B

Y 
= 
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2
K+2

, where X≥3 and Y<3, and A
X
+B

Y
≠2

K+2
,
 
where X ≥3 and Y ≥3.  

We are certain that A
X
+B

Y
≠2

K+2
 is proven completely by us according to 

above-mentioned double proof on two aspects, where X ≥3 and Y ≥3.  

Thereupon, A
X
+2B

Y
 under the prerequisite of satisfying B

Y
+2

K+1
=2

K+2
-A

X
 

can only be an odd number of the smaller exponent, i.e. X≥3 and Y<3.    

Thus it can seen, A
X 

and B
Y
+2

K+1
 are bilateral symmetric odd numbers for 

symmetric center 2
K+1

, but B
Y
+2

K+1 
is only an odd number of the smaller 

exponent, though A
X
 is still an odd number of the greater exponent.   

If exchange values of exponents of A and B, namely A
X 

is an odd number 

of the smaller exponent, yet B
Y 

is an odd number of the greater exponent, 

then a conclusion got via the inference like the above is just the same with 

the preceding conclusion.   

If A
X 

and B
Y
 are two odd numbers of the smaller exponents, then after 

either A
X 

or B
Y
 added to 2

K+1
 makes another odd number, whether another 

odd number has a greater exponent or has a smaller exponent, it and 

un-incremental one in A
X 

and B
Y 

are always bilateral symmetry too 

whereby 2
K+1 

to act as the center of the symmetry, however there are not 

two odd numbers of the greater exponents altogether on two odd places of 

every bilateral symmetry.   

To sum up, we have proven that when W-1=K+1, there are not two odd 

numbers of the greater exponents altogether on two odd places of every 

bilateral symmetry for symmetric center 2
K+1

. That is to say, we have 
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proven A
X
+B

Y
≠2

K+2
 under the known requirements, and K≥6.  

Apply the above-listed way of doing, continue to prove that when W-1= 

K+2, W-1=K+3…up to W-1=every positive integer, there are A
X
+B

Y
≠2

K+3
, 

A
X
+B

Y
≠2

K+4
… up to A

X
+B

Y
≠2

W
 under the known requirements.     

 

Secondly, Let us successively prove A
X
+B

Y
≠2

W
H

Z
 under the known 

requirements, and here point out emphatically H≥3 among the known 

requirements.  

After regard 2
W-1

 as a symmetric center of odd numbers, we have proven 

A
X
+B

Y
≠2

W
 under the known requirements in the preceding section. By 

now, we shall regard 2
W-1

H
Z
 as a symmetric center of odd numbers to 

continue to prove A
X
+B

Y
≠2

W
H

Z
 under the known requirements.    

After regard 2
W-1

H
Z
 as a symmetric center of odd numbers, each of odd 

numbers on the left side of 2
W-1

H
Z
 expresses A, and an odd number of 

bilateral symmetry with each of the left odd numbers expresses B, well 

then, the sum of bilateral symmetric A and B is equal to 2
W

H
Z
.   

Let us set about to prove A
X
+B

Y
≠2

W
H

Z
 under the known requirements by 

the mathematical induction thereinafter.  

(1) When H=1, 2
W-1

H
Z
 to wit 2

W-1
, then odd numbers on the left side of 

2
W-1

 and partial odd numbers on the right side of 2
W-1 

are one-to-one 

bilateral symmetry for symmetric center 2
W-1

, and there is only 

A
X
+B

Y
≠2

W 
under the known requirements. No doubt, this inequality is 
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proved in the preceding section by us.     

(2) When H=J, where J is an odd number ≥1, and 2
W-1

H
Z
 to wit 2

W-1
J

Z
, 

suppose that there are not two odd numbers of the greater exponents 

altogether on two odd places of every bilateral symmetry whereby 2
W-1

J
Z
 

to act as the center of the symmetry. Namely suppose A
X
+B

Y
≠2

W
J

Z
 under 

the known requirements, where J≥1.    

(3) When H=K, where K=J+2, prove that there are not two odd numbers 

of the greater exponents altogether on two odd places of every bilateral 

symmetry whereby 2
W-1

K
Z
 to act as the center of the symmetry. Namely 

this step needs us to prove A
X
+B

Y
≠2

W
K

Z
 under the known requirements, 

and K=J+2.   

Since odd numbers on the left side of 2
W-1

J
Z
 and partial odd numbers on 

the right side of 2
W-1

J
Z
 are one-to-one bilateral symmetry for symmetric 

center 2
W-1

J
Z
, and the sum of every two bilateral symmetric odd numbers 

is equal to 2
W

J
Z
.  

Moreover there are not two odd numbers of the greater exponents 

altogether on two odd places of every bilateral symmetry for symmetric 

center 2
W-1

J
Z
 according to second step of the preceding supposition.  

Thus we suppose that A
X
 and B

Y
 are any a pair of bilateral symmetric 

odd numbers, well then, either get A
X
+B

Y
=2

W
J

Z
, where X<3 and Y≥3, or 

get A
X
+B

Y
≠2

W
J

Z
, where X≥3 and Y≥3.     

Also 0 and 2
W

K
Z
 are bilateral symmetry for symmetric center 2

W-1
K

Z
, so 
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B
Y
 and 2

W
K

Z
-B

Y
 are bilateral symmetry, and get B

Y
+(2

W
K

Z
-B

Y
) =2

W
K

Z
.   

By now, let A
X
 plus 2

W 
(K

Z
-J

Z
) makes A

X
+2

W 
(K

Z
-J

Z
), then A

X
+2

W 
(K

Z
-J

Z
) 

=A
X
+2

W
K

Z
-2

W
J

Z
=2

W
K

Z
-(2

W
J

Z
-A

X
) =2

W
K

Z
-B

Y
 due to A

X
+B

Y
=2

W
J

Z
, where 

X<3 and Y≥3.  

Now that A
X
+2

W 
(K

Z
-J

Z
) =2

W
K

Z
-B

Y
, also B

Y
 and 2

W
K

Z 
-B

Y
 are bilateral 

symmetry, then B
Y
 and A

X
+2

W 
(K

Z
-J

Z
) are bilateral symmetry for 

symmetric center 2
W-1

K
Z
 too, so we get B

Y
+[A

X
+2

W
(K

Z
-J

Z
)]=2

W
K

Z
, 

where X<3 and Y≥3.   

Since B
Y
+[A

X
+2

W
(K

Z
-J

Z
)]=[A

X
+B

Y
]+2

W
(K

Z
-J

Z
), additionally has proven 

A
X
+B

Y
≠2

W
J

Z
, so get B

Y
+[A

X
+2

W
(K

Z
-J

Z
)]=[A

X
+B

Y
]+2

W
K

Z
-2

W
J

Z
≠2

W
K

Z
, 

where X≥3 and Y ≥ 3.  

On the other, since B
Y
 and A

X
+2

W 
(K

Z
-J

Z
) in the case X<3 and Y≥3 are 

bilateral symmetry, then B
Y
 and A

X
+2

W 
(K

Z
-J

Z
) in the case X≥3 and Y≥3 

are not symmetry for symmetric center 2
W-1

K
Z
, so B

Y
+[A

X
+2

W
(K

Z
-J

Z
)] ≠ 

2
W

K
Z
 because a sum of any two non-symmetric odd numbers is unequal 

to the double of the value of the symmetric center absolutely.  

After regard 2
W-1

K
Z 

as the symmetric center, A
X
+2

W 
(K

Z
-J

Z
)

 
on the right 

side of 2
W-1

K
Z
 expresses B

Y
 according to the above-mentioned stipulation. 

So substitute B
Y
 for A

X
+2

W 
(K

Z
-J

Z
) in above expressions, then get A

X
+B

Y
= 

2
W

K
Z
 where X<3 and Y≥3, and A

X
+B

Y
≠ 2

W
K

Z 
where X ≥3 and Y ≥3.  

Taken one with another, we have full confidence to affirm that A
X
+B

Y
≠ 

2
W

J
Z
 is proven completely by us, where X ≥3 and Y ≥3.  
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Thereupon, A
X
+2

W 
(K

Z
-J

Z
) under the prerequisite of satisfying 2

W
K

Z
-B

Y
= 

A
X
+2

W 
(K

Z
-J

Z
) can only be an odd number of the smaller exponent.   

Thus it can seen, B
Y
 and A

X
+2

W 
(K

Z
-J

Z
) are bilateral symmetric odd 

numbers for symmetric center 2
W-1

K
Z
, but A

X
+2

W 
(K

Z
-J

Z
) is only an odd 

number of the smaller exponent, though B
Y
 is still an odd number of the 

greater exponent.   

If exchange values of exponents of A and B, namely B
Y 

is an odd number 

of the smaller exponent, yet A
X 

is an odd number of the greater exponent, 

and A
X
 and B

Y
 are bilateral symmetry for symmetric center 2

W-1
J

Z
, then 

the conclusion got via the inference like the above is just the same with 

the preceding conclusion.   

If A
X 

and B
Y
 are two bilateral symmetric odd numbers of the smaller 

exponents for symmetric center 2
W-1

J
Z
, then after either A

X 
or B

Y
 added to 

2
W 

(K
Z
-J

Z
) to make another odd number, whether another odd number has 

a greater exponent or a smaller exponent, it and un-incremental one in A
X 

and B
Y 

are bilateral symmetry for symmetric center 2
W-1

K
Z
 too, however 

there are not two odd numbers of the greater exponents altogether on two 

odd places of every bilateral symmetry.   

To sum up, we have proven A
X
+B

Y
≠2

W
K

Z
 under the known requirements, 

where K=J+2. Namely when H=J+2, there are not two odd numbers of 

the greater exponents altogether on two odd places of every bilateral 

symmetry whereby 2
W-1

(J+2)
Z
 to act as the center of the symmetry.  
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Apply the above-mentioned way of doing, we can continue to prove that 

when H=J+4, H=J+6… up to H=every positive odd number, there are 

A
X
+B

Y
≠2

W 
(J+4)

Z
, A

X
+B

Y
≠2

W
(J+6)

Z
… up to A

X
+B

Y
≠2

W
H

Z
 under the 

known requirements, and here point out emphatically H≥3 among the 

known requirements.     

 

Thirdly, we shall proceed to prove A
X
+2

W
≠C

Z
 under the known 

requirements below.    

Since we have proven A
X
+B

Y
≠2

W
 under the known requirements, then 

this hereby can affirm E
P
+C

Z
≠2

M
, where E and C are positive odd 

numbers without any common prime factor, P, Z and M are positive 

integers, P≥3, Z ≥3, and M >3.   

Since E and C in E
P
+C

Z
≠2

M
 have not any common prime factor, so there 

is E
P
≠C

Z
 accord to the unique factorization theorem of natural number, 

and we let C
Z 

>E
P
.   

Since there is 2
M 

=2
M-1

+2
M-1

, then we deduce E
P
+C

Z 
>2

M-1
+2

M-1
, or E

P
+C

Z 

< 2
M-1

+2
M-1

 from E
P
+C

Z
 ≠ 2

M
.  

Namely there is C
Z
-2

M-1 
> 2

M-1
-E

P 
or C

Z
-2

M-1 
< 2

M-1
-E

P
.   

In addition, there is A
X
+E

P
≠2

M-1 
according to proven A

X
+B

Y
≠2

W
 under 

the known requirements, where A and E are positive odd numbers without 

any common prime factor, and X, P and M-1 are integers ≥3.  

Therefore, we deduce 2
M-1

-E
P 
>A

X
, or 2

M-1
-E

P 
< A

X
 from A

X
+E

P 
≠ 2

M-1
.   
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Thus there is C
Z
-2

M-1 
>2

M-1
-E

P 
>A

X
, or C

Z
-2

M-1 
< 2

M-1
-E

P 
< A

X
.   

Consequently, there is C
Z
-2

M-1 
>A

X
, or C

Z
-2

M-1 
< A

X
.   

In a word, there is C
Z
-2

M-1 
≠ A

X
, i.e. A

X
+2

M-1 
≠ C

Z
.    

For A
X
+2

M-1 
≠C

Z
, let 2

M-1 
=2

W
, we obtain A

X
+2

W 
≠C

Z
 under the known 

requirements.  

 

Fourthly, let us last prove A
X
+2

W
R

Y
≠C

Z
 under the known requirements, 

and here point out emphatically R≥3 among the known requirements.  

Since we have proven A
X
+B

Y
≠2

W
H

Z
 under the known requirements, of 

course can get F
S
+C

Z
≠2

N
R

Y
, where F, C and R are positive odd numbers 

without any common prime factor, S, Z and Y are integers ≥3, N=Y+PY, 

P≥1, and R≥3.  

Since F and C in F
S
+C

Z
≠2

N
R

Y
 have not any common prime factor, so 

there is F
S
≠C

Z
 accord to the unique factorization theorem of natural 

number, and we let C
Z 

> F
S
.   

Owing to 2
N
R

Y 
=2

N-1
R

Y
+2

N-1
R

Y
, then deduce F

S
+C

Z 
>2

N-1
R

Y
+2

N-1
R

Y
, or 

F
S
+C

Z 
< 2

N-1
R

Y
+2

N-1
R

Y
 from F

S
+C

Z
≠2

N
R

Y
.  

Namely there is C
Z
-2

N-1
R

Y 
>2

N-1
R

Y
-F

S
 or C

Z
-2

N-1
R

Y
 < 2

N-1
R

Y
-F

S
.   

In addition, according to proven A
X
+B

Y
≠2

W
H

Z
 under the known 

requirements, can also get A
X
+F

S
≠2

N-1
R

Y
, where A, F and R are positive 

odd numbers without any common prime factor, and X, S and Y are 

integers ≥3, N-1=Y+DY, D≥1, and R≥3.     
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So we deduce 2
N-1

R
Y
-F

S 
>A

X
, or 2

N-1
R

Y
-F

S
 < A

X
 from A

X
+F

S 
≠ 2

N-1
R

Y
.   

Thus there is C
Z
-2

N-1
R

Y 
>2

N-1
R

Y
-F

S 
>A

X
, or C

Z
-2

N-1
R

Y
 < 2

N-1
R

Y
-F

S 
< A

X
.   

Consequently, there is C
Z
-2

N-1
R

Y 
>A

X
, or C

Z
-2

N-1
R

Y 
< A

X
.   

In a word, there is C
Z
-2

N-1
R

Y 
≠ A

X
, i.e. A

X
+2

N-1
R

Y 
≠ C

Z
.    

For A
X
+2

N-1
R

Y
≠C

Z
, let 2

N-1
=2

W
, we obtain A

X
+2

W
R

Y
≠C

Z
 under the 

known requirements, and here point out emphatically R≥3 among the 

known requirements.     

 

To sun up, we have proven every kind of A
X
+B

Y
≠C

Z 
under the given 

requirements plus the qualification that A, B and C have not any common 

prime factor.   

Additionally previous proven the conclusion that A
X
+B

Y
=C

Z
 under the 

given requirements plus the qualification that A, B and C have at least a 

common prime factor has certain sets of solutions of positive integers.   

After the comprehensive comparison between A
X
+B

Y
=C

Z
 and A

X
+B

Y
≠C

Z
 

under the given requirements, we have reached such a conclusion 

inevitably, namely an indispensable prerequisite of the existence of 

A
X
+B

Y
=C

Z
 under the given requirements is that A, B and C must have a 

common prime factor.  

The proof was thus brought to a close. As a consequence, the Beal 

conjecture holds water.   
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