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Abstract

The purpose of this paper is uncertainty evaluatioa target differentiation problem. In
the problem ultrasonic data fusion is applied usdegert-Smarandache theory (DSmT).
Besides of presenting a scheme to target diffexoii using ultrasonic sensors, the
paper evaluates DSmT-based fused results in untdgrgoint of view. The study obtains
pattern of data for targets by a set of two ultns@ensors and applies a neural network
as target classifier to these data to categorigal#tta of each sensor. Then the results are
fused by DSmT to make final decision. The GeneedliAggregated Uncertainty
measure named GAU2, as an extension to the Aggeddricertainty (AU), is applied to
evaluate DSmT-based fused results. GAU2, rathar thid, is applicable to measure
uncertainty in DSmT frameworks and can deal witlmtewous problems. Therefore
GAU2 is an efficient measure to help decision makeevaluate more accurate results
and smoother decisions are made in final decidigri3SmT in comparison to DST.

Keywords: Generalized Aggregated Uncertainty measure; DShafget differentiation;
Ultrasonic

1. Introduction

Ultrasonic sensors are widely used in robotics ieppbns such as localization, target
differentiations and mapping. A measurement sch&mproposed which uses two sets of
ultrasonic sensors to determine location and typmamget surface (see Ref. 1). In this study,
concentration is on target differentiation basedatiern of data which are obtained by a set of
two ultrasonic sensors. The target classificatooparformed by employing time of flight (TOF)
of the sensors. Classification of different targbts using neural networks is achieved for
outcomes of each sensor. Afterwards the resultBuaesl together to make final decision.

There has been much research on sensor fusion dseitngecent years. The evidence theory,
also known as Dempster—Shafer theory, is one ofnthet popular frameworks to deal with
uncertain information. This theory is often presehts a generalization of probability theory,
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where the additivity axiom is excluded. The Dez8marandache Theory (DSmT) is a theory of
plausible and paradoxical reasoning proposed byend Smarandache (see Refs. 2-5). It can
be considered as an extension of the classical BemShafer theory (DST)but with
fundamental differences. DSmMT is able to solve demtatic or dynamic fusion problems
beyond the limits of the DST framework, especialljen conflicts between sources become
large and when the refinement of the frame of theblem under consideration becomes
inaccessible because of the vague, relative andeitige nature of elementsThere are some
successful applications of DSmT in target typekirag’ and robot map buildifg®. Efficiency

of DSmT in comparison to DST is confirmed in sogad map building.

On the other hand, uncertain information often texan all levels of fusion process which are
usually related to physical constraints, detecttgorithms, and the transmitting channel of the
sensors. Therefore, it is important to have an uncertaietaluation after sensor fusion for
better decision making. Harti&yand Shanndn respectively established the field of information
theory. Hartley measure and Shannon entropy hawn hesed in the possibilities and
probabilities frameworks, respectively. Based oesthapproaches, information or preferably
uncertainty-based information can be quantifiedlifferent general measures commonly called
measures of uncertairity

Several theories have been developed to deal witkrtainty such as probability theory, fuzzy
sets theory, possibility theory, evidence theorg esugh sets theory. Instead of opponents, they
should rather be seen as complementary, each mof ibeéng designed for dealing with different
types of uncertainty. Three main types of uncetyairave been identifiéd fuzziness, conflict,
and non-specificity, the latter two being unifiender the term ambiguity. Different measures of
ambiguity, often called measures of total uncetyaimave been proposed. Among them, a
measure of aggregated uncertainty named AU is sept’. This measure is defined in the
framework of evidential theory that aggregates mloa-specificity and conflict. 1t has been
proved that this measure satisfies the five Klinfierman’s requirement$'® It have been
formalized, within a broad range of theories of iegise probabilities, the notion of a total
aggregated measure of uncertainty and various glieggtions into measures of non-specificity
and conflict’. As another uncertainty measure, a new measumggfegated uncertainty is
introduced, named AM for Ambiguity Measure that siat eliminating the shortcomings of AU
such as computing complexity By AM, an alternative to measure ambiguity in Qpster—
Shafer theory is offered. But actually, their prepd measure is not, in a general sense, sub-
additive. It is showed this by a specific countareple which clearly demonstrates that their
assumption in the last step of the proof is inaziramd that AM indeed violates sub-additi¢ity

In spite of efficiency of AU measure, this uncantgimeasure and its associated algorithm for
computing®, has devoted for DST framework and cannot be egpid DSmT directly. As
mentioned before, DSMT is a generalization of DB&¥o generalized AU measures, which are
named GAU1 and GAUZ2, have been introduced by thigoasi (see Ref. 22). It is proved that the
new measures have enough efficiency to evaluat®©8m@T based results. In this paper these
new measures are used. An experimental setup wisichased on ultrasonic sensors is
configured. Neural networks are used in the fesel of the fusion process. Neural networks are
trained by acquired data of the set of ultrasoaitsers and then outputs are used to perform the
differentiation task. Finally, the obtained resutt§ the DSmT-based decision maker are
evaluated by the proposed uncertainty measures.

2



This paper is organized as following: A short rewien DSmT that are considered in uncertainty
analysis is mentioned in Sec. 2. Sec. 3 is deviwtedpresent GAU2 as the new measure and a
short discussion on the AU and GAU1 measures. tn &eexperimental studies are carried out
on uncertainty measurement for a target classificaproblem. Finally, some concluding
remarks are presented in Sec. 5.

2. Dezert-Smarandache Theory

Dezert—-Smarandache Theory is a theory of plausivid paradoxical reasonitiy The
development of DSmT arises from the necessity teranme the inherent limitations of
Dempster—Shafer Theory (DSTyvhich are closely related with the acceptance loéf&’s
model for the fusion problem under consideratiolmisTmeans the frame of discernment
0 ={6,,6,,..,0,} is implicitly defined as a finite set of exhaust@nd exclusivehypotheses.
The Dedekind’s lattice, also called in the DSmThfeavork hyper-power sé® is defined as the
set of all composite propositions built from elensenf ® with U andn operators such that:
1) ©,6,,6,,...,6, € D®
(2) if A, B€D® then AUB€D®, AnB € D°
(3) No other elements belong B¥, except those obtained by using rule (1) or r@)e (
DSmT starts with the notion of free DSm model, dedd!/ (®), and consider® only as a
frame of exhaustive elemer{i,,9,, ..., 8,,} which can potentially overlap. When the free DSm
model holds, the classic commutative and assoeidd8m rule of combination is performed.
From a general frang&g a map is defined a=(.): D® — [0,1] associated to a given body of
evidence as:
m@) =0, Y,pem@=1 , 0<m)<1 (2.1)
The quantitym(A) is called the generalized basic belief assignmexggm(gbba) ofA. The
generalized belief and plausibility functions aediged in almost the same manner as within the
DST,i.e.
Bel(A) = Xpepo,gcam(B) (2.2)
PI(A) = Xpepo pnazo m(B) (2.3)
When the free DSm modaf” (©) holds for the fusion problem under considerattbe, classic
DSm rule of combinatiorme(@) =m(.) = [my @ m,](.) of two independent sources of

evidences over the same frame with belief functiBes,(.), Bel,(.) associated with gbba
m,(.), m,(.) corresponds to the conjunctive consensus of thessult is given by:
vC eD® , me(@)(C) =m(C) = Xy pepe M1 (A)m,(B) (2.4)
ANB=C
SinceD® is closed undeu andn set operators, this new rule of combination gu@esh that
m(.)is a proper generalized belief assignmeeatn(.): D® — [0,1].

3. Uncertainty Measurement

Measuring uncertainty or information means assigr@mumber or a value from some ordinal
scale to a given model of an epistemic state. Twywed of classical evidential based
uncertainties, non-specificity and conflict areeoftmeasured as part of the fusion techniques
such as DST fusion (18). All of the uncertainty s@as attempt to measure uncertainty in bits.
One bit of uncertainty is the amount of total utaety regarding the truth or falsity of one
proposition. One of the most appropriate uncegjameasures which are developed in DST

3



frameworks is the Aggregate Uncertainty (AU) measMYhile the goal of information fusion is
to reduce the global uncertainties, (18) explored toncept of comprehensive uncertainty
measurement in the DST framework.
Definition3.1. The measure of the Aggregated Uraiety contained iBel, denoted asU (Bel),
is defined by:

AU(Bel) = max{—YgeoPo l0g> Do} (3.1)
where the maximum is taken over @i} }gcoSuch thap, € [0,1] for € 0, Y.gcope = 1 and
forallA € 0 ,Bel(A) < Y eaDx-
It is proved that the measure satisfies all theperbes for a reasonable uncertainty
measurement, specifically the sub-additivity anditdty which are definetf. Algorithm of
computing AU was originatédl The algorithm is applied for DST framework whileannot be
used for DSmT directly. The reason is hidden inatlgmrithm of computing AU and especially
in the main difference of DST and DSmT. In the D8W frame of discernment of the fusion
problem under consideration assumed to have extaumtd exclusive elementary hypotheses
but in DSMT these conditions are violated. The g of computing AU measure states that
at least one part of information which is deterrdifigA N B will be missed if anyone wants to
apply this algorithm to DSmT. Accordingly, uncentyi measurement would not be accurate.
Two Generalized Aggregate Uncertainty measuresghwhre named GAULl and GAUZ2, have
been developéd The idea of generalizing Aggregated Uncertaintgasure in GAUL to
evaluate DSmT, is disjointing the free DSm modedéparated sets (Fig. 1). In this manner, the
main problem of fusion still have two events wherézere are three separated events such as a
Shafer's model with 3 events. Therefore, the sagmithm of computing for AU measure can
be used as the algorithm of computing the measidIGafter the mentioned extension in order
to evaluate the DSmT-based fusion results.

ANB

A@ | ( I )
Fig. 1. Disjointing of framework of free DSm modeith two jointed events to three excluded sets

Although GAUL is applicable to evaluate uncertaimypSmT framework, the extension that is
used in GAUL1 is true for the problems where théneshent is possible. There are some cases
that the refinement is not possible, for exampleenvkhe frontiers of the sets in the frame of
discernment are not clear. So this refinement n@ywork for any frame of discernment. The
new uncertainty measure which has been called, i@kezed Uncertainty measure 2 or GAU2
has been introduced to overcome this limitéfioin GAU2, despite of GAU1, clarity of the
frontiers of the sets in the frame of discernmentat necessary. Therefore GAU2 is a suitable
uncertainty measure for continuous frameworks. @ensthe set of non-exclusive events
0 ={6,,0,,..,0,} or@ ={6|60 =6;i=1,2,..,n}. GAU2 is defined based on a class of
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probability distribution of events of a set such @swhereas the entropy of Shannon is
maximized.®p is equal to:

Op = {05100 = 05 ,j = 1.2,...,10,} = {epwp =6, = ﬂ el}

i€l
P+IS{1,2,..,n}

or in a simple form®, = {{gi}izl,z,...,ru {6; N 6}ij=12..n,{0: N 6; N O }ijk=12,..n, }
i#j i#j#k
And cardinality of@, is: |0p| = ne, = X, (7).
Definition 3.2. The measure of the Generalized A&ggted Uncertainty 2 contained
inBel,GAU2(Bel), which is defined by:
GAU2(Bel) = max{— Yopcop Pop 109, pep} (3.2)
Pe,is the associated probability distribution assignta each event &, and the maximum is

taken over afps, } such thatfor albp € 05,0 < py, <1,
Op€Edp P
Yopeop(—1)* P, =1, a(fp = Ny, 6;) = [[lwhere (@ # 1 S{1,2,...,n}),
Bel(A) < Z Do, forall @ + A C Op

OPEA
The generalized algorithm for computing the GAUZaswee is:
Input: a frame of discernmeht(with n non-exclusive events), a generalized lbéliaction Bel
on@

Output:GAU2(Bel), {py, } such that:

OpEdp
GAU2(Bel) = — Z Do, log, Do,
OpEdp
Qp = {gplgp = Gpj,j = 1,2, ...,Tl@P} = {9})1, gpz, ...,gpnep}
Pop = Do, | ) Z (-D)*OP*L py =1 , 0<py, <1

9p=9p].,j=1,2,...,n@P 6pedp

a(HP = ﬂ Hl-) = |Ilwhere (@ #1c<{1,2,..,n})
i€l

Bel(A) < Z Do, foralld # A < Op

OpeA
Line 1) begin
Line 2) make
( )
QP = {9P|9P = GPj'j = 112' ---;n@P} = igplgp = GP] = ﬂ 91}
i€l
(Z):#Igziz,...,n}

Line 3)Y = @p, Bel' = Bel
Line 4) whileY # @ andBel’(Y) > 0 do



Line 5) find a non-empty set € 0, such thatBBel(A) / |A| is maximal if there are more such
setsA than one, take the one with maximal cardinalitgtien
Line 6) for eactf, € A dopg, = Bel’(A)/|A| endfor
Line 7) foreactB € (Y —A) U (Y n A) do
Bel'(B) = Bel'(B U A) — Bel'(A) + Bel'(B n A)endfor

Line8)Y = (Y —A4A)u(YnA)
Line 9) endwhile
Line 10) if Bel’(Y) = 0 andY # @ then
Line 11) for all 8, € Y dopy, = 0 endfor
Line 12) endif
Line 13)GAU2(Bel) = — ¥g,cop Do, 1092 Do,
Line 14) end
Clearly, one may see the differences between tlweablgorithm and the algorithm of AU
measure. The differences are:

* Replacing the set of non-exclusive evantgy the new se@p

* The condition imposed @, in the Definition 3.2

* Lines 7 and 8 of the GAU2 measure algorithm to icoet the computations of the next

probability assignments

4. Experimental Study: Ultrasonic Sensors for Target @assification
4.1. Experiment Setup

In the experimental setup, two identical acousamsgmitter/receiver pairs with center-to-center
separatiord=35 cmare employed. The common targets that there existal environment of
mobile robot applications such &ang Cylinder with diameter 20 cm an@orner with 90°
angle are considered. TOF data are collected ase2@or locations which are located at 5
different angles fronp = —30° to ¢ = +30° in 15° increments, and from= 0.5 mtor =2 m

in 0.5 m increments separately (Fig. 2). To disaffect thstatices of targets in target
classification, the data are normalized regardirgjadce. Consequently, the targets can be
classified regardless to the mentioned positioig. & indicates normalized data of ultrasonic
sensors for these 20 positions for the targets.

+15° +30°

Fig. 2. Experiment setup and 20 different positiohtargets



TOF signals of each sensor pair are used as imgnals of a neural network. The hidden layer
comprises 50 neurons and hyperbolic tangent asmeaml functions and linear functions at the
output layer with 3 neurons. For each sensor, Gateok data are collected for each target
location for each target primitive, resulting in 664 rangesx5 anglesx3 target types) sets of
data. The network is a multi-layer perceptron (Mlo@jwork with a learning constant equal to
0.9, momentum constant equal to 0.5, and a signypie-nonlinearity. The neural network
estimates the target type using these data.
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4.2. Sensor Fusion with Uncertainty Measurement

In this section, DST and DSmT are applied to ttseilte that are obtained by neural networks in
order to differentiate the target types. After tlesults of two sensors are fused, uncertainty
measurement has been carried out according to Aasune for DST and the GAU1 and GAU2
measures for DSmT.

Table 1 gives the results of correct target ty@essification that are considered as basic belief
assignment of each sensor of the three targetthéoicase that the target object‘i®ane”.
Accordingly, each sensor by using a trained nenealvork presents a quantity to differentiate
the targets. In this tabl&?” is used to represetPlane”, “Cy” is for “Cylinder” and“Co” is

for “Corner” and ‘©” is devoted to represent total ignorane® = P U Cy U Co.

Table 1. Outputs of neural network based classiféebasic belief assignment and DST based fusguitse Target

type: “Plane”
2° Sensorl Sensor2 mer(4)

P 0.7333 0.5333 0.8698
Cy 0 0.1333 0.0178
Co 0 0.0667 0.0592
PucCy 0.1333 0.1333 0.0355
PuUCo 0.0667 O 0.0059
CyuCo 0.0667 0.0667 0.0118
] 0 0.0667 O

4.2.1. Results of DSmT-based Fusion and Uncertainty etialtudy GAU2 Measure

Table 2 illustrates the results of DSmT-based fusésults. When DSmT is used, the number of
events to be decided is more than number of evenxST because of using hyper-power set
and free DSm model. DSmT fusion showed its cagaslin continuous problems as well as
problems with non-exclusive events. Basically, DI&ds not enough efficiency to deal with
problems with such models. On the other hand, adgas of using DSmT fusion should be
studied in uncertainty point of view as well. THere, DSmT-based fusion results of the target
differentiation are evaluated by GAU2 measure. Adtg to Definition 3.2, members of the set
Opare defined asi®p, ={6,, 6,,..., 6;,} where:d, =P,0, =Cy,0; =Co,0,=PNCy,bs=
PNnCoBs=CynCo,0;, =PnCyn Co.

The first step of the algorithm of computing iugtrated in Table 2. The maximum value of
Bel(A)/|A| is obtained for the evelt therefor@, = 0.8755. According to the algorithm, by
discarding the ever® and consequently its union the results the GAU2smeacontinues. It is
concluded that p¢y, = 0.1957,p¢, = 0.1022, ppncy = 0.0978,ppnco = 0.0489, pPeynco =
0.0267, ppncynco = 0. Therefore uncertainty in the DSmT-based resut$sBU2 (Eq. (6)) is
equal to 1.6453.

To investigate the uncertainty improvement in tesutts of DSmT fusion, uncertainties in the
results of each sensor have to be considered. élynilncertainty in each sensor can be
computed by the measure GAU2. The value of unceitai in Sensorl and Sensor2 by the
GAU2 are computed by the algorithm and are equall.tt034 and 1.4036, respectively.
Uncertainty evaluation of DSmT fusion by GAU2 shatvat the DSmT reduces the amount of
uncertainty in final decisions. Uncertainty in DSnfitdsion results are less than the sum of



uncertainties in Sensors1&2. So it can be conduti@t DSmT has improved the results in
uncertainty point of view.

Table 2. The % step of the algorithm of computing GAU2 measurrettie DSmT results; Target tyg®lane”

D® Mpsmr (A) Bel(A) Bel(A)/1A]
P 0.644 0.875¢ 0.875¢
Cy 0.0267 0.1334 0.1334
Cao 0.008¢ 0.066" 0.066
PUCy 0.0267 0.9734 0.4867
PUCo 0.0044 0.9199 0.4600
Cyu Co 0.008¢ 0.315¢ 0.157¢
PnCy 0.0978 0.0978 0.0978
PnCo 0.0489 0.0489 0.0489
CyncCo 0 0 0
PN (CyuCo) 0.0844 0.1467 0.0734
Cyn (PUCo) 0.0089 0.0978 0.0489
Con(PuUcCy) 0.0089 0.0489 0.0245
P U (CynCo) 0.0089 0.9022 0.4511
Cy U (P nCo) 0.0178 0.2934 0.1467
CoU (P NCy) 0.0044 0.2622 0.1311
PnCyncCo 0 0 0
(PnCy)u(PNnCo)U (CynCo) 0 0 0
% 0 1 0.3333

Table 3 summarizes the results of uncertainty nreasent in the experiment. In the case of
conflict measurements, DSmT must be used inste@$dt Also these experiments demonstrate
that DSmT presents smoother decisions, especraltpmtinuous models. Since AU is presented
for DST and cannot be applied to the DSmT res#8Ul and GAU2 are applicable as
uncertainty measure for DSmT fusion results. Moegothis study shows the efficiency of
DSmT to improve the final results in uncertaintyrpaf view. Additionally, application of the
GAU2 measure has not the limitation of the GAUl swea to deal with events with non-
distinguishable borders.

Table 3. Uncertainty measurement for sensor 1&2T Bisd DSmT fusion results

Sensor Sensor Sensorl+

Results 1 5 Sensor2 DST DSmT
Uncertainty measurement by AU 1.1035 1.2730 2.3765 0.6680 -
Uncertainty measurement by GAU1 27259 2.8078 5533 - 2.4866
Uncertainty measurement by GA 1.103¢ 1.403¢ 2.507( - 1.645:

5. Conclusions

In this paper, uncertainty evaluation problem idexision making system is considered. An
experimental setup of ultrasonic sensors is estaddi to study target differentiation problem and
uncertainty measurement in decision making. A commeural network is used as classifier for
each sensor path to get the classification resfilise sensors. DSmT overcomes the limitations
of DST. On the other hand, AU cannot be applieD%mT because of the involved assumption
in the algorithm of computing AU which states thesmts of frame of discernment must be
without community. Generalized AU measuree,GAU1 and GAU2 have been developed to
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overcome this limitation DSmT and the associatezbtmainty measures are applied to the results

of sensors and the results are discussed in defHile final decision in the presented

configuration has uncertainty less than each sensmasurement. On the other hand, efficiency

of Generalized Uncertainty measures to measurertanuty and more accurate results and

smoother decisions are made in final decisions BynD in comparison to DST are validated.

The following suggestions might be considered ahéu studies;

» employing other classification methods insteadeafral networks

« utilizing ultrasonic echo signal amplitudes as a@glidata in addition to TOF data

* looking for an uncertainty measure with less comipfethan AU, GAU1 and GAU2 in
computation, which satisfies the requirements @leutainty measures
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