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Abstract

In this study, we present (i) a proof of the Menelaus theorem
for quadrilaterals in hyperbolic geometry, (ii) and a proof for the
transversal theorem for triangles, and (iii) the Menelaus’s theorem

for n-gons
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1. Introduction

Hyperbolic Geometry appeared in the first half of the 19" century
as an attempt to understand Euclid’s axiomatic basis of Geometry. It is
also known as a type of non-Euclidean Geometry, being in many respects
similar to Euclidean Geometry. Hyperbolic Geometry includes similar
concepts as distance and angle. Both these geometries have many re-
sults in common but many are different. There are known many models
for Hyperbolic Geometry, such as: Poincaré disc model, Poincaré half-
plane, Klein model, Einstein relativistic velocity model, etc. Menelaus
of Alexandria was a Greek mathematician and astronomer, the first to
recognize geodesics on a curved surface as natural analogs of straight
lines. Here, in this study, we give hyperbolic version of Menelaus theo-
rem for quadrilaterals. The well-known Menelaus theorem states that if [
is a line not through any vertex of a triangle ABC' such that [ meets BC'
in D, CAin E, and AB in F, then % . g—i . % =1 [1]. F. Smarandache
(1983) has generalized the Theorem of Menelaus for any polygon with
n > 4 sides as follows: If a line [ intersects the n-gon A;A,...A, sides

A1As, Ay As, ..., and A, A; respectively in the points My, M, ..., and M,,,

M1 Aq . Mo Ao . . MnAn
then 7790 - 282 .. e =1 [2].

Let D denote the complex unit disc in complex z - plane, i.e.
D={zeC:|z| <1}

The most general Mobius transformation of D is

9 20+ 2

10
=€ Z 4
1+7%2 (20 @ 2),



which induces the Mobius addition & in D, allowing the Mobius trans-
formation of the disc to be viewed as a Mobius left gyrotranslation

20+ 2
14+ %5z

2—=>20Dz=

followed by a rotation. Here 6 € R is a real number, z, 2o € D, and Zj is
the complex conjugate of zy. Let Aut(D, @) be the automorphism group
of the grupoid (D, ®). If we define

a@b_ 1+ ab

gyr: D x D — Aut(D,®), gyrla,b] = boa  1xab

then is true gyrocommutative law
a®b= gyrfa,b](b D a).

A gyrovector space (G, @, ®) is a gyrocommutative gyrogroup (G, @)
that obeys the following axioms:

(1) gyr[u,vl]a- gyrju,vlb =a-b for all points a,b,u,v €G.

(2) G admits a scalar multiplication, ®, possessing the following prop-
erties. For all real numbers r, 71,72 € R and all points a €G:

(Gl)1®a=a

(G2) (n+m)@a=readna

(G3) (rr2) ®a =1 ® (r, ® a)

(04) Irl®a _ a

[reall — lall

(G5) gyrju,v](r ® a) =r ® gyru, v]a

(G6) gyriri @ v,r @ v] =1

(3) Real vector space structure (|G|, &, ®) for the set ||G|| of oned-
imensional "vectors"

1G] ={£]allrac G} CR
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with vector addition & and scalar multiplication ®, such that for all
r€Rand a,b € G,

(G7) [r@all = [r||a]

(G8) la®b] < |la]| @ [[b]

Definition 1 Let ABC be a gyrotriangle with sides a, b, ¢ in an Finstein
gyrovector space (Vs, ®,®), and let hy, hy, he be three altitudes of ABC
drawn from wvertices A, B, C perpendicular to their opposite sides a,b,c

or their extension, respectively. The number

Sapc = ’Ya,a’Vhaha = ’Ybb’thhb = ’YCC’VhChc

is called the gyrotriangle constant of gyrotriangle ABC (here vy, =

1

is the gamma factor).

(see [3, pph58|)

Theorem 1 (The Gyrotriangle Constant Principle) Let A;BC
and Ay BC' be two gyrotriangles in a Einstein gyrovector plane (R, @, ®),
A1 # As such that the two gyrosegments A1 As and BC', or their exten-
sions, intersect at a point P € R?, as shown in Figs 1-2. Then,

Via,p| A1 Pl _ Sase
Y| AqP| |[A2P|  Saspe

(see [3, pp 563))

Theorem 2 (The Hyperbolic Theorem of Menelaus in Einstein

Gyrovector Space) Let a;,as, and a3 be three non-gyrocollinear points



in an Einstein gyrovector space (Vs, ®,®). If a gyroline meets the sides

of gyrotriangle ajasas at points aja, ais, azs, as in Figure 3, then

7@&11@312 ||@a1 @ a12|| 76a269a23 ||@a2 @ a23|| 79a369a13 ||@a3 @ a13|| —
/Yeazﬂﬂalg ||@a2 @ a12|| 7@33@&23 ||@a3 @ a23|| ’}/@al@alg ||@2l1 @ a13||

(see [3, pp 463])
For further details we refer to the recent book of A.Ungar [3].

2. Main results

In this section, we prove Menelaus’s theorem for hyperbolic quadri-

lateral.

Theorem 3 If is a gyroline not through any vertex of a gyroquadrilat-
eral ABC'D such that | meets AB in X, BC' inY, CD in Z, and DA
m W, then

Viax)lAX] VigyIBY] YV czl0Z] 7|DW||DW‘_

(1) 1

ViexIBX| Vieviloyl Y ipz Dzl ViawlAW|

Proof. Let T' be the intersection point of the gyroline DB and the
gyroline XY Z (See Figure 4).



If we use a theorem 3 in the triangles ABD and BC'D respectively, then

7 ax||AX]| ) Y\ pr||BT| ) Y\ pw )| DW| -

(2) 1
ViexIBX] ViprIDTI Y jaw(|AW]

and

(3) Y\ pr| DT . Y\czlC2| . Y\ sy |IBY| 1

VierIBTI VipzIDZ]  Vioy|ICY]
Multiplying relations (2) and (3) member with member, we obtain the

conclusion. H

We have thus obtained in (1) the following:

Theorem 4 (Transversal theorem for triangles) Let D be on gyroside
BC, and [ is a gyroline not through any vertex of a gyrotriangle ABC
such that | meets AB in M, AC in N, and AD in P, then

Y an||AM| ) 7 acilAC) ) 7 pn|| PN _7|DB\|DB| _q

ViaglABl - VianIAN Y ipar|PM| Y |peIDC



Proof. If we use a theorem 4 for gyroquadrilateral BC'NM and gyro-
collinear points D, A, P, and A (See Figure 5) then the conclusion follows.

Theorem 5 If [ is a gyroline not through any verter of a n — gyrogon
A1 As.. A, such that | meets A1 Ay in My, AsAs in Ms, ..., and A, A1 in
M,,, then

7|A41A1||M1A1‘ ’y|MQA2| | M2 Az| Y My A || M A .

(4) 1

7|MIA2||M1A2\ 7|M2A3||M2A3\ 7\1\471A1\\Mn141|

Proof. We use mathematical induction. For n = 3 the theorem is true
(see Theorem 3). Let’s suppose by induction upon k > 3 that the theorem
is true for any k — gyrogon with 3 < k < n — 1, and we need to prove it
is also true for £ = n. Suppose a line [ intersect the gyroline A5A,, into
the point M. We consider the n — gyrogon A;As,...A, and we split in a
3 — gyrogon A1 AsA, and (n — 1) — gyrogon A,AsAs...A,,_1 and we can

respectively apply the theorem 3 according to our previously hypothesis
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of induction in each of them, and we respectively get:

VinrgayIMiAr] Vnpag IMAs| Y ary a,) [Mn Al

=1
V\MlAQ\‘MlAﬂ Vi ran | MA| fy\MnA1||MnAl‘

and
fyUWAnHMA"‘ 7|A12A2||M2A2‘ ’Y|M7L72An72‘|Mn_2An_2| 7|M7L71An71“Mn_1An_1‘ _
’7\MA2I|MA2‘ 7|M2A3||M2A3‘ ’Y|]Mn_2An_1‘|Mn*2An*1| ry|Mn_1AnHMn71An|
whence, by multiplying the last two equalities, we get

7\M1A1\|M1A1| 7\M2A2\|M2A2| Y\ an A | Mn A —

7\M1A2\|M1A2| 7\MQA3\|M2A3| 7|M7LA1|‘M71A1‘
|
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