A simple lecture on MUBs

M. D. Sheppeard

Abstract

Schwinger introduced the notion of a set of mutually unbiased bases
for quantum measurement. Maximal sets are known for prime power
dimensions, but in other dimensions d very little is known, even for d =
6. This is a concrete introduction to MUBs, describing the maximal
sets for d < 6.

In quantum measurements with d possible outcomes, one is interested in
the case where every outcome is equally likely [1]. We consider one prepa-
ration basis together with a measurement basis. Define a pair of mutually
unbiased bases in d dimensions [2][3] to be two bases V and W for C¢ such
that for every v € V and w € W,

(v - w)| i (1)
Spin in d = 2 is the first example given below. For d = 1, any phase § € C
is mutually unbiased with respect to any other.

A basis will be written as a set of d column vectors. Such a basis Bj is
equivalent to any other matrix By obtained through arbitrary phase multi-
ples on the columns, and arbitrary permutations of the columns are permit-
ted. That is,

BQ ~ BlC (2)

for a diagonal phase matrix C'. We usually begin with the standard basis, the
identity matrix Iz. It turns out that a second special choice is the quantum
Fourier matrix Fy, defined by the examples below. Observe that any basis
B; that is mutually unbiased with respect to I; must have entries that are

complex phases, up to the normalisation factor \/3_1, since (1) picks out a
single entry at a time. These are known as generalised Hadamard matrices.

The vectors in a basis are the eigenvectors for some measurement oper-
ators in dimension d. One is interested in finding the largest possible set of
bases such that every basis is mutually unbiased with respect to every other.
We call this a set of MUBs.



d=2:

A maximal set of mutually unbiased bases in d = 2 is the set of eigenvectors
for the three Pauli spin matrices

e (00) o (i) (3 0)

This is the triplet of matrices {I2, F5, Ro}, where

nb(1h) mebC )

For each matrix, check that each column is orthogonal to every other column
in the basis.

It turns out that d+1 is the maximal number of MUBs in any dimension
d.

d=3:

Let w = exp(27i/3) be the primitive cubed root of unity, and @ its complex
conjugate. A set of 4 mutually unbiased bases is given by I3, the Fourier
matrix [4]

1 1 1 1
F;=— 1 w w |, (5)
\/§ 1 w w
and the two circulants
1 1 w 1 1 1 1 w
Ri=—| 11 w |, R3tl=— @ 1 1 (6)
V3 w 1 1 V3 1 @ 1

d=4:

As for d = 2 and d = 3, there is a maximal set of d4+1 = 5 mutually unbiased
bases in dimension 4. It is still possible to find these by hand, using only
the fourth roots of unity. Along with Iy, we have

11 1 1 i i =1 1
11 1 -1 -1 1l i i 1 -1
Fa=gly 4 1 4| B=5| 41 5 4| O
1 -1 -1 1 1 -1 —i —i
1 i 1 —i i =1 i -1
1 i -1 —i -1 1 -1 = 1
Bo=g |y 1 1|0 Bs=3| i 1 1
1 i 1 i 1 —i -1 i



d = p" an odd prime power:

When d = p” for an odd prime p, there exists a maximal set of d+1 mutually
unbiased bases [2]. Let wg = exp(27i/d). The construction of a maximal
set of MUBs in d = p” uses the finite field F,,». For z € F,r, the trace in F,
is defined by [5]

tr(z):z+zp+'--+zpk_1. (8)
Along with the standard basis I, there are d bases By, forn € {0,1,--- ,d—
1}, defined by the vectors vy, ,, with m € {0,1,--- ,d — 1} [6], whose entries
are

1
(Un,m)a: - ﬁ
for z € {0,1,--- ,d — 1}. The quantum Fourier basis Fy is By. For f(z) =
nz? + mx, the phases in vy, , are the canonical additive character x1(f(x))
for Fy. That these bases are all mutually unbiased follows directly from

[51(7];

Theorem 0.1. If x1 is the canonical additive character for Fy with d = p”
an odd prime power, and f(z) = ax?® + bx with a # 0, then

1> xalfw)=vd

yEFq

r(nx?+max
(twp)trne+ma) (9)

Proof: The multiplicative quadratic character n on F;* is defined by n(y) = 1
if y is a square and 7(y) = —1 otherwise. For an additive character x of Fy,
the quadratic Gaussian sum is

Gn,x) = Y nw)x(y). (10)

yeFry”

Observe that (vy m|vs) has the form ) x1(f(x)) for a # 0 whenever n # s.
Theorem 5.33 of [5] then evaluates

2
S @) = xi(2) - na) - Gl x), (11)

4a
z€lFy

which has the same norm as G(7, x1). Theorem 5.15 of [5] gives the values
of G(n,x1), equal to (—1)""'/d if p = 1 mod 4, and (—1)"~'i"\/d for p = 3
mod 4. That the norms are all v/d is a basic property of Gaussian sums
G (1, x) for any non trivial multiplicative character 1) and non trivial x.



That is, as explained in the historical paper by Weil [8],

G, ) = G, )G, X) (12)
= > > PWxWv)x() (13)

yEIFd* zEIE‘d*

=3 > Wy 2)x(z - y) (14)
y oz
= 35 eyl — 1)) (15)

= ¢(1)(d—1) + (=v(1))(=x(0)) (16)
= ¢(1)d, (17)
with the second last step splitting the cases w = 1 and w # 1, noting that
Zy X(y) = 0 in Fy and similarly for ¢ in F;*. Gaussian sums are like Fourier
coefficients for x(z) as a series in all the multiplicative characters.

d = 6:

The maximal number of MUBs for d = 6 is unknown. A special case of
Zauner’s conjecture [9] suggests that there are only 3 MUBs in a maximal
set. Once again, let w = exp(27i/3). Using F = F3 ® Fh,

1l w v w w 1
1l w w w w 1
1 1 1 1 1 1 1
Fo = Vol 1 w o —w —w -1 (18)
1 U0 w w —w -1
111 -1 -1 -1
one finds a third basis
1 w 1 w 1 1
1 1 w 1 w 1
1 w 1 1 1 1 w
Re=—|“ ~ -~ - ¢ (19)
V6 i w1 —ilw  —1 —1
) T W —1 —w —1
w1 /) —1 -1 —iw

by noting that a vector v € Rg must be of norm \/671 in order to be
mutually unbiased with respect to the vector (1,1,1,1,1,1). There are few
such vectors, using only 12th roots of unity. Grassl has shown [10] that there
are only 48 vectors in total that are mutually unbiased with respect to Ig
and F6.



The d = 6 MUBs are a special case of the following observation [6]. If d
has a prime factorisation p1*1po2 - - p,Fr let

Nl(d) = min {N(piki)}i:1727... RS

where N(n) is the maximal number of MUBs in dimension n. This N;(d)
defines a lower bound for the maximal number in dimension d, since one can
mix together a choice of N;(d) bases for each prime power factor p;* using
tensor products. For example, when d = 12 we can choose the 4 bases I12,
Fy® B1, R3® By and R3~! @ Bs.

So in any dimension d > 2, there are at least 3 MUBs. As for d = 2, one
such set is given by the eigenvectors of three operators ox, oz and oxz,
where ox is the cyclic permutation (23---d1) and oy is the phase diagonal
with entries D; = (wq)".

The difficulty of Zauner’s conjecture is in showing that F}; is an essential
element of a maximal set of MUBs. One can always obtain the vector
(1,1,---,1) in one basis B through a diagonal transformation DB; on all
bases B; in a set, and then set one entry in each column to 1 with a phase
multiple, but this still leaves (d — 1)? entries in B.

Observe that all the concrete examples above may be written in the form
DFy for a phase diagonal D. It is clear that this transformation D on an
arbitrary basis preserves the orthogonality relations from Fy. For d = 3 one
creates bases using the diagonals (1,1,w) and (1,1,@), and in d = 4 we may
use

(i,4,—1,1), (1,i,4,—1), (i,—1,i,1).
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