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Abstract

Still now there are no theoretical background for explanation of physical phenomena of ‘spooky action
at a distance’ as a quantum superposition of quantum particles. Several experiments shows that speed of
this phenomena is at least four orders of magnitude of light speed in vacuum. The classical electromagnetic
field theory is based on similarity to the classic dynamic of solid continuum media. The today’s experi-
mental data of spin of photon is not reflected reasonable manner in Maxwell’s equations of EM. So, new
proposed micropolar extensions of electromagnetic field equations cloud explain observed rotational speed
of electromagnetic field, which experimentally exceed speed of light at least in four order of magnitude.

Introduction

In order to test the speed of ‘spooky action at a distance’ (Einstein, Podolsky, & Rosen, 1935), Eberhard
proposed (Eberhard, 1989) a 12-hour continuous space-like Bell inequality (Bell, 1964; Clauser, Horne,
Shimony, & Holt, 1969) measurement over a long east-west oriented distance. Benefited from the Earth self
rotation, the measurement would be ergodic over all possible translation frames and as a result, the bound of
the speed would be universal(Eberhard, 1989; Salart Daniel, Baas Augustin, Branciard Cyril, Gisin Nicolas,
& Zbinden Hugo, 2008). Other authors (Salart Daniel et al., 2008; Yin et al., 2013) recently report to have
achieved the lower bound of ‘spooky action’ through an experiment using Eberhard’s proposal at least four
orders of magnitude of light speed in vacuum.

Still now there are no theoretical background for explanation of this physical phenomena. The aim of
this article is to propose the useful theoretical explanation based on linear micropolar elasticity of continuum
media.

1 Linear Elasticity

It is good known that dynamic linear elasticity is derivable form third Newton low for density of continuum

ρüi =
∂σ ji

∂x j
+Fi (1)

σi j = Ckl
i j εkl for isotropic media⇒ σi j = λεkkδi j +2µεi j (2)

εi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
(3)

where ui are displacements in direction i, εi j are strain-displacements, σi j = σ ji symmetric force stress tensor,
Fi =

∂P
∂xi

are body force components per unit volume and could be expressed on base of Gauss-Ostrogradsky
theorem as gradient of pressure on boundaries, λ,µ are Lame’s constants. After inserting of expression of
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stress and strain into equation of motion we obtain

ρü = µ∇
2u+(λ+µ)∇(∇ ·u)+∇P (4)

u = ∇φ+∇×ψ (5)

ρ∇φ̈ = µ∇
2
∇φ+∇P (6)

ρ∇× ψ̈ = (2µ+λ)∇
2
∇×ψ (7)

where φ irrotational and ψi rotational or shear wave potentials could be found separately. So, linear elasticity
could be described by two waves potentials: irrotational scalar potential for translational motion and by
irrotational vector potential for shear motion.

1.1 Linearisation of wave differential equation

First time linearisation of four component wave differential equation was proposed by Dirac (Dirac, 1930)
for explanation of quantum mechanical states of electron. Few decades later Gersten (Gersten, 1998) derived
Maxwell equations by linearisation of wave differential equation in complex three-dimensional space. Using
the same derivation logic wave differential equations (5) and (7) could be expressed as follow(

i
cu

I∂t −∇ ·S
)(

i
cu

I∂t +∇ ·S
)
(∇φ+ i∇×ψ)−∇

T (∇ · (∇φ+ i∇×ψ)) = ∇P (8)

where I is unit 3x3 matrix and Sx,Sy,Sz are expressed as follow

Sx =

0 0 0
0 0 −i
0 i 0

 ,Sy =

 0 0 i
0 0 0
−i 0 0

 ,Sz =

0 −i 0
i 0 0
0 0 0

 , I =

1 0 0
0 1 0
0 0 1

 (9)

and with the properties
[SxSy] = iSz, [SzSx] = iSy, [SySz] = iSx,S2 = 2I (10)

Eq. (8) is satisfied if the two equations(
i

cu
I∂t +∇ ·S

)
(∇φ+ i∇×ψ) = 0 (11)

(∇φ+ i∇×ψ) = ∇P (12)

are satisfied simultaneously. After gather together real and imaginary members we obtain for elasticity scalar
and curl potentials Mawvell like equations

∇×∇φ = − 1
√cφ

∂t∇×ψ (13)

∇×∇×ψ = − 1
√cψ

∂t∇ ·φ (14)

∇ ·∇φ = ∇P (15)

∇ ·∇×ψ = 0 (16)

where velocities are expressed as follow: scalar equals to cφ =
√

µ
ρ

and curl equals to cψ =
√

2µ+λ

ρ
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2 Linear Micropolar Elasticity

Authors (Cosserat & Cosserat, 1909) proposed extension for dynamic linear elasticity by adding rotational
motion

ρüi =
∂σ ji

∂x j
+Fi (17)

Jφ̈i = εi jkσ jk +
∂µ ji

∂x j
+Mi (18)

γ ji =
∂ui

∂x j
− εk jiφk, κ ji =

∂φi

∂x j
(19)

σ ji = (µ+α)γ ji +(µ−α)γi j +λδi jγkk (20)

µ ji = (γ+ ε)κ ji +(γ− ε)κi j +βδi jκkk (21)

where εi jk is three dimensions Levi-Civita symbol is defined as follows:

εi jk =


+1 if (i, j,k) is (1,2,3),(2,3,1) or (3,1,2),
−1 if (i, j,k) is (3,2,1),(1,3,2) or (2,1,3),

0 if i = j or j = k or k = i
(22)

J is rotational inertia density, φi is angular displacement, µ ji is moment stress, Fi is body force density, Mi is
body inertia moment density.

In the vector form the equations are as follow (Nowacki, 1974)

�2u+(λ+µ−α)∇(∇ ·u)+2α∇×φ+F = 0, (23)

�4φ+(β+ γ− ε)∇(∇ ·φ)+2α∇×u+M = 0 (24)

where �2 and �4 are D’Alembert operators

�2 = (µ+α)∇2−ρ∂
2
t ,�4 = (γ+ ε)∇2−4α− J∂

2
t (25)

Linear and angular displacements u, φ , forces F and moments M could by decomposed by Helmhotz decom-
position

u = ∇Φ+∇×Ψ, F = ρ(∇ϑ+∇×χ), ∇ ·χ = 0, (26)

φ = ∇Γ+∇×H, M = J(∇σ+∇×η), ∇ ·η = 0 (27)

The results wave equations

�1Φ+ρϑ = 0, (28)

�3Γ+ Jσ = 0, (29)

�2Ψ+2α∇×H +ρχ = 0, (30)

�4H +2α∇×Ψ+ Jη = 0 (31)

where
�1 = (λ+2µ)∇2−ρ∂

2
t , �3 = (β+2γ)∇2−4α− J∂

2
t (32)

Now, linear micropolar elasticity could be described by four waves potentials: irrotational scalar potential
for translational motion, by irrotational vector potential for shear motion, by scalar potential for rotational
motion and by vector potential for rotational motion.
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3 Maxwell stress tensor

In physics, the Maxwell stress tensor is the stress tensor of an electromagnetic field. As derived for example
in (Griffiths, 2008; Jackson, 1999; Becker, 1964), it is given by:

σi j = ε0EiE j +
1
µ0

BiB j−
1
2
(
ε0E2 + 1

µ0
B2)

δi j, (33)

where ε0 is the electric constant and µ0 is the magnetic constant, E is the electric field, B is the magnetic
field and δi j is Kronecker’s delta.

The element i j of the Maxwell stress tensor has units of momentum per unit of area times time and
gives the flux of momentum parallel to the ith axis crossing a surface normal to the jth axis (in the negative
direction) per unit of time.

These units can also be seen as units of force per unit of area (negative pressure), and the i j element of
the tensor can also be interpreted as the force parallel to the ith axis suffered by a surface normal to the jth
axis per unit of area. Indeed the diagonal elements give the tension (pulling) acting on a differential area
element normal to the corresponding axis. Unlike forces due to the pressure of an ideal gas, an area element
in the electromagnetic field also feels a force in a direction that is not normal to the element. This shear is
given by the off-diagonal elements of the stress tensor.

4 Micropolar Electromagnetic field

Let decide, that coefficient α = 0. We obtain independent rotational gradient ant curl wave equations
(29),(31). Now, we could use analogy of eq. (21), the stress tensor of inertia momentum could be ex-
pressed as follow

µ ji = (γ+ ε)C jCi +(γ− ε)CiC j +βδi jCkCk (34)

On other hand this tensor could be expressed using analogy of eq. (33) as follow

µi j = γ0CiC j +
1
β0

GiG j−
1
2
(
γ0C2 + 1

β0
G2)

δi j, (35)

which could be derived by using formulas of seq. 3 in which E is replaced to C and B is replaced to G. Now
we could write force balance equalities for motion of micropolar electromagnetic continuum

fi + ε0µ0
∂Si

∂t
=

∂σ ji

∂x j
(36)

fm
i +β0γ0

∂Σi

∂t
= εi jkσ jk +

∂µ ji

∂x j
(37)

σ ji = ε0E jEi +
1
µ0

B jBi−
1
2
(
ε0E2 + 1

µ0
B2)

δ ji (38)

µ ji = γ0C jCi +
1
β0

G jGi−
1
2
(
γ0C2 + 1

β0
G2)

δ ji (39)

where vector Σ is rotational Pointing’s vector of micropolar electromagnetic field and equals to

Σ =
1
β0

C×G (40)

The same way, C and G vectors are gradient of scalar rotational electromagnetic field and curl of vector
rotational electromagnetic field as follow

C = ∇φC (41)

G = ∇×AG (42)
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5 Micropolar Maxwell equations

In 1895 it was proposed by author (Maxwell, 1865) dynamic electromagnetic field theory which today is
known as system of four differential equations.

• Gauss’s law
∇ ·E =

ρ

ε0
(43)

• Gauss’s law for magnetism
∇ ·B = 0 (44)

• Maxwell–Faraday equation (Faraday’s law of induction)

∇×E =−∂B
∂t

(45)

• Ampère’s circuital law (with Maxwell’s addition)

∇×B = µ0

(
J+ ε0

∂E
∂t

)
(46)

The same way, we could write Maxwell equations for rotational components using micropolar elasticity
analogy for coefficient α = 0 as follow

• Gauss’s law for micropolar rotational electric field

∇ ·C =
ρC

γ0
(47)

• Gauss’s law for for micropolar rotational magnetic field

∇ ·G = 0 (48)

• Micropolar Maxwell–Faraday equation (Faraday’s law of induction)

∇×C =−∂G
∂t

(49)

• Micropolar Ampère’s circuital law (with Maxwell’s addition)

∇×G = β0

(
JG + γ0

∂C
∂t

)
(50)

So, proposed equations describe than the translational but also rotational motion of micropolar electromag-
netic field.

6 Micropolar Electromagnetic Waves

In a region with no charges (ρ = 0) and no currents (J = 0), such as in a vacuum, rotational part of Maxwell’s
equations reduce to:

∇ ·E = 0 (51)

∇×E = −∂B
∂t

, (52)

∇ ·B = 0 (53)

∇×B =
1
c2

∂E
∂t

. (54)
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Taking the curl (∇×) of the curl equations, and using the curl of the curl identity ∇×(∇×X) =∇(∇ ·X)−∇2X
we obtain the wave equations

1
c2

∂2E
∂t2 −∇

2E = 0 , (55)

1
c2

∂2B
∂t2 −∇

2B = 0 , (56)

which identify

c =
1

√
µ0ε0

= 2.99792458×108 m s−1 (57)

with the speed of light in free space.
The same way, in a region with no charges (ρC = 0) and no currents (JG = 0), such as in a vacuum,

rotational part of micropolar Maxwell’s equations reduce to:

∇ ·C = 0 (58)

∇×C = −∂G
∂t

, (59)

∇ ·G = 0 (60)

∇×B =
1
c2

R

∂C
∂t

. (61)

Taking the curl (∇×) of the curl equations, and using the curl of the curl identity ∇×(∇×X) =∇(∇ ·X)−∇2X
we obtain the wave equations

1
c2

R

∂2C
∂t2 −∇

2C = 0 , (62)

1
c2

R

∂2G
∂t2 −∇

2G = 0 , (63)

which identify

cR =
1√
β0γ0

>= 1.38×104c = 4.13713592×1012 m s−1 (64)

with the rotational speed of light in free space according experiments made by physicists (Salart Daniel et
al., 2008; Yin et al., 2013).

7 Discussion

According to special relativity, the energy of an object with rest mass m and speed v is given by γmc2, where
γ is the Lorentz factor defined above. When v is zero, γ is equal to one, giving rise to the famous E = mc2

formula for mass -energy equivalence. The γ factor approaches infinity as v approaches c, and it would take
an infinite amount of energy to accelerate an object with mass to the speed of light. The speed of light
is the upper limit for the speeds of objects with positive rest mass. This is experimentally established in
many tests of relativistic energy and momentum (Fowler, March 2008). This theory was originally proposed
in 1905 by Albert Einstein in the paper "On the Electrodynamics of Moving Bodies" (Einstein, 1905). But
this derivation is based on translational motion. The same way upper limit for translational speed follows
from Lorentz transformation invariant of translational wave functions (see Appendix). If we have rotational
waves equations, they are invariant on Lorentz transform too or in other words exist upper limit for wave
motion speed for such kind of wave motion. But this does not mean that translational wave speed must
be equal to rotational wave speed. The nature will be too sample if so happens. So, what is the speed
of rotational wave motion could say just experiment. If polarisation of light could propagate as rotational
waves in vacuum, the speed of this propagation is cR = 1.38× 104c, where c = 2.99792458× 108 m s−1 is
translational wave propagation speed in vacuum. That is keynote statement of this article. Future more,
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if we repeat derivation of rotational energy following article (Einstein, 1905) for angular motion, we will
obtain the similar expression for rotational energy of rotating spherical particle as follow

ER =
2
5

Iω
2
c

 1√
1− ω2

ω2
c

−1

=
2
5

mc2
R

 1√
1− v2

R
c2

R

−1

 (65)

where I = 2
5 mR2 is momentum inertia of sphere, ωc = cR/R critical angular velocity or rotational velocity of

light and ω = vR/R is angular velocity of rotating sphere. And finally, term 2
5 mc2

R could be explained as spin
conditioned energy of each particle and equals to ER = 7.6176×107mc2.

Conclusions

It was proposed micropolar extensions of electromagnetic field equations. This equations could be reason-
able explanation of observed rotational speed of electromagnetic field waves, which motion experimentally
exceed speed of light at least in four order of magnitude.
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Appendix - Derivation of Lorentz transformations

Requiring the form of the wave equation to remain invariant under linear transformation of coordinates
forces this linear transformation to match the Einstein-Lorentz-Minkowski transformation of special relativity
(Feinstein, 2014).
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Begin by considering a general transformation form one coordinate system to another

x′ = x′(x, t)

t ′ = t ′(x, t)

The multivariate chain rule relates derivatives on one set of variables to derivatives on the other set of
variables. Thus

∂x = ∂xx′∂x′ +∂xt ′∂t ′

∂t = ∂tx′∂x′ +∂tt ′∂t ′

The second derivative is

∂
2
xx = ∂x(∂xx′∂x′ +∂xt ′∂t ′)

∂
2
tt = ∂t(∂tx′∂x′ +∂tt ′∂t ′)

The law governing the derivative of a product facilitates expansion of expression. Thus

∂
2
xx = ∂

2
xxx′∂x′ +∂xx′(∂xx′∂2

x′x′ +∂xt ′∂2
t ′x′)+∂

2
xx∂t ′∂′t +∂xt ′(∂xx′∂2

x′t ′ +∂xt ′∂2
t ′t ′)

∂
2
tt = ∂

2
ttx
′
∂x′ +∂tx′(∂tx′∂2

x′x′ +∂tt ′∂2
x′t ′)+∂

2
ttt
′
∂t ′ +∂tt ′(∂tx′∂2

x′t ′ +∂tt ′∂2
t ′t ′)

Combining and rearranging terms in this expression leads to a simpler and more compact result:

∂
2
xx = ∂

2
xxx′∂x′ +∂

2
xxt
′
∂t ′ +(∂xx′)2

∂
2
x′x′ +2∂xx′∂xt ′∂2

x′t ′ +(∂xt ′)2
∂

2
t ′t ′

and
∂

2
tt = ∂

2
ttx
′
∂x′ +∂

2
ttt
′
∂t ′ +(∂tx′)2

∂
2
x′x′ +2∂tx′∂tt ′∂2

x′t ′ +(∂tt ′)2
∂

2
t ′t ′

on account of the complete symmetry of x and t in the transformation functions x′ and t ′. Notice that when
x′ and t ′ are linear combination of x and t, the first two terms on the right are zero because these terms all
involve second derivatives of the transformations.

Consider the wave equation with driving term Φ:

∂
2
ttΨ− c2

∂
2
xx = Φ

How does the wave equation appear in the transformed variables x′ and t |prime in the special case where
these are linear combinations of x and t? Using the transformations derived above and collecting terms
appropriately yields:

((∂tt ′)2− c2(∂xt ′)2)∂2
ttΨ− ((∂xx′)2− (∂tx′)2/c2)c2

∂
2
x′x′Ψ = 2(c2

∂xx′∂xt ′−∂tx′∂tt ′)∂2
x′t ′ +Φ

Suppose in particular that [
x′

t ′

]
=

[
α βc

γc−1 δ

][
x
t

]
, than the transformed wave equation becomes

(δ2− γ
2)∂2

t ′t ′Ψ− (α2−β
2)c2

∂
2
x′x′ = 2c(αγ−βδ)∂2

x′t ′ +Φ

When δ2− γ2 = 1 and α2− β2 = 1. the parenthesized terms on the left are unity, and when αγ− βδ = 0,
the parametrized term on the right is 0, and only when these 3 constrains hold does the form of the wave
equation in the transformed coordinates precisely match its form in original coordinates.

The constraint δ2−γ2 = 1 requires δ = cosh(u), γ = sinh(u) for some u, similarly, the constraint α2−β2 = 1
requires α = cosh(u), β = sinh(v) for some v. In terms of u and v, the constraint αγ− βδ = 0 becomes
cosh(v)sinh(u)− sinh(v)cosh(u) = 0, of, expressed compactly, sinh(u− v) = 0; and this uniquely requires
v = u+ inπ, where n is an integer.
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Thus, the 1-dimensional family of transformations,[
x′

±t ′

]
=

[
cosh(u) csinh(u)

c−1 sinh(u) cosh(u)

][
x
t

]
parametrized by parameter u, are the complete set of linear transformations under which the wave equation
remains invariant form. But this is none other than the Lorentz transformation in elegant guise.

To find what u actually is, from the standard configuration the origin of the primed frame x′ = 0 is
measured in the unprimed frame to be x = vt (or the equivalent and opposite way round; the origin of the
unprimed frame is x = 0 and in the primed frame it is at x′ =−vt):

0 = cosh(u)vt− sinh(u)ct ⇒ tanh(u) =
v
c
= β

and manipulation of hyperbolic identities leads to

cosh(u) = γ, sinh(u) = βγ

so the transformations are also:

x′ = γx− γv
c

ct ⇒ x′ = γ(x− vt)

ct ′ = −γv
c

x+ γct ⇒ t ′ = γ

(
t− vx

c2

)
γ =

1√
1− v2

c2

.
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