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Abstract

Still now there are no theoretical background for explanation of physical phenomena of ‘spooky action
at a distance’ as a quantum superposition of quantum particles. Several experiments shows that speed of
this phenomena is at least four orders of magnitude of light speed in vacuum. The classical electromagnetic
field theory is based on similarity to the classic dynamic of solid continuum media. The today’s experi-
mental data of spin of photon is not reflected reasonable manner in Maxwell’s equations of EM. So, new
proposed micropolar extensions of electromagnetic field equations cloud explain observed rotational speed
of electromagnetic field, which experimentally exceed speed of light at least in four order of magnitude.

Introduction

In order to test the speed of ‘spooky action at a distance’ (Einstein, Podolsky, & Rosen, 1935), Eberhard
proposed (Eberhard, 1989) a 12-hour continuous space-like Bell inequality (Bell, 1964; Clauser, Horne,
Shimony, & Holt, 1969) measurement over a long east-west oriented distance. Benefited from the Earth self
rotation, the measurement would be ergodic over all possible translation frames and as a result, the bound of
the speed would be universal(Eberhard, 1989; Salart Daniel, Baas Augustin, Branciard Cyril, Gisin Nicolas,
& Zbinden Hugo, 2008). Other authors (Salart Daniel et al., 2008; Yin et al., 2013) recently report to have
achieved the lower bound of ‘spooky action’ through an experiment using Eberhard’s proposal at least four
orders of magnitude of light speed in vacuum.

Still now there are no theoretical background for explanation of this physical phenomena. The aim of
this article is to propose the useful theoretical explanation based on linear micropolar elasticity of continuum
media.

1 Linear Elasticity

It is good known that dynamic linear elasticity is derivable form third Newton low for density of continuum

ρüi =
∂σ ji

∂x j
+Fi (1)

σi j = Ckl
i j εkl for isotropic media⇒ σi j = λεkkδi j +2µεi j (2)

εi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
(3)

where ui are displacements in direction i, εi j are strain-displacements, σi j = σ ji symmetric force stress tensor,
Fi =

∂P
∂xi

are body force components per unit volume and could be expressed on base of Gauss-Ostrogradsky
theorem as gradient of pressure on boundaries, λ,µ are Lame’s constants. After inserting of expression of
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stress and strain into equation of motion we obtain

ρü = µ∇
2u+(λ+µ)∇(∇ ·u)+∇P (4)

u = ∇φ+∇×ψ (5)

ρ∇φ̈ = µ∇
2
∇φ+∇P (6)

ρ∇× ψ̈ = (2µ+λ)∇
2
∇×ψ (7)

where φ irrotational and ψi rotational or shear wave potentials could be found separately. So, linear elasticity
could be described by two waves potentials: irrotational scalar potential for translational motion and by
irrotational vector potential for shear motion.

2 Linear Micropolar Elasticity

Authors (Cosserat & Cosserat, 1909) proposed extension for dynamic linear elasticity by adding rotational
motion

ρüi =
∂σ ji

∂x j
+Fi (8)

Jφ̈i = εi jkσ jk +
∂µ ji

∂x j
+Mi (9)

γ ji =
∂ui

∂x j
− εk jiφk, κ ji =

∂φi

∂x j
(10)

σ ji = (µ+α)γ ji +(µ−α)γi j +λδi jγkk (11)

µ ji = (γ+ ε)κ ji +(γ− ε)κi j +βδi jκkk (12)

where εi jk is three dimensions Levi-Civita symbol is defined as follows:

εi jk =


+1 if (i, j,k) is (1,2,3),(2,3,1) or (3,1,2),
−1 if (i, j,k) is (3,2,1),(1,3,2) or (2,1,3),

0 if i = j or j = k or k = i
(13)

J is rotational inertia density, φi is angular displacement, µ ji is moment stress, Fi is body force density, Mi is
body inertia moment density.

In the vector form the equations are as follow (Nowacki, 1974)

�2u+(λ+µ−α)∇(∇ ·u)+2α∇×φ+F = 0, (14)

�4φ+(β+ γ− ε)∇(∇ ·φ)+2α∇×u+M = 0 (15)

where �2 and �4 are D’Alembert operators

�2 = (µ+α)∇2−ρ∂
2
t ,�4 = (γ+ ε)∇2−4α− J∂

2
t (16)

Linear and angular displacements u, φ , forces F and moments M could by decomposed by Helmhotz decom-
position

u = ∇Φ+∇×Ψ, F = ρ(∇ϑ+∇×χ), ∇ ·χ = 0, (17)

φ = ∇Γ+∇×H, M = J(∇σ+∇×η), ∇ ·η = 0 (18)

The results wave equations

�1Φ+ρϑ = 0, (19)

�3Γ+ Jσ = 0, (20)

�2Ψ+2α∇×H +ρχ = 0, (21)

�4H +2α∇×Ψ+ Jη = 0 (22)
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where
�1 = (λ+2µ)∇2−ρ∂

2
t , �3 = (β+2γ)∇2−4α− J∂

2
t (23)

Now, linear micropolar elasticity could be described by four waves potentials: irrotational scalar potential
for translational motion, by irrotational vector potential for shear motion, by scalar potential for rotational
motion and by vector potential for rotational motion.

3 Maxwell stress tensor

Starting with the Lorentz force law (Griffiths, 2008; Jackson, 1999; Becker, 1964)

F = q(E+v×B) (24)

the force per unit volume for an unknown charge distribution is

f = ρE+J×B (25)

Next, ρ and J can be replaced by the fields E and B, using Gauss’s law and Ampère’s circuital law:

f = ε0 (∇ ·E)E+
1
µ0

(∇×B)×B− ε0
∂E
∂t
×B (26)

The time derivative can be rewritten to something that can be interpreted physically, namely the Poynting
vector. Using the product rule and Faraday’s law of induction gives

∂

∂t
(E×B) =

∂E
∂t
×B+E× ∂B

∂t
=

∂E
∂t
×B−E× (∇×E) (27)

and we can now rewrite f as

f = ε0 (∇ ·E)E+
1
µ0

(∇×B)×B− ε0
∂

∂t
(E×B)− ε0E× (∇×E) (28)

then collecting terms with E and B gives

f = ε0 [(∇ ·E)E−E× (∇×E)]+
1
µ0

[−B× (∇×B)]− ε0
∂

∂t
(E×B) (29)

A term seems to be "missing" from the symmetry in E and B, which can be achieved by inserting (∇ ·B)B
because of Gauss’ law for magnetism:

f = ε0 [(∇ ·E)E−E× (∇×E)]+
1
µ0

[(∇ ·B)B−B× (∇×B)]− ε0
∂

∂t
(E×B) (30)

. Eliminating the curls (which are fairly complicated to calculate), using the vector calculus identity

1
2 ∇(A ·A) = A× (∇×A)+(A ·∇)A (31)

, leads to:

f = ε0 [(∇ ·E)E+(E ·∇)E]+
1
µ0

[(∇ ·B)B+(B ·∇)B]− 1
2

∇

(
ε0E2 +

1
µ0

B2
)
− ε0

∂

∂t
(E×B) (32)

This expression contains every aspect of electromagnetism and momentum and is relatively easy to compute.
It can be written more compactly by introducing the Maxwell stress tensor,

σi j ≡ ε0

(
EiE j−

1
2

δi jE2
)
+

1
µ0

(
BiB j−

1
2

δi jB2
)

(33)
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and notice that all but the last term of the above can be written as the divergence of this:

f+ ε0µ0
∂S
∂t

= ∇ ·σ (34)

As in the Poynting’s theorem, the second term in the left side of above equation can be interpreted as time
derivative of EM field’s momentum density and this way, the above equation will be the law of conservation
of momentum in classical electrodynamics.

where we have finally introduced the Poynting vector,

S =
1
µ0

E×B (35)

in the above relation for conservation of momentum, ∇ ·σ is the momentum flux density and plays a role
similar to S in Poynting’s theorem.

In physics, the Maxwell stress tensor is the stress tensor of an electromagnetic field. As derived above in
SI units, it is given by:

σi j = ε0EiE j +
1
µ0

BiB j−
1
2
(
ε0E2 + 1

µ0
B2)

δi j, (36)

where ε0 is the electric constant and µ0 is the magnetic constant, E is the electric field, B is the magnetic
field and δi j is Kronecker’s delta.

The element i j of the Maxwell stress tensor has units of momentum per unit of area times time and
gives the flux of momentum parallel to the ith axis crossing a surface normal to the jth axis (in the negative
direction) per unit of time.

These units can also be seen as units of force per unit of area (negative pressure), and the i j element of
the tensor can also be interpreted as the force parallel to the ith axis suffered by a surface normal to the jth
axis per unit of area. Indeed the diagonal elements give the tension (pulling) acting on a differential area
element normal to the corresponding axis. Unlike forces due to the pressure of an ideal gas, an area element
in the electromagnetic field also feels a force in a direction that is not normal to the element. This shear is
given by the off-diagonal elements of the stress tensor.

4 Micropolar Electromagnetic field

If we use analogy of eq. (12), the stress tensor of inertia momentum could be expressed as follow

µ ji = (γ+ ε)C jCi +(γ− ε)CiC j +βδi jCkCk (37)

On other hand this tensor could be expressed using analogy of eq. (36) as follow

µi j = γ0CiC j +
1
β0

GiG j−
1
2
(
γ0C2 + 1

β0
G2)

δi j, (38)

which could be derived by using formulas of seq. 3 in which E is replaced to C and B is replaced to G. Now
we could write force balance equalities for motion of micropolar electromagnetic continuum

fi + ε0µ0
∂Si

∂t
=

∂σ ji

∂x j
(39)

fm
i +β0γ0

∂Σi

∂t
= εi jkσ jk +

∂µ ji

∂x j
(40)

σ ji = ε0E jEi +
1
µ0

B jBi−
1
2
(
ε0E2 + 1

µ0
B2)

δ ji (41)

µ ji = γ0C jCi +
1
β0

G jGi−
1
2
(
γ0C2 + 1

β0
G2)

δ ji (42)
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where vector Σ is rotational Pointing’s vector of micropolar electromagnetic field and equals to

Σ =
1
β0

C×G (43)

The same way, C and G vectors are gradient of scalar rotational electromagnetic field and curl of vector
rotational electromagnetic field as follow

C = ∇φC (44)

G = ∇×AG (45)

5 Micropolar Maxwell equations

In 1895 it was proposed by author (Maxwell, 1865) dynamic electromagnetic field theory as system of four
differential equations.

• Gauss’s law
∇ ·E =

ρ

ε0
(46)

• Gauss’s law for magnetism
∇ ·B = 0 (47)

• Maxwell–Faraday equation (Faraday’s law of induction)

∇×E =−∂B
∂t

(48)

• Ampère’s circuital law (with Maxwell’s addition)

∇×B = µ0

(
J+ ε0

∂E
∂t

)
(49)

The same way, we could write Maxwell equations for rotational components as follow

• Gauss’s law for micropolar rotational electric field

∇ ·C =
ρC

γ0
(50)

• Gauss’s law for for micropolar rotational magnetic field

∇ ·G = 0 (51)

• Micropolar Maxwell–Faraday equation (Faraday’s law of induction)

∇×C =−∂G
∂t

(52)

• Micropolar Ampère’s circuital law (with Maxwell’s addition)

∇×G = β0

(
JG + γ0

∂C
∂t

)
(53)

So, proposed equations describe than the translational but also rotational motion of micropolar electromag-
netic field.
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6 Micropolar Electromagnetic Waves

In a region with no charges (ρ = 0) and no currents (J = 0), such as in a vacuum, rotational part of Maxwell’s
equations reduce to:

∇ ·E = 0 (54)

∇×E = −∂B
∂t

, (55)

∇ ·B = 0 (56)

∇×B =
1
c2

∂E
∂t

. (57)

Taking the curl (∇×) of the curl equations, and using the curl of the curl identity ∇×(∇×X) =∇(∇ ·X)−∇2X
we obtain the wave equations

1
c2

∂2E
∂t2 −∇

2E = 0 , (58)

1
c2

∂2B
∂t2 −∇

2B = 0 , (59)

which identify

c =
1

√
µ0ε0

= 2.99792458×108 m s−1 (60)

with the speed of light in free space.
The same way, in a region with no charges (ρC = 0) and no currents (JG = 0), such as in a vacuum,

rotational part of micropolar Maxwell’s equations reduce to:

∇ ·C = 0 (61)

∇×C = −∂G
∂t

, (62)

∇ ·G = 0 (63)

∇×B =
1
c2

R

∂C
∂t

. (64)

Taking the curl (∇×) of the curl equations, and using the curl of the curl identity ∇×(∇×X) =∇(∇ ·X)−∇2X
we obtain the wave equations

1
c2

R

∂2C
∂t2 −∇

2C = 0 , (65)

1
c2

R

∂2G
∂t2 −∇

2G = 0 , (66)

which identify

cR =
1√
β0γ0

>= 1.38×104c = 4.13713592×1012 m s−1 (67)

with the rotational speed of light in free space according experiments made by physicists (Salart Daniel et
al., 2008; Yin et al., 2013).

Conclusions

It was proposed micropolar extensions of electromagnetic field equations. This equations could be reason-
able explanation of observed rotational speed of electromagnetic field waves, which motion experimentally
exceed speed of light at least in four order of magnitude.
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