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Abstract: Clustering plays an important role in data mining, pattern recognition, and machine learning. Single-
valued neutrosophic sets (SVNSs) are useful means to describe and handle indeterminate and inconsistent 
information that fuzzy sets and intuitionistic fuzzy sets cannot describe and deal with. To cluster the data repre-
sented by single-valued neutrosophic information, this article proposes single-valued neutrosophic clustering 
methods based on similarity measures between SVNSs. First, we define a generalized distance measure between 
SVNSs and propose two distance-based similarity measures of SVNSs. Then, we present a clustering algorithm 
based on the similarity measures of SVNSs to cluster single-valued neutrosophic data. Finally, an illustrative 
example is given to demonstrate the application and effectiveness of the developed clustering methods.
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1  Introduction
Clustering plays an important role in data mining, pattern recognition, information retrieval, microbiol-
ogy analysis, and machine learning. Clustering data sets into disjoint groups is a problem arising in many 
domains. Generally, the goal of clustering is to find groups that are both homogeneous and well separated; 
that is, entities within the same group should be similar and entities in different groups dissimilar. However, 
because of the fuzziness and uncertainty of many practical problems in the real world, Zadeh [12] first pro-
posed the theory of fuzzy sets, which has achieved great success in various fields. Fuzzy clustering analysis is 
a fundamental but important tool in fuzzy data analysis. Thus, Ruspini [3] first presented the concept of fuzzy 
division and a fuzzy clustering approach. Later, the intuitionistic fuzzy set (IFS) introduced by Atanassov [1] 
has been found to be highly useful in dealing with vagueness. The concept of IFSs is a generalization of that 
of fuzzy sets. The IFSs consider three aspects of information: membership, non-membership, and hesitancy. 
Therefore, it is much more flexible and practical than traditional fuzzy sets in dealing with vagueness and 
uncertainty problems. Hence, Zhang et al. [13] and Xu et al. [7] proposed clustering algorithms for IFSs based 
on association coefficients and similarity measures of IFSs, and then extended the algorithms to cluster 
interval-valued IFSs (IVIFSs) proposed by Atanassov and Gargov [2]. However, in the above clustering tech-
nique, fuzzy sets, IFSs, and IVIFSs cannot describe and deal with indeterminate information and inconsist-
ent information that exist in the real world. To represent uncertain, imprecise, incomplete, and inconsistent 
information, Smarandache [4] gave the concept of a neutrosophic set from a philosophical point of view. The 
neutrosophic set is a powerful general formal framework that generalizes the concept of the classic set, fuzzy 
set, interval-valued fuzzy set, IFS, IVIFS, paraconsistent set, dialetheist set, paradoxist set, and tautologi-
cal set [4]. In the neutrosophic set, truth-membership, indeterminacy-membership, and falsity-membership 
are represented independently. However, the neutrosophic set generalizes the above-mentioned sets from a 
philosophical point of view and its functions TA(x), IA(x), and FA(x) are real standard or non-standard subsets 
of ]–0, 1+[, i.e., TA(x): X → ]–0, 1+[, IA(x): X → ]–0, 1+[, and FA(x): X → ]–0, 1+[, and there is no restriction on the 
sum of TA(x), IA(x), and FA(x), i.e., –0   ≤   sup TA(x) + sup IA(x) + sup FA(x)   ≤   3+. Thus, it will be difficult to apply 
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in real scientific and engineering areas [6]. Thus, Wang et al. [6] introduced a single-valued neutrosophic set 
(SVNS), which is an instance of a neutrosophic set. It can describe and handle indeterminate information and 
inconsistent information.

The IFS contains both the truth-membership tA(x) and the falsity-membership fA(x) with tA(x), fA(x) ∈ [0, 
1], and 0   ≤   tA(x) + fA(x)   ≤   1, and can only handle incomplete information (set incompletely known) but cannot 
handle the indeterminate information that is the zone of ignorance of a proposition’s value between truth 
and falsehood (inconsistent information). The indeterminacy in an IFS is 1 – tA(x) – fA(x) (i.e., hesitancy or 
unknown degree) by default, while the indeterminacy in a neutrosophic set is quantified explicitly, and then 
the component of the indeterminacy I(x) can be split into more subcomponents in order to better catch the 
vague information in the real world [4]. However, the truth-membership, the indeterminacy-membership, and 
the falsity-membership are independently represented in the neutrosophic set. Its components, T(x), I(x), F(x), 
are non-standard subsets included in the unitary non-standard interval]0–, 1+[ or standard subsets included in 
the unitary standard interval [0, 1] as in the IFS. Furthermore, the connectors in the IFS are only defined by T(x) 
and F(x) (i.e., truth-membership and falsity-membership); hence, the indeterminacy I(x) is what is left from 
1, while in the neutrosophic set, they can be defined by any of them (no restriction) [4]. For example, when 
we ask the opinion of an expert about a certain statement, he/she may say that the possibility in which the 
statement is true is 0.6 and the statement is false is 0.5 and the degree in which he/she is not sure is 0.2. For a 
neutrosophic notation, it can be expressed as x(0.6, 0.2, 0.5). For another example, suppose there are 10 voters 
during a voting process. Five vote “aye,” two vote “blackball,” and three are undecided. For neutrosophic 
notation, it can be expressed as x(0.5, 0.3, 0.2). However, these expressions are beyond the scope of the IFS. 
Therefore, the notion of a neutrosophic set is more general and overcomes the aforementioned issues.

Recently, Ye [8, 9] presented the correlation coefficient of SVNSs and the cross-entropy measure of SVNSs 
and applied them to single-valued neutrosophic decision-making problems. Wang et  al. [5] proposed the 
theory and application of interval neutrosophic sets. Then, Ye [11] proposed similarity measures between 
interval neutrosophic sets and their applications in multicriteria decision making. Furthermore, Ye [10] 
introduced the concept of simplified neutrosophic sets and simplified neutrosophic weighted aggregation 
operators, and then applied them to multicriteria decision-making problems under a simplified neutrosophic 
environment.

Yet, until now, there have been no studies on clustering of data represented by single-valued neutro-
sophic information. However, the existing clustering algorithms cannot cluster single-valued neutrosophic 
data. Motivated by intuitionistic fuzzy clustering algorithms [7, 13], this article proposes a single-valued neu-
trosophic clustering algorithm to deal with data represented by SVNSs. To do so, the rest of the article is 
organized as follows. Section 2 introduces some basic concepts of SVNSs. Section 3 defines a generalized 
distance measure between SVNSs and proposes two distance-based similarity measures. In Section 4, sin-
gle-valued neutrosophic clustering methods are proposed based on the similarity measures of SVNSs as an 
extension of intuitionistic fuzzy clustering algorithms. Section 5 gives an illustrative example and a discus-
sion of the clustering analyses. Conclusions and further research are contained in Section 6.

2  Basic Concepts of SVNSs
The neutrosophic set is a part of neutrosophy and generalizes fuzzy sets, interval-valued fuzzy set, IFS, and 
IVIFS from a philosophical point of view [4]. Smarandache [4] originally gave the definition of a neutrosophic 
set.

Definition 1 ([4]). Let X be a space of points (objects), with a generic element in X denoted by x. A neutrosophic 
set A in X is characterized by a truth-membership function TA(x), an indeterminacy-membership function IA(x), 
and a falsity-membership function FA(x). The functions TA(x), IA(x), and FA(x) are real standard or non-standard 
subsets of ]–0, 1+[. That is, TA(x): X → ]–0, 1+[, IA(x): X → ]–0, 1+[, and FA(x): X → ]–0, 1+[. Thus, there is no restric-
tion on the sum of TA(x), IA(x), and FA(x), so –0   ≤   sup TA(x) + sup IA(x) + sup FA(x)   ≤   3+.
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Obviously, it is difficult to apply in real scientific and engineering applications [6]. Hence, Wang et al. [6] 
proposed an SVNS as a subclass of a neutrosophic set and introduced the definition of an SVNS.

Definition 2 ([6]). Let X be a space of points (objects) with generic elements in X denoted by x. An SVNS A in X 
is characterized by truth-membership function TA(x), indeterminacy-membership function IA(x), and falsity-
membership function FA(x). Then, an SVNS A can be denoted by

= 〈 〉 ∈{ , ( ), ( ), ( ) | },A A AA x T x I x F x x X

where TA(x), IA(x), FA(x) ∈ [0, 1] for each point x in X. Therefore, the sum of TA(x), IA(x), and FA(x) satisfies the 
condition 0   ≤   TA(x) + IA(x) + FA(x)   ≤   3.

Definition 3 ([6]). The complement of an SVNS A is denoted by Ac and is defined as TA
c(x)  =  FA(x), IA

c(x)  =  1 
– IA(x), FA

c(x)  =  TA(x) for any x in X. Then

= 〈 − 〉 ∈{ , ( ), 1 ( ), ( ) | }.c
A A AA x F x I x T x x X

Definition 4 ([6]). An SVNS A is contained in the other SVNS, B; A ⊆ B, if and only if TA(x)   ≤   TB(x), IA(x)   ≥   IB(x), 
FA(x)   ≥   FB(x) for any x in X.

Definition 5 ([6]). Two SVNSs A and B are equal, written as A  =  B, if and only if A ⊆ B and B ⊆ A.

3  Distance-Based Similarity Measures between SVNSs
For two SVNSs A and B in a universe of discourse X  =  {xl, x2,…,xn}, which are denoted by A  =  {〈xi, TA(xi), 
IA(xi), FA(xi)〉|xi ∈ X} and B  =  {〈xi, TB(xi), IB(xi), FB(xi)〉|xi ∈ X}, where TA(xi), IA(xi), FA(xi), TB(xi), IB(xi), FB(xi) ∈  
[0,  1] for every xi ∈ X. Let us consider the weight wi (i  =  1, 2,…,n) of an element xi (i  =  1, 2,…,n), with 
wi   ≥   0 (i  =  1, 2,…,n) and 

=
=∑ 1

1.n

ii
w  Then, we define the generalized single-valued neutrosophic weighted 

distance measure:

	
=

  = − + − + − 
  

∑
1/

1

1( , ) [| ( ) ( ) | | ( ) ( ) | | ( ) ( ) | ] ,
3

p
n

p p p
p i A i B i A i B i A i B i

i
d A B w T x T x I x I x F x F x

�
(1)

where p  >  0.
As the Hamming distance and Euclidean distance, which are two typical distance measures, are usually 

used in practical applications [11], when p  =  1, 2, we can obtain the single-valued neutrosophic weighted 
Hamming distance and the single-valued neutrosophic weighted Euclidean distance, respectively, as follows:

	 =

= − + − + −∑1
1

1( , ) [| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |],
3

n

i A i B i A i B i A i B i
i

d A B w T x T x I x I x F x F x
�

(2)

	
=

  = − + − + − 
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∑
1/2

2 2 2
2

1

1( , ) [| ( ) ( ) | | ( ) ( )| | ( ) ( ) | ] .
3

n

i A i B i A i B i A i B i
i

d A B w T x T x I x I x F x F x
�

(3)

Therefore, Eqs. (2) and (3) are the special cases of Eq. (1).
Then, for the distance measure, we have the following proposition.
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Proposition 1. The above-defined distance dp(A, B) for p  >  0 satisfies the following properties:
(DP1) 0   ≤   dp(A, B)   ≤   1;
(DP2) dp(A, B)  =  0 if and only if A  =  B;
(DP3) dp(A, B)  =  dp(B, A);
(DP4) If A ⊆ B ⊆ C, C is an SVNS in X, then dp(A, C)   ≥   dp(A, B) and dp(A, C)   ≥   dp(B, C).

Proof. It is easy to see that dp(A, B) satisfies the properties (DP1)–(DP3). Therefore, we only prove (DP4). Let A 
⊆ B ⊆ C, then, TA(xi)   ≤   TB(xi)   ≤   TC(xi), IA(xi)   ≥   IB(xi)   ≥   IC(xi), and FA(xi)   ≥   FB(xi)   ≥   FC(xi) for every xi ∈ X. Then, we 
obtain the following relations:

− ≤ − − ≤ −
− ≤ − − ≤ −
− ≤ − − ≤ −

| ( ) ( ) | | ( ) ( ) | , | ( ) ( )| | ( ) ( ) | ,
| ( ) ( ) | | ( ) ( ) | , | ( ) ( )| | ( ) ( )| ,
| ( ) ( ) | | ( ) ( )| , | ( ) ( )| | ( )

p p p p
A i B i A i C i B i C i A i C i

p p p p
A i B i A i C i B i C i A i C i

p p p
A i B i A i C i B i C i A i C

T x T x T x T x T x T x T x T x
I x I x I x I x I x I x I x I x
F x F x F x F x F x F x F x F ( )| .p

ix

Hence,

− + − + −
≤ − + − + −
| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |

,
| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |

p p p
A i B i A i B i A i B i

p p p
A i C i A i C i A i C i

T x T x I x I x F x F x
T x T x I x I x F x F x

− + − + −
≤ − + − + −
| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |

.
| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |

p p p
B i C i B i C i B i C i

p p p
A i C i A i C i A i C i

T x T x I x I x F x F x
T x T x I x I x F x F x

Combining the above inequalities with the above-defined distance formula (1), we can obtain
dp(A, B)   ≤   dp(A, C) and dp(B, C)   ≤   dp(A, C) for p  >  0.
Thus, the property (DP4) is satisfied.
This completes the proof.� □

Note that similarity and distance (dissimilarity) measures are complementary: when the first increases, 
the second decreases. Normalized distance measure and similarity measure are dual concepts. Thus, S(A, 
B)  =  1 – d(A, B) and vice versa. The properties of distance measures below are complementary to those of 
similarity measures.

Proposition 2. Let A and B be two SVNSs in a universe of discourse X  =  {x1, x2,…,xn}; S(A, B) is called a single-
valued neutrosophic similarity measure, which should satisfy the following properties:

(SP1) 0   ≤   S(A, B)   ≤   1;
(SP2) S(A, B)  =  1 if and only if A  =  B;
(SP3) S(A, B)  =  S(B, A);
(SP4) S(A, C)   ≤   S(A, B) and S(A, C)   ≤   S(B, C) if A ⊆ B ⊆ C for an SVNS C.

Assume that there are two SVNSs A  =  {〈xi, TA(xi), IA(xi), FA(xi)〉|xi ∈ X} and B  =  {〈xi, TB(xi), IB(xi), FB(xi)〉|xi ∈ X} 
in a universe of discourse X  =  {xl, x2,…,xn}. Thus, according to the relationship between the distance and the 
similarity measure, we can obtain the following single-valued neutrosophic similarity measure:

	
=

= −

  = − − + − + − 
  

∑

1
1/

1

( , ) 1 ( , )

11 [| ( ) ( ) | | ( ) ( ) | | ( ) ( ) | ] .
3

p
p

n
p p p

i A i B i A i B i A i B i
i

S A B d A B

w T x T x I x I x F x F x

�

(4)

Obviously, we can easily prove that S1(A, B) satisfied the properties (SP1)–(SP4) in Proposition 2 by the rela-
tionship between the distance and the similarity measure and the proof of Proposition 1, which is omitted here.

Furthermore, we can also propose another single-valued neutrosophic similarity measure:
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�

(5)

Then, the similarity measure S2(A, B) also satisfied the properties (SP1)–(SP4) in Proposition 2.

Proof. It is easy to see that S2(A, B) satisfies the properties (SP1)–(SP3). Therefore, we only prove the property 
(SP4).

As we obtain dp(A, B)   ≤   dp(A, C) and dp(B, C)   ≤   dp(A, C) for p  >  0 from the property (DP4) in Proposition 1, 
there are 1 – dp(A, B)   ≥   1 – dp(A, C), 1 – dp(B, C)   ≥   1 – dp(A, C), 1 + dp(A, B)   ≤   1 + dp(A, C), and 1 + dp(B, C)   ≤    
1 + dp(A, C). Then, there are the following inequalities:

− − − −
≥ ≥

+ + + +
1 ( , ) 1 ( , ) 1 ( , ) 1 ( , )

 and .
1 ( , ) 1 ( , ) 1 ( , ) 1 ( , )

p p p p

p p p p

d A B d A C d B C d A C
d A B d A C d B C d A C

Then, there are S(A, C)   ≤   S(A, B) and S(A, C)   ≤   S(B, C). Hence, the property (SP4) is satisfied.
This completes the proof.� □

Example 1. Assume that we have the following three SVNSs in a universe of discourse X  =  {xl, x2}:
A  =  { < x1, 0.1, 0.5, 0.6 > ,  < x2, 0.2, 0.5, 0.7 > },
B  =  { < x1, 0.3, 0.4, 0.5 > ,  < x2, 0.5, 0.3, 0.4 > },
C  =  { < x1, 0.6, 0.1, 0.2 > ,  < x2, 0.8, 0.1, 0.3 > }.

Then, there are A ⊆ B ⊆ C, with TA(xi)   ≤   TB(xi)   ≤   TC(xi), IA(xi)   ≥   IB(xi)   ≥   IC(xi), and FA(xi)   ≥   FB(xi)   ≥   FC(xi) for each 
xi in X  =  {x1, x2}, and the weight vector w  =  (0.5, 0.5)T.

By applying Eq. (4) (take p  =  1), the similarity measures between the SVNSs are as follows:
S1(A, B)  =  0.8, S1(B, C)  =  0.75, and S1(A, C)  =  0.55.
Thus, S1(A, C)   ≤   S1(A, B) and S1(A, C)   ≤   S1(B, C).
When p  =  2, the similarity measures between the SVNSs are as follows:
S1(A, B)  =  0.784, S1(B, C)  =  0.7386, and S1(A, C)  =  0.5436.
Hence, S1(A, C)   ≤   S1(A, B) and S1(A, C)   ≤   S1(B, C).

By applying Eq. (5) for p  =  1, the similarity measures between the SVNSs are as follows:
S2(A, B)  =  0.6667, S2(B, C)  =  0.6, and S2(A, C)  =  0.3793.
Thus, S2(A, C)   ≤   S(A, B) and S2(A, C)   ≤   S2(B, C).
When p  =  2, the similarity measures between the SVNSs are as follows:
S2(A, B)  =  0.6447, S2(B, C)  =  0.5855, and S2(A, C)  =  0.3732.
Hence, S2(A, C)   ≤   S2(A, B) and S2(A, C)   ≤   S2(B, C).

4  Clustering Algorithm Based on the Similarity Measures of SVNSs
In this section, we can apply the proposed similarity measures of SVNSs to clustering analysis under a single-
valued neutrosophic environment.

On the basis of the intuitionistic fuzzy clustering algorithm proposed by Zhang et al. [13] and Xu et al. [7], 
we first introduce the following definitions.
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Definition 6. Assume that A  =  (A1, A2,…,Am) is a set of SVNSs and C  =  (sij)m × m is a similarity matrix, where sij  =  
Sk(Ai, Aj) (k  =  1, 2) and sij ∈ [0, 1] for i, j  =  1, 2,…,m, with sii  =  1 for i  =  1, 2,…,m, and sij  =  sji for i, j  =  1, 2,…,m.

Definition 7 ([7, 13]). Let C  =  (sij)m × m be a similarity matrix, if C2  =  C ο C  =  ×( ) ,ij m ms  then C2 is called a compo
sition matrix of C, where =max {min( , )}ij k ik kjs s s  for i, j  =  1, 2,…,m.

Definition 8 ([7, 13]). Let C  =  (sij)m × m be a similarity matrix, if C2 ⊆ C, i.e., ≤ij ijs s  for i, j  =  1, 2,…,m, then C is 
called an equivalent similarity matrix.

Definition 9 ([7, 13]). Let C  =  (sij)m × m be a similarity matrix. Then, after finite time compositions of C:

	 → → → → →… …2 4 2 ,
k

C C C C �
(6)

there must exist a positive integer k such that 
+

=
( 1 )2 2 ,

kk
C C  then 2k

C  is also an equivalent similarity matrix.

Definition 10 ([7, 13]). Let C  =  (sij)m × m be an equivalent similarity matrix. Then, λ
λ ×=( )ij m mC s  is called the  

λ-cutting matrix of C, where

	

λ
λ

λ

 <= = … ≥

0, ;
for ,  1, 2, , ,

1, 
ij

ij
ij

s
s i j m

s
�

(7)

and λ is the confidence level with λ ∈ [0, 1].
Assume that A  =  (A1, A2,…,Am) is a set of SVNSs, where { }= 〈 〉 ∈, ( ), ( ), ( ) |

j j jj i A i A i A i iA x T x I x F x x X  (j  =  1, 
2,…,m) in a universe of discourse X  =  {x1, x2,…,xn} is an SVNS. Let wi be the weight for each element xi (i  =  1, 
2,…,n), with wi ∈ [0, 1], and 

=
=∑ 1

1.n

ii
w  Then, we can give the algorithm of clustering SVNSs as follows:

Step 1. By use of Eqs. (4) or (5), one can calculate the similarity measure degrees of SVNSs, and then construct 
a similarity matrix C  =  (sij)m × m, where sij  =  Sk(Ai, Aj) (k  =  1, 2) for i, j  =  1, 2,…,m.

Step 2. The process of building the composition matrices is repeated until it holds that
+

→ → → → =…
( 1 )2 4 2 2 ,

k k
C C C C C

which implies that 2k
C  is an equivalent similarity matrix, which is denoted by ×=( ) .ij m mC s

Step 3. For the equivalent similarity matrix ×=( ) ,ij m mC s  we can construct a λ-cutting matrix λ
λ ×=( )ij m mC s  of 

C  by Eq. (7); if all the elements of the ith row or column in λ
C  are the same as the corresponding elements of 

the jth row or column, we conceive object sets Ai and Aj are the same class.

5  Illustrative Example and Discussion
In this section, a real example adapted from Zhang et al. [13] is employed to demonstrate the application and 
effectiveness of the proposed clustering methods under a single-valued neutrosophic data environment.

A car market is going to classify five different cars of Aj ( j  =  1, 2,…,5). Every car has six evaluation factors 
(attributes): (i) x1, fuel consumption; (ii) x2, coefficient of friction; (iii) x3, price; (iv) x4, comfortable degree; 
(v) x5, design; (vi) x6, security coefficient. The characteristics of each car under the six attributes are repre-
sented by the form of SVNSs, and then the single-valued neutrosophic data are as follows:

A1  =  { �< x1, 0.3, 0.2, 0.5 > ,  < x2, 0.6, 0.3, 0.1 > ,  < x3, 0.4, 0.3, 0.3 > ,  < x4, 0.8, 0.1, 0.1 > ,  < x5, 0.1, 0.3, 0.6 > ,  
 < x6, 0.5, 0.2, 0.4 > },
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A2  =  { �< x1, 0.6, 0.3, 0.3 > ,  < x2, 0.5, 0.4, 0.2 > ,  < x3, 0.6, 0.2, 0.1 > ,  < x4, 0.7, 0.2, 0.1 > ,  
 < x5, 0.3, 0.1, 0.6 > ,  < x6, 0.4, 0.3, 0.3 > },

A3  =  { �< x1, 0.4, 0.2, 0.4 > ,  < x2, 0.8, 0.2, 0.1 > ,  < x3, 0.5, 0.3, 0.1 > ,  < x4, 0.6, 0.1, 0.2 > ,  
 < x5, 0.4, 0.1, 0.5 > ,  < x6, 0.3, 0.2, 0.2 > },

A4  =  { �< x1, 0.2, 0.4, 0.4 > ,  < x2, 0.4, 0.5, 0.1 > ,  < x3, 0.9, 0.2, 0.0 > ,  < x4, 0.8, 0.2, 0.1 > ,  
 < x5, 0.2, 0.3, 0.5 > ,  < x6, 0.7, 0.3, 0.1 > },

A5  =  { �< x1, 0.5, 0.3, 0.2 > ,  < x2, 0.3, 0.2, 0.6 > ,  < x3, 0.6, 0.1, 0.3 > ,  < x4, 0.7, 0.1, 0.1 > ,  
 < x5, 0.6, 0.2, 0.2 > ,  < x6, 0.5, 0.2, 0.3 > }.

If the weight vector of the attribute xi (i  =  1, 2,…,6) is w  =  (1/6, 1/6, 1/6, 1/6, 1/6, 1/6)T, then we utilize the 
two single-valued neutrosophic similarity measures to classify the five different cars of Aj ( j  =  1, 2,…,5) by the 
single-valued neutrosophic clustering algorithms.

5.1  Clustering Analysis Using Eq. (4)

Step 1. Utilize the similarity measure formula (4) (take p  =  2) to calculate the similarity measures between 
each pair of SVNSs Ai and Aj (i, j  =  1, 2, 3, 4, 5) and construct the following similarity matrix:

 
 
 
 =
 
 
 
 

1 0.8528 0.8528 0.8085 0.7631
0.8528 1 0.8709 0.8317 0.8174
0.8528 0.8709 1 0.7853 0.7814 .
0.8085 0.8317 0.7853 1 0.7585
0.7631 0.8174 0.7814 0.7585 1

C

Step 2. Obtain equivalent similarity matrices by limited time compositions of C:

 
 
 
 =
 
 
 
 

2

1 0.8528 0.8528 0.8317 0.8174
0.8528 1 0.8709 0.8317 0.8174
0.8528 0.8709 1 0.8317 0.8174 ,
0.8317 0.8317 0.8317 1 0.8174
0.8174 0.8174 0.8174 0.8174 1

C

 
 
 
 =
 
 
 
 

4

1 0.8528 0.8528 0.8317 0.8174
0.8528 1 0.8709 0.8317 0.8174
0.8528 0.8709 1 0.8317 0.8174 .
0.8317 0.8317 0.8317 1 0.8174
0.8174 0.8174 0.8174 0.8174 1

C

Obviously, C4  =  C2 implies that C2 is an equivalent similarity matrix, denoted by .C

Step 3. When λ has different values, we can construct a λ-cutting matrix λ
λ ×=( )ij m mC s  of C  by Eq. (7) and 

obtain different categories, which give the following discussion:

(i) If 0   ≤   λ   ≤   0.8174,

 

λ

 
 
 
 =
 
 
 
 

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 ,
1 1 1 1 1
1 1 1 1 1

C
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then the cars are the same category: {A1, A2, A3, A4, A5}.

(ii) If 0.8174   <   λ   ≤   0.8317,

 

λ

 
 
 
 =
 
 
 
 

1 1 1 1 0
1 1 1 1 0
1 1 1 1 0 ,
1 1 1 1 0
0 0 0 0 1

C

then the cars can be divided into two categories: {A1, A2, A3, A4}, {A5}.

(iii) If 0.8317   <   λ   ≤   0.8528,

 

λ

 
 
 
 =
 
 
 
 

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0 ,
0 0 0 1 0
0 0 0 0 1

C

then the cars can be divided into three categories: {A1, A2, A3}, {A4}, {A5}.

(iv) If 0.8528   <   λ   ≤   0.8709,

 

λ

 
 
 
 =
 
 
 
 

1 0 0 0 0
0 1 1 0 0
0 1 1 0 0 ,
0 0 0 1 0
0 0 0 0 1

C

then the cars can be divided into four categories: {A1}, {A2, A3}, {A4}, {A5}.

(v) If 0.8709   <   λ   ≤   1,

 

λ

 
 
 
 =
 
 
 
 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0 ,
0 0 0 1 0
0 0 0 0 1

C

then the cars can be divided into five categories: {A1}, {A2}, {A3}, {A4}, {A5}.

5.2  Clustering Analysis Using Eq. (5)

Step 1. Utilize the similarity measure formula (5) (take p  =  2) to calculate the similarity measures between 
each pair of SVNSs Ai and Aj (i, j  =  1, 2, 3, 4, 5) and construct the following similarity matrix:

 
 
 
 =
 
 
 
 

1 0.7434 0.7434 0.6786 0.6170
0.7434 1 0.7713 0.7119 0.6912
0.7434 0.7713 1 0.6464 0.6413 .
0.6786 0.7119 0.6464 1 0.6109
0.6170 0.6912 0.6413 0.6109 1

C

Step 2. Obtain equivalent similarity matrices by limited time compositions of C:
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 
 
 
 =
 
 
 
 

2

1 0.7434 0.7434 0.7119 0.6912
0.7434 1 0.7713 0.7119 0.6912
0.7434 0.7713 1 0.7119 0.6912 ,
0.7119 0.7119 0.7119 1 0.6912
0.6912 0.6912 0.6912 0.6912 1

C

 
 
 
 =
 
 
 
 

4

1 0.7434 0.7434 0.7119 0.6912
0.7434 1 0.7713 0.7119 0.6912
0.7434 0.7713 1 0.7119 0.6912 .
0.7119 0.7119 0.7119 1 0.6912
0.6912 0.6912 0.6912 0.6912 1

C

Obviously, C4  =  C2 implies that C2 is an equivalent similarity matrix, denoted by .C

Step 3. When λ has different values, we can construct a λ-cutting matrix λ
λ ×=( )ij m mC s  of C  by Eq. (7) and can 

obtain different categories, which make the following discussion:

(i) If 0   ≤   λ   ≤   0.6912,

 

λ

 
 
 
 =
 
 
 
 

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 ,
1 1 1 1 1
1 1 1 1 1

C

then the cars are the same category: {A1, A2, A3, A4, A5}.

(ii) If 0.6912   <   λ   ≤   0.7119,

 

λ

 
 
 
 =
 
 
 
 

1 1 1 1 0
1 1 1 1 0
1 1 1 1 0 ,
1 1 1 1 0
0 0 0 0 1

C

then the cars can be divided into two categories: {A1, A2, A3, A4}, {A5}.

(iii) If 0.7119   <   λ   ≤   0.7434,

 

λ

 
 
 
 =
 
 
 
 

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0 ,
0 0 0 1 0
0 0 0 0 1

C

then the cars can be divided into three categories: {A1, A2, A3}, {A4}, {A5}.

(iv) If 0.7434   <   λ   ≤   0.7713,

 

λ

 
 
 
 =
 
 
 
 

1 0 0 0 0
0 1 1 0 0
0 1 1 0 0 ,
0 0 0 1 0
0 0 0 0 1

C
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then the cars can be divided into four categories: {A1}, {A2, A3}, {A4}, {A5}.

(v) If 0.7713   <   λ   ≤   1,

 

λ

 
 
 
 =
 
 
 
 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0 ,
0 0 0 1 0
0 0 0 0 1

C

then the cars can be divided into five categories: {A1}, {A2}, {A3}, {A4}, {A5}.

5.3  Discussion

From the above clustering results, we know the two similarity measures can be applied to clustering SVNSs 
and these clustering results using the two similarity measures are the same. However, the literature [13] 
obtained three situations by the clustering algorithm based on the similar measure of IFSs; however, we 
can obtain five situations by the clustering algorithm based on the proposed similarity measures of SVNSs. 
Hence, we can see that the clustering algorithms based on the two similarity measures of SVNSs have better 
accuracy in clustering problems.

As mentioned above, the single-valued neutrosophic information is a generalization of intuitionistic 
fuzzy information, and intuitionistic fuzzy information is a further generalization of fuzzy information. On 
the one hand, an SVNS is an instance of a neutrosophic set, which gives us an additional possibility to rep-
resent uncertain, imprecise, incomplete, and inconsistent information that exist in the real world. It can 
describe and handle indeterminate information and inconsistent information. However, the connector in 
the fuzzy set is defined with respect to T, i.e., membership only; hence, the information of indeterminacy 
and non-membership is lost. The connectors in the IFS are defined with respect to T and F, i.e., membership 
and non-membership only; hence, the indeterminacy is what is left from 1, and then the IFS can only handle 
incomplete information but not the indeterminate information and inconsistent information. While in the 
SVNSs, its truth-membership, indeterminacy-membership, and falsity-membership are represented indepen-
dently, and then they can be defined with respect to any of them (no restriction). Thus, the notion of SVNSs 
is more general. On the other hand, the clustering analysis under a single-valued neutrosophic environment 
is suitable for capturing imprecise, uncertain, and inconsistent information in clustering the data. Thus, the 
clustering algorithm based on the similarity measures of SVNSs not only can cluster the single-valued neutro-
sophic information but also can cluster the intuitionistic fuzzy information and the fuzzy information. Obvi-
ously, the proposed single-valued neutrosophic clustering algorithm is the extension of both fuzzy clustering 
algorithm and intuitionistic fuzzy clustering algorithm. Therefore, compared with the intuitionistic fuzzy 
clustering algorithm and the fuzzy clustering algorithm, the single-valued neutrosophic clustering algorithm 
is more general. Furthermore, when we encounter some situations that are represented by indeterminate 
information and inconsistent information, the single-valued neutrosophic clustering algorithm can demon-
strate its great superiority in clustering those single-valued neutrosophic data.

6  Conclusion
This article introduced a generalized single-valued neutrosophic weighted distance measure and presented 
two distance-based similarity measures in a single-valued neutrosophic setting. Then, a single-valued neu-
trosophic clustering algorithm was established on the basis of the two similarity measures. Finally, an illus-
trative example was given to demonstrate the application and effectiveness of the single-valued neutrosophic 
clustering methods. The clustering results have shown that the single-valued neutrosophic clustering algo-
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rithm is more general than the intuitionistic fuzzy clustering algorithm and the fuzzy clustering algorithm. 
Furthermore, in the situations that are represented by indeterminate information and inconsistent informa-
tion, the single-valued neutrosophic clustering algorithm can demonstrate its great superiority in clustering 
those single-valued neutrosophic data, as the SVNSs are a powerful tool to deal with uncertain, imprecise, 
incomplete, and inconsistent information. In the future, the developed clustering algorithm will be extended 
to clustering problems of interval-valued neutrosophic sets and further applied to many areas such as infor-
mation retrieval, investment decision making, and data mining.

Received November 15, 2013; previously published online March 7, 2014.
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