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 

ABSTRACT 

Purpose: Most applications in the field of medical image processing require precise 

estimation. To improve the accuracy of segmentation, this study aimed to propose a novel 

segmentation method for coronary arteries using computed tomography angiography (CTA) 

data sets to allow for the automatic and accurate detection of coronary pathologies.  
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Methods: The proposed segmentation method included 2 parts. First, 3D region growing was 

applied to give the initial segmentation of coronary arteries. Next, the location of vessel 

information, HHH sub-band coefficients of the 3D discrete wavelet transformation (DWT), 

was detected by the proposed vessel-texture discrimination algorithm. Based on the initial 

segmentation, 3D DWT integrated with the 3D neutrosophic transformation could accurately 

detect the coronary arteries.  

 

Results: In order to evaluate the proposed method, the CTA scans of 20 patients were 

segmented for coronary arteries. The slice thickness was 0.625 mm, and the size of the 

volume was 512*512*(‧ ). Each sub-branch of the segmented coronary arteries was 

segmented correctly. To evaluate the performance of our method in segmenting coronary 

arteries, we compared our results with those ground truth values obtained from the 

commercial software from GE Healthcare and the level-set method proposed by Yang et al. 

[11]. We used the overlapping metric (OM) and Hausdorff distance (
Hd ) to analyze the 

efficiency of each method and the results showed that the proposed method was much better. 

 

Conclusion: This work proposed a novel segmentation method for coronary arteries in CTA 

data sets. Based on the initial segmentation of coronary arteries obtained from 3D region 

growing, one-level 3D DWT and 3D neutrosophic transformation can be applied to detect 

coronary arteries accurately. In our experiment, we tested 20 data sets with delineated ground 

truth centerline trees. Results indicate that the proposed method is effective and useful. It 

allows the coronary pathologies to be detected automatically and accurately. 

 

Index Terms—coronary arteries, 3D region growing, 3D discrete wavelet transformation, 3D 

neutrosophic transformation 
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I. INTRODUCTION 

Efficient and automatic image segmentation methods are useful for the isolation and 

visualization of vessels in computed tomographic angiography (CTA). There are many 

proposed method for the segmentation of vessels [1-14]. A vessel filter [1] can be used to 

enhance tubular structure, however, it cannot address the problem of the image force and 

veins, which can lead to a narrowed or broken segmentation of vessels. Parametric shape 

models [2-5] do not directly allow for the detection of topological changes, and they usually 

obtain a seriously narrowed segmentation in the neighborhood of a branch point in the vessel. 

Level-set approaches [6-13] are computationally expensive. They also suffer from leakage at 

places where the intensity gradients of the edges are relatively weak, and are very sensitive to 

the placement of the initial contour of the propagating front. Metz et al. [14] used the 

minimum cost path of the specified start and end points in vessel to detect the coronary 

arteries centerline. This is not an automatic method, detecting branches is difficult. Friman 

[15] proposed multiple hypothesis template tracking, which follows the direction of centerline 

obtained in advance. However, it is difficult to detect small branches and vessels by using this 

method. 

   In this study, we propose a new method for automatically and correctly segment coronary 

arteries from CTA data sets. In image preprocessing, we detected the aorta automatically by 

using methods proposed in literature [5, 16]. The proposed coronary arteries segmentation 
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method is summarized as follows. First of all, we automatically obtained the seed point of a 

3D region growing by the difference between the two adjacent slices due to the small changes 

of the aorta between two adjacent slices. Next, 3D region growing was applied to initially 

search for the probable location of coronary arteries, which was then dilated by 3 voxels. 

Based on the dilation of the probable location, we detected the coronary arteries accurately by 

applying the 3D discrete wavelet transformation (DWT) and 3D neutrosophic transformation 

to the CTA volume. The location of vessel information, in HHH sub-band coefficients, was 

detected by the proposed vessel-texture discrimination algorithm. Accordingly, HHH 

sub-band coefficients were used, which were characterized and classified by α-means  

operation and K-means clustering. Finally, the proposed method was tested on several CTA 

data sets, and the experimental results indicated that the proposed method had a good 

performance. 

The rest of this study is organized as follows. Section II reviews some preliminaries, and 

section III uses 3D region growing and 3D DWT to propose a new method for segmenting 

coronary arteries. Section IV contains the experiments and discussion, and the conclusions are 

drawn in section V.  

 

II. PRELIMINARIES 

In this section, we will briefly introduce the concepts of DWT and provide an overview of 
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some fundamental mathematical concepts that are used in this study.  

A. Region Growing 

Region growing is a simple, well-developed, region-based image segmentation 

technique [17]. It postulates that neighboring voxels within the same region have similar 

intensity values, and is also classified as a voxel-based image segmentation method since it 

involves the selection of initial seed points. In other words, this method of segmentation 

examines neighboring voxels of initial seed points and determines whether neighboring 

voxels should be added to the region. Consequentially, the general concept of region growing 

is to group voxels with the same or similar intensities to one region according to the given 

seed points and a homogeneity criterion.  

B. Discrete Wavelet Transform 

Wavelet transform is obtained by a single prototype function ( )x  which is regulated 

with scaling and shift parameters. To construct ( )x , a scaling function ( )x  is determined. 

The discrete normalized scaling and wavelet basis functions are defined as 

                         2
, ( ) 2 ( 2 )

i
i

i n t t n                              (1) 

                         2
, ( ) 2 ( 2 )

i
i

i n t t n                              (2) 

where i  and n  are the dilation and translation parameters. Orthogonal wavelet basis 

functions not only provide a simple method to calculate coefficient expansion, but also span 

2 ( )L   in signal processing. As a result, signal 2( ) ( )S t L   can be expressed as a series 

expansion of orthogonal scaling functions and wavelets. More specifically, 

http://en.wikipedia.org/wiki/Image_segmentation
http://en.wikipedia.org/wiki/Image_segmentation
http://en.wikipedia.org/w/index.php?title=Seed_points&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Seed_points&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Seed_points&action=edit&redlink=1
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where 
,( ) ( ) ( )j jc S t t dt  



  and 
,( ) ( ) ( )j j kd k S t t dt 



 are the low-pass and high-pass 

coefficients, respectively; 
0j  is an integer to define an interval on which ( )S t  is a 

piecewise constant. The two-scale equations for scaling and wavelet basis function are given 

as follows. 

                            ( ) 2 (2 )m

m

t h t m 


 


                         (4) 

                           ( ) 2 (2 )m

m

t g t m 


 


                         (5) 

where 
1( 1)m

m mg h    . The coefficient 
mh  in equation (4) has to meet several conditions for 

the set of the wavelet basis function to be unique, orthonormal, and have a certain degree of 

regularity.   

     The coefficients 
mh  and 

mg  play a very crucial role in a given DWT. Performing the 

wavelet transformation does not require the explicit forms of ( )t  and ( )t but only 

depends on 
mh  and

mg . The final output of the wavelet decomposition includes a set of 

j-level  wavelet coefficients. One method to implement DWT is to use a filter bank that 

provides perfect reconstruction. DWT involves local analysis of frequency in space and time 

domains, and it provides multi-scale image details step by step. If the scale becomes smaller, 

every part becomes more accurate, and ultimately all imaging details can be focalized 

accurately. If DWT is applied to a volume, it will produce highest-frequency, 

middle-frequency, and lowest-frequency parts. Figure 1 shows the results of applying 3D 
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DWT to a volume, which includes eight parts: LLL, LLH, LHL, LHH, HLL, HLH, HHL, and 

HHH. The lowest-frequency and highest-frequency parts are LLL and HHH respectively [16, 

17]. 

 

Figure 1. The structure of applying 3D DWT to a volume. 

C. K-means Clustering 

K-means clustering is a method of cluster analysis which aims to partition n observations 

into k  clusters in which each observation belongs to the cluster with the nearest mean. Given a 

set of observations  1 2, , , nx x x , where each observation is a d-dimensional real vector, 

k-means clustering aims to partition the n observations into k   k n  sets  1 2, , , ks s s  so as 

to minimize the within-cluster sum of squares 

               
2

1

arg  min ,
j i

k

j i

i x s

x 
 

                         (6) 

http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Partition_of_a_set
http://en.wikipedia.org/wiki/Mean
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where 
i  is the mean of points in 

is . 

 

III. THE PROPOSED SEGMENTATION METHOD 

In order to segment coronary arteries accurately from CTA data sets, 3D region growing 

was initially applied to search for the probable location of the coronary arteries. Next, we 

used the 3D DWT and 3D neutrosophic transformation to accurately detect the coronary 

arteries.  

A. Initial Segmentation of Coronary Arteries 

This section discusses the initial segmentation of coronary arteries using 3D region 

growing. In image preprocessing, we found the aorta automatically by using methods 

proposed in literature [5, 16]. The selection of the seed point of 3D region growing was 

initially made to check which slice began the information of the coronary arteries. Due to the 

small changes in aorta area between the two adjacent slices, we automatically obtained the 

seed points by the difference between the two adjacent slices.  

As shown in Figure 2, we use the difference between the two adjacent slices (a) and (b) to 

automatically obtain the seed points bounded by the blue line in (c) which indicates the 

boundary of coronary arteries. The boundary of coronary arteries denotes the high-frequency 

sub-band ( )jd k  in equation (3) when comparing vessel lumen and background. 
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                (a)                                 (b)  

 

                                   (c) 

Figure 2. The 3D region growing seed points in (c) were automatically obtained by using the 

difference between the two areas bounded by the blue lines in adjacent slices (a) and (b). 

Since coronary arteries do not exhibit abrupt intensity changes along their centerline [4], 

a rough tubular mask of coronary arteries can be easily constructed by 3D region growing. 

We chose a 26-connected neighborhood for our adjacent pixel relationship, and then the 3D 

region growing method was applied with a set of pre-specified seed voxel(s) and grown from 

http://en.wikipedia.org/wiki/8-connected_neighborhood
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these seeds by merging neighboring voxels whose properties were most similar to the 

pre-merged region. The homogeneity criterion was defined as the difference between the 

intensity of the candidate voxel and the average intensity of the pre-merged region. The 

selection of the seed point was initially intended to check which slice began the information 

of the coronary arteries. Next, the homogeneity criterion was applied to group voxels with the 

same or similar intensities into one region. If the homogeneity criterion was satisfied, the 

candidate voxel was merged with the pre-merged region. The process was repeated until no 

more voxels were assigned to the region, and then the number of all merged voxels was 

calculated. In order to avoid leakage, the total number of merged voxels was limited to 12000 

otherwise, 3D region growing was restarted by automatically using an improved homogeneity 

criterion. Finally, the initial segmentation of the coronary arteries in a volume was completed. 

B. Vessel-Texture Discrimination 

According to Parseval’s theorem, the energy in a signal ( )S t is given as follows [16, 17]: 

                      
22 2

0

( ) ( ) ( )j

l j k

S t dt c l d k
  

  

                     (7) 

This equation implies that the energy of a signal is the summation of low-frequency and 

high-frequency coefficients. DWT is a good analytic tool for image texture analysis or 

line-based patterns [21-24]. Since a vessel is a type of 3D line-based pattern in CT volume, 
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we used 
2 -norml of these wavelet coefficients to find the energy of line-based patterns. 

2 -norml  was defined as  

                             
2

2
1

( )
p

i

i

E C C c


                           (8) 

where the vector 
1[ ]i pC c   was the wavelet coefficients of a frequency channel. The 

searching algorithm is summarized as follows: 

Algorithm 1: 

1. Transform a given vessel volume into frequency channels by a specified number of 

decomposition levels. We usually set the number to one in the first search. 

2. Use equation (8) to calculate the averaged 
2 -norml  of each channel and maximum of 

( )E C for the vessel volume.  

3. If the maximum of ( )E C  was significantly greater than another channel’s ( )E C , the 

search was stopped. Otherwise, the number of decomposition levels was increased 

followed by a repeat of step1. 

By using the above algorithm, we observed that the most significant information of the 

vessel texture often appeared in the high frequency channels. Thus, we used the sub-band 

HHH to detect vessels in this study.  

C. Accurate Detection of Coronary Arteries  
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The initial segmentation of coronary arteries in a volume was completed by 3D region 

growing as described in sub-section A. Since region growing is a simple region-based image 

segmentation method, it was only used to search for the initial location of the coronary 

arteries. We then accurately detected the coronary arteries by applying DWT to each slice in 

the volume, as described in this sub-section.  

First, the initial location of the coronary arteries obtained from 3D region growing was 

dilated by 3 voxels. Next, we used Haar wavelet bases in (1) and (2) to transform the host 

images into the orthogonal DWT domain by one-level decomposition. Only HHH sub-bands 

were employed for further processes, because most of the information on the coronary arteries 

and boundaries were in the HHH sub-bands. We calculated the mean energy using 

coefficients of HHH sub-bands in a local window w  as follows:  

                 
1

( , , ) ( , , ),
r s t

l i m j n k

HHH i j k HHH l m n
w w w   


 

                 (9) 

where 

                            

( 2 ) ,

( 2 ) ,

( 2 ) .

r r o u n d i w

s r o u n d j w

t r o u n d k w

 

 

 

 

Next, the sub-bands HHH  was characterized by 3 membership sets T , F , and U . 

                     
min

max min

( , , )
( , , ) ,HHH

HHH i j k HHH
T i j k

HHH HHH





                  (10) 

http://en.wikipedia.org/wiki/Image_segmentation
http://en.wikipedia.org/wiki/Image_segmentation
http://en.wikipedia.org/wiki/Image_segmentation
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                     ( , , ) 1 ( , , ),HHH HHHF i j k T i j k                           (11) 

                     min

max min

( , , )
( , , ) ,HHH

i j k
U i j k

 

 





                         (12) 

where  

                       min min ( , , ) ,HHH HHH i j k        

                       max max ( , , ) ,HHH HHH i j k  

                      ( , , ) ( , , ) ( , , ) ,i j k HHH i j k HHH i j k    

                       min min ( , , ) ,i j k   

                       max max ( , , ) .i j k   

That is, a pixel could be represented as a neutrosophic domain ( , , )P t f u  which means the 

pixel is %t  true, %f  false, and %u  uncertain, where t  varies in T , f  varies in F , 

and u varies in U . In order to reduce the uncertainty %u , α-means  operation was 

employed as follows.  

                           
,  i f  

( ) ,
,  i f  

T U
T

T U







 


                          (13) 

                           
,  i f  

( ) ,
,  i f  

F U
F

F U







 


                          (14) 
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                         min

max min

( , , )
( , , ) ,

T T

T T

i j k
U i j k

 

 





                    (15) 

where the parameter   is a positive number and 

                   1
( , , ) ( , , ),

r s t

l i m j n k

T i j k T l m n
w w w



  


 

  

                   1
( , , ) ( , , ),

r s t

l i m j n k

F i j k F l m n
w w w



  


 

  

                   ( , , ) ( , , ) ( , , ) ,T i j k T i j k T i j k    

                   1
( , , ) ( , , ) .

r s t

l i m j n k

T i j k T l m n
w w w   


 

  

The inverse DWT was then applied to obtain a new volume which possessed the true subset. 

Finally, we applied K-means clustering (K=3) in (3) to differentiate vessel lumen, vessel 

boundary (true subset) and background. The true subset T  was retained respectively. 

 

IV. Experiments and Discussion 

To test the proposed method, CTA volumes obtained from a CT system were segmented 

for coronary arteries. The slice thickness was 0.625 mm and the volume was 512*512*(‧) in 

different data sets. The window size w  was set to 3 which was enough to capture the local 

texture characteristics. The parameter   was set to 0.2. We tested 20 data sets, most of 

which were segmented successfully except that for a few small branches that were lost in 2 of 
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the data sets due to the local failure in region growing. To evaluate the performance of our 

segmented coronary arteries, we compared our results with that obtained from the ground 

truth values obtained from the commercial software from GE Healthcare and the level-set 

method. We used the overlapping metric (OM) and Hausdorff distance (
Hd ) to analyze the 

efficiency of each method. 

A. The Segmenting Efficiency of 2D Imaging 

Figure 3(b) shows the results of 6 slices in 1 CTA volume obtained using the proposed 

method. The areas bounded by the red line are coronary arteries. The segmenting efficiency 

was compared with the manually delineated ground truth data 
RN  in Figure 3 (a) by using 

OM which was defined as 

2 T R

T R

N N
OM

N N

 
  

 

  

where 
TN  indicates the pixels/voxels of the segmented coronary arteries. The OM was close 

to 1 when the segmentation was well matched to the reference ground truth, and approached 

zero when the results had no similarity to the reference. 

In the 6 slices in Figure 3(b), the segmentation results showed that the proposed method 

detected coronary arteries accurately. As shown in Table I, the average OM of the proposed 

method was 0.96. 
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                  (a) ground truth data     (b) the segmented results 

Figure 3. Comparison of the 2D segmentation (b) with respect to the ground truth data (a). 

TABLE I 

COMPARISON OF THE 2D IMAGE SEGMENTATION RESULTS.  

 

 Yang et al. [11] 

Method 

Proposed 

Method 

 Mean OM 0.68 0.96 

 

B. The Segmenting Efficiency on a 3D Volume 

The first focus of the comparison was the correctness of the 4 main branches: the right 

coronary artery (RCA), the left anterior descending artery (LAD), the circumflex (CRX), and 

the first diagonal artery (DA). Figures 4 and 5 show the detected coronary arteries in the CTA 
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volume obtained from the GE Healthcare and the proposed method, and the proposed method 

segmented these 4 main branches correctly compared to the 4 main branches in Figure 5. 

Another test of performance is the correctness of the remaining branches. Due to the 

multi-resolution of the DWT, each sub-branch in Figures 3 and 5 was correctly segmented. 

Furthermore, the coronary arteries obtained from the proposed method were much better than 

those obtained from the level-set method, which had several leakages as seen in Figure 6. 

In addition to the OM, the difference between the segmented vessel surface and the 

manually delineated ground truth data was measured by the Hausdorff distance [25] which 

was defined as follows: 

( , ) max supinf ( , ),supinf ( , )H
y Y x Xx X y Y

d X Y d x y d x y
  

 
  

 
 

where X  and Y are the vertices of the mesh surfaces of the arteries corresponding to the 

segmentation results and the ground truth and ( , )d x y  measure the Euclidean distance 

between points x  and y belonging to vertices X  and Y . Table II lists the mean OM and 

mean Hausdorff distance for the proposed method and the method of Yang et al. [11]. The 

results show that the proposed method was much better than that of Yang et al. [11] in terms 

of both OM and Hausdorff distance. 
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C. Diameter Measurement 

In this sub-section, we computed the diameters of segmented coronary arteries using the 

proposed method and the method of Yang et al. Many efficient algorithms have been 

proposed to extract of the tube centerline. We applied the algorithm proposed in by Lee et al. 

[26] to extract the centerline of the segmented coronary arteries. Using these extracted 

centerlines, we obtained the cross sections of the segmented coronary arteries, as shown in 

Figure 7. By computing the area A  of each cross section, the diameter r  was estimated as 

follows: 

                                A
r


                                          

Table III shows the estimated diameter of the same cross section for the proposed method 

and the method of Yang et al. [11]. The diameter of the proposed method was closer to the 

diameter in ground truth data at the same cross section than that obtained from the method 

Yang et al.  
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Figure 4. The 3D coronary arteries manually edited by a radiologist using an AW workstation 

(GE Healthcare, Wisconsin, USA). 

 

 

Figure 5. The 3D coronary arteries in the CTA volume obtained from the proposed method. 
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Figure 6. The 3D coronary arteries in the CTA volume obtained from the level set approach. 

 

 

(a) 
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(b) 

Figure 7. (a) The cross section of the segmented coronary arteries. (b) Magnified view of 

(a). 

 

TABLE II 

COMPARISON OF THE 3D SEGMENTATION RESULT S.  

 

 Yang et al. [11] 

Method 

Proposed 

Method 

Mean OM 0.60 0.92 

Mean ( , )Hd X Y  1.08 0.68 

 

 

 

TABLE III 

COMPARISON OF THE CROSS-SECTIONAL DIAMETER.  

 

Ground Truth 
Yang et al. [11] 

Method  

Proposed 

Method 

4.7 4.4 4.8 
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D. Experimental Environment and Execution Time 

The proposed method was implemented in MATLAB (R2011a) on a standard 

specification PC with a 3.2 GHz CPU and 12 GB RAM. The average execution time was 58 

seconds to extract the entire coronary tree, compared to approximately 47 seconds for the 

method by Yang et al. for the same process. 

 

V. CONCLUSIONS 

Accurate extraction of coronary arteries is important to assess artery lesions in clinical 

practice. In this study, we propose a novel method to segment coronary arteries automatically.  

Based on the initial segmentation obtained from 3D region growing, one-level 3D DWT and 

3D neutrosophic transformation were applied to detect coronary arteries accurately. The 

location of vessel information, in HHH sub-band coefficients of DWT, was successfully 

detected by the proposed vessel-texture discrimination algorithm. Accordingly, the HHH 

sub-band coefficients were used and characterized and classified by 3D neutrosophic 

transformation and K-means clustering. The experimental results verify the efficiency of the 

proposed method.     
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