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a single-valued neutrosophic hesitant fuzzy weighted geometric (SVNHFWG) operator and investigate their 

properties. Furthermore, a multiple-attribute decision-making method is established on the basis of the 

SVNHFWA and SVNHFWG operators and the cosine measure under a single-valued neutrosophic hesitant 
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1     Introduction 
 The neutrosophic set  [2]  is a powerful general formal framework that generalizes the concept of the classic 

set, fuzzy set, interval-valued fuzzy set, intuitionistic fuzzy set, interval-valued intuitionistic fuzzy set, para-

consistent set, dialetheist set, paradoxist set, and tautological set. In the neutrosophic set, indeterminacy is 

quantified explicitly, and truth membership, indeterminacy membership, and falsity membership are inde-

pendent. However, the neutrosophic set generalizes the above-mentioned sets from a philosophical point of 

view, and its functions  T  
 A 
 ( x ),  I  

 A 
 ( x ), and  F  

 A 
 ( x ) are real standard or non-standard subsets of ]  –  0, 1  +  [, i.e.,  T  

 A 
 ( x ):  X  

 → ]  –  0, 1  +  [,  I  
 A 
 ( x ):  X   → ]  –  0, 1  +  [, and  F  

 A 
 ( x ):  X   → ]  –  0, 1  +  [. Thus, it will be difficult to apply in real scientific and engi-

neering areas  [5, 6] . Therefore, Wang et al.  [5, 6]  proposed the concepts of an interval neutrosophic set (INS) 

and a single-valued neutrosophic set (SVNS), which are the subclasses of a neutrosophic set, and provided 

the set-theoretic operators and various properties of SVNSs and INSs. SVNSs and INSs provide an additional 

possibility to represent uncertain, imprecise, incomplete, and inconsistent information that exists in the 

real world. They would be more suitable to handle indeterminate information and inconsistent information. 

Recently, Ye  [13]  presented the correlation coefficient of SVNSs based on the extension of the correlation of 

intuitionistic fuzzy sets and proved that the cosine similarity measure is a special case of the correlation 

coefficient of SVNSs, and then applied it to single-valued neutrosophic decision-making problems. Then, 

Ye  [14]  presented another form of correlation coefficient between SVNSs and applied it to multiple-attribute 
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decision making under a single-valued neutrosophic environment. Ye  [15]  proposed a single-valued neutro-

sophic cross-entropy measure and applied it to multicriteria decision-making problems with single-valued 

neutrosophic information. Ye  [16]  also introduced the Hamming and Euclidean distances between INSs and 

the similarity measures, and then applied them to decision-making problems in an interval neutrosophic 

setting. Furthermore, Ye  [17]  presented the concept of a simplified neutrosophic set (SNS), which is a sub-

class of the neutrosophic set and includes an SVNS and an INS, and defined some operations of SNSs. Then, 

he developed a simplified neutrosophic weighted averaging (SNWA) operator, a simplified neutrosophic 

weighted geometric (SNWG) operator, and a multicriteria decision-making method using the SNWA and 

SNWG operators and the cosine measure of SNSs under a simplified neutrosophic environment. 

 In fuzzy decision-making problems, however, decision makers sometimes find it difficult to determine 

the membership of an element to a set, and in some circumstances they cause this difficult problem of giving 

a few different values due to doubt. To deal with such cases, Torra and Narukawa  [3]  and Torra  [4]  presented 

the concept of a hesitant fuzzy set (HFS) as another extension of the fuzzy set. Xu and Xia  [9, 10]  defined some 

similarity measures, distance and correlation measures of HFSs, and applied them to multicriteria decision 

making. Then, Xia and Xu  [8]  developed a series of aggregation operators for hesitant fuzzy information 

and applied them in solving decision-making problems. Xu and Xia  [11]  introduced hesitant fuzzy entropy 

and cross-entropy and their use in multiple-attribute decision making. Zhu et al.  [19]  introduced hesitant 

fuzzy geometric Bonferroni means and applied the proposed aggregation operators to multicriteria decision 

making. Wei  [7]  also introduced hesitant fuzzy prioritized operators and their application to multiple-attrib-

ute decision making. Chen et al.  [1]  generalized the concept of HFS to that of interval-valued HFS (IVHFS) in 

which the membership degrees of an element to a given set are not exactly defined but denoted by several 

possible interval values, and gave systematic aggregation operators to aggregate interval-valued hesitant 

fuzzy information. They then developed an approach to group decision making based on interval-valued 

hesitant preference relations to consider the differences of opinions between individual decision makers. Xu 

et al.  [12]  investigated the aggregation of hesitancy fuzzy information, proposed several series of aggregation 

operators, and discussed their connections. Then, they applied the Choquet integral to obtain the weights of 

criteria and established a group decision-making method under a hesitant fuzzy environment. 

 However, in some situations, decision makers sometimes cause this difficult problem of assigning a few 

different values for satisfied and unsatisfied degrees. Thus, the HFS and the IVHFS are difficult to use for 

such a decision-making problem. To handle such cases, Zhu et  al.  [20]  originally introduced a dual HFS 

(DHFS) as a generalization of HFSs, which encompasses fuzzy sets, intuitionistic fuzzy sets, HFSs, and fuzzy 

multisets as special cases  [20] . The DHFS consists of two parts  –  the membership hesitancy function and the 

non-membership hesitancy function  –  and can handle two kinds of hesitancy in this situation. Then, Ye  [18]  

proposed a correlation coefficient of DHFSs and applied it to multiple-attribute decision-making problems 

under a dual hesitant fuzzy environment. 

 As mentioned above, hesitancy is the most common problem in decision making, for which HFS can 

be considered as a suitable means allowing several possible degrees for an element to a set. However, in an 

HFS, there is only one truth-membership hesitant function, and it cannot express this problem with a few 

different values assigned by truth-membership degrees, indeterminacy-membership degrees, and falsity-

membership degrees, due to doubts of decision makers. Thus, in this situation, it can represent only one kind 

of hesitancy information and cannot express three kinds of hesitancy information. An SVNS is an instance 

of a neutrosophic set that provides an additional possibility to represent uncertain, imprecise, incomplete, 

and inconsistent information that exists in the real world. It would be more suitable to handle indetermi-

nate information and inconsistent information. However, it can only express a truth-membership degree, an 

indeterminacy-membership degree, and a falsity-membership degree, and it cannot represent this problem 

with a few different values assigned by truth-membership degrees, indeterminacy-membership degrees, and 

falsity-membership degrees, respectively, due to doubts of decision makers. In such a situation, the afore-

mentioned algorithms based on neutrosophic sets or HFSs and their decision-making methods are difficult 

to use for such a decision-making problem with three kinds of hesitancy information that exists in the real 

world. To handle this case, we need to introduce a concept of a single-valued neutrosophic HFS (SVNHFS), 
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which is a combination of HFS and SVNS, and some algorithms for SVNHFSs. The SVNHFS consists of three 

parts  –  the truth-membership hesitancy function, indeterminacy-membership hesitancy function, and fal-

sity-membership hesitancy function  –  and can express three kinds of hesitancy information in this situation. 

Therefore, the purposes of this article are (i) to propose an SVNHFS based on the combination of SVNS and 

HFS, (ii) to introduce the basic operational relations and cosine measure function of SVNHFSs, (iii) to develop 

a single-valued neutrosophic hesitant fuzzy weighted averaging (SVNHFWA) operator and a single-valued 

neutrosophic hesitant fuzzy weighted geometric (SVNHFWG) operator and investigate their properties, and 

(iv) to establish a multiple-attribute decision making method based on the SVNHFWA and SVNHFWG opera-

tors and the cosine measure under a single-valued neutrosophic hesitant fuzzy environment. 

 The rest of the article is organized as follows. Section 2 briefly describes some concepts of neutrosophic 

sets, SVNSs, HFSs, and DHFSs. Section 3 proposes the concept of SVNHFSs and defines the corresponding 

basic operations and cosine measure for SVNHFSs. In Section 4, we develop the SVNHFWA and SVNHFWG 

operators and investigate their properties. Section 5 establishes a decision-making approach based on the 

SVNHFWA and SVNHFWG operators and the cosine measure. An illustrative example validating our approach 

is presented and discussed in Section 6. Section 7 contains the conclusion and future research direction.  

2    Preliminaries 

2.1    Some Concepts of Neutrosophic Sets and SVNSs 

 A neutrosophic set is a part of neutrosophy, which studies the origin, nature, and scope of neutralities, as 

well as their interactions with different ideational spectra  [2] , and is a powerful general formal framework 

that generalizes the above-mentioned sets from a philosophical point of view. Smarandache  [2]  originally 

gave the following definition of a neutrosophic set. 

  Definition 1   [2]  .  Let  X  be a space of points (objects), with a generic element in  X  denoted by  x . A neutrosophic 

set  A  in  X  is characterized by a truth-membership function  T  
 A 
 ( x ), an indeterminacy-membership function 

 I  
 A 
 ( x ), and a falsity-membership function  F  

 A 
 ( x ). The functions  T  

 A 
 ( x ),  I  

 A 
 ( x ), and  F  

 A 
 ( x ) are real standard or non-

standard subsets of ]  –  0, 1  +  [, i.e.,  T  
 A 
 ( x ):  X   → ]  –  0, 1  +  [,  I  

 A 
 ( x ):  X   → ]  –  0, 1  +  [, and  F  

 A 
 ( x ):  X   → ]  –  0, 1  +  [. 

 There is no restriction on the sum of  T  
 A 
 ( x ),  I  

 A 
 ( x ), and  F  

 A 
 ( x ); thus,   –  0    ≤    sup  T  

 A 
 ( x )  +  sup  I  

 A 
 ( x )  +  sup  F  

 A 
 ( x )    ≤    3  +    [2] . 

  Definition 2   [2]  .  The complement of a neutrosophic set  A  is denoted by  A   c   and is defined as   {( ) 1 } ),(c

A A
T x T x+= �  

  {( ) 1 } ),(c

A A
I x I x+= �  and   ( ) 1{ } ( )c

A A
F x F x+= �  for every  x  in  X.  

  Definition 3   [2]  .  A neutrosophic set  A  is contained in the other neutrosophic set  B ,  A   ⊆   B , if and only if inf 

 T  
 A 
 ( x )    ≤    inf  T  

 B 
 ( x ), sup  T  

 A 
 ( x )    ≤    sup  T  

 B 
 ( x ), inf  I  

 A 
 ( x )    ≥    inf  I  

 B 
 ( x ), sup  I  

 A 
 ( x )    ≥    sup  I  

 B 
 ( x ), inf  F  

 A 
 ( x )    ≥    inf  F  

 B 
 ( x ), and sup 

 F  
 A 
 ( x )    ≥    sup  F  

 B 
 ( x ) for every  x  in  X.  

 For application in real scientific and engineering areas, Wang et al.  [6]  proposed the concept of an SVNS, 

which is an instance of a neutrosophic set. In the following, we introduce the definition of SVNS  [6] . 

  Definition 4   [6]  .  Let  X  be a space of points (objects) with generic elements in  X  denoted by  x . An SVNS  A  in  X  

is characterized by truth-membership function  T  
 A 
 ( x ), indeterminacy-membership function  I  

 A 
 ( x ), and falsity-

membership function  F  
 A 
 ( x ), where  T  

 A 
 ( x ),  I  

 A 
 ( x ), and  F  

 A 
 ( x )  ∈  [0, 1] for each point  x  in  X . Then, an SVNS  A  can 

be expressed as 

   
{ , ( ), ( ), ( ) | }.

A A A
A x T x I x F x x X= 〈 〉 ∈

 

 Thus, the SVNS satisfies the condition 0    ≤     T  
 A 
 ( x )  +   I  

 A 
 ( x )  +   F  

 A 
 ( x )    ≤    3. 

 The following relations for SVNSs,  A ,  B , are defined in Ref.  [6] :
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1.     A   ⊆   B  if and only if  T  
 A 
 ( x )    ≤     T  

 B 
 ( x ),  I  

 A 
 ( x )    ≥     I  

 B 
 ( x ), and  F  

 A 
 ( x )    ≥     F  

 B 
 ( x ) for any  x  in  X .  

2.    A    =    B  if and only if  A   ⊆   B  and  B   ⊆   A .  

3.    A   c     =    {  〈  x ,  F  
 A 
 ( x ), 1  –   I  

 A 
  ( x ),  T  

 A 
  ( x ) 〉   |   x   ∈   X  } .    

 For convenience, an SVNS  A  is denoted by  A    =    〈  T  
 A 
 ( x ),  I  

 A 
 ( x ),  F  

 A 
 ( x ) 〉  for any  x  in  X . For two SVNSs  A  and  B , the 

operational relations  [6]  are defined as follows:

1.     A   ∪   B    =    〈 max( T  
 A 
 ( x ),  T  

 B 
 ( x )), min( I  

 A 
 ( x ),  I  

 B 
 ( x )), min( F  

 A 
 ( x ),  F  

 B 
 ( x )) 〉  for any  x  in  X.   

2.    A   ∩   B    =    〈 min( T  
 A 
 ( x ),  T  

 B 
 ( x )), max( I  

 A 
 ( x ),  I  

 B 
 ( x )), max( F  

 A 
 ( x ),  F  

 B 
 ( x )) 〉  for any  x  in  X.   

3.    A   ×   B    =    〈  T  
 A 
 ( x )  +   T  

 B 
 ( x )  –   T  

 A 
 ( x ) T  

 B 
 ( x ),  I  

 A 
 ( x ) I  

 B 
 ( x ),  F  

 A 
 ( x ) F  

 B 
 ( x ) 〉  for any  x  in  X .     

2.2    Hesitant Fuzzy Sets 

 As a generalization of fuzzy set, HFS  [3, 4]  is a very useful tool in some situations where there are some dif-

ficulties in determining the membership of an element to a set caused by a doubt between a few different 

values. As there are several possible values in determining the membership of an element to a set, Torra and 

Narukawa  [3]  and Torra  [4]  first proposed the concept of HFS, which is defined as follows. 

  Definition 5   [3, 4]  .  Let  X  be a fixed set; an HFS  A  on  X  is defined in terms of a function  h  
 A 
 ( x ) that when 

applied to  X  returns a finite subset of [0, 1], which can be represented as the following mathematical 

symbol: 

   
{ , ( ) | },

A
A x h x x X= 〈 〉 ∈

 

 where  h  
 A 
 ( x ) is a set of some different values in [0, 1], denoting the possible membership degrees of the element 

 x   ∈   X  to  A . For convenience, we call  h  
 A 
 ( x ) a hesitant fuzzy element  [9, 10] . 

  Definition 6   [3, 4]  .  Given a hesitant fuzzy element  h , its lower and upper bounds are defined as  h   –  ( x )   =   min 

 h ( x ) and  h   +   ( x )   =   max  h ( x ), respectively. 

  Definition 7   [3, 4]  .  Given a hesitant fuzzy element  h ,  A  
env

 ( h ) is called the envelope of  h , which is represented 

by ( h   –  , 1  –   h   +  ), with the lower bound  h   –   and upper bound  h   +  . 

 From this definition, Torra and Narukawa  [3]  and Torra  [4]  gave the relationship between an HFS and an 

intuitionistic fuzzy set, i.e.,  A  
env

 ( h ) is defined as  {    <  x,  μ  ( x ) ,  ν  ( x )   >    }  with   μ   and   ν   defined by   μ  ( x )   =    h   –  ( x ),   ν  ( x )   =   
1  –   h   +  ( x ),  x   ∈   X . 

 Given three hesitant fuzzy elements  h ,  h  
1
 , and  h  

2
 , Torra  [4]  defined some operations in them as follows: 

1.      { 1 }.c

h

h
γ

γ
∈

= −∪   

2.     
1 1 2 2

1 2 1 2
, 

max{ , }.
h h

h h
γ γ

γ γ
∈ ∈

=∪ ∪   

3.     
1 1 2 2

1 2 1 2
, 

min{ , }.
h h

h h
γ γ

γ γ
∈ ∈

=∩ ∪     

  Definition 8   [8]  .  For a hesitant element  h ,   1

#
( )

h h
s h

γ
γ

∈
= ∑  is called the score function of  h , where  #  h  is the 

number of the elements in  h . For two hesitant elements  h  
1
  and  h  

2
 , if  s ( h  

1
 )   >    s ( h  

2
 ), then  h  

1
    >    h  

2
 ; if  s ( h  

1
 )   =    s ( h  

2
 ), 

then  h  
1
    =    h  

2
 . 

 According to the relationship between a hesitant fuzzy element and an intuitionistic fuzzy value, Xia and 

Xu  [8]  defined some operations on the hesitant fuzzy elements  h ,  h  
1
 , and  h  

2
  and a positive scale   λ  :

1.      { }.
h

h λ λ

γ
γ

∈
= ∪   

2.     { 1 ( 1 ) }.
h

h λ

γ
λ γ

∈
= − −∪   

3.     
1 1 2 2

1 2 1 2 1 2
, 

{ }.
h h

h h
γ γ

γ γ γ γ
∈ ∈

⊕ = + −∪   

4.     
1 1 2 2

1 2 1 2
, 

{ }.
h h

h h
γ γ

γ γ
∈ ∈

⊗ = ∪      
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2.3    Dual Hesitant Fuzzy Sets 

 Zhu et al.  [20]  defined a DHFS as an extension of an HFS, in terms of two functions that return two sets of 

membership values and non-membership values, respectively, for each element in the domain as follows. 

  Definition 9   [20]   .   Let  X  be a fixed set; then, a DHFS  D  on  X  is defined as 

   
{ , ( ), ( ) | },D x h x g x x X= 〈 〉 ∈

 

 in which  h ( x ) and  g ( x ) are two sets of some values in [0, 1], denoting the possible membership degrees and 

non-membership degrees of the element  x   ∈   X  to the set  D , respectively, with the conditions 0    ≤      γ  ,   η      ≤    1, and 

0    ≤      γ    +    +    η    +      ≤    1, where   γ    ∈   h ( x ),   η    ∈   g ( x ),   γ    ∈   h   +  ( x )   =    ∪  
  γ    ∈   h ( x )

  max {   γ   } , and   η    +    ∈   g    +   ( x )   =    ∪  
  η    ∈   g ( x )

  max {   η   }  for  x   ∈   X . 

 For convenience, the pair  d ( x )   =    {  h ( x ),  g ( x ) }  is called a dual hesitant fuzzy element (DHFE) denoted by 

 d    =    {  h ,  g  } . 

  Definition 10   [20]  .  Let  d  
1
  and  d  

2
  be two DHFEs in a fixed set  X ; then, their union and intersection are defined, 

respectively, by

1.      1 2 1 2 1 2 1 2 1 2
{ ( ) | max( , ), ( ) | min( , )}.d d h h h h h h g g g g g g− − + += ∈ ≥ ∈ ≤∪ ∪ ∩   

    2. 1 2 1 2 1 2 1 2 1 2
{ ( ) | min( , ), ( ) | max( , )}.d d h h h h h h g g g g g g+ + − −= ∈ ≤ ∈ ≥∩ ∩ ∪     

 Then, Zhu et al.  [19]  gave the following operations:

1.      
1 1 1 1 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2
, , , 

{ , } {{ }, { } }.
h g h g

d d h h g g
γ η γ η

γ γ γ γ η η
∈ ∈ ∈ ∈

⊕ = ⊕ ⊗ = + −∪   

2.     
1 1 1 1 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2
, , , 

{ , } {{ }, { } }.
h g h g

d d h h g g
γ η γ η

γ γ η η η η
∈ ∈ ∈ ∈

⊗ = ⊗ ⊕ = + −∪   

3.     
1 1 1 1

1 1 1
, 

{{ 1 ( 1 ) }, { } }, 0.
h g

d λ λ

γ η
λ γ η λ

∈ ∈
= − − >∪   

4.     
1 1 1 1

1 1 1̀
, 

{{ }, { 1 ( 1 ) } }, 0.
h g

d λ λ λ

γ η
γ η λ

∈ ∈
= − − >∪     

 To compare the DHFEs, Zhu et al.  [20]  gave the following comparison laws. 

  Definition 11   [20]  .  Let  d  
1
    =    {  h  

1
 ,  g  

1
  }  and  d  

2
    =    {  h  

2
 ,  g  

2
  }  be any two DHFEs; then, the score function of  d  

 i 
  

( i    =   1, 2) is   ( ) ( 1/# ) ( 1/# )
i i i i

i i i i ih g
S d h g

γ η
γ η

∈ ∈
= −∑ ∑  ( i    =   1, 2) and the accuracy function of  d  

 i 
  ( i    =   1, 2) is 

  ( ) ( 1/# ) ( 1/# )
i i i i

i i i i ih g
P d h g

γ η
γ η

∈ ∈
= +∑ ∑  ( i    =   1, 2), where  #  h  

 i 
  and  #  g  

 i 
  are the numbers of the elements in  h  

 i 
  

and  g  
 i 
 , respectively; then

i.    If  S ( d  
1
 )   >    S ( d  

2
 ), then  d  

1
  is superior to  d  

2
 , denoted by  d  

1
  f  d  

2
 .  

ii.   If  S ( d  
1
 )   =    S ( d  

2
 ), then

1.    If  P ( d  
1
 )   =    P ( d  

2
 ), then  d  

1
  is equivalent to  d  

2
 , denoted by  d  

1
  ∼  d  

2
 .  

2.   If  P ( d  
1
 )   >    P ( d  

2
 ), then  d  

1
  is superior to  d  

2
 , denoted by  d  

1
  f  d  

2
 .         

3    Single-Valued Neutrosophic Hesitant Fuzzy Set 
 HFSs can reflect the original information given by the decision makers as much as possible, and more values 

are obtained from the decision makers or experts, which belonging to [0, 1] may be assigned to easily express 

hesitant judgments. Therefore, in this section, the concept of an SVNHFS is presented on the basis of the com-

bination of SVNSs and HFSs as a further generalization of the concept of SVNSs and HFSs, which is defined 

as follows. 
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  Definition 12.  Let  X  be a fixed set; an SVNHFS on  X  is defined as 

   
{ , ( ), ( ), ( ) | },N x t x i x f x x X= 〈 〉 ∈���

 

 in which   ( ),t x�    ( ),i x�  and   ( )f x�  are three sets of some values in [0, 1], denoting the possible truth-mem-

bership hesitant degrees, indeterminacy-membership hesitant degrees, and falsity-membership hesitant 

degrees of the element  x   ∈   X  to the set  N , respectively, with the conditions 0    ≤      δ  ,   γ  ,   η      ≤    1 and 0    ≤      γ    +    +    δ    +   

 +    η    +      ≤    3, where   ( ),t xγ ∈�    ( ),i xδ∈�    ( ),f xη ∈ �    
( )

( ) max{ },
t x

t x
γ

γ γ+ +
∈∈ = �

� ∪    
( )

( ) max{ },
i x

i x
δ

δ δ+ +
∈∈ = �

� ∪  and 

  
( )

( ) max{ }
f x

f x
η

η η+ +
∈∈ = �

� ∪  for  x   ∈   X . 

 For convenience, the three tuple   ( ) { ( ), ( ), ( )}n x t x i x f x= ���  is called a single-valued neutrosophic hesi-

tant fuzzy element (SVNHFE) or a triple hesitant fuzzy element, which is denoted by the simplified symbol 

  { , , }.n t i f= ���  

 From Definition 12, we can see that the SVNHFS consists of three parts, i.e., the truth-membership hesi-

tancy function, the indeterminacy-membership hesitancy function, and the falsity-membership hesitancy 

function, supporting a more exemplary and flexible access to assign values for each element in the domain, 

and can handle three kinds of hesitancy in this situation. Thus, the existing sets, including fuzzy sets, intui-

tionistic fuzzy sets, SVNSs, HFSs, and DHFSs, can be regarded as special cases of SVNHFSs. 

 Then, we can define the union and intersection of SVNHFEs as follows. 

  Definition 13.  Let  n  
1
  and  n  

2
  be two SVNHFEs in a fixed set  X ; then, their union and intersection are defined, 

respectively, by

1.      
1 2 1 2 1 2 1 2 1 2

1 2 1 2

{ ( ) | max( , ), ( ) | min( , ),

   ( ) | min( , )}.

n n t t t t t t i i i i i i

f f f f f f

− − + +

+ +

= ∈ ≥ ∈ ≤
∈ ≤

� � � � � �� � � � � �∪ ∪ ∩
� � � � � �∩

  

2.     
1 2 1 2 1 2 1 2 1 2

1 2 1 2

{ ( ) | min( , ), ( ) | max( , ),

  ( ) | max( , )}.

n n t t h t t t i i i i i i

f f f f f f

+ + − −

− −

= ∈ ≤ ∈ ≥
∈ ≥

� � � � � � �� � � � �∩ ∩ ∪
� � � � � �∪

    

 Therefore, for two SVNHFEs  n  
1
  and  n  

2
 , we can give the following basic operations:

1.      
1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2
, , , , , 

{ , , }

{{ }, { }, { } }.
t i f t i f

n n t t i i f f

γ δ η γ δ η
γ γ γ γ δ δ η η

∈ ∈ ∈ ∈ ∈ ∈

⊕ = ⊕ ⊗ ⊗
= + −

� �� �� �

� �� �� �

∪   

2.     

1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2
, , , , , 

{ , , }

{{ }, { }, { } }.
t i f t i f

n n t t i i f f

γ δ η γ δ η
γ γ δ δ δ δ η η η η

∈ ∈ ∈ ∈ ∈ ∈

⊗ = ⊗ ⊕ ⊕
= + − + −

� �� �� �

� �� �� �

∪   

3.     
1 1 1 1 1 1

1 1 1 1
, , 

{{ 1 ( 1 ) }, { }, { } }, 0.
t i f

n λ λ λ

γ δ η
λ γ δ η λ

∈ ∈ ∈
= − − >

���
∪   

4.     
1 1 1 1 1 1

1 1 1 1
, , 

{{ }, { 1 ( 1 ) }, { 1 ( 1 ) } }, 0.
t i f

nλ λ λ λ

γ δ η
γ δ η λ

∈ ∈ ∈
= − − − − >

���
∪     

 On the basis of the cosine measure of SVNSs  [13, 17] , we give the following cosine measure between SVNHFEs. 

  Definition 14.  Let   
1 1 1 1

{ , , }n t i f= ���  and   
2 2 2 2

{ , , }n t i f= ���  be any two SVNHFEs; thus, the cosine measure between 

 n  
1
  and  n  

2
  is defined by 

   

1 1 2 2 1 1 2 2 1 1 2 2

1 1 1 1 1 1 2 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 2 2 2

1 1 1 2

1 1 1 2

1 1 1 1 1 1

cos( , )

1 1 1 1

t t i i f f

t i f t

l l p p q q
n n

l p q l

γ γ δ δ η η

γ δ η γ

γ γ δ δ η η

γ δ η γ

∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⋅ + ⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

=
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

� �� �� �

��� �
2 2 2 2

2 2 2

2 2

2 2

,

1 1
i fp qδ η

δ η
∈ ∈

⎛ ⎞ ⎛ ⎞
+ +⎟ ⎜ ⎟ ⎜ ⎟⎠ ⎝ ⎠ ⎝ ⎠∑ ∑ ��

 (1) 
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 where  l  
 i 
 ,  p  

 i 
 , and  q  

 i 
  for  i    =   1, 2 are the numbers of the elements in   , , 

i i i
t i f���  for  i    =   1, 2, respectively, and cos( n  

1
 , 

 n  
2
 )  ∈  [0, 1]. 

 To compare the SVNHFEs, we give the following comparative laws based on the cosine measure. 

 Let   
1 1 1 1

{ , , }n t i f= ���  and   
2 2 2 2

{ , , }n t i f= ���  be any two SVNHFEs; thus, the cosine measure between  n  
 i 
  ( i    =   1, 2) 

and the ideal element  n  *    =     <  1, 0, 0  >   is obtained by applying Eq. (1) as follows: 

    

*

2 2 2

1

cos( , ) ,

1 1 1

i i

i i i i i i

it
i

i

i i it i f
i i i

l
n n

l p q

γ

γ δ η

γ

γ δ η

∈

∈ ∈ ∈

=
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑

∑ ∑ ∑

�

���

 

(2)

 

 where  l  
 i 
 ,  p  

 i 
 , and  q  

 i 
  for  i    =   1, 2 are the numbers of the elements in   , , 

i i i
t i f���  for  i    =   1, 2, respectively, and cos( n  

 i 
 ,  n  * ) 

 ∈  [0, 1] for  i    =   1, 2. Then, there are the following comparative laws based on the cosine measure:

1.    If cos( n  
1
 ,  n  * )   >   cos( n  

2
 ,  n  * ), then  n  

1
  is superior to  n  

2
 , denoted by  n  

1
  f  n  

2
 .  

2.   If cos( n  
1
 ,  n  * )   =   cos( n  

2
 ,  n  * ), then  n  

1
  is equivalent to  n  

2
 , denoted by  n  

1
  ∼  n  

2
 .     

4    Weighted Aggregation Operators for SVNHFEs 
 On the basis of the basic operations of SVNHFEs in Section 3, this section proposes the following two weighted 

aggregation operators for SVNHFEs as a further generalization of the weighted aggregation operators of HFSs 

and SNSs  [8, 17] , and investigates their properties as the weighted aggregation operators are more basic oper-

ators in information aggregation and decision making. 

4.1    SVNHFWA Operator 

  Definition 15.  Let  n  
 j 
  ( j    =   1, 2,  … ,  k ) be a collection of SVNHFEs; then, we define the SVNHFWA operator as 

follows: 

    
1 2

1

SVNHFWA( , , , ) ,
k

k j j
j

n n n w n
=

… = ∑
 

(3)

 

 where   w     =   ( w  
1
 ,  w  

2
 ,  … ,  w  

 k 
 ) T  is the weight vector of  n  

 j 
  ( j    =   1, 2,  … ,  k ), and  w  

 j 
    >   0,   

1
1.

k

jj
w

=
=∑  

 On the basis of the basic operations of SVNHFEs described in Section 3 and Definition 15, we can derive 

Theorem 1. 

  Theorem 1.   Let   n  
 j 
  ( j    =   1, 2,  … ,  k )  be a collection of SVNHFEs; then, the aggregated result of the SVNHFWA opera-

tor is also an SVNHFE, and  

    
1 1 2 2 1 1 2 2 1 1 2 2

1 2
1

, , , , , , , ,, , , , 1 1 1

SVNHFWA( , , , )

1 ( 1 ) , , ,j j j

k k k k k k

k

k j j
j

k k k
w w w

j j j
t t t i i i f f f j j j

n n n w n

γ γ γ δ δ δ η η η
γ δ η

=

∈ ∈ … ∈ ∈ ∈ … ∈ ∈ ∈ … ∈ = = =

… =

⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪= − −⎨⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎩ ⎩ ⎩⎭ ⎭ ⎭⎩ ⎭

∑

∏ ∏ ∏� � �� � �� � �
∪

 

(4)

 

  where    w     =   ( w  
1
 ,  w  

2
 ,  … ,  w  

 k 
 ) T   is the weight vector of   n  

 j 
  ( j    =   1, 2,  … ,  k ),  and   w  

 j 
    >   0,   

1
1.

k

jj
w

=
=∑  

  Proof.  The proof of Eq. (4) can be done by means of mathematical induction.
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1.    When  k    =   2, then, 

   

1 1 1

1 1 1 1 1 1

1 1 1 1 1
, , 

{{ 1 ( 1 ) }, { }, { } },
w w w

t i f

w n
γ δ η

γ δ η
∈ ∈ ∈

= − −
���

∪
 

   

2 2 2

2 2 2 2 2 2

2 2 2 2 2
, , 

{{ 1 ( 1 ) }, { }, { } }.
w w w

t i f

w n
γ δ η

γ δ η
∈ ∈ ∈

= − −
���

∪
 

 Thus, 

    

1 1 2 2 1 1 2 2 1 1 2 2

1 2 1 2 1 2 1 2

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2
, , , , , , 

1 2 1 2 1 2 1 2

1
, , , , , , 

 {{ 1 ( 1 ) ( 1 ( 1 ) ) ( 1 ( 1 ) )( 1 ( 1 ) }, { }, { }}.

{ { 1 ( 1 )

t t i i f f

w w w w w w w w

w

t t i i f f

w n w n
γ γ δ δ η η

γ γ δ δ η η

γ γ γ γ δ δ η η

γ

∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈ ∈ ∈

⊕ =

− − + − − − − − − −
= − −

� �� ���� �

� �� ���� �

∪

∪ 1 2 1 2 1 2

2 1 2 1 2
( 1 ) }, { }, { }}.

w w w w wγ δ δ η η−
 

(5) 

 

2.   When  k    =    m , by applying Eq. (4), we get 

    

1 1 2 2 1 1 2 2 1 1 2 2

1 2
, , , , , , , , , , , 1

1 1 1

SVNHFWA{ , , , } .

1 ( 1 ) , , 

m m m m m m

j j j

m

m j j
t t t i i i f f fj

m m m
w w w

j j j
j j j

n n n w n
γ γ γ δ δ δ η η η

γ δ η

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈=

= = =

… = =

⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪− −⎨⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎩ ⎩ ⎩⎭ ⎭ ⎭⎩ ⎭

∑

∏ ∏ ∏

� � �� � �� � �… … …
∪

 

(6) 

 

3.   When  k    =    m   +  1, by applying Eqs. (5) and (6), we can get 

     

( )
1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1

1 1

1

1 2 1
, , , , , , , , , , , 1

1 1
1 1

SVNHFWA( , , , )

1 ( 1 ) ( 1 ( 1 ) ) 1 ( 1 ) 1 ( 1 )

m m m m m m

m mj j

m

m j j
t t t i i i f f fj

m m
w ww w

j m j m
j j

n n n w n
γ γ γ δ δ δ η η η

γ γ γ γ

+ + + + + +

+ +

+

+
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈=

+ +
= =

… = =

⎧ ⎛ ⎞
− − + − − − − − − −⎜ ⎟⎜ ⎟⎝ ⎠

∑

∏ ∏

� � �� � �� � �… … …
∪

1 1

1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1

1 1
1 1

1

, , , , , , , , , , , 1

,

, 

1 ( 1 ) , 

m mj j

j

m m m m m m

m m
w ww w

j m j m
j j

m
w

j j
t t t i i i f f f jγ γ γ δ δ δ η η η

δ δ η η

γ δ

+ +

+ + + + + +

+ +
= =

+

∈ ∈ ∈ ∈ ∈ … ∈ ∈ ∈ ∈ =

⎧ ⎫⎪⎪ ⎪
⎨⎨ ⎬
⎪⎪ ⎪⎩ ⎭⎩

⎫⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎪
⎨ ⎬ ⎨ ⎬⎬
⎪ ⎪ ⎪ ⎪⎪⎩ ⎭ ⎩ ⎭⎭

⎧ ⎫⎪ ⎪= − −⎨ ⎬
⎪ ⎪⎩ ⎭

∏ ∏

∏� � �� � �� � �… …
∪

1 1

1 1

, .j j

m m
w w

j
j j

η
+ +

= =

⎧ ⎫⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪⎪
⎨ ⎨ ⎬ ⎨ ⎬⎬

⎪ ⎪ ⎪ ⎪⎪ ⎪⎩ ⎭ ⎩ ⎭⎩ ⎭
∏ ∏

 

(7)   

 

 Therefore, considering the above results, we have Eq. (4) for any  k . This completes the proof.  □  

 It is obvious that the SVNHFWA operator has the following properties:

1.    Idempotency: Let  n  
 j 
  ( j    =   1, 2,  … ,  k ) be a collection of SVNHFEs. If  n  

 i 
  ( j    =   1, 2,  … ,  k ) is equal, i.e.,  n  

 j 
    =    n  for 

 j    =   1, 2,  … ,  k , then SVNHFWA ( n  
1
 ,  n  

2
 ,  … ,  n  

 k 
 )   =    n .  

2.   Boundedness: Let  n  
 j 
  ( j    =   1, 2,  … ,  k ) be a collection of SVNHFEs and let  n   –     =    {  {  r   –   } ,  {   δ    +   } ,  {   η    +   }  }  and  n   +     =    {  {  r   +   } ,  {   δ    –   } , 

 {   η    –   }  } , where   min{ },
j j

jjtγ
γ γ−

∈
=

�
∪    min{ },

j j

jjiδ
δ δ−

∈
=

�
∪    min{ },

j j

jjfη
η η−

∈
=

�
∪    max{ },

j j

jjtγ
γ γ+

∈
=

�
∪    max{ },

j j

jjiδ
δ δ+

∈
=

�
∪  

and   max{ }
j j

jjfη
η η+

∈
=

�
∪  for  j    =   1, 2,  … ,  k ; then,  n   –      ≤    SVNHFWA ( n  

1
 ,  n  

2
 ,  … ,  n  

 k 
 )    ≤     n   +  .  

3.   Monotonity: Let  n  
 j 
  ( j    =   1, 2,  … ,  k ) be a collection of SVNHFEs. If   

j j
n n≤ ′  for  j    =   1, 2,  … ,  k , then 

  1 2 1 2
SVNHFWA( , , , ) SVNHFWA( , , , ).

k k
n n n n n n… ≤ …′ ′ ′      

4.2    SVNHFWG Operator 

  Definition 16.  Let  n  
 j 
  ( j    =   1, 2,  … ,  k ) be a collection of SVNHFEs; then, we define the SVNHFWG operator as 

follows: 
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1 2

1

SVNHFWG( , , , ) ,j

k
w

k j
j

n n n n
=

… = ∏
 

(8)

 

 where   w     =   ( w  
1
 ,  w  

2
 ,  … ,  w  

 k 
 ) T  is the weight vector of  n  

 j 
  ( j    =   1, 2,  … ,  k ), and  w  

 j 
    >   0,   

1
1.

k

jj
w

=
=∑  

 On the basis of the basic operations of SVNHFEs described in Section 3 and Definition 16, we can derive 

Theorem 2. 

  Theorem 2.   Let   n  
 j 
  ( j    =   1, 2,  … ,  k )  be a collection of SVNHFEs; then, the aggregated result of the SVNHFWG opera-

tor is also an SVNHFE, and  

    
1 1 2 2 1 1 2 2 1 1 2 2

1 2
1

, , , , , , , , , , , 1 1 1

SVNHFWG( , , , )

, 1 ( 1 ) , 1 ( 1 ) ,

j

j j j

k k k k k k

k
w

k j
j

k k k
w w w

j j j
t t t i i i f f f j j j

n n n n

γ γ γ δ δ δ η η η
γ δ η

=

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ = = =

… =

⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪= − − − −⎨⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎩ ⎩ ⎩⎭ ⎭ ⎭⎩ ⎭

∏

∏ ∏ ∏� � �� � �� � �… … …
∪

 (9) 

  where    w     =   ( w  
1
 ,  w  

2
 ,  … ,  w  

 k 
 )  T    is the weight vector of   n  

 j 
  ( j    =   1, 2,  … ,  k ),  and   w  

 j 
    >   0,   

1
1.

k

jj
w

=
=∑  

 Similar to the manner of the above proof, we can give the proof of Theorem 2 (omitted). 

 It is obvious that the SVNHFWG operator also has the following properties:

1.    Idempotency: Let  n  
 j 
  ( j    =   1, 2,  … ,  k ) be a collection of SVNHFEs. If  n  

 i 
  ( j    =   1, 2,  … ,  k ) is equal, i.e.,  n  

 j 
    =    n  for 

 j    =   1, 2,  … ,  k , then SVNHFWG ( n  
1
 ,  n  

2
 ,  … ,  n  

 k 
 )   =    n .  

2.   Boundedness: Let  n  
 j 
  ( j    =   1, 2,  … ,  k ) be a collection of SVNHFEs and let  n   –     =    {  {  r   –   } ,  {   δ    +   } ,  {   η    +   }  }  and  n   +     =    {  {  r   +   } ,  {   δ    –   } , 

 {   η    –   }  } , where   min{ },
j j

jjtγ
γ γ−

∈
=

�
∪    min{ },

j j

jjiδ
δ δ−

∈
=

�
∪    min{ },

j j

jjfη
η η−

∈
=

�
∪    max{ },

j j

jjtγ
γ γ+

∈
=

�
∪    max{ },

j j

jjiδ
δ δ+

∈
=

�
∪  

and   max{ }
j j

jjfη
η η+

∈
=

�
∪  for  j    =   1, 2,  … ,  k ; then,  n   –      ≤    SVNHFWG ( n  

1
 ,  n  

2
 ,  … ,  n  

 k 
 )    ≤     n   +  .  

3.   Monotonity: Let  n  
 j 
  ( j    =   1, 2,  … ,  k ) be a collection of SVNHFEs. If   

j j
n n≤ ′  for  j    =   1, 2,  … ,  k ; then, 

  1 2 1 2
SVNHFWG( , , , ) SVNHFWG( , , , ).

k k
n n n n n n… ≤ …′ ′ ′       

5     Decision-Making Method Based on the SVNHFWA and SVNHFWG 
Operators 

 In this section, we apply the SVNHFWA and SVNHFWG operators to multiple-attribute decision-making prob-

lems with single-valued neutrosophic hesitant fuzzy information. 

 For a multiple-attribute decision-making problem under a single-valued neutrosophic hesitant fuzzy 

environment, let  A    =    {  A  
1
 ,  A  

2
 ,  … ,  A  

 m 
  }  be a discrete set of alternatives and  C    =    {  C  

1
 ,  C  

2
 ,  … ,  C  

 k 
  }  be a discrete set 

of attributes. When the decision makers are required to evaluate the alternative  A  
 i 
  ( i    =   1, 2,  … ,  m ) under the 

attribute  C  
 j 
  ( j    =   1, 2,  … ,  k ), they may assign a set of several possible values to each of truth-membership 

degrees, indeterminacy-membership degrees, and falsity-membership degrees to which an alternative  A  
 i 
  

( i    =   1, 2,  … ,  m ) satisfies and/or dissatisfies an attribute  C  
 j 
  ( j    =   1, 2, … ,  k ), and then these evaluated values can 

be expressed as an SVNHFE   , , ( )
ij ji jj i i

n t i f= ���  ( i    =   1, 2, … ,  m ;  j    =   1, 2, … ,  k ). Thus, we can elicit a single-valued 

neutrosophic hesitant fuzzy decision matrix  D    =   ( n  
 ij 
 ) 

 m 
 
×
 
 k 
 , where  n  

 ij 
  ( i    =   1, 2,  … ,  m ;  j    =   1, 2,  … ,  k ) is in the form of 

SVNHFEs. 

 The weight vector of attributes for the different importance of each attribute is given as   w     =   ( w  
1
 ,  w  

2
 , … , 

 w  
 k 
 ) T , where  w  

 j 
       ≥    0,  j    =   1, 2,  … ,  k , and   

1
1.

k

jj
w

=
=∑  Then, we use the SVNHFWA or SVNHFWG operator and the 

cosine measure to develop an approach for multiple-attribute decision-making problems with single-valued 

neutrosophic hesitant fuzzy information, which can be described as follows: 
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  Step 1.  Aggregate all SVNHFEs of  n  
 ij 
  ( i    =   1, 2,  … ,  m ;  j    =   1, 2,  … ,  k ) by using the SVNHFWA operator to derive the 

collective SVNHFE  n  
 i 
  ( i    =   1, 2,  … ,  m ) for an alternative  A  

 i 
  ( i    =   1, 2,  … ,  m ): 

    
1 1 2 2 1 1 2 2 1 1 2 2

1 2
1

, , , , , , , , , , , 1 1 1

SVNHFWA( , , , )

1 ( 1 ) , , j j j

i i i i ik ik i i i i ik ik i i i i ik ik

k

i i i ik j ij
j

k k k
w w w

ij ij ij
t t t i i i f f f j j j

n n n n w n

γ γ γ δ δ δ η η η
γ δ η

=

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ = = =

= … =

⎧ ⎫ ⎧ ⎫ ⎧⎪ ⎪ ⎪ ⎪= − −⎨ ⎬ ⎨ ⎬ ⎨
⎪ ⎪ ⎪ ⎪⎩ ⎩⎭ ⎭

∑

∏ ∏ ∏� � �� � �� � �… … …
∪ ,

⎧ ⎫⎫⎪ ⎪ ⎪⎪
⎨ ⎬⎬

⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭  

(10)

 

 or by using the SVNHFWG operator: 

    
1 1 2 2 1 1 2 2 1 1 2 2

1 2
1

, , , , , , , , , , , 1 1

SVNHFWG( , , , )

, 1 ( 1 ) , 1 ( 1 )

j

j j j

i i i i ik ik i i i i ik ik i i i i ik ik

k
w

i i i ik ij
j

k k
w w w

ij ij ij
t t t i i i f f f j j j

n n n n n

γ γ γ δ δ δ η η η
γ δ η

=

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ = =

= … =

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= − − − −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎩⎭ ⎭

∏

∏ ∏� � �� � �� � �… … …
∪

1

.
k

=

⎧ ⎫⎧ ⎫⎪ ⎪ ⎪⎪
⎨ ⎨ ⎬⎬

⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭
∏

 (11) 

  Step 2.  Calculate the measure values of the collective SVNHFE  n  
 i 
  ( i    =   1, 2,  … ,  m ) and the ideal element  n  *    =     <  1, 

0, 0  >   by Eq. (2). 

  Step 3.  Rank the alternatives and select the best one(s) in accordance with the measure values. 

 Step 4. End.  

6    Illustrative Example 
 An illustrative example about investment alternatives for a multiple-attribute decision-making problem 

adapted from Ye  [13, 18]  is used as the demonstration of the applications of the proposed decision-making 

method under a single-valued neutrosophic hesitant fuzzy environment. There is an investment company 

that wants to invest a sum of money in the best option available. There is a panel with four possible alterna-

tives in which to invest the money: (i)  A  
1
  is a car company; (ii)  A  

2
  is a food company; (iii)  A  

3
  is a computer 

company; and (iv)  A  
4
  is an arms company. The investment company must make a decision according to the 

following three attributes: (i)  C  
1
  is the risk; (ii)  C  

2
  is the growth; and (iii)  C  

3
  is the environmental impact. The 

attribute weight vector is given as   w     =   (0.35, 0.25, 0.4) T . The four possible alternatives,  A  
 i 
  ( i    =   1, 2, 3, 4), are to 

be evaluated using the single-valued neutrosophic hesitant fuzzy information by some decision makers or 

experts under three attributes,  C  
 j 
  ( j    =   1, 2, 3). 

 For the evaluation of an alternative  A  
 i 
  ( i    =   1, 2, 3, 4) with respect to an attribute  C  

 j 
  ( j    =   1, 2, 3), it is obtained 

from the evaluation of some decision makers. For example, three decision makers discuss the degrees that 

an alternative  A  
1
  should satisfy a criterion  C  

1
  can be assigned with 0.5, 0.4, and 0.3; the degrees that an alter-

native  A  
1
  with respect to an attribute  C  

1
  may be unsure can be assigned with 0.1; and the degrees that an 

alternative dissatisfies an attribute  C  
1
  can be assigned with 0.4 by two of three decision makers and 0.3 by one 

of three decision makers. For the single-valued neutrosophic hesitant fuzzy notation, they can be expressed 

as  {  { 0.3, 0.4, 0.5 } ,  { 0.1 } ,  { 0.3, 0.4 }  } . Thus, when the four possible alternatives with respect to the above three 

attributes are evaluated by the three decision makers, we can obtain the single-valued neutrosophic hesitant 

fuzzy decision matrix  D  shown in  Table 1  . 

 Then, we use the developed approach to obtain the ranking order of the alternatives and the most desir-

able one(s), which can be described as follows: 

  Step 1.  Aggregate all SVNHFEs of  n  
 ij 
  ( i    =   1, 2, 3, 4;  j    =   1, 2, 3) by using the SVNHFWA operator to derive the col-

lective SVNHFE  n  
 i 
  ( i    =   1, 2, 3, 4) for an alternative  A  

 i 
  ( i    =   1, 2, 3, 4). Take an alternative  A  

1
 ; for example, we have 
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 Table 1.      Single-Valued Neutrosophic Hesitant Fuzzy Decision Matrix  D.   

     C  1      C  2      C  3   

 A  
1
    {  { 0.3, 0.4, 0.5 } ,  { 0.1 } ,  { 0.3, 0.4 }  }    {  { 0.5, 0.6 } ,  { 0.2, 0.3 } ,  { 0.3,0.4 }  }    {  { 0.2, 0.3 } ,  { 0.1, 0.2 } ,  { 0.5, 0.6 }  } 

 A  
2
    {  { 0.6, 0.7 } ,  { 0.1, 0.2 } ,  { 0.2, 0.3 }  }    {  { 0.6, 0.7 } ,  { 0.1 } ,  { 0.3 }  }    {  { 0.6, 0.7 } ,  { 0.1, 0.2 } ,  { 0.1, 0.2 }  } 

 A  
3
    {  { 0.5, 0.6 } ,  { 0.4 } ,  { 0.2, 0.3 }  }    {  { 0.6 } ,  { 0.3 } ,  { 0.4 }  }    {  { 0.5, 0.6 } ,  { 0.1 } ,  { 0.3 }  } 

 A  
4
      {  { 0.7, 0.8 } ,  { 0.1 } ,  { 0.1, 0.2 }  }      {  { 0.6, 0.7 } ,  { 0.1 } ,  { 0.2 }  }      {  { 0.3, 0.5 } ,  { 0.2 } ,  { 0.1, 0.2, 0.3 }  }   

   

11 11 12 12 13 13 11 11 12 12 13 13 11 11 12 12 13 13

3

1 11 12 13 1
1

3 3 3

1 1 1
, , , , , , , , 1 1 1

SVNHFWA( , , )

1 ( 1 ) , , j j j

j j
j

w w w

j j j
t t t i i i f f f j j j

n n n n w n

γ γ γ δ δ δ η η η
γ δ η

=

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ = = =

= =

⎧⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪= − −⎨⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎩ ⎩⎭ ⎭ ⎭⎩

∑

∏ ∏ ∏� � �� � �� � �
∪

0.35 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4 0.35

{{ 1 ( 1 0.3) ( 1 0.5 ) ( 1 0.2 ) , 1 ( 1 0.4) ( 1 0.5 ) ( 1 0.2 ) ,

1 ( 1 0.5 ) ( 1 0.5 ) ( 1 0.2 ) , 1 ( 1 0.3) ( 1 0.6 ) ( 1 0.2 ) ,

1 ( 1 0.4) ( 1 0.6 ) ( 1 0.2 ) , 1 ( 1 0.5 )

⎫⎪
⎬

⎪ ⎪⎭
= − − − − − − − −

− − − − − − − −
− − − − − − 0.25 0.4

0.35 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4

( 1 0.6 ) ( 1 0.2 ) ,

1 ( 1 0.3) ( 1 0.5 ) ( 1 0.3) , 1 ( 1 0.4) ( 1 0.5 ) ( 1 0.3) ,

1 ( 1 0.5 ) ( 1 0.5 ) ( 1 0.3) , 1 ( 1 0.3) ( 1 0.6 ) ( 1 0.3) ,

1 ( 1 0.4) ( 1 0.6 ) ( 1 0.3) , 

− −
− − − − − − − −
− − − − − − − −
− − − − 0.35 0.25 0.4

0.35 0.25 0.4 0.35 0.25 0.4 0.35 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4 0.35 0.25 0.4 0.35 0.25 0.4 0.35

1 ( 1 0.5 ) ( 1 0.6 ) ( 1 0.3) },

{ 0.1 0.2 0.1 , 0.1 0.2 0.2 , 0.1 0.3 0.1 , 0.1 0.3 0.2 },

{ 0.3 0.3 0.5 , 0.4 0.3 0.5 , 0.3 0.4 0.5 , 0.4 0

− − − −

0.25 0.4

0.35 0.25 0.4 0.35 0.25 0.4 0.35 0.25 0.4 0.35 0.25 0.4

.4 0.5 ,

0.3 0.3 0.6 , 0.4 0.3 0.6 , 0.3 0.4 0.6 , 0.4 0.4 0.6 }
 

 and obtain the following collective SVNHFE  n  
1
 : 

   

1
{{0.3212, 0.3565, 0.3568, 0.358, 0.3903, 0.3914, 0.3917, 0.3966, 0.4234, 0.428, 

0.4293, 0.459}, {0.1189, 0.1316, 0.1569, 0.1737}, {0.3680, 0.3955, 0.3959, 0.407, 0.4254, 

0.4373, 0.4378, 0.4704}}.

n =

 

 Similar to the above calculation, we can derive the following collective SVNHFE  n  
 i 
  ( i    =   2, 3, 4): 

   

2

3

4

{{0.6, 0.6278, 0.6383, 0.6435, 0.6634, 0.6682, 0.6776, 0.7}, {0.1, 0.1275, 0.132, 0.1682}, 

{0.1677, 0.1933, 0.2213, 0.2551}};

{{0.5233, 0.5578, 0.5629, 0.6}, {0.2138}, {0.2797, 0.3224}};

{{0.54

n

n

n

=

=
= 76, 0.579, 0.6045, 0.6074, 0.632, 0.6347, 0.6569, 0.6807}, {0.1320}, 

{0.1189, 0.1516, 0.1569, 0.1845, 0.2, 0.2352}}.
 

  Step 2.  Calculate the measure values of the collective SVNHFE  n  
 i 
  ( i    =   1, 2, 3, 4) and the ideal element  n  *    =     <  1, 

0, 0  >   by Eq. (2): 

   

* * * *

1 2 3 4
cos( , ) 0.6636, cos( , ) 0.9350, cos( , ) 0.8353, and cos( , ) 0.9426.n n n n n n n n= = = =

 

  Step 3.  Rank the alternatives in accordance with the measure values  A  
4
  f  A  

2
  f  A  

3
  f  A  

1
 . Therefore, we can see that 

the alternative  A  
4
  is the best choice. 

 If we utilize the SVNHFWG operator for the multiple-attribute decision-making problem, the decision-

making procedure can be described as follows: 

  Step 1 ′ .  Aggregate all SVNHFEs of  n  
 ij 
  ( i    =   1, 2, 3, 4;  j    =   1, 2, 3) by using the SVNHFWG operator to derive the col-

lective SVNHFE  n  
 i 
  ( i    =   1, 2, 3, 4) for the alternative  A  

 i 
  ( i    =   1, 2, 3, 4). Take an alternative  A  

1
 ; for example, we have 
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11 11 12 12 13 13 11 11 12 12 13 13 11 11 12 12 13 13

3

1 11 12 13
1

3 3 3

1 1 1
, , , , , , , , 1 1 1

SVNHFWG( , , )

, 1 ( 1 ) , 1 ( 1 )

j

j j j

w

ij
j

w w w

j j j
t t t i i i f f f j j j

n n n n n

γ γ γ δ δ δ η η η
γ δ η

=

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ = = =

= =

⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪= − − − −⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩

∏

∏ ∏ ∏� � �� � �� � �
∪

0.35 0.25 0.4 0.35 0.25 0.4 0.35 0.25 0.4 0.35 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4 0.35 0.25 0.4 0.35 0.25 0.4 0.3

{{ 0.3 0.5 0.2 , 0.4 0.5 0.2 , 0.5 0.5 0.2 , 0.3 0.6 0.2 , 0.4 0.6 0.2 ,

    0.5 0.6 0.2 , 0.3 0.5 0.3 , 0.4 0.5 0.3 , 0.5

⎧ ⎫⎪ ⎪
⎨ ⎬

⎪⎪ ⎪⎭⎩ ⎭
=

5 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4 0.35 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4 0.35 0.25 0.4

0.

0.5 0.3 , 0.3 0.6 0.3 ,

0.4 0.6 0.3 , 0.5 0.6 0.3 }, { 1 ( 1 0.1) ( 1 0.2 ) ( 1 0.1) ,

1 ( 1 0.1) ( 1 0.2 ) ( 1 0.2 ) , 1 ( 1 0.1) ( 1 0.3) ( 1 0.1) ,

1 ( 1 0.1)

− − − −
− − − − − − − −
− − 35 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4 0.35 0.25

( 1 0.3) ( 1 0.2 ) }, { 1 ( 1 0.3) ( 1 0.3) ( 1 0.5 ) ,

1 ( 1 0.4) ( 1 0.3) ( 1 0.5 ) , 1 ( 1 0.3) ( 1 0.4) ( 1 0.5 ) ,

1 ( 1 0.4) ( 1 0.4) ( 1 0.5 ) , 1 ( 1 0.3) ( 1 0.3) ( 1 0.6 )

− − − − − −
− − − − − − − −
− − − − − − − − 0.4

0.35 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4

,

1 ( 1 0.4) ( 1 0.3) ( 1 0.6 ) , 1 ( 1 0.3) ( 1 0.4) ( 1 0.6 ) ,

1 ( 1 0.4) ( 1 0.4) ( 1 0.6 ) }}

− − − − − − − −
− − − −

 

 and obtain the following collective SVNHFE  n  
1
 : 

   

1
{{0.2898, 0.3033, 0.3205, 0.3355, 0.3409, 0.3466, 0.3568, 0.3627, 0.377, 0.3946, 0.4076, 

0.4266}, {0.1261, 0.1548, 0.1663, 0.1937}, {0.3881, 0.4113, 0.4203, 0.4404, 0.4422, 0.4615, 

0.4698, 0.4898}}

n =

.
 

 Similar to the above calculation, we can derive the following collective SVNHFE  n  
 i 
  ( i    =   2, 3, 4): 

   

2

3

4

{{0.6, 0.6236, 0.6333, 0.6382, 0.6581, 0.6632, 0.6735, 0.7}, {0.1, 0.1363, 0.1414, 0.1761}, 

{0.1889, 0.226, 0.2263, 0.2616}};

{{0.5233, 0.5578, 0.5629, 0.6}, {0.2666}, {0.2942, 0.3265}};

{{0.47

n

n

n

=

=
= 99, 0.4988, 0.5029, 0.5226, 0.5887, 0.6119, 0.6169, 0.6411}, {0.1414}, {0.1261, 

0.1614, 0.1663, 0.2, 0.2097, 0.2416}}.
 

  Step 2 ′ .  Calculate the measure cos( n  
 i 
 ,  n  * ) ( i    =   1, 2, 3, 4) of the collective SVNHFE  n  

 i 
  ( i    =   1, 2, 3, 4) for the alterna-

tive  A  
 i 
  ( i    =   1, 2, 3, 4) and the ideal element  n  *    =     <  1, 0, 0  >   by Eq. (2): 

   

* * *

1 2 3 4
cos( , ) 0.604, cos( , ) 0.9259, cos( , *) 0.808, and cos( , ) 0.9232.n n n n n n n n= = = =

 

  Step 3 ′ .  Rank the alternatives in accordance with the measure values  A  
2
  f  A  

4
  f  A  

3
f    A  

1
 . Therefore, we can see that 

the alternative  A  
2
  is the best choice. 

 Obviously, the above two kinds of ranking orders are the same as the ones in Refs.  [13, 18] . However, 

we can see that the different ranking orders are obtained from the SVNHFWA and SVNHFWG operators, as 

there are different focal points between the SVNHFWA operator and the SVNHFWG operator. The SVNHFWA 

operator emphasizes the group ’ s major points, whereas the SVNHFWG operator emphasizes individual major 

points. 

 In this section, we have proposed the approach to solve a single-valued neutrosophic hesitant fuzzy 

multiple-attribute decision-making problem. The above example clearly indicates that the proposed deci-

sion-making method is applicable and effective under a single-valued neutrosophic hesitant fuzzy environ-

ment. Comparing the SVNHFS with the HFS and the DHFS, the SVNHFS contains more information because 

it takes into account the information of its truth-membership hesitant degrees, indeterminacy-membership 

hesitant degrees, and falsity-membership hesitant degrees, whereas the HFS only contains the information 

of its membership hesitant degrees. Then, the DHFS is a further generalization of the HFS, which includes 

the information of its membership hesitant degrees and non-membership hesitant degrees. Therefore, the 

decision-making method proposed in this article can deal with not only single-valued neutrosophic hesitant 
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fuzzy decision-making problems but also indeterminate and inconsistent decision-making problems. To some 

extent, the decision-making method in single-valued neutrosophic hesitant fuzzy setting is more general and 

more practical than existing decision-making methods in fuzzy setting, intuitionistic fuzzy setting, hesitant 

fuzzy setting, dual hesitant fuzzy setting, and single-valued neutrosophic setting because SVNHFSs include 

the aforementioned fuzzy sets.  

7    Conclusion 
 This article introduced the concept of SVNHFSs based on the combination of both HFSs and SVNSs as a 

further generalization of these fuzzy concepts, and defined some basic operations of SVNHFEs and the cosine 

measure of SVNHFEs. Then, we proposed the SVNHFWA and SVNHFWG operators and investigated their 

properties. Furthermore, the two aggregation operators were applied to multiple-attribute decision-making 

problems under a single-valued neutrosophic hesitant fuzzy environment, in which attribute values with 

respect to alternatives are evaluated by the form of SVNHFEs and the attribute weights are known informa-

tion. We used the SVNHFWA and SVNHFWG operators and the cosine measure to rank the alternatives and 

determine the best one(s) according to the measure values. Finally, an illustrative example was provided 

to illustrate the application of the developed approach. The proposed multiple-attribute decision-making 

method under a single-valued neutrosophic hesitant fuzzy environment is more suitable for real scientific 

and engineering applications because the proposed decision-making method include more much infor-

mation and can deal with indeterminate and inconsistent decision-making problems. Therefore, when we 

encounter some situations that are represented by indeterminate information and inconsistent information, 

the proposed decision-making method demonstrates great superiority in dealing with the single-valued neu-

trosophic hesitant fuzzy information. In the future, we shall further develop more aggregation operators 

for SVNHFEs and apply them to solve practical applications in these areas, such as group decision making, 

expert system, information fusion system, fault diagnoses, and medical diagnoses.  
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