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Abstract: A single-valued neutrosophic set (SVNS) and an interval neutrosophic set (INS) are two 

instances of a neutrosophic set, which can efficiently deal with uncertain, imprecise, incomplete, and 

inconsistent information. In this paper, we develop a novel method for solving single-valued 

neutrosophic multi-criteria decision making with incomplete weight information, in which the criterion 

values are given in the form of single-valued neutrosophic sets (SVNSs), and the information about 

criterion weights is incompletely known or completely unknown. The developed method consists of two 

stages. The first stage is to use the maximizing deviation method to establish an optimization model, 

which derives the optimal weights of criteria under single-valued neutrosophic environments. After 

obtaining the weights of criteria through the above stage, the second stage is to develop a single-valued 

neutrosophic TOPSIS (SVNTOPSIS) method to determine a solution with the shortest distance to the 

single-valued neutrosophic positive ideal solution (SVNPIS) and the greatest distance from the 

single-valued neutrosophic negative ideal solution (SVNNIS). Moreover, a best global supplier selection 

problem is used to demonstrate the validity and applicability of the developed method. Finally, the 

extended results in interval neutrosophic situations are pointed out and a comparison analysis with the 

other methods is given to illustrate the advantages of the developed methods. 

Key words: Neutrosophic set; Single-valued neutrosophic set (SVNS); Interval neutrosophic set (INS); 

multi-criteria decision making (MCDM); Maximizing deviation method; TOPSIS. 
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Neutrosophy, originally introduced by Smarandache [12], is a branch of philosophy which studies the 

origin, nature and scope of neutralities, as well as their interactions with different ideational spectra [12]. 

As a powerful general formal framework, neutrosophic set [12] generalizes the concept of the classic set, 

fuzzy set [24], interval-valued fuzzy set [14,25], vague set [4], intuitionistic fuzzy set [1], interval-valued 

intuitionistic fuzzy set [2], paraconsistent set [12], dialetheist set [12], paradoxist set [12], and 

tautological set [12]. In the neutrosophic set, indeterminacy is quantified explicitly and truth-membership, 

indeterminacy-membership, and falsity-membership are independent, which is a very important 

assumption in many applications such as information fusion in which the data are combined from 

different sensors [12]. Recently, neutrosophic sets have been successfully applied to image processing 

[3,5,6]. 

The neutrosophic set generalizes the above mentioned sets from philosophical point of view. From 

scientific or engineering point of view, the neutrosophic set and set-theoretic operators need to be 

specified. Otherwise, it will be difficult to apply in the real applications [16,17]. Therefore, Wang et al. 

[17] defined a single valued neutrosophic set (SVNS), and then provided the set theoretic operators and 

various properties of single valued neutrosophic sets (SVNSs). Furthermore, Wang et al. [16] proposed 

the set-theoretic operators on an instance of neutrosophic set called interval neutrosophic set (INS). A 

single-valued neutrosophic set (SVNS) and an interval neutrosophic set (INS) are two instances of a 

neutrosophic set, which give us an additional possibility to represent uncertainty, imprecise, incomplete, 

and inconsistent information which exist in real world. Single valued neutrosophic sets and interval 

neutrosophic sets are different from intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets. 

Intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets can only handle incomplete 

information, but cannot handle the indeterminate information and inconsistent information which exist 

commonly in real situations. The connectors in the intuitionistic fuzzy set and interval-valued 

intuitionistic fuzzy set are defined with respect to membership and non-membership only (hence the 

indeterminacy is what is left from 1), while in the single valued neutrosophic set and interval 

neutrosophic set, they can be defined with respect to any of them (no restriction). For example [17], when 

we ask the opinion of an expert about certain statement, he or she may say that the possibility in which the 

statement is true is 0.6 and the statement is false is 0.5 and the degree in which he or she is not sure is 0.2. 

This situation can be expressed as a single valued neutrosophic set 0.6,0.2,0.5 , which is beyond the 

scope of the intuitionistic fuzzy set. For another example [16], suppose that an expert may say that the 

possibility that the statement is true is between 0.5 and 0.6, and the statement is false is between 0.7 and 

0.9, and the degree that he or she is not sure is between 0.1 and 0.3. This situation can be expressed as an 
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interval neutrosophic set [ ] [ ] [ ]0.5,0.6 , 0.1,0.3 , 0.7,0.9 , which is beyond the scope of the interval-valued 

intuitionistic fuzzy set. 

Due to their abilities to easily reflect the ambiguous nature of subjective judgments, single valued 

neutrosophic sets (SVNSs) and interval neutrosophic sets (INSs) are suitable for capturing imprecise, 

uncertain, and inconsistent information in the multi-criteria decision analysis [20,21,22,23]. Most 

recently, some methods [20,21,22,23] have been developed for solving the multi-criteria decision making 

(MCDM) problems with single-valued neutrosophic or interval neutrosophic information. For example, 

Ye [20] developed a multi-criteria decision making method using the correlation coefficient under 

single-valued neutrosophic environments. Ye [21]  defined the single valued neutrosophic cross entropy, 

based on which, a multi-criteria decision making method is established in which criteria values for 

alternatives are single valued neutrosophic sets (SVNSs). Ye [23] proposed a simplified neutrosophic 

weighted arithmetic average operator and a simplified neutrosophic weighted geometric average operator, 

and then utilized two aggregation operators to develop a method for multi-criteria decision making 

problems under simplified neutrosophic environments. Ye [22] defined the similarity measures between 

interval neutrosophic sets (INSs), and then utilized the similarity measures between each alternative and 

the ideal alternative to rank the alternatives and to determine the best one. However, it is noted that the 

aforementioned methods need the information about criterion weights to be exactly known. When using 

these methods, the associated weighting vector is more or less determined subjectively and the decision 

information itself is not taken into consideration sufficiently. In fact, in the process of multi-criteria 

decision making (MCDM), we often encounter the situations in which the criterion values take the form 

of single valued neutrosophic sets (SVNSs) or interval neutrosophic sets (INSs), and the information 

about attribute weights is incompletely known or completely unknown because of time pressure, lack of 

knowledge or data, and the expert’s limited expertise about the problem domain [18]. Considering that 

the existing methods are inappropriate for dealing with such situations, in this paper, we develop a novel 

method for single valued neutrosophic or interval neutrosophic MCDM with incomplete weight 

information, in which the criterion values take the form of single valued neutrosophic sets (SVNSs) or 

interval neutrosophic sets (INSs), and the information about criterion weights is incompletely known or 

completely unknown. The developed method is composed of two parts. First, we establish an 

optimization model based on the maximizing deviation method to objectively determine the optimal 

criterion weights. Then, we develop an extended TOPSIS method, which we call the single valued 

neutrosophic or interval neutrosophic TOPSIS, to calculate the relative closeness coefficient of each 

alternative to the single valued neutrosophic or interval neutrosophic positive ideal solution and to select 
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the optimal one with the maximum relative closeness coefficient. Two illustrative examples and 

comparison analysis with the existing methods show that the developed methods can not only relieve the 

influence of subjectivity of the decision maker but also remain the original decision information 

sufficiently. 

To do so, the remainder of this paper is set out as follows. Section 2 briefly recalls some basic concepts 

of neutrosophic sets, single-valued neutrosophic sets (SVNSs), and interval neutrosophic sets (INSs). 

Section 3 develops a novel method based on the maximizing deviation method and the single-valued 

neutrosophic TOPSIS (SVNTOPSIS) for solving the single-valued neutrosophic multi-criteria decision 

making with incomplete weight information. Section 4 develops a novel method based on the 

maximizing deviation method and the interval neutrosophic TOPSIS (INTOPSIS) for solving the interval 

neutrosophic multi-criteria decision making with incomplete weight information. Section 5 provides two 

practical examples to illustrate the effectiveness and practicality of the developed methods. Section 6 

ends the paper with some concluding remarks. 

2. Neutrosophic sets and and SVNSs 

In this section, we will give a brief overview of neutrosophic sets [12], single-valued neutrosophic set 

(SVNSs) [17], and interval neutrosophic sets (INSs) [16]. 

2.1. Neutrosophic sets 

Neutrosophic set is a part of neutrosophy, which studies the origin, nature, and scope of neutralities, as 

well as their interactions with different ideational spectra [12], and is a powerful general formal 

framework, which generalizes the above mentioned sets from philosophical point of view. 

Smarandache [12] defined a neutrosophic set as follows: 

Definition 2.1 [12]. Let X  be a space of points (objects), with a generic element in X  denoted by x . A 

neutrosophic set A  in X  is characterized by a truth-membership function ( )AT x , a 

indeterminacy-membership function ( )AI x , and a falsity-membership function ( )AF x . The functions 

( )AT x , ( )AI x  and ( )AF x  are real standard or nonstandard subsets of 0 ,1- +ù éû ë . That is ( ) : 0 ,1AT x X - +ù é® û ë , 

( ) : 0 ,1AI x X - +ù é® û ë , and ( ) : 0 ,1AF x X - +ù é® û ë . 

There is no restriction on the sum of ( )AT x , ( )AI x  and ( )AF x , so 

( ) ( ) ( )0 sup sup sup 3A A AT x I x F x- +£ + + £ . 

Definition 2.2 [12]. The complement of a neutrosophic set A  is denoted by cA  and is defined as 

( ) { } ( )1c AA
T x T x+= $ , ( ) { } ( )1c AA

I x I x+= $ , and ( ) { } ( )1c AA
F x F x+= $  for every x  in X . 
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Definition 2.3 [12]. A neutrosophic set A  is contained in the other neutrosophic set B , A BÍ  if and 

only if ( ) ( )inf infA BT x T x£ , ( ) ( )sup supA BT x T x£ , ( ) ( )inf infA BI x I x³ , ( ) ( )sup supA BI x I x³ , 

( ) ( )inf infA BF x F x³ , and ( ) ( )sup supA BF x F x³  for every x  in X . 

2.2. Single-valued neutrosophic sets (SVNSs) 

A single-valued neutrosophic set (SVNS) is an instance of a neutrosophic set, which has a wide range 

of applications in real scientific and engineering fields. In the following, we review the definition of a 

SVNS proposed by Wang et al. [17]. 

Definition 2.4 [17]. Let X  be a space of points (objects) with generic elements in X  denoted by x . A 

single-valued neutrosophic set (SVNS) A  in X  is characterized by truth-membership function ( )AT x , 

indeterminacy-membership function ( )AI x , and falsity-membership function ( )AF x , where 

( ) ( ) ( ) [ ], , 0,1A A AT x I x F x Î  for each point x  in X . 

A SVNS A  can be written as 

( ) ( ) ( ){ }, , ,A A AA x T x I x F x x X= Î                                                                                                          (1) 

Let ( ) ( ) ( ){ }, , ,i A i A i A i iA x T x I x F x x X= Î  and ( ) ( ) ( ){ }, , ,i B i B i B i iB x T x I x F x x X= Î  be two 

single-valued neutrosophic sets (SVNSs) in { }1 2, , , nX x x x= L . Then we define the following distances 

for A  and B . 

(i) The Hamming distance 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
1

1
,

3

n

A i B i A i B i A i B i
i

d A B T x T x I x I x F x F x
=

= - + - + -å                                                              (2) 

(ii) The normalized Hamming distance 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
1

1
,

3

n

A i B i A i B i A i B i
i

d A B T x T x I x I x F x F x
n =

= - + - + -å                                                           (3) 

(iii) The Euclidean distance 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 2 2

1

1
,

3

n

A i B i A i B i A i B i
i

d A B T x T x I x I x F x F x
=

= - + - + -å                                                    (4) 

(iv) The normalized Euclidean distance 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 2 2

1

1
,

3

n

A i B i A i B i A i B i
i

d A B T x T x I x I x F x F x
n =

= - + - + -å                                                  (5) 

2.3. Interval neutrosophic sets (INSs)  

Definition 2.5 [16]. Let X  be a space of points (objects) with generic elements in X  denoted by x . An 
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interval neutrosophic set (INS) A%  in X  is characterized by a truth-membership function ( )A
T x%% , an 

indeterminacy-membership function ( )A
I x%% , and a falsity-membership function ( )A

F x%% . For each point x  

in X , we have that ( ) ( ) ( ) [ ]inf ,sup 0,1
A A A

T x T x T xé ù= Íë û% % %% % % , ( ) ( ) ( ) [ ]inf ,sup 0,1
A A A

I x I x I xé ù= Íë û% % %% % % , 

( ) ( ) ( ) [ ]inf ,sup 0,1
A A A

F x F x F xé ù= Íë û% % %% % % , and ( ) ( ) ( )0 sup sup sup 3
A A A

T x I x F x£ + + £% % %% % % . 

Let ( ) ( ) ( ){ }, , ,i i i i iA A A
A x T x I x F x x X= Î% % %% % % %  and ( ) ( ) ( ){ }, , ,i i i i iB B B

B x T x I x F x x X= Î% % %% % % %  be two interval 

neutrosophic sets (INSs) in { }1 2, , , nX x x x= L , where ( ) ( ) ( )inf ,supi i iA A A
T x T x T xé ù= ë û% % %% % % , 

( ) ( ) ( )inf ,supi i iA A A
I x I x I xé ù= ë û% % %% % % , ( ) ( ) ( )inf ,supi i iA A A

F x F x F xé ù= ë û% % %% % % , ( ) ( ) ( )inf ,supi i iB B B
T x T x T xé ù= ë û% % %% % % , 

( ) ( ) ( )inf ,supi i iB B B
I x I x I xé ù= ë û% % %% % % , and ( ) ( ) ( )inf ,supi i iB B B

F x F x F xé ù= ë û% % %% % % . Then Ye [22] defined the following 

distances for A  and B . 

(i) The Hamming distance 

( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1

inf inf sup sup inf inf1
,

6 sup sup inf inf sup sup

n i i i i i iB B BA A A

i i i i i i iB B BA A A

T x T x T x T x I x I x
d A B

I x I x F x F x F x F x=

æ ö- + - + - +
ç ÷=
ç ÷- + - + -è ø

å
% % % % % %

% % % % % %

% % % % % %
% % % % % %                    (6) 

(ii) The normalized Hamming distance 

( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1

inf inf sup sup inf inf1
,

6 sup sup inf inf sup sup

n i i i i i iB B BA A A

i i i i i i iB B BA A A

T x T x T x T x I x I x
d A B

n I x I x F x F x F x F x=

æ ö- + - + - +
ç ÷=
ç ÷- + - + -è ø

å
% % % % % %

% % % % % %

% % % % % %
% % % % % %             (7) 

(iii) The Euclidean distance 

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2

2 2 2
1

inf inf sup sup inf inf1
,

6 sup sup inf inf sup sup

n i i i i i iB B BA A A

i
i i i i i iB B BA A A

T x T x T x T x I x I x
d A B

I x I x F x F x F x F x=

æ ö- + - + - +ç ÷= ç ÷ç ÷- + - + -è ø
å

% % % % % %

% % % % % %

% % % % % %

% % % % % %
        (8) 

(iv) The normalized Euclidean distance 

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2

2 2 2
1

inf inf sup sup inf inf1
,

6 sup sup inf inf sup sup

n i i i i i iB B BA A A

i
i i i i i iB B BA A A

T x T x T x T x I x I x
d A B

n I x I x F x F x F x F x=

æ ö- + - + - +ç ÷= ç ÷ç ÷- + - + -è ø
å

% % % % % %

% % % % % %

% % % % % %

% % % % % %
      (9) 

3. A novel method for single-valued neutrosophic multi-criteria decision 

making with incomplete weight information 

3.1. Problem description 

The aim of multi-criteria decision making (MCDM) problems is to find the most desirable 

alternative(s) from a set of feasible alternatives according to a number of criteria or attributes. In general, 
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the multi-criteria decision making problem includes uncertain, imprecise, incomplete, and inconsistent 

information, which can be represented by SVNSs. In this section, we will present a method for handling 

the MCDM problem under single-valued neutrosophic environments. First, a MCDM problem with 

single-valued neutrosophic information can be outlined as: let { }1 2, , , mA A A A= L  be a set of m  

alternatives and { }1 2, , , nC c c c= K  be a collection of n  criteria, whose weight vector is ( )1 2, , ,
T

nw w w w= L , 

with [ ]0,1jw Î , 1,2, ,j n= L , and 
1

1
n

j
j

w
=

=å . In this case, the characteristic of the alternative iA  

( 1,2, ,i m= L ) with respect to all the criteria is represented by the following SVNS: 

( ) ( ) ( ){ }, , ,
i i ii j A j A j A j jA c T c I c F c c C= Î  

where ( ) ( ) ( ) [ ], , 0,1
i i iA j A j A jT c I c F c Î , and ( ) ( ) ( )0 3

i i iA j A j A jT c I c F c£ + + £  ( 1,2, ,i m= L , 1,2, ,j n= L ). 

Here, ( )
iA jT c  indicates the degree to which the alternative iA  satisfies the criterion jc , ( )

iA jI c  

indicates the indeterminacy degree to which the alternative iA  satisfies or does not satisfy the criterion jc , 

and ( )
iA jF c  indicates the degree to which the alternative iA  does not satisfy the criterion jc . For the sake 

of simplicity, a criterion value ( ) ( ) ( ), , ,
i i ij A j A j A jc T c I c F c  in iA  is denoted by a single-valued 

neutrosophic value (SVNV) , ,ij ij ij ija T I F=  ( 1,2, ,i m= L , 1,2, ,j n= L ), which is usually derived from the 

evaluation of an alternative iA  with respect to a criterion jC  by means of a score law and data processing 

in practice [19,22]. All ija  ( 1,2, ,i m= L , 1,2, ,j n= L ) constitute a single valued neutrosophic decision 

matrix ( ) ( ), ,ij ij ij ijm n m n
A a T I F

´ ´
= =  (see Table 1): 
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Table 1. Single valued neutrosophic decision matrix A . 

 

 

 

3.2. Obtaining the optimal weights of criteria by the maximizing deviation method 

Due to the fact that many practical MCDM problems are complex and uncertain and human thinking is 

inherently subjective, the information about criterion weights is usually incomplete. For convenience, let 

D  be a set of the known weight information [8,9,10,11], where D  can be constructed by the following 

forms, for i j¹ : 

Form 1. A weak ranking: { }i jw w³ ; 

Form 2. A strict ranking: { }i j iw w a- ³  ( 0ia > ); 

Form 3. A ranking of differences: { }i j k lw w w w- ³ - , for j k l¹ ¹ ; 

Form 4. A ranking with multiples: { }i i jw wa³  ( 0 1ia£ £ ); 

Form 5. An interval form: { }i i i iwa a e£ £ +  ( 0 1i i ia a e£ £ + £ ). 

Wang [15] proposed the maximizing deviation method for estimating the criterion weights in MCDM 

problems with numerical information. According to Wang [15], if the performance values of all the 

alternatives have small differences under a criterion, it shows that such a criterion plays a less important 

role in choosing the best alternative and should be assigned a smaller weight. On the contrary, if a 

criterion makes the performance values of all the alternatives have obvious differences, then such a 

criterion plays a much important role in choosing the best alternative and should be assigned a larger 

weight. Especially, if all available alternatives score about equally with respect to a given criterion, then 

such a criterion will be judged unimportant by most decision makers and should be assigned a very small 

weight. Wang [15] suggests that zero weight should be assigned to the criterion of this kind. 

Here, based on the maximizing deviation method, we construct an optimization model to determine the 

1 1c  L  jc  L  nc  

1A  11 11 11, ,T I F  L  1 1 1, ,j j jT I F  L  1 1 1, ,n n nT I F  

L  L  L  L  L  L  

iA  1 1 1, ,i i iT I F  L  , ,ij ij ijT I F  L  , ,in in inT I F  

L  L  L  L  L  L  

mA  1 1 1, ,m m mT I F  L  , ,mj mj mjT I F  L  , ,mn mn mnT I F  
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optimal relative weights of criteria under single valued neutrosophic environments. For the criterion 

jc CÎ , the deviation of the alternative iA  to all the other alternatives can be defined as below: 

( )
2 2 2

1 1

,
3

m m
ij qj ij qj ij qj

ij ij qj
q q

T T I I F F
D d a a

= =

- + - + -
= =å å      1,2, ,i m= L , 1,2, ,j n= L            (10) 

where ( )
2 2 2

,
3

ij qj ij qj ij qj

ij qj

T T I I F F
d a a

- + - + -
=  denotes the single valued neutrosophic Euclidean 

distance between two single-valued neutrosophic values (SVNVs) ija  and qja  defined as in Eq. (4). 

Let 

( )
2 2 2

1 1 1 1 1

,
3

m m m m m
ij qj ij qj ij qj

j ij ij qj
i i q i q

T T I I F F
D D d a a

= = = = =

- + - + -
= = =å åå åå     1,2, ,j n= L                    (11) 

then jD  represents the deviation value of all alternatives to other alternatives for the criterion jc CÎ . 

Further, let 

                          ( )
2 2 2

1 1 1 1 3

n n m m
ij qj ij qj ij qj

j j j
j j i q

T T I I F F
D w w D w

= = = =

- + - + -
= =å ååå                                    (12) 

then ( )D w  represents the deviation value of all alternatives to other alternatives for all the criteria. 

Based on the above analysis, we can construct a non-linear programming model to select the weight 

vector w  by maximizing ( )D w , as follows: 

                                    
( )

2 2 2

1 1 1

2

1

max
3

s.t. 0, 1,2, , , 1

n m m
ij qj ij qj ij qj

j
j i q

n

j j
j

T T I I F F
D w w

w j n w

= = =

=

- + - + -
=

³ = =

ååå

åL
                                   (M-1) 

To solve this model, we construct the Lagrange function as follows: 

                           ( )
2 2 2

2

1 1 1 1

, 1
3 2

n m m n
ij qj ij qj ij qj

j j
j i q j

T T I I F F
L w w w

ll
= = = =

- + - + - æ ö
= + -ç ÷

è ø
ååå å                           (13) 

where l  is the Lagrange multiplier. 

Differentiating Eq. (13) with respect to jw  ( 1,2, ,j n= L ) and l , and setting these partial derivatives 

equal to zero, then the following set of equations is obtained: 

                                  
2 2 2

1 1

0
3

m m
ij qj ij qj ij qj

j
i qj

T T I I F FL
w

w
l

= =

- + - + -¶
= + =

¶ åå                                              (14) 
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2

1

1
1 0

2

n

j
j

L
w

l =

æ ö¶
= - =ç ÷¶ è ø

å                                                                                                              (15) 

It follows from Eq. (14) that 

                                   

2 2 2

1 1 3

m m
ij qj ij qj ij qj

i q
j

T T I I F F

w
l

= =

- + - + -
-

=
åå

                                                             (16) 

Putting Eq. (16) into Eq. (15), we get 

                                    

2
2 2 2

1 1 1 3

n m m
ij qj ij qj ij qj

j i q

T T I I F F
l

= = =

æ ö- + - + -ç ÷= - ç ÷
ç ÷
è ø

å åå                                                 (17) 

Then, by combining Eqs. (16) and (17), we have 

                                     

2 2 2

1 1

2
2 2 2

1 1 1

3

3

m m
ij qj ij qj ij qj

i q
j

n m m
ij qj ij qj ij qj

j i q

T T I I F F

w

T T I I F F

= =

= = =

- + - + -

=
æ ö- + - + -ç ÷
ç ÷ç ÷
è ø

åå

å åå

                                              (18) 

By normalizing jw  ( 1,2, ,j n= L ), we make their sum into a unit, and get 

                                       

2 2 2

1 1

2 2 2

1
1 1 1

3

3

m m
ij qj ij qj ij qj

j i q
j n

n m m
ij qj ij qj ij qjj

j
j i q

T T I I F F

w
w

T T I I F Fw

= =*

=
= = =

- + - + -

= =
- + - + -

åå

å ååå

                                      (19) 

which can be considered as the optimal weight vector of criteria. 

However, it is noted that there are practical situations in which the information about the weight vector 

is not completely unknown but partially known. For such cases, we establish the following constrained 

optimization model: 

                                    
( )

2 2 2

1 1 1

1

max
3

s.t. , 0, 1,2, , , 1

n m m
ij qj ij qj ij qj

j
j i q

n

j j
j

T T I I F F
D w w

w w j n w

= = =

=

- + - + -
=

ÎD ³ = =

ååå

åL
                                   (M-2) 

It is noted that the model (M-2) is a linear programming model that can be solved using the MATLAB 

mathematics software package. Suppose that the optimal solution to the model (M-2) is 

( )1 2, , ,
T

nw w w w= L , which can be considered as the weight vector of criteria. 
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3.3. Extended TOPIS method for the MCDM with single valued neutrosophic 

information 

TOPSIS method, initially introduced by Hwang and Yoon [7], is a widely used method for dealing 

with MCDM problems, which focuses on choosing the alternative with the shortest distance from the 

positive ideal solution (PIS) and the farthest distance from the negative ideal solution (NIS). After 

obtaining the criterion weight values on basis of the maximizing deviation method, in the following, we 

will extend the TOPSIS method to take single-valued neutrosophic information into account and utilize 

the distance measures of SVNVs to obtain the final ranking of the alternatives. 

In general, the criteria can be classified into two types: benefit criteria and cost criteria. The benefit 

criterion means that a higher value is better while for the cost criterion is valid the opposite. Let 1C  be a 

collection of benefit criteria and 2C  be a collection of cost criteria, where 1 2C C C=U  and 1 2C C =ÆI . 

Under single-valued neutrosophic environments, the single-valued neutrosophic PIS (SVNPIS), denoted 

by A+ , can be identified by using a maximum operator for the benefit criteria and a minimum operator for 

the cost criteria to determine the best value of each criterion among all alternatives as follows: 

{ }1 2, , , nA a a a+ + + += L                                                                                                            (20) 

where 

                                 
{ } { } { }
{ } { } { }

1

2

max ,min ,min , if ,

min ,max ,max , if .

ij ij iji ii

j

ij ij iji i i

T I F j C
a

T I F j C

+

ì Îï= í
ï Î
î

                                                                            (21) 

The single-valued neutrosophic NIS (SVNNIS), denoted by A- , can be identified by using a minimum 

operator for the benefit criteria and a maximum operator for the cost criteria to determine the worst value 

of each criterion among all alternatives as follows: 

{ }1 2, , , nA a a a- - - -= L                                                                                                            (22) 

where 

                                 
{ } { } { }
{ } { } { }

1

2

min ,max ,max , if ,

max ,min ,min , if .

ij ij iji i i

j

ij ij iji ii

T I F j C
a

T I F j C

-

ì Îï= í
ï Î
î

                                                                            (23) 

The separation measures, id +  and id - , of each alternative from the SVNPIS A+  and the SVNNIS A- , 

respectively, are derived from 
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( )

{ } { } { }

{ } { } { }
1

2

1

2 2 2

2 22

,

max min min

3

min max max

3

n

i j ij j
j

ij ij ij ij ij iji ii

j
j C

ij ij ij ij ij iji i i

j
j C

d w d a a

T T I I F F
w

T T I I F F
w

+ +

=

Î

Î

=

æ ö- + - + -ç ÷
è ø= +

æ ö- + - + -ç ÷
è ø

å

å

å

                                      (24) 

( )

{ } { } { }

{ } { } { }
1

2

1

2 22

2 2 2

,

min max max

3

max min min

3

n

i j ij j
j

ij ij ij ij ij iji i i

j
j C

ij ij ij ij ij iji ii

j
j C

d w d a a

T T I I F F
w

T T I I F F
w

- -

=

Î

Î

=

æ ö- + - + -ç ÷
è ø= +

æ ö- + - + -ç ÷
è ø

å

å

å

                                       (25) 

The relative closeness coefficient of an alternative iA  with respect to the single-valued neutrosophic 

PIS A+  is defined as the following formula: 

i
i

i i

d
C

d d

-

+ -=
+

                                                                                                                         (26) 

where 0 1iC£ £ , 1,2, ,i m= L . Obviously, an alternative iA  is closer to the single-valued neutrosophic 

PIS A+  and farther from the single-valued neutrosophic NIS A-  as iC  approaches 1. The larger the value 

of iC , the more different between iA  and the single-valued neutrosophic NIS A- , while the more similar 

between iA  and the single-valued neutrosophic PIS A+ . Therefore, the alternative(s) with the maximum 

relative closeness coefficient should be chosen as the optimal one(s). 

Based on the above analysis, we will develop a practical approach for dealing with MCDM problems, 

in which the information about criterion weights is incompletely known or completely unknown, and the 

criterion values take the form of single-valued neutrosophic information. 

The flowchart of the proposed approach for MCDM is provided in Fig. 1. The proposed approach is 

composed of the following steps: 

Step 1. For a MCDM problem, the decision maker (DM) constructs the single-valued neutrosophic 

decision matrix ( ) ( ), ,ij ij ij ijm n m n
A a T I F

´ ´
= = , where , ,ij ij ij ija T I F=  is a single-valued neutrosophic value 

(SVNV), given by the DM, for the alternative iA  with respect to the attribute jc . 
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Step 2. If the information about the criterion weights is completely unknown, then we use Eq. (19) to 

obtain the criterion weights; if the information about the criterion weights is partly known, then we solve 

the model (M-2) to obtain the criterion weights. 

Step 3. Utilize Eqs. (20), (21), (22), and (23) to determine the single-valued neutrosophic positive ideal 

solution (SVNPIS) A+  and the single-valued neutrosophic negative ideal solution (SVNNIS) A- . 

Step 4. Utilize Eqs. (24) and (25) to calculate the separation measures id +  and id -  of each alternative iA  

from the single-valued neutrosophic positive ideal solution (SVNPIS) A+  and the single-valued 

neutrosophic negative ideal solution (SVNNIS) A- , respectively. 

Step 5. Utilize Eq. (26) to calculate the relative closeness coefficient iC  of each alternative iA  to the 

single-valued neutrosophic positive ideal solution (SVNPIS) A+ . 

Step 6. Rank the alternatives iA  ( 1,2, ,i m= L ) according to the relative closeness coefficients iC  

( 1,2, ,i m= L ) to the single-valued neutrosophic positive ideal solution (SVNPIS) A+  and then select the 

most desirable one(s). 

4. A novel method for interval neutrosophic multi-criteria decision making 

with incomplete weight information  

In this section, we will extend the results obtained in Section 3 to interval neutrosophic environments. 

4.1. Problem description 

Similar to Subsection 3.1, a MCDM problem under interval neutrosophic environments can be 

summarized as follows: let { }1 2, , , mA A A A= L  be a set of m  alternatives and { }1 2, , , nC c c c= K  be a 

collection of n  criteria, whose weight vector is ( )1 2, , ,
T

nw w w w= L , with [ ]0,1jw Î , 1,2, ,j n= L , and 

1

1
n

j
j

w
=

=å . In this case, the characteristic of the alternative iA  ( 1,2, ,i m= L ) with respect to all the criteria 

is represented by the following INS: 

( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ){ }

, , ,

, inf ,sup , inf ,sup , inf ,sup

i i ii j j j j jA A A

j j j j j j j jA A A A A A

A c T c I c F c c C

c T c T c I c I c F c F c c C

= Î

é ù é ù é ù= Îë û ë û ë û

% % %

% % % % % %

% % % %

% % % % % %
 

where ( ) ( ) ( ) [ ]inf ,sup 0,1
i j j jA A A

T c T c T cé ù= Íë û% % %% % % , ( ) ( ) ( ) [ ]inf ,sup 0,1
i j j jA A A

I c I c I cé ù= Íë û% % %% % % , 

 ( ) ( ) ( ) [ ]inf ,sup 0,1
i

j j jA A A
F c F c F cé ù= Íë û% % %% % % , and ( ) ( ) ( )sup sup sup 3j j jA A A

T c I c F c+ + £% % %% % %  

 ( 1,2, ,i m= L , 1,2, ,j n= L ). 
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Here, ( ) ( ) ( )inf ,sup
i

j j jA A A
T c T c T cé ù= ë û% % %% % %  indicates the interval degree to which the alternative iA  satisfies 

the criterion jc , ( ) ( ) ( )inf ,sup
i j j jA A A

I c I c I cé ù= ë û% % %% % %  indicates the indeterminacy interval degree to which the 

alternative iA  satisfies or does not satisfy the criterion jc , and ( ) ( ) ( )inf ,sup
i

j j jA A A
F c F c F cé ù= ë û% % %% % %  indicates 

the interval degree to which the alternative iA  does not satisfy the criterion jc . For the sake of simplicity, 

a criterion value ( ) ( ) ( ), , ,
i i ij j j jA A A

c T c I c F c% % %% % %  in iA%  is denoted by an interval neutrosophic value (INV) 

, , , , , , ,L U L U L U
ij ij ij ij ij ij ij ij ij ija T I F T T I I F Fé ù é ù é ù= = ë û ë û ë û

% % %%  ( 1,2, ,i m= L , 1,2, ,j n= L ), which is usually derived from 

the evaluation of an alternative iA  with respect to a criterion jc  by means of a score law and data 

processing in practice [19,22]. All ija%  ( 1,2, ,i m= L , 1,2, ,j n= L ) constitute an interval neutrosophic 

decision matrix ( ) ( ) ( ), , , , , , ,L U L U L U
ij ij ij ij ij ij ij ij ij ijm n m n m n

A a T I F T T I I F F
´ ´ ´

é ù é ù é ù= = = ë û ë û ë û
% % % %%  (see Table 2): 

 

 

Table 2. Interval neutrosophic decision matrix A% . 

 

 

4.2. Obtaining the optimal weights of criteria under interval neutrosophic 

environments by the maximizing deviation method 

In what follows, similar to Subsection 3.2, based on the maximizing deviation method, we construct an 

optimization model to determine the optimal relative weights of criteria under interval neutrosophic 

environments. For the attribute jc CÎ , the deviation of the alternative iA  to all the other alternatives can 

be defined as below: 

( )
2 2 2 2 2 2

1 1

,
6

L L U U L L U U L L U Um m
ij qj ij qj ij qj ij qj ij qj ij qj

ij ij qj
q q

T T T T I I I I F F F F
D d a a

= =

- + - + - + - + - + -
= =å å% %  

2 1c  L  jc  L  nc  

1A  11 11 11, ,T I F% % %  L  1 1 1, ,j j jT I F% % %  L  1 1 1, ,n n nT I F% % %  

L  L  L  L  L  L  

iA  1 1 1, ,i i iT I F% % %  L  , ,ij ij ijT I F% % %  L  , ,in in inT I F% % %  

L  L  L  L  L  L  

mA  1 1 1, ,m m mT I F% % %  L  , ,mj mj mjT I F% % %  L  , ,mn mn mnT I F% % %  
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1,2, ,i m= L , 1,2, ,j n= L                                                                                                    (27) 

where ( )
2 2 2 2 2 2

,
6

L L U U L L U U L L U U
ij qj ij qj ij qj ij qj ij qj ij qj

ij qj

T T T T I I I I F F F F
d a a

- + - + - + - + - + -
=% %  denotes the 

interval neutrosophic Euclidean distance between two interval neutrosophic values (INVs) ija%  and qja%  

defined as in Eq. (8). 

Let 

( )
2 2 2 2 2 2

1 1 1 1 1

,
6

L L U U L L U U L L U Um m m m m
ij qj ij qj ij qj ij qj ij qj ij qj

j ij ij qj
i i q i q

T T T T I I I I F F F F
D D d a a

= = = = =

- + - + - + - + - + -
= = =å åå åå% %  

                               1,2, ,j n= L                                                                                                                             (28) 

then jD  represents the deviation value of all alternatives to other alternatives for the criterion jc CÎ . 

Further, let 

( )
2 2 2 2 2 2

1 1 1 1 6

L L U U L L U U L L U Un n m m
ij qj ij qj ij qj ij qj ij qj ij qj

j j j
j j i q

T T T T I I I I F F F F
D w w D w

= = = =

æ ö- + - + - + - + - + -ç ÷= = ç ÷
ç ÷
è ø

å å åå        (29) 

then ( )D w  represents the deviation value of all alternatives to other alternatives for all the criteria. 

From the above analysis, we can construct a non-linear programming model to select the weight vector 

w  by maximizing ( )D w , as follows: 

 
( )

2 2 2 2 2 2

1 1 1

2

1

max
6

s.t. 0, 1,2, , , 1

L L U U L L U U L L U Un m m
ij qj ij qj ij qj ij qj ij qj ij qj

j
j i q

n

j j
j

T T T T I I I I F F F F
D w w

w j n w

= = =

=

æ ö- + - + - + - + - + -ç ÷= ç ÷
ç ÷
è ø

³ = =

å åå

åL

  (M-3) 

To solve this model, we construct the Lagrange function: 

  ( )
2 2 2 2 2 2

2

1 1 1 1

, 1
6 2

L L U U L L U U L L U Un m m n
ij qj ij qj ij qj ij qj ij qj ij qj

j j
j i q j

T T T T I I I I F F F F
L w w w

ll
= = = =

æ ö- + - + - + - + - + - æ öç ÷= + -ç ÷ç ÷
è øç ÷

è ø
å åå å     (30) 

where l  is the Lagrange multiplier. 

Differentiating Eq. (30) with respect to jw  ( 1,2, ,j n= L ) and l , and setting these partial derivatives 

equal to zero, then the following set of equations is obtained: 

       

2 2 2 2 2 2

1 1

0
6

L L U U L L U U L L U Um m
ij qj ij qj ij qj ij qj ij qj ij qj

j
i qj

T T T T I I I I F F F FL
w

w
l

= =

- + - + - + - + - + -¶
= + =

¶ åå       (31) 
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2

1

1
1 0

2

n

j
j

L
w

l =

æ ö¶
= - =ç ÷¶ è ø

å                                                                                                                                   (32) 

It follows from Eq. (32) that 

                 

2 2 2 2 2 2

1 1 6

L L U U L L U U L L U Um m
ij qj ij qj ij qj ij qj ij qj ij qj

i q
j

T T T T I I I I F F F F

w
l

= =

- + - + - + - + - + -
-

=
åå

           (33) 

Putting Eq. (33) into Eq. (32), we get 

           

2
2 2 2 2 2 2

1 1 1 6

L L U U L L U U L L U Un m m
ij qj ij qj ij qj ij qj ij qj ij qj

j i q

T T T T I I I I F F F F
l

= = =

æ ö- + - + - + - + - + -ç ÷= - ç ÷
ç ÷
è ø

å åå       (34) 

Then, by combining Eqs. (33) and (34), we have 

             

2 2 2 2 2 2

1 1

2
2 2 2 2 2 2

1 1 1

6

6

L L U U L L U U L L U Um m
ij qj ij qj ij qj ij qj ij qj ij qj

i q
j

L L U U L L U U L L U Un m m
ij qj ij qj ij qj ij qj ij qj ij qj

j i q

T T T T I I I I F F F F

w

T T T T I I I I F F F F

= =

= = =

- + - + - + - + - + -

=
æ ö- + - + - + - + - + -ç ÷
ç ÷ç ÷
è ø

åå

å åå

         (35) 

By normalizing jw  ( 1,2, ,j n= L ), we make their sum into a unit, and get 

       

2 2 2 2 2 2

1 1

2 2 2 2 2 2

1
1 1 1

6

6

L L U U L L U U L L U Um m
ij qj ij qj ij qj ij qj ij qj ij qj

j i q
j n

L L U U L L U U L L U Un m m
ij qj ij qj ij qj ij qj ij qj ij qjj

j
j i q

T T T T I I I I F F F F

w
w

T T T T I I I I F F F Fw

= =*

=
= = =

- + - + - + - + - + -

= =
- + - + - + - + - + -

åå

å ååå

      (36) 

which can be considered as the optimal weight vector of criteria. 

However, it is noted that there are practical situations in which the information about the weight vector 

is not completely unknown but partially known. For such cases, we establish the following constrained 

optimization model: 

( )
2 2 2 2 2 2

1 1 1

1

max
6

s.t. , 0, 1,2, , , 1

L L U U L L U U L L U Un m m
ij qj ij qj ij qj ij qj ij qj ij qj

j
j i q

n

j j
j

T T T T I I I I F F F F
D w w

w w j n w

= = =

=

æ ö- + - + - + - + - + -ç ÷= ç ÷
ç ÷
è ø

ÎD ³ = =

å åå

åL

     (M-4) 

It is noted that the model (M-4) is a linear programming model that can be solved using the MATLAB 

mathematics software package. Suppose that the optimal solution to the model (M-4) is 
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( )1 2, , ,
T

nw w w w= L , which can be considered as the weight vector of criteria. 

4.3. Extended TOPIS method for the MCDM with interval neutrosophic 

information 

After obtaining the weights of criteria on basis of the maximizing deviation method, similar to 

Subsection 3.3, we next extend the TOPSIS method to interval neutrosophic environments and develop 

an extended TOPSIS method to obtain the final ranking of the alternatives. 

Under interval neutrosophic environments, the interval neutrosophic PIS (INPIS), denoted by A+% , and 

the interval neutrosophic NIS (INNIS), denoted by A-% , can be defined as follows: 

{ }1 2, , , nA a a a+ + + +=% % % %L                                                                                                                                        (37) 

{ }1 2, , , nA a a a- - - -=% % % %L                                                                                                                                        (38) 

where 

{ } { } { }

{ } { } { }
1max ,min ,min max ,max , min ,min , min , min , if ,

min ,max ,max min ,min , max ,max , max ,max , if

L U L U L U
ij ij ij ij ij ij ij ij iji i i i i ii i i

j
L U L U L U

ij ij ij ij ij ij ij ij iji i ii i i i i i

T I F T T I I F F j C
a

T I F T T I I F F

+

é ù é ù é ù= Îë û ë ûë û
=

é ù é ùé ù= ë û ë û ë û

% % %
%

% % %
2.j C

ì
ï
í
ï Î
î

 (39) 

{ } { } { }

{ } { } { }
1min ,max ,max min ,min , max ,max , max ,max , if ,

max , min ,min max ,max , min ,min , min ,min , if

L U L U L U
ij ij ij ij ij ij ij ij iji i ii i i i i i

j
L U L U L U

ij ij ij ij ij ij ij ij iji i i i i ii i i

T I F T T I I F F j C
a

T I F T T I I F F

-

é ù é ùé ù= Îë û ë û ë û
=

é ù é ù é ù= ë û ë ûë û

% % %
%

% % %
2.j C

ì
ï
í
ï Î
î

(40) 

The separation measures, id +%  and id -% , of each alternative iA  from the INPIS A+%  and the INNIS A-% , 

respectively, are derived from 

           

( )

{ } { } { } { }

{ } { }

{ } { } { } { }
1

1

2 2 2 2

2 2

2 22 2

,

max max min min

min min

6

min min max max

ma

n

i j ij j
j

L L U U L L U U
ij ij ij ij ij ij ij iji ii i

L L U U
ij ij ij iji i

j
j C

L L U U L L U U
ij ij ij ij ij ij ij iji i i i

L
ij

j

d w d a a

T T T T I I I I

F F F F
w

T T T T I I I I

F
w

+ +

=

Î

=

æ ö- + - + - + - +ç ÷
ç ÷
ç ÷- + -
è ø= +

- + - + - + - +

-

å

å

% % %

{ } { }
2

2 2

x max

6

L U U
ij ij ij

i i

j C

F F F

Î

æ ö
ç ÷
ç ÷
ç ÷+ -ç ÷
è øå

           (41) 
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( )

{ } { } { } { }

{ } { }

{ } { } { } { }
1

1

2 22 2

2 2

2 2 2 2

,

min min max max

max max

6

max max min min

n

i j ij j
j

L L U U L L U U
ij ij ij ij ij ij ij iji i i i

L L U U
ij ij ij ij

i i
j

j C

L L U U L L U U
ij ij ij ij ij ij ij iji ii i

L
ij

j

d w d a a

T T T T I I I I

F F F F
w

T T T T I I I I

F
w

- -

=

Î

=

æ ö- + - + - + - +ç ÷
ç ÷
ç ÷- + -ç ÷
è ø= +

- + - + - + - +

-

å

å

% % %

{ } { }
2

2 2

min min

6

L U U
ij ij iji i

j C

F F F

Î

æ ö
ç ÷
ç ÷
ç ÷+ -
è øå

            (42) 

The relative closeness coefficient of an alternative iA  with respect to the interval neutrosophic PIS A+%  

is defined as the following formula: 

i
i

i i

d
C

d d

-

+ -
=

+

%% % %                                                                                                                          (43) 

where 0 1iC£ £% , 1,2, ,i m= L . Obviously, an alternative iA  is closer to the interval neutrosophic PIS A+%  

and farther from the interval neutrosophic NIS A-%  as iC%  approaches 1. The larger the value of iC% , the 

more different between iA  and the interval neutrosophic NIS A-% , while the more similar between iA  and 

the interval neutrosophic PIS A+% . Therefore, the alternative(s) with the maximum relative closeness 

coefficient should be chosen as the optimal one(s). 

Based on the above analysis, analogous to Subsection 3.3, we will develop a practical approach for 

dealing with MCDM problems, in which the information about criterion weights is incompletely known 

or completely unknown, and the criterion values take the form of interval neutrosophic information. 

The flowchart of the proposed approach for MCDM is provided in Fig. 1. The proposed approach is 

composed of the following steps: 

Step 1. For a MCDM problem, the decision maker constructs the interval neutrosophic decision matrix 

( ) ( ), ,ij ij ij ijm n m n
A a T I F

´ ´
= =% % % %% , where , ,ij ij ij ija T I F= % % %%  is an interval neutrosophic value (INV), given by the 

DM, for the alternative iA  with respect to the criterion jc . 

Step 2. If the information about the criterion weights is completely unknown, then we use Eq. (36) to 

obtain the criterion weights; if the information about the criterion weights is partly known, then we solve 

the model (M-4) to obtain the criterion weights. 

Step 3. Utilize Eqs. (37), (38), (39), and (40) to determine the interval neutrosophic positive ideal solution 
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(INPIS) A+%  and the interval neutrosophic negative ideal solution (INNIS) A-% . 

Step 4. Utilize Eqs. (41) and (42) to calculate the separation measures id +%  and id -%  of each alternative iA  

from the interval neutrosophic positive ideal solution (INPIS) A+%  and the interval neutrosophic negative 

ideal solution (INNIS) A-% , respectively. 

Step 5. Utilize Eq. (43) to calculate the relative closeness coefficient iC%  of each alternative iA  to the 

interval neutrosophic positive ideal solution (INPIS) A+% . 

Step 6. Rank the alternatives iA  ( 1,2, ,i m= L ) according to the relative closeness coefficients iC%  

( 1,2, ,i m= L ) to the interval neutrosophic positive ideal solution (INPIS) A+  and then select the most 

desirable one(s). 

5. Illustrative examples 

5.1. A practical example under single-valued neutrosophic environments 

Example 5.1 [13]. In order to demonstrate the application of the proposed approach, a multi-criteria 

decision making problem adapted from Tan and Chen [13] is concerned with a manufacturing company 

which wants to select the best global supplier according to the core competencies of suppliers. Now 

suppose that there are a set of four suppliers { }1 2 3 4 5, , , ,A A A A A A=  whose core competencies are evaluated 

by means of the following four criteria: 

(1) the level of technology innovation ( 1c ), 

(2) the control ability of flow ( 2c ), 

(3) the ability of management ( 3c ), 

(4) the level of service ( 4c ). 

It is noted that all the criteria jc  ( 1,2,3,4j = ) are the benefit type attributes. The selection of the best 

global supplier can be modeled as a hierarchical structure, as shown in Fig. 2. According to [21], we can 

obtain the evaluation of an alternative iA  ( 1,2,3,4,5i = ) with respect to a criterion jc  ( 1,2,3,4j = ) from 

the questionnaire of a domain expert. Take 11a  as an example. When we ask the opinion of an expert 

about an alternative 1A  with respect to a criterion 1c , he or she may say that the possibility in which the 

statement is good is 0.5 and the statement is poor is 0.3 and the degree in which he or she is not sure is 0.1. 

In this case, the evaluation of the alternative 1A  with respect to the criterion 1c  is expressed as a 

single-valued neutrosophic value 11 0.5,0.1,0.3a = . Through the similar method from the expert, we can 

obtain all the evaluations of all the alternatives iA  ( 1,2,3,4,5i = ) with respect to all the criteria jc  
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( 1,2,3,4j = ), which are listed in the following single valued neutrosophic decision matrix 

( ) ( ), ,ij ij ij ijm n m n
A a T I F

´ ´
= =  (see Table 3). 

 

Table 3. Single valued neutrosophic decision matrix A . 

 

3A 4A2A1A 5A

1c
2c 3c 4c

 

 

Fig. 2. Hierarchical structure. 

3 1c  2c  3c  4c  

1A  0.5,0.1,0.3  0.5,0.1,0.4  0.3,0.2,0.3  0.7,0.2,0.1  

2A  0.6,0.1,0.2  0.5,0.2,0.2  0.5,0.4,0.1  0.4,0.2,0.3  

 3A  0.9,0.0,0.1  0.3,0.2,0.3  0.2,0.2,0.5  0.4,0.3,0.2  

4A  0.8,0.1,0.1  0.5,0.0,0.4  0.6,0.2,0.1  0.2,0.3,0.4  

5A  0.7,0.2,0.1  0.4,0.3,0.2  0.6,0.1,0.3  0.5,0.4,0.1  
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In what follows, we utilize the developed method to find the best alternative(s). We now discuss two 

different cases. 

Case 1: Assume that the information about the criterion weights is completely unknown; in this case, 

we use the following steps to get the most desirable alternative(s). 

Step 1. Considering that the information about the criterion weights is completely unknown, we utilize 

Eq. (19) to get the optimal weight vector of attributes: 

( )0.2184,0.2021,0.3105,0.2689
T

w =  

Step 2. Utilize Eqs. (20), (21), (22), and (23) to determine the single valued neutrosophic PIS A+  and the 

single valued neutrosophic NIS A- , respectively: 

{ }0.9,0.0,0.1 , 0.5,0.0,0.2 , 0.6,0.1,0.1 , 0.7,0.2,0.1A+ =  

{ }0.5,0.2,0.3 , 0.3,0.3,0.4 , 0.2,0.4,0.5 , 0.2,0.4,0.4A- =  

Step 3: Utilize Eqs. (24) and (25) to calculate the separation measures id +  and id -  of each alternative iA  

from the single valued neutrosophic PIS A+  and the single valued neutrosophic NIS A- , respectively: 

1 0.1510d + = , 1 0.1951d - = , 2 0.1778d + = , 2 0.1931d - = , 3 0.1895d + = , 3 0.1607d - = , 4 0.1510d + = ,   

4 0.2123d - = , 5 0.1523d + = ,   5 0.2242d - = . 

Step 4: Utilize Eq. (26) to calculate the relative closeness coefficient iC  of each alternative iA  to the 

single valued neutrosophic PIS A+ : 

1 0.5638C = ,  2 0.5205C = , 3 0.4589C = , 4 0.5845C = , 5 0.5954C = . 

Step 5: Rank the alternatives iA  ( 1,2,3,4,5i = ) according to the relative closeness coefficient iC  

( 1,2,3,4,5i = ). Clearly, 5 4 1 2 3A A A A Af f f f , and thus the best alternative is 5A . 

Case 2: The information about the criterion weights is partly known and the known weight 

information is given as follows: 

4

1 2 3 4
1

0.15 0.25, 0.25 0.3, 0.3 0.4, 0.35 0.5, 0, 1,2,3,4, 1j j
j

w w w w w j w
=

ì ü
D = £ £ £ £ £ £ £ £ ³ = =í ý

î þ
å  

Step 1: Utilize the model (M-2) to construct the single-objective model as follows: 

( ) 1 2 3 4max 2.9496 2.7295 4.1923 3.6315

s.t.

D w w w w w

w

ì = + + +ï
í

ÎDïî
 

By solving this model, we get the optimal weight vector of criteria ( )0.15,0.25,0.3,0.35
T

w = . 

Step 2. Utilize Eqs. (20), (21), (22), and (23) to determine the single valued neutrosophic PIS A+  and the 
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single valued neutrosophic NIS A- , respectively: 

{ }0.9,0.0,0.1 , 0.5,0.0,0.2 , 0.6,0.1,0.1 , 0.7,0.2,0.1A+ =  

{ }0.5,0.2,0.3 , 0.3,0.3,0.4 , 0.2,0.4,0.5 , 0.2,0.4,0.4A- =  

Step 3: Utilize Eqs. (24) and (25) to calculate the separation measures id +  and id -  of each alternative iA  

from the single valued neutrosophic PIS A+  and the single valued neutrosophic NIS A- , respectively: 

1 0.1368d + = , 1 0.2260d - = , 2 0.1852d + = , 2 0.2055d - = , 3 0.2098d + = , 3 0.1581d - = , 4 0.1780d + = ,   

4 0.2086d - = , 5 0.1619d + = ,   5 0.2358d - = . 

Step 4: Utilize Eq. (26) to calculate the relative closeness coefficient iC  of each alternative iA  to the 

single valued neutrosophic PIS A+ : 

1 0.6230C = ,  2 0.5260C = , 3 0.4297C = , 4 0.5396C = , 5 0.5928C = . 

Step 5: Rank the alternatives iA  ( 1,2,3,4,5i = ) according to the relative closeness coefficient iC  

( 1,2,3,4,5i = ). Clearly, 1 5 4 2 3A A A A Af f f f , and thus the best alternative is 1A . 

5.2. The analysis process under interval neutrosophic environments 

Example 5.2. Let’s revisit Example 5.1. Suppose that the five possible alternatives are to be evaluated 

under the above four criteria by the form of INVs, as shown in the following interval neutrosophic 

decision matrix A%  (see Table 4). 

 

Table 4. Interval neutrosophic decision matrix A% . 

 

In what follows, we proceed to utilize the developed method to find the most optimal alternative(s), 

which consists of the following two cases: 

Case 1: Assume that the information about the criterion weights is completely unknown; in this case, 

4 1c  2c  3c  4c  

1A  <[0.7, 0.9], [0.1, 0.2], [0.5, 0.6]> <[0.3, 0.4], [0.2, 0.3], [0.4, 0.5]> <[0.3, 0.5], [0.2, 0.3], [0.6, 0.7]> <[0.7, 0.9], [0.3, 0.4], [0.5, 0.6]

2A  <[0.5, 0.6], [0.2,0.3], [0.2, 0.4]> <[0.2, 0.3], [0.1, 0.3], [0.7, 0.8]> 
< [0.5, 0.7], [0.2, 0.3], [0.7, 

0.8]> 
<[0.8, 0.9], [0.1, 0.2], [0.5, 0.7]

3A  < [0.4, 0.5], [0.2, 0.3], [0.4, 
0.6]> 

<[0.3, 0.4], [0.1, 0.2], [0.7, 0.9]> <[0.3, 0.5], [0.2, 0.3], [0.6, 0.7]> <[0.7, 0.9], [0.2, 0.3], [0.5, 0.6]

4A  < [0.2,0.3], [0.1, 0.2], [0.4, 0.5]> <[0.4, 0.5], [0.3, 0.5], [0.2, 0.3]> <[0.8, 0.9], [0.1, 0.3], [0.3, 0.4]> < [0.2,0.3], [0.3, 0.5], [0.6, 0.8]

5A  <[0.7, 0.8], [0.3,0.4], [0.6,0.7] > 
< [0.6, 0.7], [0.1, 0.2], [0.7, 

0.9]> 
<[0.2, 0.3], [0.1, 0.2], [0.7, 0.8]> <[0.6, 0.7], [0.3, 0.4], [0.4, 0.5]
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we use the following steps to get the most desirable alternative(s). 

Step 1. Considering that the information about the criterion weights is completely unknown, we utilize 

Eq. (36) to get the optimal weight vector of attributes: 

( )0.2490,0.2774,0.2380,0.2356
T

w =  

Step 2. Utilize Eqs. (37), (38), (39), and (40) to determine the interval neutrosophic PIS A+%  and the 

interval neutrosophic NIS A-% , respectively: 

{ }0.7,0.9,0.1,0.2,0.2,0.4 , 0.6,0.7,0.1,0.2,0.2,0.3 , 0.8,0.9,0.1,0.2,0.3,0.4 , 0.8,0.9,0.1,0.2,0.4,0.5A+ =%  

{ } { } { } { }{ }0.2,0.3,0.3,0.4,0.6,0.7 , 0.2,0.3,0.3,0.5,0.7,0.9 , 0.2,0.3,0.2,0.3,0.7,0.8 , 0.2,0.3,0.3,0.5,0.6,0.8A- =%  

Step 3: Utilize Eqs. (41) and (42) to calculate the separation measures id +%  and id -%  of each alternative iA  

from the interval neutrosophic PIS A+%  and the interval neutrosophic NIS A-% , respectively: 

1 0.2044d + =% , 1 0.2541d - =% , 2 0.2307d + =% , 2 0.2405d - =% , 3 0.2582d + =% , 3 0.1900d - =% , 4 0.2394d + =% ,   

4 0.2343d - =% , 5 0.2853d + =% ,   5 0.2268d - =% . 

Step 4: Utilize Eq. (43) to calculate the relative closeness coefficient iC%  of each alternative iA  to the 

interval neutrosophic PIS A+% : 

1 0.5543C =% ,  2 0.5104C =% , 3 0.4239C =% , 4 0.4946C =% , 5 0.4429C =% . 

Step 5: Rank the alternatives iA  ( 1,2,3,4,5i = ) according to the relative closeness coefficient iC%  

( 1,2,3,4,5i = ). Clearly, 1 2 4 5 3A A A A Af f f f , and thus the best alternative is 1A . 

Case 2: The information about the attribute weights is partly known and the known weight information 

is given as follows: 

4

1 2 3 4
1

0.25 0.3, 0.25 0.35, 0.35 0.4, 0.4 0.45, 0, 1,2,3,4, 1j j
j

w w w w w j w
=

ì ü
D = £ £ £ £ £ £ £ £ ³ = =í ý

î þ
å  

Step 1: Utilize the model (M-4) to construct the single-objective model as follows: 

( ) 1 2 3 4max 4.2748 4.7627 4.0859 4.0438

s.t.

D w w w w w

w

ì = + + +ï
í

ÎDïî
 

By solving this model, we get the optimal weight vector of criteria ( )0.25,0.25,0.35,0.4
T

w = . 

Step 2. Utilize Eqs. (37), (38), (39), and (40) to determine the interval neutrosophic PIS A+%  and the 

interval neutrosophic NIS A-% , respectively: 

{ }0.7,0.9,0.1,0.2,0.2,0.4 , 0.6,0.7,0.1,0.2,0.2,0.3 , 0.8,0.9,0.1,0.2,0.3,0.4 , 0.8,0.9,0.1,0.2,0.4,0.5A+ =%  
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{ } { } { } { }{ }0.2,0.3,0.3,0.4,0.6,0.7 , 0.2,0.3,0.3,0.5,0.7,0.9 , 0.2,0.3,0.2,0.3,0.7,0.8 , 0.2,0.3,0.3,0.5,0.6,0.8A- =%  

Step 3: Utilize Eqs. (41) and (42) to calculate the separation measures id +%  and id -%  of each alternative iA  

from the interval neutrosophic PIS A+%  and the interval neutrosophic NIS A-% , respectively: 

1 0.2566d + =% , 1 0.3152d - =% , 2 0.2670d + =% , 2 0.3228d - =% , 3 0.2992d + =% , 3 0.2545d - =% , 4 0.3056d + =% ,   

4 0.2720d - =% , 5 0.3503d + =% ,   5 0.2716d - =% . 

Step 4: Utilize Eq. (43) to calculate the relative closeness coefficient iC%  of each alternative iA  to the 

interval neutrosophic PIS A+% : 

1 0.5513C =% ,  2 0.5474C =% , 3 0.4596C =% , 4 0.4709C =% , 5 0.4368C =% . 

Step 5: Rank the alternatives iA  ( 1,2,3,4,5i = ) according to the relative closeness coefficient iC%  

( 1,2,3,4,5i = ). Clearly, 1 2 4 3 5A A A A Af f f f , and thus the best alternative is 1A . 

5.3. Comparison analysis with the existing single-valued neutrosophic or interval 

neutrosophic multi-criteria decision making methods 

Recently, some methods [20,21,22,23] have been developed for solving the MCDM problems with 

single-valued neutrosophic or interval neutrosophic information. In this section, we will perform a 

comparison analysis between our new methods and these existing methods, and then highlight the 

advantages of the new methods over these existing methods. 

It is noted that these existing methods have some inherent drawbacks, which are shown as follows: 

(1) The existing methods [20,21,22,23] need the decision maker to provide the weights of criteria in 

advance, which is subjective and sometime cannot yield the persuasive results. In contrast, our methods 

utilize the maximizing deviation method to determine the weight values of criteria, which is more 

objective and reasonable than the other existing methods [20,21,22,23]. 

(2) In Ref. [23], Ye proposed a simplified neutrosophic weighted arithmetic average operator and a 

simplified neutrosophic weighted geometric average operator, and then utilized two aggregation 

operators to develop a method for multi-criteria decision making problems under simplified neutrosophic 

environments. However, it is noted that these operators and method need to perform an aggregation on 

the input simplified neutrosophic arguments, which may increase the computational complexity and 

therefore lead to the loss of information. In contrast, our methods do not need to perform such an 

aggregation but directly deal with the input simplified neutrosophic arguments, thereby can retain the 

original decision information as much as possible. 

(3) In Ref. [22], Ye defined the Hamming and Euclidean distances between interval neutrosophic sets 
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(INSs) and proposed the similarity measures between INSs on the basis of the relationship between 

similarity measures and distances. Moreover, Ye [22] utilized the similarity measures between each 

alternative and the ideal alternative to rank the alternatives and to determine the best one. In order to 

clearly demonstrate the comparison results, we use the method proposed in [22] to revisit Example 5.2, 

which is shown as follows: 

First, we identify an ideal alternative by using a maximum operator for the benefit criteria and a 

minimum operator for the cost criteria to determine the best value of each criterion among all alternatives 

as: 

{ }0.7,0.9,0.1,0.2,0.2,0.4 , 0.6,0.7,0.1,0.2,0.2,0.3 , 0.8,0.9,0.1,0.2,0.3,0.4 , 0.8,0.9,0.1,0.2,0.4,0.5A+ =%  

In order to be consistent with Example 5.2, the same distance measure and the same weights for criteria 

are adopted here. Then, we apply Eq. (8) to calculate the similarity measure between an alternative iA  

( 1,2,3,4,5i = ) and the ideal alternative A+%  as follows: 

( ) ( )1 1, 1 , 1 0.2044 0.7956s A A d A A+ += - = - =% %  

( ) ( )2 2, 1 , 1 0.2307 0.7693s A A d A A+ += - = - =% %  

( ) ( )3 3, 1 , 1 0.2582 0.7418s A A d A A+ += - = - =% %  

( ) ( )4 4, 1 , 1 0.2394 0.7606s A A d A A+ += - = - =% %  

( ) ( )5 5, 1 , 1 0.2853 0.7147s A A d A A+ += - = - =% %  

Finally, through the similarity measure ( ), is A A+%  ( 1,2,3,4,5i = ) between each alternative and the ideal 

alternative, the ranking order of all alternatives can be determined as: 1 2 4 3 5A A A A Af f f f . Thus, the 

optimal alternative is 1A . 

It is easy to see that the optimal alternative obtained by the Ye’ method [22] is the same as our method, 

which shows the effectiveness, preciseness, and reasonableness of our method. However, it is noticed 

that the ranking order of the alternatives obtained by our method is 1 2 4 5 3A A A A Af f f f , which is 

different from the ranking order obtained by the Ye’ method [22]. Concretely, the ranking order between 

3A  and 5A  obtained by two methods are just converse, i.e., 5 3A Af  for our method while 3 5A Af  for the 

Ye’ method [22]. The main reason is that the Ye’ method determines a solution which is the closest to the 

positive ideal solution (PIS), while our method determines a solution with the shortest distance from the 

positive ideal solution (PIS) and the farthest from the negative ideal solution (NIS). Therefore, the Ye’ 

method is suitable for those situations in which the decision maker wants to have maximum profit and the 
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risk of the decisions is less important for him, while our method is suitable for cautious (risk avoider) 

decision maker, because the decision maker might like to have a decision which not only makes as much 

profit as possible, but also avoids as much risk as possible. 

6. Conclusions 

Considering that some multi-criteria decision making problems contain uncertain, imprecise, 

incomplete, and inconsistent information, and the information about criterion weights is usually 

incomplete, this paper has developed a novel method for single-valued neutrosophic or interval 

neutrosophic multi-criteria decision making with incomplete weight information. First, motivated by the 

idea that a larger weight should be assigned to the criterion with a larger deviation value among 

alternatives, a maximizing deviation method has been presented to determine the optimal criterion 

weights under single-valued neutrosophic or interval neutrosophic environments, which can eliminate 

the influence of subjectivity of criterion weights provided by the decision maker in advance. Then, a 

single-valued neutrosophic or interval neutrosophic TOPSIS is proposed to calculate the relative 

closeness coefficient of each alternative to the single-valued neutrosophic or interval neutrosophic 

positive ideal solution, based on which the considered alternatives are ranked and then the most desirable 

one is selected. The prominent advantages of the developed methods are that they can not only relieve the 

influence of subjectivity of the decision maker but also remain the original decision information 

sufficiently. Finally, the effectiveness and practicality of the developed methods have been illustrated 

with a best global supplier selection example, and the advantages of the developed methods have been 

demonstrated with a comparison with the other existing methods. 
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Fig. 1. The flowchart of the developed methods. 
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