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Abstract—A major hurdle in the development of soft and
hard/soft data fusion systems is the inability to determine the
practical performance gains between fusion operators without
the burdens associated with human testing. Drift diffusion models
of human responses (i.e., decision, confidence assessments, and
response times) from cognitive psychology can be used to gain a
sense of the performance of a fusion system during the design
phase without the need for human testing. The majority of
these models were developed for binary decision tasks, and
furthermore, the few models which can operate on M-ary decision
tasks are yet unable to generate subject confidence assessments.
The current study proposes a method for realizing human
responses over an M-ary decision task using pairwise successive
comparisons of related binary decision tasks. We provide an
example based on the two-stage dynamic signal detection models
developed by Pleskac and Busemeyer (2010) where subjects were
presented with a pair of lines on a computer screen, asked to
determine which of two lines was the longest, and to assess
their confidence in their decision using a subjective probability
scale. M-ary human opinions were simulated for this line length
task and used to assess the performance of several fusion rules,
namely: Bayes’ rule of probability combination, Dempster’s Rule
of Combination (DRC), Yager’s rule, Dubois and Prade’s rule
(DPR), and the Proportional Conflict Redistribution rule #5.
When taking source reliability into account in the combination,
Bayes’ rule of probability combination and DRC exhibited the
most accurate performance (i.e., the largest amount of specific
evidence committed towards the true outcome) for this task.
Yager’s rule and DPR exhibited inferior performance across all
simulated cases.

Index Terms—Data fusion, Dempster-Shafer Theory, Human
Simulation, Expert reasoning systems, Belief fusion

I. INTRODUCTION

The use of human opinions in data fusion systems is a
current topic of interest. Human-generated data, often cate-
gorized as “soft data,” may provide a level of insight and
intuition that is not always captured by electronic, optical,
mechanical, or other “hard” sensors. However, it is not easy
to develop a statistical characterization for human decision
makers [1]. Methods for determining the performance of data
fusion systems involving inputs from humans rely mostly on
the use of examples/counterexamples (e.g., [2], [3]) or on
predetermined data sets that were developed through direct
human testing (e.g., [4]–[6]). Models of human decision-
making from cognitive psychology present an opportunity to
simulate the performance of soft and hard/soft fusion systems
flexibly and accurately without many of the burdens associated
with human testing.

The majority of studies which have employed models of
human decision makers looked at how task reward structures
influence human decision-making strategies when the human
acts as a director of information (e.g., when humans make
choices in response to evolving system performance metrics,
as in [7]). Much less work has been done on using human de-
cision making models for assessing the performance of fusion
systems in which the human acts as a source of information
(e.g., when humans make choices regarding the state of a
certain phenomenon and assess their level of confidence in
these choices, as in [6], [8]).

Drift diffusion models [9] of human responses have been
proposed in cognitive psychology as a means of accurately
capturing the dynamics and relationships present between hu-
man decision-making and response time on both binary (e.g.,
[10]) and M-ary (e.g., [11]) decision problems. Little work has
been done regarding the incorporation of human confidence
assessments in such drift diffusion models. Furthermore, the
majority of effort in this area has been focused on binary
decision problems [12]. We have previously shown how it is
possible to assess fusion performance using models of binary
human responses in [13], [14]. The current study proposes
a method for extending drift diffusion models of human
decision making, confidence assessment, and response time to
related multihypothesis (M-ary) decision tasks. Specifically, we
make use of the two-stage dynamic signal detection (2DSD)
model of [12] to produce subjective probabilities on a M-ary
decision task using pairwise successive comparisons of binary
decision tasks. As a motivating example, we use the 2DSD
human parameters estimated in [12] relating to a line length
discrimination task, in which the authors positioned subjects
in front of a computer monitor, presented the subjects with
two lines at a time, and asked them to provide a decision
and confidence rating on which line was longer. We apply a
successive pairwise comparison algorithm to the binary line
length discrimination task to simulate human responses on
an M -ary line length discrimination task (i.e., subjects are
instructed to choose and assess decision confidence for the
longest line amongst M lines). The subjects from the line
length discrimination task in [12] and our successive pairwise
comparison technique are used to assess the accuracy and
precision of combining human responses using Bayes’ rule
of probability combination (i.e., Bayes’ Theorem), Dempster’s
Rule of Combination (DRC), Yager’s Rule, Dubois and Prade’s
rule (DPR), and the Proportional Conflict Redistribution Rule



#5 (PCR5) under varying numbers of decision alternatives (i.e.,
sets of lines differing in length).

The remainder of this work is organized as follows. Sec-
tion II describes the 2DSD human response model employed
here as it relates to the line length discrimination task example
of [12]. Section III describes the formulation of the M-ary ex-
tension methodology using pairwise successive comparisons.
Section IV describes an M-ary fusion simulation for the line
length discrimination task using Bayes’ rule of probability
combination, DRC, Yager’s Rule, DPR, and the PCR5. Each
fusion operator was used to combine belief mass assignments
generated using the M-ary extension methodology and 2DSD
models provided in [12]. The performance of each operator
was determined by calculating the average nearness of the
combined BMAs to a BMA which assigns the true outcome
full belief. The results of the simulation are described in
Section V. After combination of twelve or more sources,
Bayes’ rule of probability combination and DRC were found
to be the most accurate when statistical evidence relating to
the subject’s ability to make accurate confidence assessments
was available. PCR5 was found to be at least as accurate as the
best decision-maker in the combination across all fusion cases.
Yager’s rule and Dubois and Prade’s rule exhibited inferior
performance.

II. HUMAN SIMULATION METHODOLOGY

A. Two-Stage Dynamic Signal Detection [12]

Two-stage dynamic signal detection (2DSD) is a recently
developed model that accounts for a wide range of phenomena
in human decision making, while also taking into account the
modeling of confidence assessments [12]. Let A = {A,A},
where A represents a binary decision task consisting of
the alternatives A and A. In 2DSD, the internal evidence
accumulated in favor of the alternative A over A at time t
(i.e., L(t)) is given by the stochastic difference equation

∆L(t) = δ∆t+
√

∆t ε(t+ ∆t), L(0) = L0, (1)

where δ is known as the drift rate and ε(t) is a simulated white
noise process with zero mean and variance σ2. The value σ is
known as the drift coefficient. The drift rate δ is either positive
or negative, depending on whether A or A is true. To account
for trial variability, the drift rate δ and the initial condition L0

can be chosen on a per trial (or per simulation) basis via δ ∼
N(ν, η2) (normally distributed) and L0 ∼ U(−0.5sz, 0.5sz)
(uniformly distributed); here ν and η are the subject mean
drift rate and drift rate standard deviation respectively, and
sz ∈ [0,∞) is the size of an interval containing the initial
condition L0. The evidence accumulation is simulated until a
threshold, either θA, θA, is crossed (where −θA < L0 < θA).
A decision a ∈ A is determined such that

a =


A L(t) > θA

A L(t) < −θA
wait otherwise

. (2)

Let P(a) = [p
(a)
1 · · · p

(a)
Ka

] denote the Ka possible confidence
values associated with choosing a ∈ A at time td. The
assigned confidence level p ∈ P(a) associated with deciding
a after waiting tc = td + τ is given as

p = p
(a)
i when L(tc) ∈ [c

(a)
i−1, c

(a)
i ], (3)

where c(a)
0 = −∞ and c(a)

Ka
=∞ for each a ∈ A. The value τ

is known as the interjudgment time. The remaining confidence
bin parameters C(a) = [c

(a)
1 · · · c

(a)
Ka−1] are chosen such that

ci−1 < ci for each i ∈ {1, . . . ,Ka − 1} and each a ∈ A.
In summary, a 2DSD realization produces the subjective

probability assignment

PA(a) = p, (4)
PA(a) = 1− p. (5)

The authors in [12] suggest the following additional param-
eter restrictions to simplify the 2DSD implementation.
• The decision thresholds for both alternatives can be

chosen symmetrically (i.e., θA = θA = θ).
• The confidence bins for both choices can be set equal

(i.e., C(A) = C(A) = C).
• The confidence values can be fixed for all subjects and all

alternatives (e.g., P(A) = P(A) = [0.50, 0.60, · · · , 1.00]).
• The drift coefficient can be fixed for each subject (e.g.,
σ = 0.1).

Applying these simplifications results in the 10-tuple,

S = {ν, η, sz, θ, τ, c1, c2, c3, c4, c5}. (6)

for each subject. The authors of [12] suggest using the quantile
maximum probability method [15] to estimate S using statistics
relating to subject decisions, confidence assessments, and
response times.

B. Binary Line Length Task Overview [12]

In the line length discrimination task modeled in [12],
subjects were shown a 32.00 millimeter long line paired with
either a 32.27, 32.59, 33.23, 33.87, or a 34.51 millimeter
long line. For each given line pairs, the subjects were asked
to identify which of the two lines was longer, and assess
their decision confidence using the subjective probability scale
{0.50, 0.60, · · · , 1.00}. The time step of the simulator was
fixed in [12] at ∆t = 0.001 for each subject. Five different
mean drift rates, ν1 though ν5, were found for each subject
relating to the side-by-side comparison of the 32 millimeter
long line compared with the 32.27, 32.59, 33.23, 33.87, and
34.51 millimeter long lines respectively. The parameter values
used to simulate each subject can be found in [12, Tables 3 and
6]. Also, in [12, Table 6] separate decision thresholds θ were
determined for two cases of the line length discrimination task,
namely when subjects were asked to focus on fast responses
and when subjects were asked to focus on accurate responses.
In the present study, the values of θ which represent the
subjects focusing on accurate responses were used.



C. Out-of-Sample Prediction

For the line length discrimination task of [12], the five
different mean drift rates, ν1 though ν5 relate to five specific
tasks comparing a 32.00 millimeter long line with either a
32.27, 32.59, 33.23, 33.87, or a 34.51. We perform linear
interpolation to estimate mean drift rates for line comparisons
not investigated in [12]. Let ∆l represent the length difference
between each line, such that

∆l = lR − lL, (7)

where lR and lL represent the lengths of the right and left lines
as presented to the subjects. Linear regression was applied to
the coordinate pairs (∆l, ν) for each subject of the line length
discrimination task in [12] (Figure 1). All subject drifts rates
appear to follow a linear relationship. With this relationship
in mind, the human parameter sets in equation (6) can be
rewritten with ν = νm∆l, such that

S(∆l) = {νm∆l, η, sz, θ, τ, c1, c2, c3, c4, c5}. (8)

Here νm is the slope of the linear fit as given for each subject
in Figure 1.

III. M-ARY EXTENSION METHODOLOGY

A. Successive Pairwise Comparison Aggregation

Using the out-of-sample prediction method described by
the parameter set S(∆l) in (8), we can formulate an M-
ary human simulator which determines the longest line using
successive pairwise comparisons. Let the lengths of M lines
be given by LM = [l1, . . . , li, . . . , lM ], and let ωi represent
the event that the ith line is deemed the longest. We denote
ΩM = {ω1, . . . , ωi, . . . , ωM} and NM = {1, 2, . . . ,M}.
Given a group of N human sources, let P (n)

Ω (ωi) represent the
subjective probability function which describes the nth source’s
confidence towards each ωi ∈ ΩM , where n ∈ NN . Assuming
that the line lengths described by LM are distinct, a unique
maximum li∗ must exist in LM . The subjective probabilities
P

(n)
Ω (ωi) can be represented as

P
(n)
ΩM

(ωi) =P
(n)
ΩM

((li = li∗)|li∗ ∈ LM ) . (9)

Expanding the conditional probability yields

P
(n)
ΩM

(ωi) =
P

(n)
ΩM

((li = li∗)
⋂

(li∗ ∈ LM ))

P
(n)
ΩM

(li∗ ∈ LM )

=
P

(n)
ΩM

(
(li = li∗)

⋂(⋃M
î=1 l̂i = li∗

))
P

(n)
ΩM

(⋃M
î=1 l̂i = li∗

) . (10)

Since we assumed the existence of a unique maximum length
li∗ , we have that (li = li∗) ∩ (l̂i = li∗) = ∅ for all i, î ∈ NM

where i 6= î. Hence (9) can thus be reduced to

P
(n)
ΩM

(ωi) =
P

(n)
ΩM

(li = li∗)∑M
î=1 P

(n)
ΩM

(l̂i = li∗)
. (11)

The event (li = li∗) can be thought of as every other line lj
having shorter length then li, where j 6= i. Hence,

(li = li∗) =
⋂

j∈NM
j 6=i

(li > lj) . (12)

Combining (11) and (12), and assuming that belief in (li > lj)
is independent for all i, j ∈ NM yields

P
(n)
ΩM

(ωi) =

∏
j∈NM
j 6=i

P
(n)
A (li > lj)∑M

î=1

∏
j∈NM

j 6=î

P
(n)
A (l̂i > lj)

, (13)

where A = {(li > lj), (li < lj)}. The subjective probabilities
P

(n)
A (li > lj) for any i, j ∈ NM can be realized using the

2DSD human tuples of [12], and applying the linear fits for
the mean drift rates as shown in (8). Suppose that a ∈ A and
p ∈ [0, 1] are, respectively, the decision and confidence values
associated with a realization of the nth subject using the 2DSD
algorithm. The probability assignment for the event (li > lj)
for any i, j ∈ NM is

P
(n)
A (li > lj) =

{
p a = (li > lj),

1− p a = (li < lj).
. (14)

After realizing P
(n)
A (li > lj) for every i, j ∈ NM , (13)

can be used to create the belief probabilities associated with
each line length in LM being the longest (i.e., P (n)

ΩM
(ωi)). The

longest line can be determined by choosing the ωi with highest
belief, that is

wi∗ = arg max
ωi∈ΩM

(
P

(n)
ΩM

(ωi)
)
, (15)

with a corresponding confidence value of pi∗ = P
(n)
ΩM

(ωi∗).
Since 2DSD models choose from a finite set of confidence
values [12], the following three cases can occur: ωi∗ is
unique, ωi∗ is not unique, or ωi∗ does not exist because the
denominator of (13) is zero. In the second case, a decision can
be made by choosing one of the ωi∗ at random (i.e., assuming
all are equally likely). In the third case, a decision cannot be
reached and a “no decision” state is returned.

B. Assessing Subject Performance

Similar to equations (4) and (5), the 2DSD-based M-ary line
length discrimination task simulator yields a single decision
amongst M alternatives (denoted ωi∗ ), and a corresponding
decision confidence (denoted pi∗ ). Writing this decision and
confidence pair as a subjective probability assignment yields

P
(n)
ΩM

(ωi∗) =pi∗ (16)

P
(n)
ΩM

(ωi∗) =1− pi∗ (17)

for a given subject n ∈ NN , where ωi∗ ⊂ ΩM represents the
negation of ωi∗ . Let ω∗i ∈ ΩM represent the true outcome
of ΩM . Ideally, subject n should assign full belief (i.e.,
probability one) to the correct outcome ω∗i . As subject n
assigns less belief to ω∗i , the quality of this person’s opinion



(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5 (f) Subject 6

Fig. 1. Linear fits of subject mean drift rates versus line length differences for the line length discrimination task as presented in [12]. Equations and R2

values shown for each subject.

decreases. Motivated by [12], we denote this idea of subject
opinion quality as evidence strength, ξ, where

ξ(ωi∗ , pi∗ |ω∗i ) =

{
1− (1− pi∗)2 ωi∗ = ω∗i
1− (pi∗)2 ωi∗ 6= ω∗i

. (18)

Evidence strength is derived from the quadratic scoring rule
known as Brier score [16]. An evidence strength value of one
means that the subject has chosen the correct outcome and
assigned it probability one. An evidence strength value of zero
means that the subject has chosen the incorrect outcome, and
has assigned it probability one.

C. Simulated Performance of Subjects

All six subject tuples from [12, Tables 3 and 6] were
simulated using the human tuples described by (8) and the
mean drift rate regressions of Figure 1. The line lengths
presented to the simulated subjects were LM = {32, 32 +
d, 32 + 2d, . . . , 32 + (M − 1)d} where M was the number
of lines being compared and d was the incremental length
difference between lines, in millimeters. Subject decisions and
confidence assessments were generated using the successive
pairwise comparison aggregation method of Section III-A.
The evidence strengths of each subject were determined and
averaged over 10,000 trials from d = 0.01 to d = 1.0 in
increments of 0.01 and for M = 2, 4, 6, and 8. For each
subject, trials which produced the “no decision” state were
repeated until a decision and confidence value were reached.

Figure 2 shows the average evidence strength, ξ, of each
subject versus the incremental line length difference, d. Evi-
dence strengths for different numbers of alternatives M for
each subject are also shown. As expected, increasing the
perceptual difficulty of the task (i.e., decreasing d) decreased
subject performance. For large enough d (e.g., d > 0.60),
increasing the number of alternatives was found to have little
effect on subject performance. For smaller d (e.g., d < 0.40),
increasing the number of alternatives caused the largest de-
crease in performance when going from M = 2 to M = 4
alternatives. For M > 4 however, the subject performance
was similar to the M = 4 case. This outcome seems logical,
as increasing the number of alternatives without changing the
task difficulty will result in some alternatives being easier to
rule out than others (e.g., the shortest lines will be more easily
discernible).

D. Assumptions and Limitations

Our method assumes that the subjects perform pairwise
successive comparisons on every single possible pair of al-
ternatives amongst a larger set of alternatives. For the line
length discrimination task, any two lines in a set of lines
which are clearly different in length would result in larger
mean drift rate values, which according to 2DSD will produce
exponentially faster response times [12]. According to our
extension methodology, simulated subjects will spend less time
deliberating between pairs of lines which are clearly different



(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5 (f) Subject 6

Fig. 2. Simulated averages of evidence strengths, ξ, for all six 2DSD subject models from [12, Tables 3 and 6] under the 2DSD M-ary human response
simulator for the line length discrimination task versus the incremental line length difference, d. Average evidence strengths shown for M = 2, 4, 6, 8
alternatives. Averages obtained over 10,000 trials of the M-ary simulation algorithm for each subject, while repeating trials which produced the no decision
state for each subject.

in length. In reality, human subjects may not even make use
of a pairwise comparison technique for lines which are clearly
different in length. The methodology also assumes that a linear
relationship for the out-of-sample prediction best describes
how changing observations (i.e., line lengths) influences the
mean drift rate parameter. Although the information in Fig-
ure 1 seems to support this notion, a linear relationship for
the out-of-sample prediction may become less accurate as the
line length difference approaches zero and the subjects reach
their perceptual limit.

IV. FUSION ALGORITHM SIMULATION

We used the proposed M-ary human response simulation
method to assess the combination of human responses using
several belief fusion operators. They are Bayes’ rule of prob-
ability combination [17]; Dempster’s Rule of Combination
(DRC) [18]; Yager’s Rule [19]; Dubois and Prade’s rule (DPR)
[20]; and the Proportional Conflict Redistribution Rule #5 [21].
The literature provides an abundance of information on the
implementation of various Dempster-Shafer theory concepts
(e.g., [18], [21], [22]). For the sake of brevity, we will focus
here on explaining only those concepts which are pertinent to
the fusion simulation examples presented in this study.

A. Fusion Operator Inputs

For each subject n ∈ NN , let the simulated decision and
confidence values be given as ω(n)

i∗ ∈ ΩM and p
(n)
i∗ ∈ [0, 1].

Excluding Bayes’ rule of probability combination, the belief
fusion operators investigated here use inputs known as belief
mass assignments (BMA). BMAs can be thought of as assess-
ing evidence on the powerset of alternatives, allowing the user
to specify evidence imprecisely (i.e., evidence towards a dis-
junction of alternatives rather than the alternatives themselves)
[18]. In the current study, the BMAs mn(X) were formulated
for each subject such that

m(n)(X) =


p

(n)
i∗ X = ω

(n)
i∗

1− p(n)
i∗ X = ΩM

0 otherwise

(19)

for all BMAs. Fusion using Bayes’ rule of probability com-
bination was performed on the subjective probability assign-
ments defined for each ω ∈ ΩM as

P (n)(ω) =

{
p

(n)
i∗ ω = ω

(n)
i∗

1
(M−1)

(
1− p(n)

i∗

)
ω 6= ω

(n)
i∗

. (20)

A vacuous BMA [18] or an equiprobable subjective probability
assignment was used whenever the simulated subjects returned
the “no decision” state. For each fusion method evaluated, the
source combination order was chosen by sampling each of the
thirty-six sources with equal probability.

We defined evidence strength ξ in (18). Let ξ
(n)

be the
average evidence strength of the nth source. For BMAs,



it is possible to account for source reliability through the
discounting operation [22]

m(n)(X; ξ
(n)

) =

{
ξ

(n)
m(X) X 6= ΩM

ξ
(n)
m(X) + (1− ξ(n)

) X = ΩM

.

(21)
We define the discounting operation analogously for subjective
probabilities in [13] as

P (n)(ω; ξ
(n)

) = ξ
(n)
P (n)(ω) + |ΩM |−1(1− ξ(n)

), (22)

where |ΩM | is the cardinality of ΩM .

B. Fusion Operator Performance Metrics

The combination methods we study here can all be thought
of as producing a class of subjective probability assignments
[23] on each of the ω ∈ ΩM defined by the belief and
plausibility [18] ranges [Bel(ω),Pl(ω)], where

Bel(X) =
∑
Z⊆Ω
Z⊆X

m(Z) =⇒ Bel(ω) = m(ω), (23)

and

Pl(X) =
∑
Z⊆Ω

Z∩X 6=∅

m(Z) =⇒ Pl(ω) =
∑
Z⊆Ω
ω∈Z

m(Z). (24)

In the case of Bayes’ rule of probability combination, a
single subjective probability assignment is produced. Similar
to the performance of the subjects in Section III-B, we take
the performance of the fusion operators as a measure of
the nearness of the subjective probability assignments to one
which assigns the truth ω∗ ∈ ΩM probability one. The result is
a class of evidence strengths defined by the intervals [ξBel, ξPl],
where

ξBel = ξ(ω∗,Bel(ω∗)|ω∗), (25)

and

ξPl = ξ(ω∗,Pl(ω∗)|ω∗). (26)

The lower envelope ξBel can be thought of as a measure of
the accuracy of the combination operator, and the size of the
interval (ξPl − ξBel) can be thought of as the precision of the
combination operator. Accurate belief combination operators
will tend to assign probability one to the correct outcome,
resulting in values of ξBel close to one. Precise belief combi-
nation operators will tend to produce more specific evidence,
resulting in values of (ξPl − ξBel) being close to zero, and
hence 1− (ξPl− ξBel) would be close to one. Since Bel(ω∗) ≤
Pl(ω∗) ≤ 1 [18], it follows that ξBel ≤ ξPl ≤ 1. Hence systems
with high accuracy (i.e., ξBel close to one) will also be very
precise (i.e., (ξPl − ξBel) close to zero). In the Bayesian case,
(ξPl − ξBel) = 0 since Bel(ω∗) = Pl(ω∗) = P (ω∗) [18].

C. Simulation Overview

The M-ary human response simulator of Section III was
used to simulate decisions and confidence values over 10,000
trials using six responses from each subject in [12, Tables 3
and 6] under the line length discrimination task (i.e., thirty six
total sources). Subjects were simulated using the line length
differences LM = {32, 32 + d, 32 + 2d, . . . , 32 + (M − 1)d},
using an incremental line length difference d = 0.20 mm and
M = 2, M = 4, and M = 8 alternatives. The performance
metrics ξBel and 1− (ξPl − ξBel) (i.e., accuracy and precision)
of each fusion method were determined and averaged over the
10,000 trials of the simulation.

V. RESULTS

Figure 3 shows the accuracy performance (i.e., ξBel) for each
of the five fusion methods mentioned in Section IV versus
the number of sources present in combination. The accuracy
performance (i.e., evidence strengths) of the best and worst
subjects are shown for comparison. Similarly, Figure 4 shows
the precision performance (i.e., 1−(ξPl−ξBel)) for each of the
five fusion methods mentioned in Section IV. The subplots of
both Figure 3 and Figure 4 show the number of alternatives
M simulated and the results obtained from performing or not
performing the evidence strength discounting of equations (21)
and (22). Higher values of ξBel and 1 − (ξPl − ξBel) indicate
higher combination accuracy and precision respectively.

When no source discounting is performed, Bayes’ rule of
probability combination and DRC could not be used. The
reason was that the chances of any two simulated subjects
presenting totally conflicting evidence was non-negligible1.
With this situation in mind, we make note of the following
observations.
• When source discounting was performed using aver-

age source evidence strength, Bayes’ rule of probability
combination and DRC exhibited similar accuracy perfor-
mance (Figures 3d-3f).

• The number of alternatives was observed to have a
stronger impact on the accuracy performance when
source discounting was not performed (Figure 3). Similar
to the subject performance results (Figure 2), the largest
decrease in accuracy performance occurred when going
from 2 to 4 alternatives. The decrease was smaller when
going from 4 to 8 alternatives.

• When source discounting was performed, similar per-
formance was observed by PCR5, Bayes’ rule of prob-
ability combination and DRC, as long as there were
twelve or less human responses in the combination. When
we included more than twelve human responses in the
combination, Bayes’ rule of probability combination and
DRC exhibited higher accuracy performance than PCR5
(Figures 3d-3f).

• When source discounting was performed, PCR5 and DRC
precision increased as the number of sources present in

1Totally conflicting evidence results in a division by zero in the equations
for Bayes’ rule of probability combination and for DRC.



(a) 2 lines, No evidence strength discounting (b) 4 lines, No evidence strength discounting (c) 8 lines, No evidence strength discounting

(d) 2 lines, Evidence strength discounting (e) 4 lines, Evidence strength discounting (f) 8 lines, Evidence strength discounting

Fig. 3. Average accuracy performance (i.e., ξBel) for each of the fusion methods mentioned in Section IV versus the number of sources present in combination
(higher is better). The evidence strengths for the best and worst subjects in the combination are also shown for comparison.

the combination increased. Eventually the precision con-
verged to one for both PCR5 and DRC. This convergence
was observed to occur more quickly with PCR5 than with
DRC. Additionally, it was observed that increasing the
number of alternatives decreased the rate of convergence
for both PCR5 and DRC (Figures 4d-4f).

• When source discounting was not performed, the preci-
sion performance of PCR5 was found to be the same
regardless of the number of line length task alternatives
(Figures 4a-4c).

• Yager’s rule and Dubois and Prade’s rule exhibited infe-
rior accuracy performance in all cases (Figure 3). Both
rules exhibited accuracy performance that was worse than
the worst single source present in the combination. Fur-
thermore, Yager’s rule and Dubois and Prade’s rule also
exhibited the lowest precision performance (Figure 4).

VI. CONCLUSIONS

We have shown how the 2DSD human simulator of [12]
can be applied to determine the average performance (i.e.,
accuracy and precision) of fusion operators which use human
opinions on M-ary decision problems. We make use of con-
fidence assessment aggregation through successive pairwise
comparisons. The same approach can be used with other
human-decision models that provide decisions along with
assessments of confidence in these decisions. Here, we used
an M-ary line length task simulator as an example to evaluate

the accuracy and precision of Bayes’ rule of probability
combination, Dempster’s Rule of Combination (DRC), Yager’s
rule, Dubois and Prade’s rule, and the Proportional Conflict
Redistribution Rule #5 (Figures 3 and 4). It was observed that
the accuracy of Bayes’ rule of probability combination and
DRC was minimally affected when incorporating subjective
data through confidence assessments. After combination of ten
to fifteen sources, Bayes’ rule of probability combination and
DRC were found to exhibit the highest accuracy performance
when source discounting was performed. PCR5 was found
to exhibit accuracy performance at least as good as the best
source in the combination across all fusion cases. Yager’s rule
and Dubois and Prade’s rule were found to exhibit inferior
performance, as they exhibited worst accuracy and precision
values.
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