Some arithmetical properties of the Smarandache series

Qianli Yang

Department of Mathematics, Weinan Normal University, Weinan, China 714000

Abstract The Smarandache function S(n) is defined as the minimal positive integer m such that n|m!. The main purpose of this paper is to study the analyze converges questions for some series of the form $\sum\limits_{n=1}^{\infty}\frac{1}{S(n)^{\delta}}$, i.e., we proved the series $\sum\limits_{n=1}^{\infty}\frac{1}{S(n)^{\delta}}$ diverges for any $\delta \leq 1$, and $\sum\limits_{n=1}^{\infty}\frac{1}{S(n)^{\epsilon S(n)}}$ converges for any $\epsilon > 0$.

Keywords Smarandache function, smarandache series, converges.

§1. Introduction and results

For every positive integer n, let S(n) be the minimal positive integer m such that n|m!, i.e.,

$$S(n) = \min\{m : m \in \mathbb{N}, n|m!\}.$$

This function is known as Smarandache function ^[1]. Easily, one has S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 5, \cdots .

Use the standard factorization of $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, $p_1 < p_2 < \cdots < p_k$, it's trivial to have

$$S(n) = \max_{1 \le i \le k} \{ S(p_i^{\alpha_i}) \}.$$

Many scholars have studied the properties of S(n), for example, M. Farris and P. Mitchell [2] show the boundary of $S(p^{\alpha})$ as

$$(p-1)\alpha + 1 \le S(p^{\alpha}) \le (p-1)[\alpha + 1 + \log_p \alpha] + 1.$$

Z. Xu $^{[3]}$ noticed the following interesting relationship formula

$$\pi(x) = -1 + \sum_{n=2}^{[x]} \left[\frac{S(n)}{n} \right],$$

by the fact that S(p) = p for p prime and S(n) < n except for the case n = 4 and n = p, where $\pi(x)$ denotes the number of prime up to x, and [x] the greatest integer less or equal to x. Those and many other interesting results on Smarandache function S(n), readers may refer to [2]-[6].

¹This work is supported by by the Science Foundation of Shanxi province (2013JM1016).

Let p be a fixed prime and $n \in \mathbb{N}$, the primitive numbers of power p, denoted by $S_p(n)$, is defined by

$$S_p(n) = \min\{m : m \in \mathbb{N}, p^n | m!\} = S(p^n).$$

Z. Xu [3] obtained the identity between Riemann zeta function $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \sigma > 1$ and an infinite series involving $S_p(n)$ as

$$\sum_{n=1}^{\infty} \frac{1}{S_p^s(n)} = \frac{\zeta(s)}{p^s - 1},$$

and he also obtained some other asymptotic formulae for $S_p(n)$. F. Luca ^[4] proved the series $\sum_{n=1}^{\infty} \frac{1}{S(n)^{S(n)^{\delta}}}$ converges for all $\delta \geq 1$ and diverges for all $\delta < 1$, and the series $\sum_{n=1}^{\infty} \frac{1}{S(n)^{\epsilon \log n}}$ converges for any $\varepsilon > 0$.

In this note, we studied the analyze converges problems for the infinite series involving S(n). That is, we shall prove the following conclusions:

Theorem 1.1. For any $\delta \leq 1$, the series

$$\sum_{n=1}^{\infty} \frac{1}{S(n)^{\delta}}$$

diverges.

Theorem 1.2. For any $\varepsilon > 0$, the series

$$\sum_{n=1}^{\infty} \frac{1}{S(n)^{\varepsilon S(n)}}$$

converges.

§2. Some lemmas

To complete the proof of theorems, we need two Lemmas.

Lemma 2.1. Let p be any fixed prime. Then for any real number $x \geq 1$, we have the asymptotic formula:

$$\sum_{\substack{n=1\\ S_p(n) \le x}}^{\infty} \frac{1}{S_p(n)} = \frac{1}{p-1} \left(\ln x + \gamma + \frac{p \ln p}{p-1} \right) + O(x^{-\frac{1}{2}} + \epsilon),$$

where γ is the Euler constant, ϵ denotes any fixed positive numbers.

Proof. See Theorem 2 of [3].

Lemma 2.2.^[7] Let $\epsilon > 0$ and d(n) denotes the divisor function of positive integer n. Then

$$d(n) = O(n^{\epsilon}) \le C_{\epsilon} n^{\epsilon},$$

where the o-constant C_{ϵ} depends on ϵ .

Proof. The proof follows [7] by writing $n = \prod_{p|n} p^{\alpha}$, the standard factorization of n. Then

$$p^{\alpha\epsilon} \ge 2^{\alpha\epsilon} = e^{\alpha\epsilon \ln 2} \ge \alpha\epsilon \ln 2 \ge \frac{1}{2}(a+1)\epsilon \ln 2.$$

66 Qianli Yang No. 1

If $p^{\epsilon} \geq 2$, then $p^{\alpha \epsilon} \geq 2^{\alpha} \geq \alpha + 1$. Therefore,

$$\frac{d(n)}{n^{\epsilon}} = \prod_{p|n} \frac{\alpha+1}{p^{\alpha\epsilon}} = \prod_{\substack{p|n\\p^{\epsilon}<2}} \frac{\alpha+1}{p^{\alpha\epsilon}} \prod_{\substack{p|n\\p^{\epsilon}>2}} \frac{\alpha+1}{p^{\alpha\epsilon}} \geq \prod_{\substack{p|n\\p^{\epsilon}<2}} \frac{\alpha+1}{\frac{1}{2}(a+1)\epsilon \ln 2} \prod_{\substack{p|n\\p^{\epsilon}>2}} \frac{\alpha+1}{\alpha+1}.$$

The last item in above inequality is $\prod_{\substack{p|n\\p^{\epsilon}<2}}\frac{2}{\epsilon\ln 2}$, which is less than $\prod_{\substack{p^{\epsilon}<2}}\frac{2}{\epsilon\ln 2}=C_{\epsilon}$, say, the

o-constant C_{ϵ} depends on ϵ .

§3. Proof of theorems

Proof of Theorem 1.

We may treat the case $\delta = 1$ first. By Lemma 1 and the notation $S_p(n) = S(p^n)$, we have

$$\sum_{n=1}^{\infty} \frac{1}{S(p^n)} = \lim_{x \to +\infty} \sum_{\substack{n=1 \ S_p(n) \le x}}^{\infty} \frac{1}{S_p(n)} = \infty.$$

Obviously, for $\delta \leq 1$, $\sum_{n=1}^{\infty} \frac{1}{S(n)^{\delta}}$ diverges follows easily by the trivial inequality:

$$\sum_{n=1}^{\infty} \frac{1}{S(n)^{\delta}} \ge \sum_{n=1}^{\infty} \frac{1}{S(n)} \ge \sum_{n=1}^{\infty} \frac{1}{S(p^n)},$$

complete the proof.

Proof of Theorem 2.

It certainly suffices to assume that $\epsilon \leq 1$. We rewrite series $\sum_{n=1}^{\infty} \frac{1}{S(n)^{\varepsilon S(n)}}$ as

$$\sum_{k=1}^{\infty} \frac{u(k)}{k^{\varepsilon k}},$$

where $u(k) = \sharp \{n : S(n) = k\}$. For every positive integer n such that S(n) = k is a divisor of k!, i.e. $u(k) \leq d(k!)$. By Lemma 2 and the inequality bellow

$$(k!)^2 = \prod_{j=1}^k j(k+1-j) < \prod_{j=1}^k \left(\frac{k+1}{2}\right)^2 = \left(\frac{k+1}{2}\right)^{2k}.$$

we have

$$u(k) \le d(k!) \le C_{\epsilon}(k!)^{\epsilon} < C_{\epsilon}\left(\frac{k+1}{2}\right)^{\epsilon k}$$
.

where C_{ϵ} means that the constant depending on ϵ .

Therefore, recalling that the properties of the sequence $\left(1+\frac{1}{k}\right)^k$, we have

$$\sum_{k=1}^{\infty} \frac{u(k)}{k^{\varepsilon k}} \le C_{\epsilon} \sum_{k=1}^{\infty} \frac{1}{k^{\varepsilon k}} \left(\frac{k+1}{2}\right)^{\epsilon k} = C_{\epsilon} \sum_{k=1}^{\infty} \frac{1}{2^{\varepsilon k}} \left(\frac{k+1}{k}\right)^{\epsilon k} < C_{1} \sum_{k=1}^{\infty} \frac{1}{2^{\varepsilon k}},$$

for some constant C_1 , it follows that series $\sum_{k=1}^{\infty} \frac{u(k)}{k^{\epsilon k}}$ is bounded above by

$$C_1 \sum_{k=1}^{\infty} \frac{1}{2^{\varepsilon k}} = \frac{C_1}{2^{\varepsilon} - 1},$$

completing the proof.

References

- [1] F. Smarandache, Only problem not solution, Xiquan Publishing House, Chicago, 1993.
- [2] M. Farris and P. Mitchell, Bounding the Smarandache function, Smarandache Notation Journal, 13(2002), 37-42.
- [3] Z. Xu, Some arithmetical properties of primitive numbers of power p, $\mathbf{2}(2006)$, No. 1, 9-12.
 - [4] F. Luca, The Smarandache harmonic series, NAW, 5(2000), No. 1, 150-151.
- [5] Jozsef Sandor, On certain inequalities involving the Smarandache dunction, Scientia Magna, **2**(2006), No. 3, 78-80.
- [6] J. Fu, An equaltion involving the Smarandache function, Scientia Magna, $\mathbf{2}(2006)$, No. 4, 83-86.
 - [7] L. K. Hua, Itroduction to number theory, Springer-Verlag, 1982.