
On the consistency of PCR6 with the averaging rule
and application to probability estimation

Florentin Smarandache
Math. & Sciences Dept., University of New Mexico

705 Gurley Ave., Gallup, NM 87301, U.S.A.
Email: smarand@unm.edu

Jean Dezert
ONERA - The French Aerospace Lab

F-91761 Palaiseau, France.
Email: jean.dezert@onera.fr

Abstract—Since the development of belief function theory
introduced by Shafer in seventies, many combination rules have
been proposed in the literature to combine belief functions
specially (but not only) in high conflicting situations because
the emblematic Dempster’s rule generates counter-intuitive and
unacceptable results in practical applications. Many attempts
have been done during last thirty years to propose better rules
of combination based on different frameworks and justifications.
Recently in the DSmT (Dezert-Smarandache Theory) frame-
work, two interesting and sophisticate rules (PCR5 and PCR6
rules) have been proposed based on the Proportional Conflict
Redistribution (PCR) principle. These two rules coincide for the
combination of two basic belief assignments, but they differ in
general as soon as three or more sources have to be combined
altogether because the PCR used in PCR5 and in PCR6 are
different. In this paper we show why PCR6 is better than PCR5
to combine three or more sources of evidence and we prove
the coherence of PCR6 with the simple Averaging Rule used
classically to estimate the probability based on the frequentist
interpretation of the probability measure. We show that such
probability estimate cannot be obtained using Dempster-Shafer
(DS) rule, nor PCR5 rule.
Keywords: Information fusion, belief functions, PCR6,
PCR5, DSmT,frequentist probability.

I. I NTRODUCTION

In this paper, we work with belief functions [1] defined
from the finite and discrete frame of discernmentΘ =
{θ1, θ2, . . . , θn}. In Dempster-Shafer Theory (DST) frame-
work, basic belief assignments (bba’s) provided by the dis-
tinct sources of evidence are defined on the fusion space
2Θ = (Θ,∪) consisting in the power-set ofΘ, that is the set of
elements ofΘ and those generated fromΘ with the union set
operator. Such fusion space assumes that the elements ofΘ are
non-empty, exhaustive and exclusive, which is called Shafer’s
model ofΘ. More generally, in Dezert-Smarandache Theory
(DSmT) [2], the fusion space denotedGΘ can also be either
the hyper-power setDΘ = (Θ,∪,∩) (Dedekind’s lattice),
or super-power set1 SΘ = (Θ,∪,∩, c(.)) depending on the
underlying model of the frame of discernment we choose to
fit with the nature of the problem. Details on DSm models are
given in [2], Vol. 1.

We assume thats ≥ 2 basic belief assignments (bba’s)
mi(.), i = 1, 2, . . . , s provided by s distinct sources of
evidences defined on the fusion spaceGΘ are available and we

1∩ andc(.) are respectively the set intersection and complement operators.

need to combine them for a final decision-making purposal.
For doing this, many rules of combination have been proposed
in the literature, the most emblematic ones being the simple
Averaging Rule, Dempster-Shafer (DS) rule, and more recently
the PCR5 and PCR6 fusion rules.

The contribution of this paper is to analyze in deep the
behavior of PCR5 and PCR6 fusion rules and to explain why
we consider more preferable to use PCR6 rule rather than
PCR5 rule for combining several distinct sources of evidence
altogether. We will show in details the strong relationshipbe-
tween PCR6 and the averaging fusion rule which is commonly
used to estimate the probabilities in the classical frequentist
interpretation of probabilities.

This paper is organized as follows. In section II, we briefly
recall the background on belief functions and the main fu-
sion rules used in this paper. Section III demonstrates the
consistency of PCR6 fusion rule with the Averaging Rule
for binary masses in total conflict as well as the ability of
PCR6 to discriminate asymmetric fusion cases for the fusion
of Bayesian bba’s. Section IV shows that PCR6 can also
be used to estimate empirical probability in a simple (coin
tossing) random experiment. Section V will conclude and
open challenging problem about the recursivity of fusion rules
formulas that are sought for efficient implementations.

II. BACKGROUND ON BELIEF FUNCTIONS

A. Basic belief assignment

Lets’ consider a finite discrete frame of discernmentΘ =
{θ1, θ2, . . . , θn}, n > 1 of the fusion problem under considera-
tion and its fusion spaceGΘ which can be chosen either as2Θ,
DΘ or SΘ depending on the model that fits with the problem.
A basic belief assignment (bba) associated with a given source
of evidence is defined as the mappingm(.) : GΘ → [0, 1]
satisfyingm(∅) = 0 and

∑

A∈GΘ m(A) = 1. The quantity
m(A) is called mass of belief ofA committed by the source
of evidence. Ifm(A) > 0 thenA is called a focal element
of the bbam(.). When all focal elements are singletons and
GΘ = 2Θ then m(.) is called a Bayesian bba [1] and it is
homogeneous to a (possibly subjective) probability measure.
The vacuous bba representing a totally ignorant source is
defined asmv(Θ) = 1. Belief and plausibility functions are



defined by

Bel(A) =
∑

B⊆A

B∈GΘ

m(B) and Pl(A) =
∑

B∩A 6=∅
B∈GΘ

m(B) (1)

B. Fusion rules

The main information fusion problem in the belief function
frameworks (DST or DSmT) is how to combine efficiently
several distinct sources of evidence represented bym1(.),
m2(.), . . . , ms(.) (s ≥ 2) bba’s defined onGΘ. Many
rules have been proposed for such task – see [2], Vol.
2, for a detailed list of fusion rules – and we focus here
on the following ones: 1) the Averaging Rule because it
is the simplest one and it is used to empirically estimate
probabilities in random experiment, 2) DS rule because it
was historically proposed in DST, and 3) PCR5 and PCR6
rules because they were proposed in DSmT and have shown
to provide better results than the DS rule in all applications
where they have been tested so far. So we just briefly recall
how these rules are mathematically defined.

• Averaging fusion rulemAverage
1,2,...,s (.): For anyX in GΘ,

mAverage
1,2,...,s (X) = Average(m1,m2, . . . ,ms) ,

1

s

s∑

i=1

mi(X)

(2)
Note that the vacuous bbamv(Θ) = 1 is not a neutral

element for this rule. This Averaging Rule is commutative but
it is not associative because in general

mAverage
1,2,3 (X) =

1

3
[m1(X) +m2(X) +m3(X)]

is different from

mAverage
(1,2),3 (X) =

1

2
[
m1(X) +m2(X)

2
+m3(X)]

which is also different from

mAverage
1,(2,3) (X) =

1

2
[m1(A) +

m2(X) +m3(X)

2
]

and also from

mAverage
(1,3),2 (X) =

1

2
[
m1(X) +m3(X)

2
+m2(X)]

In fact, it is easy to prove that the following recursive formula
holds

mAverage
1,2,...,s (X) =

s− 1

s
mAverage

1,2,...,s−1(X) +
1

s
ms(X) (3)

As it will be seen in the sequel, this simple averaging
fusion rule has been used since more than two centuries for
estimating empirically the probability measure in random
experiments [3], [4].

• Dempster-Shafer fusion rulemDS
1,2,...,s(.):

In DST framework, the fusion spaceGΘ equals the power-
set 2Θ because Shafer’s model of the frameΘ is assumed.
The combination ofs ≥ 2 distinct sources of evidences

characterized by the bba’smi(.), i = 1, 2, . . . , s, is done with
DS rules as follows [1]:mDS

1,2,...,s(∅) = 0 and for allX 6= ∅
in 2Θ

mDS
1,2,...,s(X) ,

1

K1,2,...,s

∑

X1,X2,...,Xs∈2Θ

X1∩X2∩...∩Xs=X

s∏

i=1

mi(Xi) (4)

where the numerator of (4) is the mass of belief on the
conjunctive consensus onX , and whereK1,2,...,s is a nor-
malization constant defined by

K1,2,...,s =
∑

X1,X2,...,Xs∈2Θ

X1∩X2∩...∩Xs 6=∅

s∏

i=1

mi(Xi)

= 1−m1,2,...,s(∅)

The total degree of conflict between thes sources of evidences
is defined by

m1,2,...,s(∅) =
∑

X1,X2,...,Xs∈2Θ

X1∩X2∩...∩Xs=∅

s∏

i=1

mi(Xi)

The sources are said in total conflict whenm1,2,...,s(∅) = 1.

The vacuous bbamv(Θ) = 1 is a neutral element for DS
rule and DS rule is commutative and associative. It remains
the milestone fusion rule of DST. The doubts on the validity of
such fusion rule has been discussed by Zadeh in 1979 [5]–[7]
based on a very simple example with two highly conflicting
sources of evidence. Since 1980’s, many criticisms have been
done about the behavior and justification of such DS rule.
More recently, Dezert et al. in [8], [9] have put in light other
counter-intuitive behaviors of DS rule even in low conflicting
cases and showed serious flaws in logical foundations of DST.

• PCR5 and PCR6 fusion rules:

To work in general fusion spacesGΘ and to provide better
fusion results in all (low or high conflicting) situations, several
fusion rules have been developed in DSmT framework [2].
Among them, two fusion rules called PCR5 and PCR6 based
on proportional conflict redistribution (PCR) principle have
been proved to work efficiently in all different applications
where they have been used so far. PCR principle transfers
the conflicting mass only to the elements involved in the
conflict and proportionally to their individual masses, so
that the specificity of the information is entirely preserved.
The general principle of PCR is: 1) to apply the conjunctive
rule; 2) calculate the total or partial conflicting masses;
and 3) then redistribute the (total or partial) conflicting
mass proportionally on non-empty sets according to the
integrity constraints one has for the frameΘ. Because the
proportional transfer can be done in two different ways, this
has yielded to two different fusion rules. The PCR5 fusion
rule has been proposed by Smarandache and Dezert in [2],



Vol. 2, Chap. 1, and PCR6 fusion rule has been proposed
by Martin and Osswald in [2], Vol. 2, Chap. 2. We will
not present in deep these two fusion rules since they have
already been discussed in details with many examples in the
aforementioned references but we only give their expressions
for convenience here.

The general formula of PCR5 for the combination ofs ≥ 2
sources is given bymPCR5

1,2,...,s(∅) = 0 and forX 6= ∅ in GΘ

mPCR5
1,2,...,s(X) = m1,2,...,s(X)+

∑

2≤t≤s
1≤r1,...,rt≤s

1≤r1<r2<...<rt−1<(rt=s)

∑

Xj2 ,...,Xjt∈GΘ\{X}

{j2,...,jt}∈Pt−1({1,...,n})
X∩Xj2∩...∩Xjs=∅

{i1,...,is}∈Ps({1,...,s})

(
∏r1

k1=1 mik1
(X)2) · [

∏t
l=2(

∏rl
kl=rl−1+1 mikl

(Xjl)]

(
∏r1

k1=1 mik1
(X)) + [

∑t
l=2(

∏rl
kl=rl−1+1 mikl

(Xjl)]
(5)

where i, j, k, r, s and t in (5) are integers.m1,2,...,s(X)
corresponds to the conjunctive consensus onX between
s sources and where all denominators are different from
zero. If a denominator is zero, that fraction is discarded;
Pk({1, 2, . . . , n}) is the set of all subsets ofk elements from
{1, 2, . . . , n} (permutations ofn elements taken byk), the
order of elements doesn’t count.

The general formula of PCR6 proposed by Martin and
Osswald for the combination ofs ≥ 2 sources is given by
mPCR6

1,2,...,s(∅) = 0 and forX 6= ∅ in GΘ

mPCR6
1,2,...,s(X) = m1,2,...,s(X)+

s∑

i=1

mi(X)2
∑

s−1
∩

k=1
Yσi(k)∩X≡∅

(Yσi(1)
,...,Yσi(s−1))∈(GΘ)s−1










s−1∏

j=1

mσi(j)(Yσi(j))

mi(X)+

s−1∑

j=1

mσi(j)(Yσi(j))










(6)

whereσi counts from 1 tos avoiding i:
{

σi(j) = j if j < i,
σi(j) = j + 1 if j ≥ i,

(7)

Since Yi is a focal element of expert/sourcei,

mi(X)+

s−1∑

j=1

mσi(j)(Yσi(j)) 6= 0.

The general PCR5 and PCR6 formulas (5)–(6) are rather
complicate and not very easy to understand. From the
implementation point of view, PCR6 is much simple to
implement than PCR5. For convenience, very basic (not

optimized) Matlab codes of PCR5 and PCR6 fusion rules can
be found in [2], [10] and from the toolboxes repository on the
web [11]. The PCR5 and PCR6 fusion rules are commutative
but not associative, like the averaging fusion rule, but the
vacuous belief assignment is a neutral element for these PCR
fusion rules.

The PCR5 and PCR6 fusion rules simplify greatly and coin-
cide for the combination of two sources (s = 2). In such sim-
plest case, one always gets the resulting bbamPCR5/6(.) =
mPCR6

1,2 (.) = mPCR5
1,2 (.) expressed asmPCR5/6(∅) = 0 and

for all X 6= ∅ in GΘ

mPCR5/6(X) =
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2)+

∑

Y ∈GΘ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (8)

where all denominators in (8) are different from zero.
If a denominator is zero, that fraction is discarded. All
propositions/sets are in a canonical form.

Example 1: See [2], Vol.2, Chap. 1 for more examples.

Let’s consider the frame of discernmentΘ = {A,B} of
exclusive elements. Here Shafer’s model holds so thatGΘ =
2Θ = {∅, A,B,A∪B}. We consider two sources of evidences
providing the following bba’s

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m1(B) = 0.3 m1(A ∪B) = 0.5

Then the conjunctive consensus yields :

m12(A) = 0.44 m12(B) = 0.27 m12(A ∪B) = 0.05

with the conflicting mass

m12(A ∩B = ∅) = m1(A)m2(B) +m1(B)m2(A)

= 0.18 + 0.06 = 0.24

One sees that onlyA and B are involved in the derivation
of the conflicting mass, but notA ∪ B. With PCR5/6, one
redistributes the partial conflicting mass 0.18 toA and B
proportionally with the massesm1(A) and m2(B) assigned
to A andB respectively, and also the partial conflicting mass
0.06 toA andB proportionally with the massesm2(A) and
m1(B) assigned toA andB respectively, thus one gets two
weighting factors of the redistribution for each corresponding
setA andB respectively. Letx1 be the conflicting mass to be
redistributed toA, andy1 the conflicting mass redistributed to
B from the first partial conflicting mass 0.18. This first partial
proportional redistribution is then done according

x1

0.6
=

y1
0.3

=
x1 + y1
0.6 + 0.3

=
0.18

0.9
= 0.2



whencex1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06. Now
let x2 be the conflicting mass to be redistributed toA, andy2
the conflicting mass redistributed toB from the second the
partial conflicting mass 0.06. This second partial proportional
redistribution is then done according

x2

0.2
=

y2
0.3

=
x2 + y2
0.2 + 0.3

=
0.06

0.5
= 0.12

whencex2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036.
Thus one finally gets:

mPCR5/6(A) = 0.44 + 0.12 + 0.024 = 0.584

mPCR5/6(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5/6(A ∪B) = 0.05 + 0 = 0.05

• The difference between PCR5 and PCR6 fusion rules

For the two sources case, PCR5 and PCR6 fusion rules
coincide. As soon as three (or more) sources are involved in
the fusion process, PCR5 and PCR6 differ in the way the
proportional conflict redistribution is done. For example,let’s
consider three sources with bba’sm1(.), m2(.) and m3(.),
A ∩B = ∅ for the model of the frameΘ, andm1(A) = 0.6,
m2(B) = 0.3, m3(B) = 0.1.

• With PCR5 the partial conflicting mass
m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018 is
redistributed back toA andB only with respect to the
following proportions respectively:xPCR5

A = 0.01714
and xPCR5

B = 0.00086 because the proportionalization
requires

xPCR5
A

m1(A)
=

xPCR5
B

m2(B)m3(B)
=

m1(A)m2(B)m3(B)

m1(A) +m2(B)m3(B)

that is
xPCR5
A

0.6
=

xPCR5
B

0.03
=

0.018

0.6 + 0.03
≈ 0.02857

thus

{

xPCR5
A = 0.60 · 0.02857 ≈ 0.01714

xPCR5
B = 0.03 · 0.02857 ≈ 0.00086

• With the PCR6 fusion rule, the partial conflicting mass
m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018 is
redistributed back toA andB only with respect to the
following proportions respectively:xPCR6

A = 0.0108 and
xPCR6
B = 0.0072 because the PCR6 proportionalization

is done as follows:

x
PCR6

A

m1(A)
=

x
PCR6

B

m2(B) +m3(B)
=

m1(A)m2(B)m3(B)

m1(A) + (m2(B) +m3(B))

that is

x
PCR6

A

0.6
=

x
PCR6

B

0.3 + 0.1
=

0.018

0.6 + (0.3 + 0.1)
= 0.018

and therefore with PCR6, one gets finally the following
redistributions toA andB:

{

xPCR6
A = 0.6 · 0.018 = 0.0108

xPCR6
B = (0.3 + 0.1) · 0.018 = 0.0072

In [2], Vol. 2, Chap. 2, Martin and Osswald have proposed
PCR6 based on intuitive considerations and the authors have
shown through simulations that PCR6 is more stable than
PCR5 in term of decision for combinings > 2 sources of
evidence. Based on these results and the relative ”simplicity”
of implementation of PCR6 over PCR5, PCR6 has been
considered more interesting/efficient than PCR5 for combining
3 (or more) sources of evidences.

III. C ONSISTENCY OFPCR6WITH THE AVERAGING RULE

In this section we show why we also consider PCR6
as better than PCR5 for combining bba’s. But here, our
argumentation is not based on particular simulation results
and decision-making as done by Martin and Osswald, but on
a theoretical analysis of the structure of PCR6 fusion rule
itself. In particular, we show the full consistency of PCR6 rule
with the averaging fusion rule used to empirically estimate
probabilities in random experiments. For doing this, it is
necessary to simplify the original PCR6 fusion formula (6).
Such simplification has already been proposed in [12] and the
PCR6 fusion rule can be in fact rewritten as

mPCR6
1,2,...,s(X) = m1,2,...,s(X)+

s−1∑

k=1

∑

Xi1
,Xi2

,...,Xik
∈GΘ\X

(
⋂k
j=1 Xij

)∩X=∅

∑

(i1,i2,...,ik)∈Ps({1,...,s})

[mi1(X) + mi2 (X) + . . . + mik
(X)]·

·
mi1 (X) . . .mik

(X)mik+1
(Xik+1

) . . .mis (Xis )

mi1(X) + . . . + mik
(X) + mik+1

(Xik+1
) + . . . + mis (Xis )

(9)

where Ps({1, . . . , s}) is the set of all permutations of
the elements{1, 2, . . . , s}. It should be observed thatXi1 ,
Xi2 ,. . .,Xis may be different from each other, or some of them
equal and others different, etc.

We wrote this PCR6 general formula (9) in the style of
PCR5, different from Arnaud Martin & Christophe Oswald’s
notations, but actually doing the same thing. In order not
to complicate the formula of PCR6, we did not use more
summations or products after the third Sigma.

We now are able to establish the consistency of general
PCR6 formula with the Averaging fusion rule for the case of
binary bba’s through the following theorem 1.

Theorem 1: Whens ≥ 2 sources of evidences provide binary
bba’s on GΘ whose total conflicting mass is 1, then the
PCR6 fusion rule coincides with the averaging fusion rule.
Otherwise, PCR6 and the averaging fusion rule provide in
general different results.

Proof 1: All s ≥ 2 bba’s are assumed binary, i.e.m(X) = 0
or 1 (two numerical values 0 and 1 only are allowed) for any
bba m(.) and for any setX in the focal elements. A focal
element in this case is an elementX such that at least one of
the s binary sources assigns a mass equals to 1 toX . Let’s



suppose the focal elements areF1, F2,. . . , Fn.. Then the set
of bba’s to combine can be expressed as in the Table I.

bba’s\ Focal elem. F1 F2 . . . Fn

m1(.) ⋆ ⋆ . . . ⋆

m2(.) ⋆ ⋆ . . . ⋆

...
...

...
...

...
ms(.) ⋆ ⋆ . . . ⋆

Table I
L IST OF BBA’ S TO COMBINE.

where
• all ⋆ are 0’s or 1’s;
• on each row there is only a 1 (since the sum of all masses

of a bba is equal to 1) and all the other elements are 0’s;
• also each column has at least an 1 (since all elements

are focals; and if there was a column corresponding for
example to the setFp having only 0’s, then it would result
that the setFp is not focal, i.e. that allm(Fp) = 0).

Using PCR6, we first need to apply the conjunctive rule
to all s sources, and the result is a sum of products of the
form m1(X1)m2(X2) . . .ms(Xs) whereX1, X2,. . . ,Xs, are
the focal elementsF1, F2,. . . ,Fn in various permutations, with
s ≥ n. If s > n some focal elementsXi are repeated in the
productm1(X1)m2(X2) . . .ms(Xs). But there is only one
product of the formm1(X1)m2(X2) . . .ms(Xs) = 1 which
is not equal to zero, i.e. that product which has each factor
equals to ”1” (i.e. the product that collects from each row the
existing single 1). Since the total conflicting mass is equalto
1, it means that this product represents the total conflict. In
this case the PCR6 formula (9) becomes

mPCR6
1,2,...,s(X) = 0+

s−1∑

k=1

∑

Xi1
,Xi2

,...,Xik
∈GΘ\X

(
⋂k
j=1 Xij

)∩X=∅

∑

(i1,i2,...,ik)∈Ps({1,...,s})

[1 + 1 + . . . + 1] ·
1 · 1 · . . . · 1 · 1 · . . . · 1

1 + 1 + . . . + 1 + 1 + . . . + 1
(10)

The previous expression can be rewritten as

mPCR6
1,2,...,s(X) =

s−1∑

k=1

∑

Xi1
,Xi2

,...,Xik
∈GΘ\X

(
⋂k
j=1 Xij

)∩X=∅

∑

(i1,i2,...,ik)∈Ps({1,...,s})

k ·
1

s

which is equal tok/s since there is only one possible non-
null product of the formm1(X1)m2(X2) . . .ms(Xs), and all
other products are equal to zero. Therefore, we finally get:

mPCR6
1,2,...,s(X) =

k

s
(11)

where ”k” is the number of bba’sm(.) which givem(X) = 1.
Therefore PCR6 in this case reduces to the average of masses,
which completes the proof 1 of the theorem.

Proof 2: A second method of proving this theorem can
also be done as follows. Letm1(.), m2(.), . . . , ms(.), for
s ≥ 3, be bba’s of the sources of information to combine
and denoteF = {F1, F2, . . . , Fn}, for n ≥ 2, the set of
all focal elements. All sources give only binary masses, i.e.
mk(Fl) = 0 or mk(Fl) = 1 for anyk ∈ {1, 2, . . . , s} and any
l ∈ {1, 2, . . . , n}. Since eachFi, 1 ≤ i ≤ n, is a focal element,
there exists at least a bbamio(.) such thatmio(Fi) = 1,
otherwise (i.e. if all sources gave the mass ofFi be equal to
zero)Fi would not be focal. Without reducing the generality
of the theorem, we can regroup the masses (since we combine
all of them at once, so their order doesn’t matter), as below:

bba’s\ Focal elem. F1 F2 . . . Fn ∅

mr1 (.) 1 0 . . . 0 0
mr2 (.) 1 0 . . . 0 0

...
...

...
...

...
...

mri1
(.) 1 0 . . . 0 0

ms1 (.) 0 1 . . . 0 0
ms2 (.) 0 1 . . . 0 0

...
...

...
...

...
...

msi2
(.) 0 1 . . . 0 0

...
...

...
...

...
...

mu1 (.) 0 0 . . . 1 0
mu2 (.) 0 0 . . . 1 0

...
...

...
...

...
...

muin
(.) 0 0 . . . 1 0

m1,2,...,s(.) 0 0 . . . 0 1

Table II
L IST OF REORDERED BINARY BBA’ S.

where of coursei1 + i2 + . . .+ in = s, since thes bba’s are
the same but reordered, andi1 ≥ 1, i2 ≥ 1, . . . , andin ≥ 1.
The total conflicting mass according to the theorem hypothesis
m1,2,...,s(∅) is 1. With the PCR6 fusion rule we transfer the
conflict mass back to focal elementsF1, F2, . . .Fn respectively
according to PCR principle such that:

xF1

1 + 1 + . . .+ 1
︸ ︷︷ ︸

i1 times

=
xF2

1 + 1 + . . .+ 1
︸ ︷︷ ︸

i2 times

= . . .

=
xFn

1 + 1 + . . .+ 1
︸ ︷︷ ︸

in times

=
m1,2,...,s(∅)

i1 + i2 + . . .+ in
=

1

s

whence xF1 = i1/s, xF2 = i2/s, . . . , xFn
= in/s.

Therefore mPCR6
1,2,...,s(F1) = i1/s, mPCR6

1,2,...,s(F2) = i2/s,
. . .mPCR6

1,2,...,s(Fn) = in/s. But averaging the massesm1(.),
m2(.), . . . , ms(.) is equivalent to averaging each column of
F1, F2, . . .Fn. Hence average of columnF1 is i1/s, average
of column F2 is i2/s, . . . , average of columnFn is in/s.
Therefore, in case of binary bba’s which are globally totally
conflicting, PCR6 equals to Averaging Rules. This completes
the proof 2 of the theorem.



Note that using PCR5 fusion rule, we also transfer the
total conflicting mass that is equal to 1 toF1, F2, . . . ,
Fn respectively, but we replace the addition ”+” with the
multiplication ”·” in the above proportionalizations:

xF1

1 · 1 · . . . · 1
︸ ︷︷ ︸

i1 times

=
xF2

1 · 1 · . . . · 1
︸ ︷︷ ︸

i2 times

= . . . =
xFn

1 · 1 · . . . · 1
︸ ︷︷ ︸

in times

=
m1,2,...,s(∅)

1 · 1 · . . . · 1
︸ ︷︷ ︸

n times

=
1

n

so thatxF1 = 1/n, xF2 = 1/n, . . . , xFn
= 1/n and therefore

mPCR5
1,2,...,s(F1) = mPCR5

1,2,...,s(F2) = . . . = mPCR5
1,2,...,s(Fn) = 1/n

Corollary 1 : Whens ≥ 2 sources of evidences provide binary
bba’s onGΘ with at least two focal elements, and all focal
elements are disjoint two by two, then PCR6 fusion rule
coincides with the Averaging Rule.

This Corollary is true because if all focal elements are
disjoint two by two then the total conflict is equal to 1.

Examples 2: where PCR6 rule equals the Averaging Rule.

Let’s consider the frameΘ = {A,B} with Shafer’s model
and the bba’s to combine as given in Table III. Since we have

bba’s\ Focal elem. A B A ∪B A ∩B = ∅

m1(.) 1 0 0
m2(.) 0 1 0
m3(.) 0 0 1

m1,2,3(.) 0 0 0 1

Table III
L IST OF BBA’ S TO COMBINE FOREXAMPLE 2.

binary masses, and their total conflict is 1, we expect getting
the same result for PCR6 and the Averaging Rule according
to our Theorem 1. The PCR principle gives us

xA

1
=

yB
1

=
zA∪B

1
=

m1,2,3(∅)

1 + 1 + 1
=

1

3

HencexA = yB = zA∪B = 1
3 , so that

mPCR6
1,2,3 (A) = m1,2,3(A) + xA = 0 +

1

3
=

1

3

m
PCR6
1,2,3 (B) = m1,2,3(B) + yB = 0 +

1

3
=

1

3

mPCR6
1,2,3 (A ∪ B) = m1,2,3(A ∪ B) + zA∪B = 0 +

1

3
=

1

3

Interestingly, PCR5 gives the same result as PCR6 in this case
since one makes the same proportionalizations as for PCR6.
Using the Averaging Rule (2), we get

mAverage
1,2,3 (A) =

1

3
· (1 + 0 + 0) =

1

3

m
Average
1,2,3 (B) =

1

3
· (0 + 1 + 0) =

1

3

mAverage
1,2,3 (A ∪B) =

1

3
· (0 + 0 + 1) =

1

3

So we see that PCR6 rule equals the Averaging Rule as proved
in the theorem because the bba’s are binary and the intersection
of all focal elements is empty sinceA ∩ B ∩ (A ∪ B) =
∅∩ (A∪B) = ∅ becauseA∩B = ∅ since Shafer’s model has
been assumed for the frameΘ.

Examples 3: where PCR6 differs from the Averaging Rule.

Let’s consider the frameΘ = {A,B,C} with Shafer’s
model and the bba’s to combine as given in Table IV.

bba’s\ Focal elem. A A ∪ B A ∪ B ∪ C ∅

m1(.) 1 0 0
m2(.) 0 1 0
m3(.) 0 0 1

m1,2,3(.) 1 0 0

Table IV
L IST OF BBA’ S TO COMBINE FOREXAMPLE 3.

Clearly, in this case the focal elements are nested and the
condition on emptiness of intersection of all focal elements is
not satisfied because one hasA ∩ (A ∪B) ∩ (A ∪ B ∪ C) =
A 6= ∅, so that the theorem cannot be applied in such case. The
total conflicting mass is not 1. One can verify in such example
that PCR6 rule differs from the Averaging Rule because one
gets:

mPCR6
1,2,3 (A) = m1,2,3(A) = 1

mPCR6
1,2,3 (A ∪ B) = m1,2,3(A ∪ B) = 0

mPCR6
1,2,3 (A ∪ B ∪ C) = m1,2,3(A ∪ B ∪ C) = 0

since there is no conflicting mass to redistribute to apply PCR
principle, whereas the averaging fusion rule gives

m
Average
1,2,3 (A) =

1

3
· (1 + 0 + 0) =

1

3

mAverage
1,2,3 (A ∪ B) =

1

3
· (0 + 1 + 0) =

1

3

mAverage
1,2,3 (A ∪ B ∪ C) =

1

3
· (0 + 0 + 1) =

1

3

Examples 4 (Bayesian non-binary bba’s): where PCR6
differs from the Averaging Rule.

Let’s consider the frameΘ = {A,B} with Shafer’s model
and the Bayesian bba’s to combine as given in Table V.

bba’s\ Focal elem. A B A ∩ B = ∅

m1(.) 0.2 0.8 0
m2(.) 0.6 0.4 0
m3(.) 0.7 0.3 0

m1,2,3(.) 0.084 0.096 0.820

Table V
L IST OF BBA’ S TO COMBINE FOREXAMPLE 4.

The total conflicting massm1,2,3(A ∩ B = ∅) = 0.82 =
1 − m1(A)m2(A)m3(A) − m1(B)m2(B)m3(B) equals the
sum of partial conflicting masses that will be redistributed
through PCR principle in PCR6

m1,2,3(A ∩ B = ∅) = m1(A)m2(B)m3(B)
︸ ︷︷ ︸

0.024

+ m2(A)m1(B)m3(B)
︸ ︷︷ ︸

0.144

+m3(A)m1(B)m2(B)
︸ ︷︷ ︸

0.224

+ m1(B)m2(A)m3(A)
︸ ︷︷ ︸

0.336

+m2(B)m1(A)m3(A)
︸ ︷︷ ︸

0.056

+ m3(B)m1(A)m2(A)
︸ ︷︷ ︸

0.036

= 0.82

Applying PCR principle for each of these six partial conflicts,
one gets:



• for m1(A)m2(B)m3(B) = 0.2 · 0.4 · 0.3 = 0.024

x1(A)

0.2
=

y1(B)

0.4 + 0.3
=

0.024

0.2 + 0.3 + 0.4

whencex1(A) ≈ 0.005333 andy1(B) ≈ 0.018667.
• for m2(A)m1(B)m3(B) = 0.6 · 0.8 · 0.3 = 0.144

x2(A)

0.6
=

y2(B)

0.8 + 0.3
=

0.144

0.6 + 0.8 + 0.3

whencex2(A) ≈ 0.050824 andy2(B) ≈ 0.093176.
• for m3(A)m1(B)m2(B) = 0.7 · 0.8 · 0.4 = 0.224

x3(A)

0.7
=

y3(B)

0.8 + 0.4
=

0.224

0.7 + 0.8 + 0.4

whencex3(A) ≈ 0.082526 andy3(B) ≈ 0.141474.
• for m1(B)m2(A)m3(A) = 0.8 · 0.6 · 0.7 = 0.336

x4(A)

0.6 + 0.7
=

y4(B)

0.8
=

0.336

0.8 + 0.6 + 0.7

whencex4(A) ≈ 0.208000 andy4(B) ≈ 0.128000.
• for m2(B)m1(A)m3(A) = 0.4 · 0.2 · 0.7 = 0.056

x5(A)

0.2 + 0.7
=

y5(B)

0.4
=

0.056

0.4 + 0.2 + 0.7

whencex5(A) ≈ 0.038769 andy5(B) ≈ 0.017231.
• for m3(B)m1(A)m2(A) = 0.3 · 0.2 · 0.6 = 0.036

x6(A)

0.2 + 0.6
=

y6(B)

0.3
=

0.036

0.3 + 0.2 + 0.6

whencex6(A) ≈ 0.026182 andy6(B) ≈ 0.009818.
Therefore, with PCR6 one finally gets

mPCR6
1,2,3 (A) =

6∑

i=1

xi(A) = 0.495634

mPCR6
1,2,3 (B) =

6∑

i=1

yi(A) = 0.504366

whereas the Averaging Rule (2) will give us

mAverage
1,2,3 (A) =

1

3
· (0.2 + 0.6 + 0.7) =

1.5

3
= 0.5

mAverage
1,2,3 (B) =

1

3
· (0.8 + 0.4 + 0.3) =

1.5

3
= 0.5

In this example, the intersection of focal elements is empty
but the bba’s to combine are not binary. Therefore the total
conflict between sources is not total and the theorem doesn’t
apply and so PCR6 results differ from the Averaging Rule.

It however can happen that in some very particular sym-
metric cases PCR6 coincides with the Averaging Rule. For

bba’s\ Focal elem. A B A ∩ B = ∅

m1(.) 0.2 0.8 0
m2(.) 0.5 0.5 0
m3(.) 0.8 0.2 0

m1,2,3(.) 0.08 0.08 0.84

Table VI
A BAYESIAN NON-BINARY SYMMETRIC EXAMPLE .

example, if we consider the bba’s as given in the Table VI.
In such case the opinion of source #1 totally balances opinion
of source #3, and the opinion of source #2 cannot supportA
more thanB (and reciprocally), so that the fusion problem
is totally symmetrical. In this example, it is expected thatthe
final fusion result should commit an equal mass of belief toA
and toB. And indeed, it can be easily verified that one gets
in such case

mPCR6
1,2,3 (A) = mAverage

1,2,3 (A) = 0.5

mPCR6
1,2,3 (B) = mAverage

1,2,3 (B) = 0.5

which makes perfectly sense. Note that the Averaging Rule
provides same result on example 4 which is somehow ques-
tionable because example 4 doesn’t present an inherent sym-
metrical structure. In our opinion PCR6 presents the advantage
to respond more adequately to the change of inherent internal
structure (asymmetry) of bba’s to combine, which is not well
captured by the simple averaging fusion rule.

IV. A PPLICATION TO PROBABILITY ESTIMATION

Let’s review a simple coin tossing random experiment.
When we flip a coin [13], there are two possible outcomes. The
coin could land showing a head (H) or a tail (T). The list of all
possible outcomes is called the sample space and correspond
to the frameΘ = {H,T }. There exist many interpretations
of probability [14] that are out of the scope of this paper. We
focus here on the estimation of the probability measureP (H)
of a given coin (biased or not) based onn outcomes of a coin
tossing experiment. The long-run frequentist interpretation of
probability [15] considers that the probability of an event
A is its relative frequency of occurrence over time after
repeating the experiment a large number of times under similar
circumstances, that is

P (A) = lim
n→∞

n(A)

n
(12)

wheren(A) denotes the number of occurrences of an event
A in n > 0 trials. In practice however, we usually estimate
the probability of an eventA based only on a limited number
of data (observations) that are available, and so we estimate
the idealisticP (A) defined in (12), by classical Laplace’s
probability definition

P̂ (A|n(A), n) =
n(A)

n
(13)

Naturally, P̂ (A) ≥ 0 becausen(A) ≥ 0 and n > 0,
and P̂ (A) ≤ 1 because we cannot getn(A) > n
in a series of n trials. P (A) + P (Ā) = 1 because
n(A)
n + n(Ā)

n = n(A)
n + n−n(A)

n = 1 where Ā is the
complement ofA in the sample space.

It is interesting to note that the classical estimation of the
probability measure given by (13) corresponds in fact to the
simple averaging fusion rule of distinct pieces of evidence
represented by binary masses. For example, let’s take a coin
and flip itn = 8 times and assume for instance that we observe



the following series of outcomes{o1 = H, o2 = H, o3 =
T, o4 = H, o5 = T, o6 = H, o7 = H, o8 = T }, so that
n(H) = 5 and n(T ) = 3. Then these observations can be
associated with distinct sources of evidences providing tothe
following basic (binary) belief assignments:

bba’s\ Focal elem. H T

m1(.) 1 0
m2(.) 1 0
m3(.) 0 1
m4(.) 1 0
m5(.) 0 1
m6(.) 1 0
m7(.) 1 0
m8(.) 0 1

Table VII
OUTCOMES OF A COIN TOSSING EXPERIMENT.

It is clear that the probability estimate in (13) equals the
averaging fusion rule (2) and in such example because

P̂ (H|{o1, o2, . . . , o8}) =
n(H)

n
=

5

8
by eq. (13)

=
1

8
(1 + 1 + 0 + 1 + 0 + 1 + 1 + 0)

= m
Average
1,2,...,8 (H) by eq. (2)

P̂ (T |{o1, o2, . . . , o8}) =
n(T )

n
=

3

8
by eq. (13)

=
1

8
(0 + 0 + 1 + 0 + 1 + 0 + 0 + 1)

= mAverage
1,2,...,8 (T ) by eq. (2)

Because all the bba’s to combine here are binary and are in
total conflict, our theorem 1 of Section III applies, and PCR6
fusion rule in this case coincides with the averaging fusion
rule. Therefore we can use PCR6 to estimate the probabilities
that the coin will land onH or T at the next toss given the
series of observations. More precisely,
{

mPCR6
1,2,...,8(H) = mAverage

1,2,...,8 (H) = P̂ (H |{o1, o2, . . . , o8})

mPCR6
1,2,...,8(T ) = mAverage

1,2,...,8 (T ) = P̂ (T |{o1, o2, . . . , o8})

We must insist on the fact that Dempster-Shafer (DS) rule of
combination (4) cannot be used at all in such very simple case
to estimate correctly the probability measure because DS rule
doesn’t work (because of division by zero) in total conflicting
situations. PCR5 rule can be applied to combine these 8 bba’s
but is unable to provide a consistent result with the classical
probability estimates because one will get

xH

1 · 1 · 1 · 1 · 1
=

yT

1 · 1 · 1
=

m1,2,...,8(∅)

(1 · 1 · 1 · 1 · 1) + (1 · 1 · 1)
=

1

1 + 1
= 0.5

and therefore the PCR5 fusion result is
{

mPCR5
1,2,...,8(H) = xH = 0.5 6= (mPCR6

1,2,...,8(H) = 5/8)

mPCR5
1,2,...,8(T ) = yT = 0.5 6= (mPCR6

1,2,...,8(T ) = 3/8)

Remark: The PCR6 fusion result is valid if and only if
PCR6 rule is applied globally, and not sequentially. If PCR6
is sequentially applied, it becomes equivalent with PCR5
sequentially applied and it will generate incorrect results for

combinings > 2 sources of evidence. Because of the ability
of PCR6 to estimate frequentist probabilities in a random
experiment, we strongly recommend PCR6 rather than PCR5
as soon ass ≥ 2 bba’s have to be combined altogether.

V. CONCLUSIONS AND CHALLENGE

In this paper, we have proved that PCR6 fusion rule coin-
cides with the Averaging Rule when the bba’s to combine are
binary and in total conflict. Because of such nice property,
PCR6 is able to provide a frequentist probability measure
of any event occurring in a random experiment, contrariwise
to other fusion rules like DS rule, PCR5 rule, etc. Except
the Averaging Rule of course since it is the basis of the
frequentist probability interpretation. In a more generalcontext
with non-binary bba’s, PCR6 is quite complicate to apply to
combine globallys > 2 sources of evidences, and a general
recursive formula of PCR6 would be very convenient. It can
be mathematically reformulated as follows: LetR be a fusion
rule and assume we haves sources that providem1, m2, . . . ,
ms−1, ms respectively on a fusion spaceGΘ. Find a function
(or an operator)T such that:T (R(m1,m2, . . .ms−1),ms) =
R(m1,m2, . . . ,ms−1,ms), or by simplifying the notations
T (Rs−1,ms) = Rs, where Ri means the fusion ruleR
applied toi masses all together. For example, ifR equals the
Averaging Rule, the functionT is defined according to the
relation (3) byT (Rs−1,ms) =

s−1
s Rs−1 +

1
sms = Rs, and

if R equals DS rule one hasT (Rs−1,ms) = DS(Rs−1,ms)
because of the associativity of DS rule. What is theT operator
associated with PCR6? Such very important open challenging
question is left for future research works.
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