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Abstract.

In this paper we introduce the degree of spegffiofta mass, which is the distance between a
mass and its most specific associated mass, amdeasure the specificity of a fusion rule. Also,
we determine the Bayesianity of a mass. We propedain new distances between masses as
well.
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1. Introduction.
In order for the paper to be self-contained wetlistmain distances between masses and also the
three pignistic transformations.
We list some specificity measures from the knowerditure and we also propose some new
ways of measuring the degree of specificity of a.bb
We also list the known distances and propose s@aweapproaches.

The most specific mass associated to a given rmag=fined.

The degree of uncertainty of a set and the dedrBayesianity/non-Bayesianity is also defined
at the end of the paper.

2. Specificity.
Yager [1] has defined thepecificity measure of a masg(.) defined or2* as):
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One had/n < S, <1, where n is the cardinality of X, minimum value oxxfor the vacuous
belief functionm(X) = 1, and maximum value occurs for any Bayesian mass.



In our opinion this formula should be adjusted in otdaget the minimum specificity value 0
for the vacuous belief function function and for unimfedy distributed masses (i.e. m(Ai) = 1/p
for each Al, A2, ..., Ap in the fusion space, while specificity should be 1 for m(A)=1 where
A has the cardinality 1.

Because, for example, if we have three Bayesian loledised on® ={A, B, C}, where all A, B,
C are singletons, and all their intersections are empty:

A B C
my 1/3 1/3 1/3
m % % 0
m 1 0 O
we get the same specificity for all three of them,3:@.= Sn2= Sz =1,

while intuitively there should be © Sy < Sn2 < Snz = 1 since mis more specific than mand
mz is the most specific than all of them.

Uncertainty results from randomness and non-specificity.
Non-specificity is related to vagueness or imprecision (Ristic andt§ni2]).
2. Degree of specificity.
We define a newlegree of specificity measure of a bban(.) in the following way:
Ssmo(m) = 1-d(m, ng)

where ny(.) is the most specific mass associated with m(d,ir) is a distance function whose
values are in the interval [0, 1] between the masggsamd ny(.).

As distance between masses we prefer to use Jousdistarece which is the most accurate one,
but other mass distance can be used as well: Eucldisi@mce, Bhattacharyya’s distance,
Tessem'’s distance, GPT distance, DSdiBtance, etc. The restriction is that each mass distance
should have the values in the closed interval [O, 1].

We recall some mass distance formulas:
3.1) Jousselme distance ?? Include formula

It is easier to take the Jousselme matrix correspgnii the union of all focal elements of bba’s
m, and respectively gninstead of considering the large size matrix definethe whole fusion
space 2. The result is the same.



3.2)

3.3)
3.4)

3.5)

3.6)

3.7)

Euclidian distance
de(m1, m2) = V{Sigma(m1(A)-m2(A))2}
Ain 2©
Bhattacharya distance ?? Include formula

Tessem'’s distancédetween pignistic probabilities Bet#hd BetR associated to
the bba’s my and respectively gr(distance between betting commitments from
two pignistic transformations) of the two bba’s is defined as [7, 8]:

dr(mg,my) = max|Beti(A)-BetP,(A)|
Al®, A = singleton

This distance extended to DSmT gives@RT distance between generalized
pignistic probabilities:
dpsm1(Ma,Mz) = max|GPT(A)-GPT,(A)|
AUO,c(A)=1

where c(A) is the DSm cardinality of A.
A DSmMP, distance extension of the above two distances should be:

dpsmte (My,Mp) = Max|DSmMRB)1(A)-DSMRe)2(A)].
AO,cA) =1

Another idea would be to take, instead of “ma& “average” arithmetic
operator in the above three formulas of distancesdstwignistic probabilities,
and we get pseudo-distances (the axiom of triangulguadgy is in general not
verified).

Other way to define the distance between two masdée ifollowing:

3.8-3.10) Use the pignistic transformation (BetP)g@meralized pignistic

transformation (GPT), or DSmb transform a givem bba into a Bayesian
mass, and then make a city-block distanegveen the masses of singletons:

dpr(mg,my) = % D" | BetPi(A) - BetP2(A) |

AJO
c(A)=1

respectively in DSmT:
depr(my,my) = % > |GPT1(A)-GPT2(A) |
ACO

c(A)=1



1
dpsme(My,My) = > D | DSMP ::(A) - DSTP : 2(A) |.
ATO

c(A)=1

In a more general way one can construct the aboveufasny inserting a lambda parameter

A1

dpr(my,my) = (% > | BetPy(A) - BetP2(A) |)"*

AJO
c(A)=1

depr(my,my) = (% > |GPT1(A)-GPT2(A) ) V"

c(A)=1
1
dpsme(Ma,my) = (E > | DSTP ..(A) - DSP . 2(A) ) Y
ACO
c(A)=1

Remark that d(m, ng represents the quantity that misses to m(.) in orden{g to becoming
the most specific mass (closest to it).

4. The most specific mass associated with a giverass.
We define the most specific masg hnassociated to a given mass m(.) as follows:
Ms(Amay) = 1, where /hqaxDG@. The problem is how to find #?

a) If m(.) is Bayesian, then we compute
Amax = max{m(X), XO @ ={84,..., 81}}

and therefore g.) is considered to befAmay) = 1; if there exist many Ax's (i.e. having the
same maximal mass), we take any of them because thaaisetween m(.) and any of these
most specific massessii max) = 1 associated with m(.) will be the same.

b) If m(.) is non-Bayesian we can computg.An a similar way:
Amax = {max{m(X)/Card(X), XU © ={é1,..., 61}} },

but if there exist more maximal masses we take threeglewith the smallest cardinality.



c) Another method for the case when m(.) is non-Baygdsi#o use the Smets’s pignistic
transformation, or GPT, or DSm order to transform the non-Bayesian mass m(.) into
a Bayesian mass m’(.) corresponding to m(.). And tnee case a).

We recall below the three formulas of the pignistic tamsations:

4.1. Thepignistic probability , which transforms a basic belief assignment (bba)Bayesian
probability, was introduced by Smets [5] and defined as:

3 X ¥l m(Y)
betP(X) = Z )
o, T T=m(0)
for all X=6.
The following double inequality holds:
Bel(A)=BetP@)<PI(A).

4.2. Anextension of the pignistic probabilityfrom DST and TBM to DSmT is the following
(Dezert, Smarandache, Daniel, [9]):

GPT(X)= 3. C“”(Ci(—&‘)wm(v)

Y

where ¢ (Y) is the DSm cardinality of Y in the given modé] which means the number of
disjoint parts of Y in the Venn diagram.

4.3. A generalization of the pignistic probabilisyDSmP, (Dezert & Smarandache, [6]):

D> mZ)+e@(XnY)
DSTP(X)= 2. C(Z):lZ mZ) ey )

z0yYy
c(Z2)=1

wheree> 0 is a tuning parameter and 8”corresponds to the generic set (power 8ehgper-
power set [9, or super-power sef’S- including eventually all integrity constrair(isany) of
the model M);

c(Z) denote the DSm cardinals of the set Z;

¢ allows to reach the maximum specificity valuehad approximation of m(.) into a subjective
probability measure; the smallers the greater the specificity of the mass m(.) is

DSmP provides a better specificity than the pignistobability and other transformations that
map the belief masses to Bayesian probabilitiedd8o’'s, Cuzzolin’s).

Remark: the most specific masg.) can also be defined in a different user’s nfleedolving a
particular application.



For DSMT, Anax may be, for example, a non-empty intersectiors kty ANB if m(ANB) is
maximal and Card(AB) = 1.

For UFT (Unification of Fusion Theories) (Smaranuad3] ) Anax may be, for example, a
difference of elements, let's say A-B if m(A-B)nisaximal and Card(A-B) = 1.

Examples:
A AlB
m; 0.6 0.4
mp 0.5 0.5
The most specific mass associated with both of tmenand m, is m(A) = 1.

dy(my, mg) = 0.2828 wherefl,.) is Jousselme distance, whence the speciftityy is S(m) =
1-0.2828 = 0.7172.

dj(my, mg) = 0.3535, whenc&m;) = 1-0.3535 = 0.6465.

So, m is more specific than m

If we take m(A) = 0.5, m(B) = 0.5, with ANB = ¢, the specificity of ms is smaller than my’s
specificity although the masses are the same.

The above rfA) = 1 can serve as the most specific mass adsdarth n3, then d(ms, my) =
0.50, whenc&mg) = 1-0.50 = 0.50 < 0.6465.

More Bayesian examples in order to observe theergance of specificity:

A B C L, mp) - S(m)
m 1 0 0 0 1
my 04 04 02 0.529  0.471
ms 0.45 0.45 0.10 0.507  0.493
ms  0.45 0.40 0.15 0.492  0.508
m; 0.45 0.30 0.25 0.477  0.523
mg 0.45 0.275 0.275 0.476  0.524
me 13 13 1/3 0.577  0.423

mpe 0.6 0.3 0.1 0.361 0.639



The smallest specificity of a Bayesian mass is wherbba has a uniform distribution (in these
examples 1), and the largest specificity is of course whenriass of a singleton is 1 {m

The specificity increases when the differences betwthe mass of the largest singleton and the
masses of other singletons are getting biggers)Ss(m) < S(ny) < S(ny).

In the case when one has three disjoint singlesodsthe largest mass of one of them is 0.45, we
have the minimum specificity when the masses oh@ @ are getting further from the mass of A

(me).

The problem becomes more complex for non-Bayesiasses about how to find the most
specific mass.

Let's consider these examples where we apply meihod

Al B | ClagB|AOC|BOC|AOBOC Msi dy(mi, | S(m)
mo)
{if one oo
decides on
ignorances}
or
msll'(A):l
0.889 | 0.111
{if one
decides on
singletons}
M12 0.4 0.6 mslz(B):l 0.6 04
my3 | 0.1 0.9 Mer4A)=1 0.735 | 0.265

For my; (second case), mand m3z we applied method c).

5. Contradiction of an element with respect to a mass



The contradiction of an element A with respect toass n{.) is the distance between the
masses ) and m(.), where m(A)=1:

c(A) = d(m, ma)
We define theveighted contradiction ¢ of a massami(.) as:

c= Y m(Ad(m,m)

AOG O
and thecontradiction between two massesy(.) and m(.) as:

c(my, Mp) = ctc-d(my, M)

6. Measure of specificity of a fusion rule.

Let’'s consider two masses @nd m. One applies the rules R1, R2, ..., Rp
my(R1)mp, my(R2)my, ..., m(Rp)n,

and then one computes the specificity measureaf essult and compare the results: what
specificity (corresponding to what fusion rulepigger.

This can be generalized to s bba’s in the followiay:

If we combine more bba’s, ;nmy, ..., my, in the same way we compute the specificity oheac
mass mi, and then the arithmetic average of thesafgcity. Afterwards, we fusion all these s
masses simultaneously with a fusion rule, and tdoenpute the specificity of the resulted mass.

Let’s take the masses;rand mg that have the same most specific masi@\ys1. {It is true that

the most specific mass ofyroould equally be g(B)=1 too.}

6.1. Bayesian Example.

A B C Al A B A @ | msof m; | dy(m;, | S(m)
B U U U ms)
C C B
U
C
m, | 04| 04 | 0.2 ms(A)=1 | 0.529 | 0.471
myp | 0.6 0.3 0.1 ms(A)=1 | 0.361| 0.639
Meonj | 0.2 0.12| 0.02 0.62 mg(A)=1 | 0.712| 0.287
4 9 1
mps | 0.6| 0.31| 0.05 ms(A)=1 | 0.346| 0.654
31 6 3
Msmets| 0.2 | 0.12 | 0.02 0.62 mg(A)=1 | 0.712| 0.287
4 9 1




Myage | 0.2] 0.12] 0.02 0.62 ms(A)=1 | 0.562] 0.437
. 4 1 9
mpp | 0.2] 0.12] 0.02] 0.36| 0.16 | 0.10 ms(A)=1 | 0.720] 0.279
4 or 5 5
ms(ALU | or or
B)=1 | 0.867| 0.133
0 0
Mpcrs | 0.5 | 0.33 ] 0.09 ms(A)=1 | 0.420| 0.589
o | 74| 543 8 2.
57
Mrore | 0.3 ] 0.15] 0.02 ] 0.29 | 0.129] 0.081 ms(A)=1 | 0.462| 0.537
. | 13| 699 | 6164| 199 | 77 | 109 3 7
97
mas | 0.2] 0.12| 0.02] 0.36 0.16 0.1 ms(A)=1 | 0.497| 0.502
4 or 9 1
ms(A [J or or
B)=1
0.348| 0.651
2 8
Mmean | 0.5 | 0.35| 0.15 ms(A)=1 | 0.444| 0.555
0 4 6
mDP- [0.2[0.12 [0.02 | 0.36] 0.16] 0.1 ms(A)=1 | 0.497| 0.502
mixt 4 or 9 1
ms(A | or or
B)=1 | 0.348| 0.651
2 8
Mvain | 0.2 [ 0.12 [ 0.02 | 0.36| 0.16] 0.1 ms(A)=1 | 0.497| 0.502
Osswald- | 4 or 9 1
mixt mS(AD or or
B)=1 | 0.348| 0.651
2 8
morck | 0.2 [0.12 [ 0.02 [0.36 | 0.16 | 0.1 ms(A)=1 | 0.497| 0.502
4 or 9 1
ms(A U or or
B)=1 0.348| 0.651
2 8
mwoec | 0.2 [ 0.12 [ 0.02 | 0.36| 0.16] 0.1 ms(A)=1 | 0.497| 0.502
R 4 or 9 1
ms(A [ or or
B)=1 | 0.348| 0.651
2 8
Mzhan | 0.6 | 0.31] 0.05 ms(A)=1 | 0.345| 0.654
31| 579 | 2632 1 9

58




6.2.Non-Bayesian Example

A B AUB @ msof m; | dy(m;, ms) | S(m;)
ms 0.7 0.2 0.1 (A)=1| 0.2550 0.7450
my 04 0.5 0.1 (B)=1| 0.4528 0.5472
Mcon; 0.39 0.17 0.01 0.43 | m(A)=1| 0.5393 0.4607
Mps 0.68421 | 0.29825 0.017544 mS(A)51 0.3071 0.6929
Msmets 0.39 0.17 0.01 0.43 | mS(A)=1 0.5393 0.4607
Myager 0.39 0.17 0.44 mS(A)=1 0.4478 0.5522
Misjunctive 0.28 0.1 0.62 mS(A)=1L 0.5140 0.4860
MElorea 0.45397 0.18532| 0.36071 mS(A)=1 0.4077 0.5953
Mpcrs/Mpcrs | 0.6475 0.3425 0.01 mS(A)F1 0.3475 0.6525
Mmean 0.55 0.35 0.10 mS(A)31 0.4031 0.5969
Mpuboisprade 0.28 0.10 0.62 mS(A)31 0.5140 0.4860
Mppmixt 0.39 0.17 0.44 mS(A)31 0.4478 0.5522
Mpartinosswald- 0.335 0.135 0.53 mS(A)31 0.4798 0.5202
mixt
Mppcr 0.39 0.17 0.44 mS(A)31 0.4478 0.4798
MMDPCR 0.335 0.135 0.53 mS(A)31 0.4798 0.5202
Mzhang 0.70526 0.28421 0.010526 mS(A)=10.2895 0.7105

In [4], Osswald and Martin computed the distanasvben fusion operator results using a class
of random belief functions.

Roussilhe [10] compared the fusion rules from fstteal point of view. Randomly generating
masses and fusing them 1000 times using variousfugles, then with the classical pignistic
transformation each non-Bayesian result was coegento a Bayesian result, which was
interpreted as a random variable. Then one cdtmlithe correlation coefficients (similarities)
as in statistics between the decision vectors.

6.3. Continuous Frame Example

[1, 2] [3, 5] [1, 2]0 @ ms of m; dy(m, S(m;)
[3, 5]¢@ Mms)
ms 0.2 0.8 mS([3,5])=1 0.2 0.8
my 0.4 0.6 mS([3,5])=1 0.4 0.6




Meon; 0.08 0.48 0.44 ms([3,5)=1| 0.743| 0.257
m; 0.2 0.8 mS([3,5)=L 0.2 0.8
m. 0.4 0.6 mS([3,5)=L 0.4 0.6

Mcon] 0.08 0.48 0.44 ms([3, 0.743 0.257

5])=1

Mps 0.14286 0.85714 &13, 0.1429 0.8571

5])=1

Msmets 0.08 0.48 0.44 ms([3, 0.743 0.257

5])=1
Myager 0.08 0.48 0.44 ms([3, 0.3720 0.6280
5])=1

Misjunctive 0.08 0.48 0.44 ms([3, 0.3720 0.6280
5])=1

MEjorea 0.10616 0.63694 0.2569 (8, 0.2675 0.7325
5])=1

Mpcrs/Mpcrs | 0.21667 0.78333 &3, 0.2167 0.7833
5])=1

Mmean 0.3 0.7 na([3, 0.3 0.7

5])=1
Mpuboisprade 0.08 0.48 0.44 ms([3, 0.3720 0.6280
5])=1
Mppmixt 0.08 0.48 0.44 ms([3, 0.3720 0.6280
5])=1

MMartinosswald- 008 048 044 ms([3, 03720 06280
mixt 5]):1

Mppcr 0.08 0.48 0.44 ms([3, 0.3720 0.6280
5]))=1

MMDPCR 0.08 0.48 0.44 ms([3, 0.3720 | 0.6280
5])=1

Mzhang 0.14286 0.85714 &13, 0.1429 0.8571
5])=1

In order to define the Bayesianity (non-Bayesignitg present the measures of uncertainty of a
set and of a mass.

7. Measure of Uncertainty of a Set.
In DST (Dempster-Shafer’'s Theory), Hartley defined the soea of uncertainty of a set
A by:
| (A) =log, |A, for AD2° \{®},
where|A is the cardinality of the se.
We can extend it tdSmT in the same way:



| (A) =log,|A, for ADG’ \{®}
where G’ is the super-power set, ahq means theDSn cardinality of the sef: in the case of

Shafer’'s model (i.e. all intersections of the datshe frame of discernment are empty), DSm
cardinality coincides with classical cardinalityDx&T.

We even improve it to degree of uncertainty of a set
U :G°\{@} - [0,] UsA) = loga(A) loga|l |
If A is a singleton, |e|A| =1, thenU} (A) =0 (minimum degree of uncertainty of a set),

For the total ignorancé, , since|l,| is the maximum cardinality, we gé(1,)=1
(maximum degree of uncertainty of a set).
For all other setsX from G®\{®} , whose cardinality is in between 1 aid, we have

0<U3(X)<1.

We consider our degree of uncertainty of a seka/better than Hartley Measure since it
is referred to the frame of discernment.

Let's see afexample 1
If #={ A B} and ANB# ®, we have the model

A B

| (A) =log,|A =log, 2= 1

. log,|A _log, 2 .
While US (A) = =199: < _ 5 6309z
ile U3 (A) 00,/ AUB] _ Tog, 3 0.6309

Example 2
If §={AB,C}, and ANB# ®, but ANC=®, BNC =, we have the model

A B C

| (A) =log,|A =1 as in Example 1.

While U5 (A)=—0%A__100,2_1_5 ¢ 6300
‘ log,|[AUBUC| log,4 2




It is normal to have a smaller degree of uncernyatritset A when the frame of discernment is
larger, since herein the total ignorance has adbiggrdinality.

There are two types of uncertainty: nonspecifieityl discord [].

8. Generalized Hartley Measure of uncertainty for masssis defined as:

GH(m)= > m(A)log,|A

A28}

This is also calletion-specificity.

FromDST we simply extend the GM(.) tBSMT as follows:

GH(m)= >  m(A)log,|A

AIG7\{ @}

Degree of Uncertainty (or Degree of non-Bayesianijyof a mass.
We go further and define a degree of uncertainty wlassm as

lo
THOERS Ay 0% A S m(A)log A
ATGO\ @} |092||t| ATGO\ )
wherel, is the total ignorance.

If m(J is a mass whose focal elements are only singleteersUY (m) =0 (minimum
uncertainty degree of a mass).
If m(It) =1, thenUY (m) =1 (maximum uncertainty degree of a mass).

For all other massem() we have0 <UY (m)<1.

Whence we can definel@egree of Bayesianityof a mass, which means how close is a bba to a
Bayesian (probability) measure:

Bm=1- 3 meay %A
ATG?\{ @} |ng | It|

If m(.) is Bayesian, theB(m) = 1.
For the vacuous belief assignmentza(l;) = 1 we havd3(mygs) = 0
If m(.) is non-Bayesian, with m@myga(.), then 0 B(m) < 1.

Examples:



A B C AUB | AOC | BOC |AOBOC NB(m) | B(m)
Mo 1 0 0 0 0 0 0 0 1
mai1 | 05| 03] 0.2 0 0 0 0 0 1
mo | 04| 01| 0.1 0.3 0.1 0 0 0.25 0.75
mz | 03| 01| 0.1 0.3 0.2 0 0 0.32 0.68
myg | 03| 01| 0.1 0.5 0 0 0 0.32 0.68
mss | 0.3 | 01| 0.1 0 0 0 0.5 0.5Q 0.5p
Mie 0 0 0 0.6 0.4 0 0 0.63 0.37
My7 0 0 0 0.6 0 0 0.4 0.77 0.23
Mg 0 0 0 0.4 0 0 0.6 0.85 0.1%
Mg 0 0 0 0.2 0 0 0.8 0.92 0.08
Mo 0 0 0 0 0 0 1 1 0

Remark.

The degree of uncertainty (or non-Bayesianity) aaspectively the degree of Bayesianity
depend on the cardinality of the frame of discemime

For exampldB(myz) = 0.75 in the fram® 1= {A, B, C} where the cardinality of the total
ignorance

k=A0BUC s 3, but if we consider mizin the frame ©2={A, B, C, D} where the
cardinality of the total ignorance is 4, its Bayesianity increases: B(m;2) = 0.80. The large
is the frame, the larger becomes the Bayesianity.

9. Conclusion.

In this paper we introduced a new degree of spitgifimeasure of a belief function, a degree of
a degree of specificity measure of a set, and eeéaegf Bayesianity/non-Bayesianity of a belief
function. We also introduced new distances betweasses based on GPT and DSmP pignistic
transformations from DSmP.
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