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Moment Invariants for 2D Flow Fields via
Normalization in Detail

Roxana Bujack, Ingrid Hotz, Gerik Scheuermann, and Eckhard Hitzer

Abstract—The analysis of 2D flow data is often guided by the search for characteristic structures with semantic meaning. One way

to approach this question is to identify structures of interest by a human observer, with the goal of finding similar structures in the

same or other datasets. The major challenges related to this task are to specify the notion of similarity and define respective pattern

descriptors. While the descriptors should be invariant to certain transformations, such as rotation and scaling, they should provide a

similarity measure with respect to other transformations, such as deformations. In this paper, we propose to use moment invariants as

pattern descriptors for flow fields. Moment invariants are one of the most popular techniques for the description of objects in the field of

image recognition. They have recently also been applied to identify 2D vector patterns limited to the directional properties of flow fields.

Moreover, we discuss which transformations should be considered for the application to flow analysis. In contrast to previous work,

we follow the intuitive approach of moment normalization, which results in a complete and independent set of translation, rotation, and

scaling invariant flow field descriptors. They also allow to distinguish flow features with different velocity profiles. We apply the moment

invariants in a pattern recognition algorithm to a real world dataset and show that the theoretical results can be extended to discrete

functions in a robust way.

Index Terms—Moments, Moment Invariants, Pattern Recognition, Flow Visualization, Normalization

✦

1 INTRODUCTION

This paper is an extended version of “Moment Invariants for

2D Flow Fields via Normalization”, [3]. It describes the same

method as its predecessor but in more detail and depth. The

major innovations of this representation at full length are:

• Explicit description of the algorithm.

• Analysis of its runtime and memory requirements.

• Derivation of the normalization with respect to reflec-

tions.

• Extensive discussion of the considered transformations

and the effects of normalization with respect to them.

• More examples and beautiful images.

Visualization and data analysis play an essential role in the

process of understanding flow simulations. The definition and

extraction of characteristic flow structures from the data is of

special importance and is the topic of many discussions in the

field of fluid mechanics. Respective questions concern, e. g.,

the formation and development of “coherent structures” [15],

sometimes identified with vortices. Even though many scien-

tists have an intuitive feeling about such structures, there is

no commonly accepted definition. It is often challenging to
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translate these intuitive notions into a mathematically tractable

property. The goal of this work is to support this task allow-

ing flexible pattern definition, e. g. through visual selection.

Thereby, the major challenge is the definition of expressive

descriptors. They should be detailed enough to encode the

relevant information about a pattern but also general enough

to allow variations in terms of size and orientation. Once

structures of interest are identified, similar patterns can be

automatically detected.

Similar questions can be found in the field of image

analysis. There, very successful and commonly used shape

descriptors for automatic object recognition are moment in-

variants. Moments are characteristic numbers of a function.

For example, the mean and the variance are moments. They

are the projection of a function to an L2 function space basis.

They are robust, flexible, easy to use, and an excellent tool to

construct invariants. Invariants mean in this context that they

do not change under certain transformations. Their invariance

property allows to compare objects in one single step instead

of considering every possible transformed version of it. Since

moments have been introduced about 50 years ago, many

different categories of invariants have been developed and

analyzed [11].

To achieve invariance of the descriptors, two major ap-

proaches have been proposed in the past. One way is explicitly

giving a calculation rule for a set of invariants, Flusser [10].

Another way is the method of normalization [6]. Flusser et

al. state that both methods are equivalent [11] for scalar

fields. Some of these ideas have been generalized to two-

dimensional vector fields by Schlemmer et al. [25] proposing

a set of complex invariant vector moments following the first

approach. The second option has not yet been generalized to

the vector field case.
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Besides the technical generalization of the descriptors to

vector-valued fields, there are other significant conceptual

changes from image pattern recognition to flow analysis. Char-

acter recognition mostly heads for a classification tolerating

rigid body transformations, scaling, as well as other deforma-

tions. In contrast to that, the goal in flow analysis is to establish

a notion of similarity that also supports measuring changes in

the flow. For many applications, it is also important to be able

to abstract from background flows. These requirements make

a specific discussion of considered invariances necessary.

In this paper we deal with these conceptual questions as well

as the technical generalization of moment invariants respecting

flow specific transformations. We introduce a new approach

to vector moments, generalizing the theory of 2D invariants

from scalar functions to 2D vector fields making use of the

isomorphism between the Euclidean and the complex plane.

In a nutshell the method presented in this paper works as

follows:

• Moments are the projections of a function to a function

space basis. In order to compare the functions, it is

sufficient to compare their moments.

• Normalization is the act of transforming a function or

rather their moments into a predefined standard position.

• Moment invariants are characteristic numbers con-

structed from moments that do not change under certain

transformations. They can be produced by normalization.

Because if all the functions are in one standard position,

their prior position has no influence on their normalized

moments.

2 RELATED WORK

The analysis of vector fields has a long tradition in the area

of visualization. Accordingly, there has been much interesting

work, which goes beyond the scope of this section. But we

would like to point at some good overview articles dealing

with vector field visualization with different foci: Texture

and Feature-Based Flow Visualization [9], Integration-Based

Geometric Flow Visualization [19], and Illustrative Flow Vi-

sualization [2].

Of special interest in context with the represented method,

are feature extraction and pattern recognition methods. Typical

vector features may either be directly based on the given vector

field, e. g. vector field topology, or on derived scalar, vector,

or tensor fields. Vector field topology focuses on finding

features like sources, sinks, and saddle points as well as

separatrices connecting them [17], [23]. Scalar features are

mostly defined as iso-contours or as the extremal structures of

a derived scalar field [27]. Examples are vortex like features

using identifiers such as vorticity [21], [22], λ2 [14], or the

acceleration magnitude [16], all based on the Jacobian matrix

of the flow field. Such predefined features are very successful

when looking for specific well-known structures. But they are

probably too specific when looking for more general patterns.

A more flexible way to define features interactively as

patterns is provided by methods originating from image pro-

cessing. In contrast to the features described above, such

patterns are not locally defined by having a spatial extension.

A first attempt in this direction has been made by Heiberg

et al. [12] who introduced a convolution operator for vector

field data. This idea has been further elaborated by Ebling et

al. [8], [7]. To find patterns of different size and orientation,

the respective filter masks have to be adjusted and the filtering

process has to be performed multiple times.

To avoid these high computational costs, pattern descriptors

that are invariant under rotation and scaling have been pro-

posed. In the area of image processing, Hu [13] introduced

his famous seven moment invariants to the pattern recognition

community. These are expressions that do not change under

shift, rotation, and scale and therefore help to identify the

same object aligned differently. They are one of the most

important sets of shape descriptors. There has been much

related work since. The use of complex moments [28], [1]

simplified the construction of rotation invariants because of

the easy way to describe rotations by means of complex ex-

ponentials. Two major ways for the construction of invariants

have been introduced. Flusser [10] uses an independent basis

by explicitly defining a set of invariants. A different approach

to achieve invariance is the method of normalization [6], there

the pattern is brought into a standard position by setting certain

moments to given values. Flusser et al. state that both methods

are equivalent. For a more comprehensive introduction to

moment invariants we recommend [11]. Building on this work,

Schlemmer et al. [25], [24] have defined a moment basis for

vector fields. Accordingly, the scale invariance is implemented

by a moment pyramid, which serves as basis for an efficient

comparison. These moments have then been applied to follow

characteristic patterns in time-dependent datasets [26]. While

generating first promising results, a concise mathematical

formulation of vector moments is still missing. Another inter-

active feature or pattern selection method for vector fields that

also considers neighborhood characteristics has been presented

by Daniels et al. [5]. They define features by attributes that

describe the neighborhood of a sample within the input vector

field.

3 BASICS - MOMENTS FOR SCALAR FIELDS

In the following section, we summarize the most important

basics for classical complex moment invariants, on which our

work builds. In particular to motivate our design decision, we

discuss the two different approaches to produce invariant de-

scriptors: the construction of an invariant basis in comparison

to normalization.

Throughout the paper, we will perform all theoretical cal-

culations in the notation of complex numbers. Please keep in

mind that every result for a complex function f : C→ C

f (z) = f1(x1 + ix2)+ i f2(x1 + ix2)≃









v1(

(

x1

x2

)

)

v2(

(

x1

x2

)

)









= v(x)

(1)

can be automatically understood as a result for a two-

dimensional vector field v : R2 → R
2 using the isomorphism

with v1/2 = f1/2.
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Fig. 1. The first complex monomials with coefficient 1 ∈R

interpreted as 2D vector fields visualized with line integral

convolution (LIC) [4] and a color map representing the

velocity. Blue means low and red high velocity, compare

colorbar in Figure 6.

3.1 Complex moments

The moments of a scalar field or function are its projections to

a function space basis. We are dealing with functions defined

over R2 ≃C and use complex moments [28], [1], [18], which

correspond to the standard complex monomials zpzq. The first

complex monomials interpreted as 2D vector fields are shown

in Figure 1. Complex moments are easy to use, interpret, and

implement and sufficiently powerful for our purpose. Further,

the polynomial space is dense in the space of the continuous

functions, which makes its reduction onto a compact area Ω

dense in the space of the square integrable functions L2(Ω).
The moments are only the coefficients with respect to a basis,

if the basis is orthonormal, which the monomials are not.

But the coefficients and the projections behave equally under

the considered transformations. The complex moments were

originally introduced to deal with real valued functions, but the

generalization to complex-valued functions is straight forward.

Definition 1. For the pair p,q ∈ Z, with grade n = p+q and

the complex function f : C → C with compact support, the

complex moments cp,q are defined as

cp,q =
∫

C

zpzq f (z)dz. (2)

On a compact set Ω⊂C, the moments are the projections of

the vector field onto the basis functions, which are calculated

i

iz iz
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Fig. 2. The first complex monomials with coefficient i ∈ C

interpreted as 2D vector fields visualized with line integral

convolution (LIC) [4] and a color map representing the

velocity. Blue means low and red high velocity, compare

colorbar in Figure 6.

using the L2(Ω) scalar product cp,q = 〈zqzp, f (x)〉2. In practical

applications, all fields have a compact support.

Using the polar form for complex numbers z = reiφ ∈C, we

can alternatively write

cp,q =
∫ 1

0

∫ ∞

0
rp+qeiφ(p−q) f (r,φ)r dφ dr. (3)

The complex moments of low orders have a very intuitive

geometric meaning. The zeroth order moment

c0,0 =
∫

C

f (z)dz (4)

can be interpreted as the mass of the function. The moments

of order one represent the center of mass of a real valued

function via

c1,0

c0,0
=

∫

C
z f (z)dz

∫

C
f (z)dz

. (5)

Example 1. To illustrate the geometric meaning of the mo-

ments, we use the characteristic function f : C → {0,1}
representing the triangle in Figure 3 (a) as an example,

f (z) =

{

1, if 0 < Re(z)< 1 and 0 < Im(z)< Re(z),

0, else.
(6)
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Its moments up to the second order are

c0,0 =
1

2
, c1,0 =

1

3
+

1

6
i, c0,1 =

1

3
− 1

6
i,

c1,1 =
1

3
, c2,0 =

1

6
+

1

4
i, c0,2 =

1

6
− 1

4
i.

(7)

The surface area or mass of the triangle is given by the zeroth

order moment c0,0 = 1/2, and its center of mass by the first

order moment c1,0/c0,0 = 2/3+1/3i.

3.2 Moment invariants

Useful descriptors on the basis of moments should have

invariance properties. In general invariants are characteristics

that do not change under certain transforms. Depending on the

specific application, interesting transforms can be changes in

position, size, orientation, convolution, affine transforms, blur,

perspective, contrast, or color.

To fulfill the demand for invariances, two basically different

approaches have been proposed. These are:

• Construction of a basis of moment invariants.

• Normalization of the moments.

According to Flusser et al. [11], these approaches may have

different origins but are equivalent with respect to their results.

The first approach defines an explicit calculation rule for an

independent and complete basis. Applying this rule, an infinite

set of moment invariants can be generated. The calculation

rules are usually inspired by results of the much older field

of algebraic invariants and are not very intuitive. The second

approach, which is called normalization, is much easier to

imagine. In order to achieve an invariant description of the

patterns, a standard position is defined. The easiest way is

to set certain moments to predefined values. These chosen

moments will take the same values for any pattern; all the

remaining moments can be used as independent discriminators.

Whenever two patterns shall be compared, there is no need to

test all orientations, but only the moments of the patterns in

standard position.

Example 2. To illustrate the geometric interpretation of

normalization we use again the function of Example 1 and

define a standard position with respect to translation, scaling,

and rotation.

• Translation: a self-evident standard with respect to trans-

lation would be the claim for the center of mass to

coincide with the origin of coordinates. In the language

of moments, that means we set the moment c1,0 = 0.

• Scaling: a reasonable suggestion is to demand the area

of the pattern to have unit magnitude, i. e. c0,0 = 1.

• Rotation: in order to standardize the orientation of a

pattern, we can choose a moment and align it with

the positive real axis. Usually the moment c2,0 ∈ R
+ is

chosen.

The shape of the triangle after every step can be followed in

Figure 3. The normalized moments of the triangle are

c0,0 =1, c1,0 =0, c0,1 =0,

c1,1 =
2

9
, c2,0 =

1

9
, c0,2 =

1

9
.

(8)

The original triangle from (6) Normalization with respect to
translation

Normalization with respect to
translation and scaling

Normalization with respect to
translation, scaling, and rotation

Fig. 3. Normalization of the triangle from equation (6)

Please note that other choices for a standard position would

lead to equally valid normalizations. This one coincides with

aligning the principal axes of the principal component analysis

to the Cartesian basis axes.

In practice, the normalization process is not done by ex-

plicitly moving the pattern. To describe and compare different

patterns, it is sufficient to normalize the moments. Thus, no

resampling and interpolation of the function is necessary. Nor-

malization has many advantages compared to the independent

basis approach.

• It has a clear motivation and reasonable geometric inter-

pretation.

• No work needs to be put into the analysis and proof

of the independence and the completeness because these

properties are directly inherited from the function space

basis.

• Its generalization to higher dimensions and other kinds

of functions and spaces is straightforward.

It should be noted that normalization cannot be used to create

invariants with respect to a transform that has no reasonable

standard representation, like blur. Since our objective is invari-

ance with respect to translation, rotation, and scaling, this is

no issue for our application. Another disadvantage is a certain

instability in the special situation when a function is at the

very threshold such that a rotation to the left and a rotation to

the right are equally suitable to achieve the standard position.

Due to the prevalence of the advantages of the normalization

approach for flow pattern recognition, we decided to follow

this approach.

4 MOMENT INVARIANTS FOR FLOW FIELDS

In this section, we discuss moment invariants applied to

pattern analysis for flow fields. Many of the ideas introduced

for shape recognition can be generalized but there are also
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substantial differences.

Relevant transformations – An essential decision is the class

of transformations that are considered for invariance. There

are many more options to define geometric transformations

for vector fields than for scalar functions and different

transformations are of significance. To compare patterns with

arbitrary orientation, position, and size, it is not sufficient

to apply the transformation to the domain. It is necessary

to transform the vectors correspondingly. In the following,

we refer to the transformation of the domain as inner

transformation and the change of the values of the vector

field as outer transformation.

Driving questions – Moreover, the driving questions are very

different. In shape analysis, the questions are often related to

a discrete classification of pre-segmented patterns, whereas in

flow analysis, we are interested in a similarity measure that

expresses the strength of a given feature at a certain position.

Relevant patterns are often relatively small compared to the

size of the field and can even exist at the same position at

different scales.

For a general complex function, translation, rotation, and

scaling can be applied to its argument and its value. That

means we generally deal with eight degrees of freedom

f ′(z) =soeiαo
(

f (sie
iαi z+ ti)+ to

)

, (9)

with the inner and outer scaling factors si,so ∈ R
+, trans-

lational differences ti, to ∈ C, and rotation angles αi,αo ∈
[−π,π]. In the following we will discuss these six central

transformations.

Rotations

Since the rotation invariance is of special importance in the

context of flow analysis, we will describe this transformation

in more detail. Examples for rotations of a vector field are

shown in Figure 4. Analogous considerations are also valid

for other geometric transformations such as translation and

scaling.

Original vector
field: f (z)

Inner rotation:
f (R−α (z))

Outer rotation:
Rα ( f (z))

Total rotation:
Rα ( f (R−α (z)))

Fig. 4. Effect of the rotation operator Rα applied to an

examplary vector field in three different ways.

Let Rα be an operator that describes a mathematically

positive rotation by the angle α and let f , f ′ : C→ C be two

vector fields. We say the two fields differ by an inner rotation

if

f ′(z) = f (R−α(z)). (10)

This means that the starting position of every vector is rotated

by α and then the original vector is reattached at the new

position. The inner rotation is suitable to describe the rotation

of a 2D color image or a complex valued function over a plane.

The color or the complex value respectively is represented as

a vector and does not change when the underlying domain is

rotated. The two vector fields differ by an outer rotation if

f ′(z) = Rα( f (z)). (11)

Here, every vector on the vector field f ′ is a rotated copy of

every vector in the vector field f , while its location remains

fixed. For complex valued functions, it describes a phase shift

in the image space. This kind of rotation appears, for example,

in color images when the color space is turned but the picture

is not moved [20]. A third type is the total rotation, which

combines the inner and outer rotation

f ′(z) = Rα( f (R−α(z))). (12)

It represents a coordinate transform for a vector field with ge-

ometric, physical meaning, like a flow field. Here the positions

and the vectors are stiffly connected during the rotation. This

is the kind of rotation, we will use in this paper.

Reflections

Reflections and rotations are very closely related. Considering

flow fields, also the total reflections are the ones of interest.

They can be produced from a total rotation followed by a

complex conjugation

f ′(z) = Rα( f (R−α(z))). (13)

This property makes the treatment of reflections almost trivial.

Therefore, we do not explicitly include them into the following

calculations.

Scaling and Translation

Because flow patterns have a limited spatial extend, we do not

want to compare fields but only parts of them. This means,

we have to restrict the analysis to windows of the size of

the pattern. Thus, the inner translation and scaling cannot be

covered using moment invariants. This problem is solved by

searching at ’all’ possible places and for ’all’ possible scales

in the big vector field. As a result, it is not useful to include

these parameters in the calculation (9) we set ti = 0,si = 1. To

be in accordance with rotation invariance, we have chosen a

circular window A = Br(0).
The outer translation can be interpreted as a distortion of

the pattern by some background flow or a moving frame of

reference. Since we would like to be able to detect moving

flow patterns, we will consider normalization with respect to

outer translation to. The outer scale represents the velocity of

the flow. We want to detect the pattern independent from its

speed, so we also normalize with respect to outer scale so.

Please note that during this operation we will not set every

vector to unit length. The ratio between the lengths of the

vectors and the velocity pattern are preserved.
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In Summary: Considered Transformations

All in all, the transforms of a function f (z) with respect to

which we want to normalize, take the shape

f ′(z) =seiα

(

f
(

e−iα z
)

+ t

)

, (14)

with the scaling factor s ∈ R
+, translational difference t ∈ C,

rotation angle α ∈ [−π,π]. In the next section, we will show

how this special kind of normalization can be produced.

Discrete Formulation

For the practical computation a discrete formulation of the

integral definitions in Sec. 3.1 has to be used. For a given

position z0 = x0 + iy0 and scale s, discrete functions are

sampled on a uniform grid with spacing h = 1/s and the

moments of order n = p+q are computed as

cpq(z0) =
s

∑
k,l=−s

√
s2+k2

∑
l=−

√
s2+k2

(kh+ ilh)p(kh− ilh)q f (z0 + kh+ ilh).

(15)

It should be noted that integration using discrete filters, reduces

the accuracy of the rotation invariance, see Section 8. The

computation of the moments is defined as a convolution and

can be efficiently performed using the fast Fourier transform

(FFT).

5 CONSTRUCTION OF THE INVARIANTS BY

NORMALIZATION

The transformation (14) has four real, respectively two com-

plex, degrees of freedom. This means, in order to define a

standard position with respect to total rotation, outer scaling,

and outer translation for the normalization, we have to choose

two complex moments and move the function such that these

are set to specified values. These moments should be of low

order to be robust [1]. Mathematically speaking, we look for

parameters s0 ∈ R
+, t0 ∈ C, and α0 ∈ [−π,π), such that the

function

f 0(z) =s0eiα0

(

f
(

e−iα0 z
)

+ t0

)

(16)

has two complex moments with fixed values.

Lemma 1. Let s ∈ R
+, t ∈ C,α ∈ [−π,π) be parameters for

outer scaling, outer translation, and total rotation and let

f ′(z) =seiα

(

f
(

e−iα z
)

+ t

)

, (17)

be the transformed copy of a complex function f : C → C.

Then, the complex moments c′p,q of f ′ over the circular,

compact area A = Br(0) satisfy

c′p,q = seiα(p−q+1)
(

cp,q + t

∫

A
zpzq dz

)

. (18)

Proof: With a suitable substitution of the integration

variable, the complex moments c′p,q of f ′ suffice

c′p,q =
∫

A
zpz̄q f ′(x,y)dz =

∫

A
zpz̄qseiα

(

f (e−iα z)+ t
)

dz

=seiα
∫

A
(eiα z)p(eiα z)q

(

f (z)+ t
)

dz

=seiα(p−q+1)
∫

A
zpzq

(

f (z)+ t
)

dz

=seiα(p−q+1)
(

cp,q + t

∫

A
zpzq dz

)

,

(19)

which proves the assertion.

The choice of the moments that can be used for the

normalization is not arbitrary. As can be seen from Lemma

1, the parameter t only has influence on moments c′p,q with

p = q, because
∫

A zpzq dz = 0 for any pair p 6= q. That means

we have to take one of these. A reasonable choice is setting

c0,0 = 0 because in our application, the moment of order zero

represents the average flow or the background flow of the field

and a suitable standard position is a vanishing background

flow. Applying Lemma 1 gives

c0
0,0 = seiα0

(

c0,0 + t0

∫

A
dz
)

(20)

and leads to the following condition for t0

c0
0,0 = 0 ⇔ t0 =− c0,0

∫

A dz
. (21)

This operation is generally defined for any non vanishing area

/0 6= A ⊂ C. So, we can always preset to zero the moment of

order zero to normalize with respect to outer translation.

A classical choice for the preset value for a standard position

with respect to scaling is to require unit magnitude for a

selected moment. For the standard position with respect to

rotation, we follow a common choice and align a moment to

the positive real axis. The magnitude and the direction can both

be encoded in a single complex moment. Thus, it is sufficient

to choose one moment combining the normalization of rotation

and scaling, and set it to one. It should be noted that a moment

only qualifies as candidate for this normalization if it is non-

zero. This means that the choice of an appropriate moment

depends on the respective pattern function. We suggest to

test the magnitude of the rotationally variant moments of

the pattern in ascending order and take the first one with a

significant value. We denote it by cp0,q0
. This leads to the

following theorem, a main result of this paper.

Theorem 1. Let f : C → C be a complex function with

compact support and the complex moment cp0,q0
6= 0 for a

pair p0,q0 ∈ N,q0 − p0 6= 1. Then, there are p0 −q0 +1 total

rotations by angles α0 ∈ [−π,π) and a unique outer scaling

by the factor s0 ∈ R
+ such that the moment c0

p0,q0
of the

normalized function f 0(z) = seiα0 f (e−iα0 z) takes the value 1.

These are the rotations about the angles

α0 =
2kπ − arg(cp0,q0

)

p0 −q0 +1
(22)

with k ∈Z such that α0 ∈ [−π,π) and the scaling by the factor

s0 =
1

|cp0,q0
| . (23)
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Proof: Application of Lemma 1 gives the relation

c0
p0,q0

=s0eiα0(p−q+1)cp0,q0
, (24)

which leads to

|c0
p0,q0

|= 1 ⇔|s0eiα0(p0−q0+1)cp0,q0
|= 1

⇔|s0||cp0,q0
|= 1

⇔s0 =
1

|cp0,q0
|

(25)

and

c0
p0,q0

∈ R
+ ⇔s0eiα0(p0−q0+1)cp0,q0

∈ R
+

⇔arg(s0eiα0(p0−q0+1)cp0,q0
) = 0

⇔α0(p0 −q0 +1)+ arg(cp0,q0
) = 2kπ

⇔α0 =
2kπ − arg(cp0,q0

)

p0 −q0 +1
.

(26)

with k ∈ Z. Please note that the restriction of s0 ∈R
+ guaran-

tees the uniqueness of s0 and α0 ∈ [−π,π) the total number

of p0 −q0 +1 solutions for α0. The existence of s0 is ensured

by the claim cp0,q0
6= 0 and the existence of α0 by the claims

q0 − p0 6= 1 and cp0,q0
6= 0.

The application of these parameters to the general formula

(16) gives the normalized function. The calculation of the

function is not necessary. The pattern recognition is done by

comparing the moments of the pattern to the ones in the field.

That means we only have to transform the moments as in

Lemma 1 but do not need to resample and interpolate the

function.

If normalization with respect to reflections is desired, there

are two possibilities. We either choose another moment with

non vanishing imaginary part and demand that to be positive

by applying the complex conjugation to all the moments. Or

we store the moments of the pattern and their complex conju-

gates for comparison. The parameters for the other transforms

can take infinitely many different values, while the parameter

for the reflection can only take two values. Either we have

to conjugate or we do not. Because of that, the increase in

computational complexity for the latter method is marginal

and it makes the process more flexible. We only need one

moment that does not vanish and not two. Therefore we used

the latter option in our final implementation.

Corollary 1. Let f : A = Br(0) → C be a complex function

with compact support and the complex moment cp0,q0
6= 0 for

a pair p0,q0 ∈ N,q0 − p0 6= 1. Further let

t0 =− c0,0
∫

A dz
,s0 =

1

|cp0,q0
| ,α

k
0 =

2kπ − arg(cp0,q0
)

p0 −q0 +1
(27)

with k = 1, ..., |p0−q0+1|. Then, for p,q∈N, the set of 2|p0−
q0 +1| normalized complex moments

C0
p,q = {c0,k

p,q,k = 1, ...,2|p0 −q0 +1|} (28)

with

c0,k
p,q =s0eiαk

0 (p−q+1)
(

cp,q + t0

∫

A
zpzq dz

)

,∀k = 1, ..., |p0 −q0 +1|,

c0,k
p,q =c

0,k−|p0−q0+1|
p,q ,∀k = |p0 −q0 +1|+1, ...,2|p0 −q0 +1|

(29)

Example f (z) = −iz + 1 + 0.5i

with c0,0 = π + iπ
2

, c1,0 =− iπ
2

Normalized with respect to back-
ground flow c0,0 = 0: f (z) =−iz

Normalized with respect to veloc-
ity |c1,0|= 1: f (z) =− 2iz

π

Normalized with respect to rota-
tion c1,0 ∈ R

+: f (z) = 2z
π

Fig. 5. Normalization of an example saddle pattern. Blue

means low and red high velocity, compare colorbar in

Figure 6.

is well defined and invariant with respect to outer scaling,

outer translation, total rotation, and total reflection.

To illustrate the normalization process applied to a flow

field, we use a simple saddle pattern defined over the unit

sphere as an example in Figure 5.

6 ALGORITHM AND RUNTIME

In the following section, we describe the algorithm implement-

ing the moment normalization to detect patterns in flow fields.

The input of our pattern detection algorithm is a flow field of

size Nx ×Ny and a search pattern g. Further parameters that

have to be defined are the maximum order n of moments that

are considered for the comparison and a scale discretization

{s1, . . . ,sNs}. The first step is to compute the moments of the

pattern, see Algorithm 1 line 2. To achieve high robustness,

we choose the moment with highest magnitude for the normal-

ization in Algorithm 1 line 4. The normalization as described

in Corollary 1 can be found from lines 5 to 11. The second

step pre-processes the flow field. This means, we calculate

the complex moments for a discrete number of positions and

scales in the field to cover the inner translation and scaling

invariance. Then, we normalize the moments according to

Corollary 1. The third step finally computes a similarity field

S(x,s) for the search pattern. As similarity measure, we use

the reciprocal of the minimum of the Euclidean distances of

the set of moment invariants up to a given grade in Algorithm

1 line 24.
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Algorithm 1 Flow field pattern recognition

Input: Nx × Ny flow field: f , Br(0) pattern: g, maximum

moment order: n, scales: {s1, ..,sNs},

1: for p+q ≤ n do

2: moments of the pattern: c
g
p,q =

∫

Br(0)
zpzqg(z)dz,

3: end for

4: p0,q0 = argmaxp−q6=−1,p+q≤n |cg
p,q|,

5: t0 =− c
g
0,0

∫

Br(0)
dz

,

6: s0 =
1

|cg
p0 ,q0

| ,

7: for k = 1, .., |p0 −q0 +1| do

8: αk
0 =

2kπ−arg(c
g
p0 ,q0

)

p0−q0+1
,

9: for p+q ≤ n do

10: normalize: c
g0,k
p,q = s0eiαk

0 (p−q+1)
(

c
g
p,q +

t0
∫

Br(0)
zpzq dz

)

,

11: normalize: c
g0,k+|p0−q0+1|
p,q = c

g0,k
p,q ,

12: end for

13: end for

14: for x ∈ Nx ×Ny,s = s1, ..,sNs do

15: for p+q ≤ n do

16: moments of the field: c
f
p,q(x,s) =

∫

Bs(x)
zpzqv(z)dz,

17: end for

18: t0 =− c
f
0,0(x,s)

∫

Bs(0)
dz

,

19: s0 =
1

|c f
p0 ,q0

(x,s)|
,

20: α0 =
−arg(c

f
p0 ,q0

(x,s))

p0−q0+1
,

21: for p+q ≤ n do

22: normalize: c
f 0
p,q(x,s) =

s0eiα0(p−q+1)
(

c
f
p,q(x,s)+ t0

∫

Bs(x)
zpzq dz

)

,

23: end for

24: S(x,s) = 1

(mink=1,..,2|p0−q0+1| ∑p+q≤n(c
f 0
p,q(x,s)−c

g0,k
p,q )2)

,

25: end for

Output: similarity of the pattern p to the field f at position

x and scale s: S(x,s).

Algorithm 2 describes the visualization of the resulting

three-dimensional (position and scale) scalar similarity field

S : R2 ×R
+ → R, which is the output of Algorithm 1. This

visualization was done by extracting the local maxima with

values above the average similarity as a threshold, compare

Algorithm 2 line 3. As can be seen in line 4, for any of these

local maxima, we draw a circle in the two-dimensional image

plane in the following way:

• The size (scale) is represented by the diameter of the

circle.

• The position (translation) is represented by its center.

• The similarity is represented by the color of the circle:

red is average, yellow is high, and white is extremely

high.

The runtime of the algorithm is dominated by the calculation

of the moments on the flow field. It depends on the size of

the field Nx ×Ny, the size of the pattern given by its radius r,

which determines the integration area, the number of different

scales Ns, and the maximum order of moments n. In a straight

Algorithm 2 Visualization of the similarity

Input: similarity matrix of the Br(0) pattern g to the Nx ×Ny

field f at scales: {s1, ...,sNs},

1: Sav = ∑x∈Nx×Ny,s=s1,..,sNs
S(x,s)/Nx/Ny/Ns,

2: for x ∈ Nx ×Ny,s = s1, ..,sNs do

3: if S(x,s) > Sav and ∀y ∈ B1(x),∀t ∈ B1(s) : S(x,s) ≥
S(y, t) then

4: draw circle Cs(x) around x with radius s in color

S(x,s),
5: end if

6: end for

Output: graphic of the similarity of the pattern p to the field

f .

forward approach, this leads to O(NxNyr2Nsn
2) operations.

Our current implementation does not focus on an optimal

performance. The computation of the moments corresponds

to a convolution and can be efficiently implemented using a

fast Fourier transform algorithm of O(NxNy log(NxNy)Nsn
2).

The work of Flusser [11] considers further options for runtime

improvements, which we will further explore in future work.

Compared to the time consuming moment calculation,

the normalization and the comparison of the moments with

O(NxNyNsn
2) is very fast. Therefore, we separate these two

parts in practical applications. The computation of the mo-

ments can be done offline in a pre-processing step. Using the

pre-computed, saved moments allows an interactive querying

and exploration of the data set in real time.

For our example field, with 400× 100 points, the runtime

for the computation of all moments up to third order for a

pattern scale of 30×30 points as in Figure 16 is 100 seconds,

which we still consider feasible. The time consumption for

the normalization of the moments and the visualization is

negligible. It takes 0.2 seconds. Even though, our algorithm

can be parallelized very well, this is the computation time for

sequential computation.

In order to store the moments, the memory requirements

are O(NxNyNsn
2).

7 SELECTION OF THE TRANSFORMATIONS

In this section, we analyze the influence of the normalization

with respect to the three transformations separately. Depending

on the application, it may be of advantage not to normalize

with respect to all of them. Our implementation contains the

option for the user to select the transformations with respect

to which he wants the moments to be invariant.

As an example to illustrate these situations we used a pair

of saddles in an analytic flow field of order two

f (z) = (z−1)(z+1) = z2 −1. (30)

In this field reduced to [−2,2]× [−2i,2i] ⊂ C, we look for a

classical first order saddle pattern

f (z) = iz (31)

defined in the complex unit sphere. Both can be seen in Figure

6 depicted in correct ratio of their sizes. The moments are
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Pattern from (31) Field from (30)

Fig. 6. The query: find a saddle in the double saddle

structure. The color represents the velocity of the field.

calculated in the field at discrete positions with a resolution

of 0.1 and with scales 0.2,0.3, ...,2.

Output of the algorithm. The background flow has been
removed in the area of interest.

Fig. 7. Output of the algorithm if normalization is only

performed w. r. t. translation is laid over the LIC from

Figure 6. As can be seen in the color bar, low similarity

is depicted by red, intermediate by yellow, and high by

white circles.

First we analyze the normalization with respect to transla-

tion in Figure 7. For the purpose of illustration, we removed

the mean flow of the area with the highest similarity in the

image on the right. That way we can see, why the output

appears at a rather surprising position. In fact, the field

resembles a saddle almost everywhere, if we normalize with

respect to translation. If we remove the mean flow globally,

the field is the monkey saddle f (z) = z2, which can be seen

in Figure 2. The area of the best fit is a little smaller than the

one of the pattern. That compensates for the higher velocity

in the double saddle field. The analogous spot on the lower

half of the field is not a match, because there the flow goes

into the opposite direction.

The result of the algorithm for normalization with respect to

rotation only is pretty much as expected, compare Figure 8 top

left. The two rotated and slightly distorted saddles are detected.

The only interesting fact is that the similarity (sim = 2.4) is

lower there than the one for the query with translation only

(sim = 3.4).

The fact that the field resembles a saddle almost everywhere

becomes very apparent, if we normalize with respect to

translation and rotation. The maxima appear along the radial

Rotation Rotation and translation

Translation and scaling Rotation and scaling

Fig. 8. Output of the algorithm, if normalization is per-

formed w. r. t different combinations of transformations.

distance to the origin where the velocity of the pattern best

matches the velocity of the higher order field, compare the top

right of Figure 8. These circular maxima repeat further away

from the center for smaller integration areas that even out the

higher velocity of the field. Parts of the second layer can be

seen in the four corners of the image.

If we allow normalization with respect to scaling, too, the

situation changes. Since the velocity grows quadratically in the

field but linearly in the pattern, the two do not really match.

The similarity will become higher for smaller patches of the

field. Because there, the difference in growth is less apparent.

The positions of the best matches in Figure 8 bottom are pretty

much as before in Figure 7 and Figure 8 top left. But the scale

is much smaller and the similarity much higher (46 and 59).

The new radius is 0.2 which is the minimal scale we looked

for.

A very surprising output is produced, if the normalization is

performed with respect to translation, rotation, and scaling on

the left of Figure 9. The invariance with respect to background

flow makes the whole field similar to a saddle and the best

matches with a similarity of 64 do not coincide with the

visible positions of the saddles. To illustrate the reason for

this situation, we removed the background flow in the area

of the highest similarity on one side. The underlying saddle

indeed is less bent than the visible one. On the right in Figure

9, we can see the output of the algorithm, if a minimal scale of

0.1 is chosen. This area is small enough to return the expected

match without being distorted too much. The similarity here

is 94.
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Minimal scale is 0.2. The back-
ground flow has been removed in
the right area.

Minimal scale is 0.1

Fig. 9. Output of the algorithm, if normalization is per-

formed w. r. t translation, rotation, and scaling.

Scale is 0.1. Scale is 0.2. Scale is 0.3.

Fig. 10. Similarity of the saddle to the field with different

scales. The similarity at every position is encoded in the

color map.

In order to better explain the influence of the minimal scale

to the results in Figure 9, we omitted the calculation of the

maxima and the circles, but encoded the immediate similarity

at every position for a given scale in the color map in Figure

10. The moments are normalized with respect to translation,

rotation, and scaling. We can see that the image resembles

a saddle pretty much everywhere except for the center. The

higher the scale, the more of this central area is enclosed in

the patches around the visible centers of the saddles, and the

less similar becomes the result.

Pattern (32), field (33), and
“output” without reflection

The output with reflection

Fig. 11. Illustration of the influence of normalization with

respect to reflection. The color bar shows the similarity.

Finally we look for a vortex

f (z) = iz (32)

in a field of the same vortex but with opposite flow direction

f (z) =−iz. (33)

Since the vortices can not be mapped to each other using

translation, rotation, or scaling, but only by a reflection, no

significant similarity (0.3) can be found using only the three

mappings. There is no visible output. Therefore, the pattern,

the field, and the output of the algorithm can all be seen in

Figure 11 left, because the line integral convolution does not

show the orientation of the flow. If we normalize with respect

to reflection, the algorithm returns the equality of the pattern

and the field, compare Figure 11 right.

The preceding experiments lead to the following conclusion.

The normalization is a powerful tool and the transformations

have to be chosen carefully and wisely to fulfill their purpose

in the particular applications. Especially the normalization

with respect to background flow will sometimes lead to

unexpected results. Because it gives the maximal similarity

of the field in any constantly moving frame.

8 EXPERIMENTS

Our algorithm is based on the standard complex moments. We

only changed the computation of the invariants. That means

the numerical behavior is equal to the results given by Abu-

Mostafa and Psaltis [1] and Teh and Chin [29] for complex

moments. Our practical experiments support their fundamental

findings.

The theory states full invariance for our moments, see

Section 4. But in practical applications, this is not the case due

to discretization errors. To investigate the practical reliability,

we performed some experiments with discretized data for the

saddle v(x) = (x2,x1)
T = z = f (z) on a uniform Cartesian grid

x = j/n,y = j/n, j = 1,2, ...n. The complex moments up to a

given grade span a feature space. The error is measured as the

Euclidean distance in this vector space. We show results of

these experiments depending on the integration step size 1/n

and on the maximum grade of the moments in Figure 12.
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Fig. 12. Errors due to discretization with a resolution of

0.1 (discr.), total rotation (rot.), outer translation (tr.), outer

scaling (sc.), and evenly distributed noise with SNR = 3.5
(noise). The lines connecting the points are for visualiza-

tion purposes only.

First, we compared the calculated moments to the analytic

values. The corresponding graphs in Figure 12 are marked
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by “discr.”. The error depends linearly on the resolution but

grows faster with increasing grade. The ’jumps’ after every

increment by two is due to the structure of the moments. The

saddle is only represented by moments of odd grade.

To analyze the invariance of the moments, we rotated and

scaled the saddle and added uniform background flow with

different directions and velocity. Figure 12 shows the largest

differences of the moment invariants for these transformations.

The corresponding graphs are marked by “rot.”, “sc.”, and

“tr.”. As can be seen, the errors with respect to rotation

and translation are in the order of the resolution of the

discretization. Only the invariance with respect to scaling is

close to perfect. Since the background flow is only represented

by moments of even grade, the ’jumps’ after every second

increment of translation is shifted compared to the ’jumps’

that are linked with the saddle.

Finally, we tested robustness with respect to evenly dis-

tributed noise. The resulting error for a signal to noise ratio of

SNR= 3.5 is shown in the graphs marked by “noise” in Figure

12. The influence of the noise scales linearly with respect to

its power. The behavior of the moments with respect to the

chosen noise intensity is also representative for other noise

magnitudes.

9 APPLICATIONS

The original flow field, in which we look for the patterns.

The field with removed mean flow serves as basis for the pattern selection.

Fig. 13. Line integral convolution of the dataset. The

colors represent the velocity of the field: blue is slow, red

is fast.

We applied our algorithm to one time slice of a 2D CFD

simulation of a Kármán vortex street, which is the result of a

flow passing a cylinder. The line integral convolution (LIC) [4]

of this slice can be found in Figure 13. We calculated the

complex moments for a discrete number of positions and

scales in the field to cover the inner translation and scaling

invariance. Then, we normalized the moments according to

Corollary 1. As similarity measure, we used the reciprocal of

the minimum of the Euclidean distances of the set of moment

invariants up to a given grade.

In the following examples, we select query patterns from

the dataset field without mean flow (Figure 13 bottom) and

search for it in the original dataset (Figure 13 top). The chosen

features are shown in Figure 14. Results of our algorithm for

a maximal grade of three and five applied to the vortex saddle

Vortex saddle pat-
tern in Figures 15,
16, and 17

Double vortex pat-
tern in Figure 18

Double vortex sad-
dle in Figure 19

Fig. 14. Query patterns selected from Figure 13 bottom.

The moments up to a maximal grade of three were used.

The moments up to a maximal grade of five were used.

Fig. 15. Similarity of the dataset to the vortex saddle

pattern.

combination on the left of Figure 14 can be found in Figure

15. It confirms the invariance with respect to outer translation,

the similarity field takes its maximum at exactly the position

and the size, where the pattern itself was selected.

To show that our algorithm works adequately, we overlay its

output for the saddle vortex combination from Figure 15 over

the LIC of the field without the mean flow (Figure 13 bottom).

Figure 16 shows the result, which allows some interesting

observations:

• As expected, the maximum similarity appears where

the pattern meets itself and the following local maxima

appear where the pattern repeats itself along the Kármán

street.

• At first sight, it might be surprising that there is no match

at the saddle vortex combinations with the saddle in the

upper half of the image. Even though the LIC image

shows the same pattern, the flow orientation is reversed.

Invariance with respect to reflection could be easily added

to the set of transforms considered for normalization but

we liked to keep the moments sensitive with respect to

this feature to stress the difference in the vortices.

• There are matches with intermediate similarity on the

upper left and right of each strong match. They highlight

the rotated pattern by 2π
3

and 4π
3

that consist of the same

vortex and one of the two upper saddles to the left and

the right. The similarity is lower due to the slight, oval

deformation of the vortices.

• A higher accumulation of approximately concentric cir-

cles and some apparently false positives can be observed
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Fig. 16. For comparison, the similarity to the saddle vortex combination was laid over the LIC of the flow field with

removed mean flow.

at the more distant repetitions. This phenomenon can be

reduced by increasing the maximal grade of the moments,

as shown in Figure 15 bottom. Here we used the 21

moments up to the fifth grade, which results in a higher

discriminating power than using just the 10 moments up

to third order.

SNR = 8.6

SNR = 4.3

Fig. 17. Similarity of the dataset to the saddle vortex

combination with distortions by different signal to noise

ratios.

We analyzed the robustness of our algorithm with respect

to noise. For this experiment we added a random field of

evenly distributed noise to the data set. Some visual results can

be found in Figure 17. Since the moments are computed by

integration, they are very robust. The similarity values hardly

change under the influence of small noise. The main change

in the images is the many new circles with mostly rather

low similarity. The reason for this, is not the calculation of

the moment invariants but the decision to draw the circles

at local maxima. The noise leads to a less smooth similarity

field and therefore an increasing number of maxima. That is

no disadvantage of the moment invariants because they are

not intrinsically tied to the final visualization of the similarity

field. The calculation of the similarity values starts to fail when

the power of the noise gets close to twice that of the one of

the image, which can be considered pretty robust.

The results of the algorithm in Figure 16 are quite rep-

resentative. The mentioned observations can be made with

other patterns, too. As another example, we show the output

of our algorithm for the pattern consisting of the two counter

oriented vortices and two saddles from the right of Figure 14.

Again, as expected, the original cutout can be found in the very

bright circle and its repetitions with lower similarity along the

Kármán street in Figure 19.

The pattern: an elogated vortex. The field: a swirling jet sim-
ulation.

Fig. 20. LIC color coded by velocity of the pattern and the

field of our second application.

As another example, we applied our algorithm to the simu-

lation of a swirling jet. Figure 20 show the pattern on the left

and the field in the middle. The pattern is a slightly elongated

vortex over the unit sphere defined by the formula

f (z) =−5iz+ iz. (34)

The flow field is the result of the simulation of a fast

stream entering a liquid at rest. We show the output of our

algorithm laid over the LIC in Figure 21. In the left image,

we normalized with respect to rotation, reflection, translation,

and scaling. The appearances that are in the vicinity of the

vortices, but not in the center are due to the normalization with

respect to translation. This effect was explained in Section 7.

The image on the right is the result of normalization only with

respect to rotation, reflection, and scaling. It is also apparent,

that there are weak matches at bends with high curvature in the

left image, which do no longer appear in the right one. Leaving

out the background flow gives them the shape of vortices,

too. If we leave out normalization with respect to reflections,

only the vortices to the right of the jet are detected. Please

note, that the maximal similarity values im the left image are

much higher (sim = 60) than the ones without translational
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Fig. 18. The similarity of the underlying field to the counter oriented double vortex is encoded in the brightness of the

circles.

Fig. 19. For comparison, the similarity to the double vortex saddle pattern was laid over the LIC of the field with

removed mean flow.

Normalized with respect to rotation, reflection, scaling, and translation. Normalized with respect to rotation, reflection, and scaling.

Fig. 21. For comparison, the similarity to the elongated vortex pattern from (34) was laid over the LIC of the simulated

field from Figure 20. The colorbar indicates the similarity.
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normalization (sim= 7). We adapted the range of the colormap

to make both results visible.

10 CONCLUSION

In this paper, we have introduced moment normalization for

vector fields to define a new class of moment invariants as

descriptors for vector fields. We have presented the theoretical

framework for the calculation of moment invariants of 2D

flow fields using this technique. By applying it to a real world

data set, we could show that the mathematical results can be

used more generally to describe, analyze, and compare discrete

flows in a numerically robust way.

Compared to the invariants suggested by Schlemmer et al.,

our approach exhibits a couple of advantages. It is intuitively

motivated and produces a complete and independent set of

moment invariants, can easily be generalized to other transfor-

mations, as for example reflections, and to other function space

bases. It considers the velocity of the field and thus overcomes

the problem of self similarity of vortex like structures revealing

the size of the patterns as maxima in the scale space. The

order of the moments is not limited, resulting in a substantially

higher discriminative power.

The complexity for the computation of the moments is the

same as in the work of Schlemmer et al. The computation

of the moments corresponds to a convolution and can be

efficiently implemented using the FFT. Our current imple-

mentation does not focus on an optimal performance. For our

examples the runtime is approximately 1 minute using the FFT,

which we still consider feasible. But when moving to 3D the

runtime becomes a challenge.

In our future work, we plan to extend the moment normal-

ization to time dependent and 3D flow fields. The generaliza-

tion to 3D involves a couple of challenges, but is possible.

ACKNOWLEDGMENTS

We thank Gerd Mutschke from the TU Dresden for providing

the von Karmann vortex street dataset and Prof. Kollmann

from the University of California at Davis for producing

the swirling jet dataset. We would further like to thank the

FAnToM development group from the Leipzig University

for providing the environment for the visualization of the

presented work, especially Jens Kasten and Stefan Koch. This

work was partially supported by the European Social Fund

(Application No. 100098251).

REFERENCES

[1] Y. S. Abu-Mostafa and D. Psaltis. Recognitive Aspects of Moment
Invariants. IEEE Trans. Pattern Anal. Mach. Intell., pages 698–706,
1984.

[2] A. Brambilla, R. Carnecky, R. Peikert, I. Viola, and H. Hauser. Illus-
trative Flow Visualization: State of the Art, Trends and Challenges. EG

2012, State of the Art Reports:75–94, 2012.
[3] R. Bujack, I. Hotz, G. Scheuermann, and E. Hitzer. Moment Invariants

for 2D Flow Fields via Normalization. In IEEE Pacific Visualization

Symposium, PacificVis 2014 in Yokohama, Japan, 2014.
[4] B. Cabral and L. C. Leedom. Imaging vector fields using line integral

convolution. In Proceedings of the 20th annual conference on Computer

graphics and interactive techniques, SIGGRAPH ’93, pages 263–270.
ACM, 1993.

[5] J. Daniels, E. W. Anderson, L. G. Nonato, and C. T. Silva. Interactive
Vector Field Feature Identification. IEEE Trans. on Vis. and Computer

Graphics, 16(6):1560–1569, 2010.
[6] H. Dirilten and T. Newman. Pattern Matching Under Affine Transfor-

mations. IEEE Trans. on Computers, 26(3):314–317, 1977.
[7] J. Ebling. Visualization and Analysis of Flow Fields using Clifford

Convolution. PhD thesis, University of Leipzig, Germany, 2006.
[8] J. Ebling and G. Scheuermann. Pattern Matching on Vector Fields using

Gabor Filter. In Proceeding from Visualization, Imaging, and Image

Processing (VIIP), 2004.
[9] G. Erlebacher, C. Garth, R. S. Laramee, H. Theisel, X. Tricoche,

T. Weinkauf, and D. Weiskopf. Texture and Feature-Based Flow
Visualization - Methodology and Application. In IEEE Visualization

Tutorial, 2006.
[10] J. Flusser. On the independence of rotation moment invariants. Pattern

Recognition, 33(9):1405–1410, 2000.
[11] J. Flusser, B. Zitova, and T. Suk. Moments and Moment Invariants in

Pattern Recognition. Wiley, 2009.
[12] E. Heiberg, T. Ebbers, L. Wigström, and M. Karlsson. Three-

Dimensional Flow Characterization Using Vector Pattern Matching.
IEEE Trans. on Vis. and Computer Graphics, 9(3):313–319, 2003.

[13] M.-K. Hu. Visual pattern recognition by moment invariants. IRE

Transactions on Information Theory, 8(2):179–187, 1962.
[14] J. Jeong and F. Hussain. On the Identification of a Vortex. Journal of

Fluid Mechanics, 285:69–94, 1995.
[15] J. Kasten, I. Hotz, and H.-C. Hege. On the Elusive Concept of

Lagrangian Coherent Structures. In Topological Methods in Data

Analysis and Visualization II. Theory, Algorithms, and Applications.

(TopoInVis’11), pages 207–220, 2012.
[16] J. Kasten, J. Reininghaus, I. Hotz, and H.-C. Hege. 2D Time-dependent

Vortex Regions based on the Acceleration Magnitude. IEEE Trans. on

Vis. and Computer Graphics, 17(12):2080–2087, 2011.
[17] R. S. Laramee, H. Hauser, L. Zhao, and F. H. Post. Topology-Based

Flow Visualization, The State of the Art. In Topology-based Methods

in Visualization, pages 1–19, 2007.
[18] W. Liu and E. Ribeiro. Scale and Rotation Invariant Detection of

Singular Patterns in Vector Flow Fields. In IAPR International Workshop

on Structural Syntactic Pattern Recognition (S-SSPR), pages 522–531,
2010.

[19] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen.
Over Two Decades of Integration-Based, Geometric Flow Visualization.
In EG 2009 - State of the Art Reports, pages 73–92, 2009.

[20] C. E. Moxey, S. J. Sangwine, and T. A. Ell. Hypercomplex Correlation
Techniques for Vector Images. Signal Processing, IEEE Transactions,
51(7):1941–1953, 2003.

[21] F. Sadlo, R. Peikert, and E. Parkinson. Vorticity Based Flow Analysis
and Visualization for Pelton Turbine Design Optimization. In Proceed-

ings of the Conference on Visualization ’04, pages 179–186, 2004.
[22] J. Sahner, T. Weinkauf, N. Teuber, and H.-C. Hege. Vortex and Strain

Skeletons in Eulerian and Lagrangian Frames. IEEE Trans. on Vis. and

Computer Graphics, 13(5):980–990, 2007.
[23] T. Salzbrunn, H. Jänicke, T. Wischgoll, and G. Scheuermann. The

State of the Art in Flow Visualization: Partition-based Techniques. In
Simulation and Visualization 2008 Proceedings, 2008.

[24] M. Schlemmer. Pattern Recognition for Feature Based and Comparative

Visualization. PhD thesis, Germany, 2011.
[25] M. Schlemmer, M. Heringer, F. Morr, I. Hotz, M.-H. Bertram, C. Garth,

W. Kollmann, B. Hamann, and H. Hagen. Moment Invariants for
the Analysis of 2D Flow Fields. IEEE Trans. on Vis. and Computer

Graphics, 13(6):1743–1750, 2007.
[26] M. Schlemmer, I. Hotz, B. Hamann, and H. Hagen. Comparative Visu-

alization of Two-Dimensional Flow Data Using Moment Invariants. In
Proceedings of Vision, Modeling, and Visualization (VMV’09), volume 1,
pages 255–264, 2009.

[27] D. Schneider, A. Wiebel, H. Carr, M. Hlawitschka, and G. Scheuermann.
Interactive Comparison of Scalar Fields Based on Largest Contours with
Applications to Flow Visualization. IEEE Trans. on Vis. and Computer

Graphics, 14(6):1475–1482, 2008.
[28] M. R. Teague. Image analysis via the general theory of moments∗. J.

Opt. Soc. Am., 70(8):920–930, 1980.
[29] C.-H. Teh and R. Chin. On image analysis by the methods of moments.

IEEE Trans. Pattern Anal. Mach. Intell., 10(4):496–513, 1988.



15

Roxana Bujack received the Diploma in mathe-
matics in 2010 and the BSc in computer science
in 2011 at Leipzig University in Germany. She
is currently a PhD student in the Image and
Signal Processing group of the Department of
Computer Science at Leipzig University. Her re-
search interests include moment invariants, flow
visualization, pattern recognition in vector fields
and Clifford analysis.

Ingrid Hotz received the M.S. degree in theo-
retical Physics from the Ludwig Maximilian Uni-
versity in Munich Germany and the PhD degree
from the Computer Science Department at the
University of Kaiserslautern, Germany. During
2003 – 2006 she worked as a postdoctoral re-
searcher at the Institute for Data Analysis and
Visualization (IDAV) at the University of Cali-
fornia. From 2006 – 2013 she was the leader
of a junior research group at the Zuse Institute
in Berlin Germany. Currently, she is a scientific

visualization group leader at the German Aerospace Center (DLR).
Her research interests are in the area of data analysis and scientific
visualization with focus on tensor and vector fields.

Gerik Scheuermann received the master de-
gree (diplom) in mathematics in 1995 and a PhD
degree in computer science in 1999, both from
the Technical University of Kaiserslautern. He is
a full professor at the University of Leipzig since
2004. He is coauthor of more than 170 reviewed
book chapters, journal, and conference papers.
His current research interests focus on visual-
ization, especially on topology-based methods,
flow visualization, document visulaization and
visualization for life sciences. He has served as

paper cochair for Eurovis 2008, IEEE SciVis 2011, IEEE 2012, and on
various program committees including IEEE Visualization, Eurovis, and
IEEE PacificVis. He has organized TopoInVis 2007, AGACSE 2008 and
EuroVis 2013.

Eckhard Hitzer is Senior Associate Professor at
the Department of Material Science at the In-
ternational Christian University in Mitaka/Tokyo,
Japan. His special interests are theoretical and
applied Clifford geometric algebras and Clifford
analysis, including applications to crystal sym-
metry visualization, neural networks, signal and
image processing. Additionally he is interested
in environmental radiation measurements, re-
newable energy and energy efficient buildings.

hitzer
R. Bujack, I. Hotz, G. Scheuermann, E. Hitzer, Moment Invariants for 2D Flow Fields via Normalization in Detail, accepted by IEEE Transactions on Visualization and Computer Graphics, 2014.




