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Abstract. In this paper, we generalize the crisp topological space to the notion of neutrosophic
crisp topological space, and we construct the basic concepts of the neutrosophic crisp topology. In
addition to these, we introduce the definitions of neutrosophic crisp continuous function and neutrosophic
crisp compact spaces. Finally, some characterizations concerning neutrosophic crisp compact spaces are
presented and one obtains several properties. Possible application to GIS topology rules are touched
upon.
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1 Introduction

Neutrosophy has laid the foundation for a whole fami-ly of new mathematical theories generalizing both
their crisp and fuzzy counterparts, such as a neutrosophic set theory in [1, 2, 3]. After the introduction of
the neutrosoph-ic set concepts in [4, 5, 6, 7, 8, 9, 10, 11, 12] and fter have given the fundamental definitions
of neutrosophic set operations we generalize the crisp topological space to the notion of neutrosophic crisp
set. Finally, we introduce the definitions of neutrosophic crisp continuous function and neutrosophic crisp
compact space, and we obtain several properties and some characterizations concerning the neutrosophic
crisp compact space.

2 Terminologies

We recollect some relevant basic preliminaries, and in particular, the work of Smarandache in [1, 2, 3, 11],
and Salama et al. [4, 5, 6, 7, 8, 11]. Smarandache introduced the neutrosophic components T, I, F which
represent the membership, indeterminacy, and non-membership values respectively, where ]−0, 1+[ is a
non-standard unit interval.

Hanafy and Salama et al.[10, 11] considered some possible definitions for basic concepts of the neu-
trosophic crisp set and its operations. We now improve some results by the following.

3 Neutrosophic Crisp Sets

Definition 3.1 Let X be a non-empty fixed set. A neutrosophic crisp set (NCS) A is an object having
the form A = ⟨A1, A2, A3⟩, where A1, A2, and A3 are subsets of X satisfying A1 ∩A2 = ϕ, A1 ∩A3 = ϕ,
and A2 ∩A3 = ϕ.

Remark 3.1 A neutrosophic crisp set A = ⟨A1, A2, A3⟩ can be identified as an ordered triple ⟨A1, A2, A3⟩,
where A1, A2, and A3 are subsets on X, and one can define several relations and operations between NCSs.

Since our purpose is to construct the tools for developing neutrosophic crisp sets, we must introduce the
types of NCSs ϕN and XN in X as follows:
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1) ϕN may be defined in many ways as an NCS, as follows

i) ϕN = ⟨ϕ, ϕ,X⟩, or
ii) ϕN = ⟨ϕ,X,X⟩, or
iii) ϕN = ⟨ϕ,X, ϕ⟩, or
iv) ϕN = ⟨ϕ, ϕ, ϕ⟩.

2) XN may also be defined in many ways as an NCS:

i) XN = ⟨X,ϕ, ϕ⟩,
ii) XN = ⟨X,X, ϕ⟩,
iii) XN = ⟨X,X,X⟩.

Every crisp set A formed by three disjoint subsets of a non-empty set X is obviously an NCS having the
form A = ⟨A1, A2, A3⟩.

Definition 3.2 Let A = ⟨A1, A2, A3⟩ an NCS on X, then the complement Acof the set A may be defined
in three different ways:

(C1) A
c = ⟨Ac

1, A
c
2, A

c
3⟩,

(C2) A
c = ⟨A3, A2, A1⟩,

(C3) A
c = ⟨A3, A

c
2, A3⟩.

One can define several relations and operations between NCSs as follows:

Definition 3.3 Let X be a non-empty set, and NCSs A and B in the form A = ⟨A1, A2, A3⟩, B =
⟨B1, B2, B3⟩, then we may consider two possible definitions for subsets (A ⊆ B):

1) A ⊆ B ⇔ A1 ⊆ B1, A2 ⊆ B2 and A3 ⊇ B3,
or

2) A ⊆ B ⇔ A1 ⊆ B1, A2 ⊇ B2 and A3 ⊇ B3.

Proposition 3.1 For any neutrosophic crisp set A the following are hold:

i) ϕN ⊆ A,ϕN ⊆ ϕN ,

ii) A ⊆ XN , XN ⊆ XN .

Definition 3.4 Let X is a non-empty set, and the NCSs A and B in the form A = ⟨A1, A2, A3⟩,
B = ⟨B1, B2, B3⟩. Then:

1) A ∩B may be defined in two ways:

i) A ∩B = ⟨A1 ∩B1, A2 ∩B2, A3 ∪B3⟩ or
ii) A ∩B = ⟨A1 ∩B1, A2 ∪B2, A3 ∪B3⟩.

2) A ∪B may also be defined in two ways:

i) A ∪B = ⟨A1 ∪B1, A2 ∩B2, A3 ∩B3⟩ or
ii) A ∪B = ⟨A1 ∪B1, A2 ∪B2, A3 ∩B3⟩.

3) [ ]A = ⟨A1, A2, A
c
1⟩.

4) <> A = ⟨Ac
3, A2, A3⟩.

Proposition 3.2 For any two neutrosophic crisp sets A and B on X, the followings are true:

1) (A ∩B)c = Ac ∪Bc.

2) (A ∪B)c = Ac ∩Bc.
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We can easily generalize the operations of intersection and union in Definition 3.2 to arbitrary family of
neutrosophic crisp subsets as follows:

Proposition 3.3 Let {Aj : j ∈ J} be arbitrary family of neutrosophic crisp subsets in X. Then

1) ∩Aj may be defined as the following types:

i) ∩Aj = ⟨∩AJ1,∩AJ2,∪Aj3⟩, or
ii) ∩Aj = ⟨∩AJ1,∪AJ2,∪Aj3⟩.

2) ∪Aj may be defined as the following types:

i) ∪Aj = ⟨∪AJ1,∩AJ2,∩Aj3⟩, or
ii) ∪Aj = ⟨∪AJ1,∪AJ2,∩Aj3⟩.

Definition 3.5 The product of two neutrosophic crisp sets A and B is a neutrosophic crisp set given by

A×B = ⟨A1 ×B1, A2 ×B2, A3 ×B3⟩

.

4 Neutrosophic crisp Topological Spaces

Here we extend the concepts of topological space and intuitionistic topological space to the case of
neutrosophic crisp sets.

Definition 4.1 A neutrosophic crisp topology (NCT) on a non-empty set X is a family Γ of neutrosophic
crisp subsets in X satisfying the following axioms

i) ϕN , XN ∈ Γ.

ii) A1 ∩A2 ∈ Γ for any A1 and A2 ∈ Γ.

iii) ∪Aj ∈ Γ ∀ {Aj : j ∈ J} ⊆ Γ.

In this case the pair (X,Γ) is called a neutrosophic crisp topological space (NCTS) in X. The elements
in Γ are called neutrosophic crisp open sets (NCOSs) in Y . A neutrosophic crisp set F is closed if and
only if its complement F c is an open neutrosophic crisp set.

Remark 4.1 Neutrosophic crisp topological spaces are very natural generalizations of topological spaces
and intuitionistic topological spaces, and they allow more general functions to be members of topology:

TS → ITS → NCTS

Example 4.1 Let X = {a, b, c, d}, ϕN , XN be any types of the universal and empty subsets, and A, B
two neutrosophic crisp subsets on X defined by A = ⟨{a}, {b, d}, c⟩, B = ⟨{a}, {b}, {c}⟩, then the family
Γ = {ϕN , XN , A,B} is a neutrosophic crisp topology on X.

Example 4.2 Let (X, τ0) be a topological space such that τ0 is not indiscrete. Suppose {Gi : i ∈ J} be a
family and τ0 = {X,ϕ} ∪ {Gi : i ∈ J}. Then we can construct the following topologies:

i) Two intuitionistic topologies

a) τ1 = {ϕI , XI} ∪ {⟨Gi, ϕ⟩, i ∈ J}.
b) τ2 = {ϕI , XI} ∪ {⟨ϕ,Gc

i ⟩, i ∈ J}.

ii) Four neutrosophic crisp topologies

a) Γ1 = {ϕN , XN} ∪ {⟨ϕ, ϕ,Gc
i ⟩, i ∈ J}.

b) Γ2 = {ϕN , XN} ∪ {⟨Gi, ϕ, ϕ⟩, i ∈ J}.
c) Γ3 = {ϕN , XN} ∪ {⟨Gi, ϕ,G

c
i ⟩, i ∈ J}.

d) Γ4 = {ϕN , XN} ∪ {⟨Gc
i , ϕ, ϕ⟩, i ∈ J}.
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Definition 4.2 Let (X,Γ1), (X,Γ2) be two neutrosophic crisp topological spaces on X. Then Γ1 is said
be contained in Γ2 (in symbols Γ1 ⊆ Γ2) if G ∈ Γ2 for each G ∈ Γ1. In this case, we also say that Γ1 is
coarser than Γ2.

Proposition 4.1 Let {Γj : j ∈ J} be a family of NCTSs on X. Then ∩Γj is a neutrosophic crisp
topology on X. Furthermore, ∩Γj is the coarsest NCT on X containing all topologies.

Proof. Obvious

Now, we define the neutrosophic crisp closure and neutrosophic crisp interior operations in neutro-
sophic crisp topological spaces:

Definition 4.3 Let (X,Γ) be NCTS and A = ⟨A1.A2, A3⟩ be a NCS in X. Then the neutrosophic crisp
closure of A (NCCl(A) for short) and neutrosophic crisp interior (NCInt(A) for short) of A are defined
by

NCCl(A) = ∩{K : is an NCS in Xand A ⊆ K}
NCInt(A) = ∪{G : G is an NCOS in Xand G ⊆ A},

where NCS is a neutrosophic crisp set, and NCOS is a neutrosophic crisp open set.

It can be also shown that NCCl(A) is NCCS (neutrosophic crisp closed set) and NCInt(A) is a
CNOS in X.

a) A is in X if and only if NCCl(A) ⊇ A.

b) A is an NCCS in X if and only if NCInt(A) = A.

Proposition 4.2 For any neutrosophic crisp set A in (X,Γ) we have

(a) NCCl(Ac) = (NCInt(A))c.

(b) NCInt(Ac) = (NCCl(A))c.

Proof. Let A = ⟨A1, A2, A3⟩ and suppose that the family of neutrosophic crisp subsets contained in A are
indexed by the family if NCSs contained in A are indexed by the family A = { < Aj1, Aj2, Aj3 >: i ∈ J}.

a) Then we see that we have two types of

NCInt(A) = {< ∪Aj1,∪Aj2,∩Aj3 >} or

NCInt(A) = {< ∪Aj1,∩Aj2,∩Aj3 >} hence

(NCInt(A))c = {< ∩Aj1,∩Aj2,∪Aj3 >} or

(NCInt(A))c = {< ∩Aj1,∪Aj2,∪Aj3 >} .

b) Hence NCCl(Ac) = (NCInt(A))c follows immediately, which is analogous to (a).

Proposition 4.3 Let (X,Γ) be a NCTS and A,B be two neutrosophic crisp sets in X. Then the following
properties hold:

(a) NCInt(A) ⊆ A,

(b) A ⊆ NCCl(A),

(c) A ⊆ B ⇒ NCInt(A) ⊆ NCInt(B),

(d) A ⊆ B ⇒ NCCl(A) ⊆ NCCl(B),

(e) NCInt(A ∩B) = NCInt(A) ∩NCInt(B),

(f) NCCl(A ∪B) = NCCl(A) ∪NCCl(B),

(g) NCInt(XN ) = XN ,

(h) NCCl(ϕN ) = ϕN .

Proof. (a), (b) and (e) are obvious; (c) follows from (a) and definitions.
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5 Neutrosophic Crisp Continuity

Here come the basic definitions first:

Definition 5.1 (a) If B = ⟨B1, B2, B3⟩ is a NCS in Y , then the preimage of B under f denoted by
f−1(B) is a NCS in X defined by f−1(B) = ⟨f−1(B1), f

−1(B2), f
−1(B3)⟩.

(b) If A = ⟨A1, A2, A3⟩ is a NCS in X, then the image of A under f denoted by f(A) is the NCS in Y
defined by f(A) = ⟨f(A1), f(A2), f(A3)

c⟩.

Here we introduce the properties of images and preimages some of which we shall frequently use in the
following sections.

Corollary 5.1 Let A, {Ai : i ∈ J} be NCSs in X, and B, {Bj : j ∈ K} NCS in Y , and f : X → Y a
function. Then

(a) A1 ⊆ A2 ⇔ f(A1) ⊆ f(A2),
B1 ⊆ B2 ⇔ f−1(B1) ⊆ f−1(B2),

(b) A ⊆ f−1(f(A)) and if f is injective, then A = f−1(f(A)).

(c) f−1(f(B)) ⊆ B and if f is surjective, then f−1(f(B)) = B.

(d) f−1(∪Bi) = ∪f−1(Bi), f
−1(∩B1) = ∩f−1(Bi),

(e) f(∪Ai) = ∪f(Ai); f(∩Ai) ⊆ ∩f(Ai); and if f is injective, then f(∩Ai) = ∩f(Ai);

(f) f−1(YN ) = XN , f
−1(ϕN ) = ϕN .

(g) f(ϕN ) = ϕN , f(XN ) = YN , if f is subjective.

Proof. Obvius.

Definition 5.2 Let (X, Γ1) and (Y, Γ2) be two NCTSs, and let f : X → Y be a function. Then f is
said to be continuous iff the preimage of each NCS in Γ2 is an NCS in Γ1.

Definition 5.3 Let (X, Γ1) and (Y, Γ2) be two NCTSs and let f : X → Y be a function. Then f is
said to be open iff the image of each NCS in Γ1 is an NCS in Γ2.

Example 5.1 Let (X, Γ0) and (Y, ψ0) be two NCTSs.

(a) If f : X → Y is continuous in the usual sense, then in this case, f is continuous in the sense
of Definition 5.1 too. Here we consider the NCTs on X and Y , respectively, as follows: Γ1 =
{⟨G,ϕ,Gc⟩ : G ∈ Γ0} and Γ2 = {⟨H,ϕ,Hc⟩ : H ∈ Ψ0}, In this case we have, for each ⟨H,ϕ,Hc⟩ ∈
Γ2, H ∈ Ψ0, f

−1⟨H,ϕ,Hc⟩ = ⟨f−1(H), f−1(ϕ), f−1(Hc)⟩ = ⟨f−1(H), f(ϕ), (f(H))c⟩ ∈ Γ1.

(b) If f : X → Y is open in the usual sense, then in this case, f is open in the sense of Definition 3.2.

Now we obtain some characterizations of continuity:

Proposition 5.1 Let f : (X,Γ1) → (Y,Γ2). f is continuous iff the preimage of each CNCS (crisp
neutrosophic closed set) in Γ2 is a CNCS in Γ2.

Proposition 5.2 The following are equivalent to each other:

(a) f : (X,Γ1) → (Y,Γ2) is continuous.

(b) f−1(CNInt(B) ⊆ CNInt(f−1(B)) for each CNS B in Y .

(c) CNCl(f−1(B)) ⊆ f−1(CNCl(B)) for each CNC B in Y .

Example 5.2 Let (Y,Γ2) be an NCTS and f : X → Y be a function. In this case Γ1 = {f−1(H) :
H ∈ Γ2} is a NCT on X. Indeed, it is the coarsest NCT on X which makes the function f : X → Y
continuous. One may call the initial neutrosophic crisp topology with respect to f .
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6 Neutrosophic Crisp Compact Space (NCCS)

First we present the basic concepts:

Definition 6.1 Let (X,Γ) be a NCTS.

(a) If a family {⟨Gi1 , Gi2 , Gi3⟩ : i ∈ J} of NCOSs in X satisfies the condition ∪{⟨Gi1 , Gi2 , Gi3⟩ : i ∈
J} = XN then it is called an neutrosophic open cover of X.

(b) A finite subfamily of an open cover {⟨Gi1 , Gi2 , Gi3⟩ : i ∈ J} on X, which is also a neutrosophic
open cover of X, is called a neutrosophic finite subcover {⟨Gi1 , Gi2 , Gi3⟩ : i ∈ J}.

(c) A family {⟨Ki1 ,Ki2 ,Ki3⟩ : i ∈ J} of NCCSs in X satisfies the finite intersection property (FIP for
short) iff every finite subfamily {⟨Ki1 ,Ki2 ,Ki3⟩ : i = 1, 2, . . . , n} of the family satisfies the condition
∩{⟨Ki1 ,Ki2 ,Ki3⟩ : i ∈ J} ̸= ϕN .

Definition 6.2 A NCTS (X,Γ) is called neutrosophic crisp compact iff each crisp neutrosophic open
cover of X has a finite subcover.

Example 6.1 (a) Let X = N and consider the NCSs given below:

A1 = ⟨{2, 3, 4, . . .} , ϕ, ϕ⟩,
A2 = ⟨{3, 4, 5, . . .} , ϕ, {1}⟩,
A3 = ⟨{4, 5, 6, . . .} , ϕ, {1, 2}⟩,

...

An = ⟨{n+ 1, n+ 2, n+ 3, . . .} , ϕ, {1, 2, 3, . . . , n− 1}⟩.

Then Γ = {ϕN , XN} ∪ {An = 3, 4, 5, . . .} is an NCT on X and (X,Γ) is a neutrosophic crisp
compact.

(b) Let X = (0, 1) and let’s make the NCSs

An =

⟨
X,

(
1

n
,
n− 1

n

)
, ϕ,

(
0,

1

n

)⟩
, n = 3, 4, 5, . . . in X

In this case Γ = {ϕN , Xn} ∪ {An = 3, 4, 5, . . .} is a NCT on X, which is not a neutrosophic crisp
compact.

Corollary 6.1 A NCTS (X,Γ) is neutrosophic crisp compact iff every family {⟨X,Gi1 , Gj2 , Gi3⟩ : i ∈ J}
of NCCSs in X having the FIP has nonempty intersection.

Corollary 6.2 Let (X,Γ1), (Y,Γ2) be NCTSs and f : X → Y be a continuous surjection. If (X,Γ1) is
a neutrosophic crisp compact, then so is (Y,Γ2).

Definition 6.3 (a) If a family {⟨X,Gi1 , Gj2 , Gi3⟩ : i ∈ J}of NCCSs in X satisfies the condition A ⊆
∪{⟨Gi1 , Gj2 , Gi3⟩ : i ∈ J}, then it is called a neutrosophic crisp open cover of A.

(b) Let’s consider a finite subfamily of a neutrosophic crisp open subcover of {⟨X,Gi1 , Gj2 , Gi3⟩ : i ∈ J}.
A neutrosophic crisp set A = ⟨A1, A2, A3⟩ in a NCTS (X,Γ) is called neutrosophic crisp compact
iff every neutrosophic crisp open cover of A has a finite neutrosophic crisp open subcover.

Corollary 6.3 Let (X,Γ1), (Y,Γ2) be NCTSs and f : X → Y is a continuous surjection. If A is a
neutrosophic crisp compact in (X,Γ1), then so is f(A) in (Y,Γ2).

7 Conclusion

In this paper we introduced the neutrosophic crisp topology and the neutrosophic crisp compact space.
Then we presented several properties for each of them.
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