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Abstract: A dominating set of a graph η(G), is a total lict dominating set if the dominating

set does not contain any isolates. The total lict dominating number γt(η(G)) of G is a

minimum cardinality of total lict dominating set of G. The current paper studies total lict

domination in graph from an algorithmic point of view. In particular we had obtained the

algorithm for a total lict domination number of any graph. Also we had obtained the time

complexity of a proposed algorithm. Further we discuss the NP-Completeness of a total lict

domination number of the split graph, bipartite graph and chordal graph.
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§1. Introduction

All graphs considered here are finite, connected, undirected without loops or multiple edges

and without isolated vertices. As usual ‘p‘ and ‘q‘ denotes the number of vertices and edges of

a graph G.

The concept of domination in graph theory is a natural model for many location problems

in operations research. In a graph G, a vertex is said to dominate itself and all of its neighbors.

A set D ⊆ V of G is said to be a Smarandachely k-dominating set if each vertex of G is

dominated by at least k vertices of S and the Smarandachely k-domination number γk(G) of G

is the minimum cardinality of a Smarandachely k-dominating set of G. Particularly, if k = 1,

such a set is called a dominating set of G and the Smarandachely 1-domination number of G is

called the domination number of G and denoted by γ(G) in general.

A dominating set D of a graph G is a total dominating set if the dominating set D does

not contain any isolates. The total domination number γt(G) of a graph G is the minimum

cardinality of total dominating set.

The lict graph η(G) of a graph G is the graph whose vertex set is the union of the set
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of edges and the set of cut vertices of G in which two vertices are adjacent if and only if the

corresponding edges are adjacent or the corresponding members of G are incident. A dominating

set of a graph η(G), is a total lict dominating set if the dominating set does not contain any

isolates. The total lict dominating number γt(η(G) of G is the minimum cardinality of total

lict dominating set of G.

A vertex cover C of a graph G = (V, E) is a subset C ⊆ V such that for every edge uv ∈ E,

we have u ∈ C or v ∈ C. A cut-vertex of a connected graph G is a vertex v such that G − {v}
is disconnected.

A stable set in a graph G is a pair-wise non-adjacent vertices subset of V (G), and a clique is

a pairwise adjacent vertices subset of V (G). A graph is split if its vertex set can be partitioned

into a stable set and a clique. A graph is bipartite if its vertex set can be partitioned into two

stable sets. A graph is chordal if every cycle of length at least 4 has at least one chord, which

is an edge joining two non-consecutive vertices in the cycle.

In this paper, we obtain the algorithm for a total lict domination number of any graph.

Also, we had obtained the time complexity of a proposed algorithm. Further we discuss the

NP-Completeness of a total lict domination number of a graph with respect to split graph,

bipartite graph and chordal graph.

§2. Algorithm

To find the algorithm for the minimum total lict domination set of a graph we use initially,

the DFS algorithm to the find the cut vertices of a given graph [1], the VSA algorithm [2] to

find the minimum vertex cover of a graph and shortest path algorithm [3] to find the shortest

path in a graph. The edges in the shortest path gives a total lict domination set of graph G.

Then we reduce this to a minimum set which gives the minimum total lict domination set of

any graph G.

Algorithm to find the minimum total lict domination set of a given graph:

Input: A graph G = (V, E).

Output: A minimum total lict domination set D of a graph G = (V, E).

Step 1: Initialize D = φ.

Step 2: Label the vertices of a graph G as {vi/i = 1, 2, 3, 4, 5, · · · , n} and label the edges

of a graph G as {ej/j = 1, 2, 3, 4, 5, · · · , m}.
Step 3: Let A={vi/vi is a cut vertex of a graph G(V, E)}.
Step 4: Compute the set C of all minimal vertex covers in G, such that C does not

contain vertex of degree one.

Step 5: FOR the minimal vertex cover set c ∈ C, DO

Step 6: IF |V (c)| = 1.

GOTO Step 7.

ELSE
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IF |V (c)| = 2 and they are adjacent

GOTO Step 8.

ELSE

GOTO Step 9.

END IF.

Step 7: D = D ∪ { any two adjacent edges of E(G)}.
GOTO Step 13.

Step 8: D = D ∪ {(ei, ej), ei is a common edge incident with V (c) and ej ∈ N(ei)}
GOTO Step 13.

Step 9: Let E1 = {eq/eq ∈ E(G), where eq is the set of edges in the shortest path

connecting all the vertices of V (c) and 〈E1〉 6= K1,n if there is any other shortest

path }.
K = {el/el is an end edge ∈ E1}.
R = {ej/ej ∈ E(G) − E1/ej is adjacent to K}
FOR |E1| 6=1 or 0 DO,

Let two edges E2 = (ei, ej) ∈ E1 such that ej ∈ N(ei).

IF ei ∈ N(ej) and ei ∈ N(ek), where ek or ej is and end edge.

Then E2 = (ei,an end edge)

ELSE IF ei ∈ N(ej, ek) and ej ∈ N(el, em), (el, em) 6= ei

Then E2=(ei, ek)

END IF

END IF

D = D ∪ E2.

B = {ep/ep ∈ N(ei, ej) in E1}.
C1 = {er/er ∈ N(B)∩E1−(D∪B), er is not incident with A, er 6= (vi, vj), vi, vj ∈
C}.
E1 = E1 − (B ∪ C1).

END FOR.

Step 10: IF |E(E1)| = 0 then

GOTO Step 11.

ELSE

D = D ∪ {E1 ∪ ei, ei ∈ E1 and ei ∈ N(D)}.
GOTO Step 11.

END IF.

Step 11: FOR R 6= φ DO,

Let any edge in R

D = D ∪ {ek, ek ∈ E1 and ek ∈ N(ei)}.
R = R − {ei} ∪ {es/es ∈ N(D)}.
END FOR

Step 12: END FOR (from Step 4)

Step 13: RETURN D, a minimum total lict domination set of a graph G.

Step 14: STOP.
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§3. Time Complexity

The worst case time complexity of finding the solution of the minimum total lict domination

problem of a graph using the proposed algorithm can be obtained as follows:

Assume that there are n vertices and m edges in the proposed algorithm.

(i) DFS algorithm [1] to find the cut vertices of a given graph which requires a running

time of O(mn).

(ii) VSA algorithm [2] to find the minimum vertex cover of a given graph which requires

the running time of 0(mn2).

(iii) Shortest path algorithm [3] to find the shortest path connecting the vertices of V (c)

which requires the worst case of running time of O(m + n).

(iv) For a FOR loop in step 9 requires the worst case running time of 0
(

m−1
3

)
.

(v) For a FOR loop in step 11 requires the worst case running time of 0
(

2n
3 − 2

)
.

(vi) So the overall time is

O(mn) + 0(mn2) + O(m + n) + 0

(
m − 1

3

)
+ 0

(
2n

3
− 2

)
= 0(mn2).

§4. NP-Completeness of total lict domination number of a graph

This section establishes NP-Complete results for the total lict domination problem in bipartite

graph, split graph and in chrodal graph. The transformation is from the vertex cover problem,

which is known to be NP-Complete.
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Fig.1 A constructed bipartite graph G′ from the graph G

Theorem 4.1 The total lict domination number problem is NP-Complete for bipartite graph.

Proof The total lict domination number problem for bipartite graph is NP-Complete as we

can transform the vertex cover problem to it as follows. Given a non-trivial graph G = (V, E),
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construct the graph G
′

= (V
′

, E
′

) with the vertex set V
′

consists of two copies of V denoted

by V and V
′

, together with two special vertices x and y and whose edges E
′

consists of

(i) edges uv
′

and u
′

v for each edge uv ∈ E(G).

(ii) edges of the form uu
′

for each vertex u ∈ V .

(iii) edges of the form u
′

x for every vertex u ∈ V .

(iv) the one additional edge xy.

We claim that G = (V, E) has a vertex cover of size k if and only if G
′

= (V
′

, E
′

) has a

minimal total lict domination set of size k + (p − k). Let C be the vertex cover of G of size k.

Let B = {u′

x/u ∈ V } such that |B| = k. Let D = B ∪ R, where R = {u′

x/u ∈ V − C} with

|R| = p−k. Then it is clear that, D is a total lict dominating number of a bipartite graph with

cardinality k + (p − k).

On the other hand suppose D is a minimal total lict domination set of the graph G
′

with

cardinality k + (p − k). Let A = {vi/vi ∈ V
′

, vi is incident with ei ∈ D} with |A| = |D|. The

vertex set A in G
′

is V (G), such that A consists of copies of V and V − C and whose vertices

are adjacent to atleast one vertex of C. So, the graph G has a vertex cover of size k. 2
Theorem 4.2 The total lict domination number problem is NP-Complete for split graph.

Proof The total lict domination number problem for split graph is NP-Complete as we

can transform the vertex cover problem to it as follows.

Given a non-trivial graph G = (V, E) construct the graph G
′

= (V
′

, E
′

) with the vertex

set V
′

= V ∪ Eand E
′

= {uv : u 6= v, u, v ∈ V } ∪ {ve : v ∈ V, e ∈ E, v ∈ e}.

b

c

d

a

e

f

g

e

f

g

b

c

d

a

G G′

Fig.2 A constructed split graph G1 from a graph G

We claim that G = (V, E) has a vertex cover of size k if and only if G
′

= (V
′

, E
′

) has a

total lict domination set of size k + (p − k) − 1. Let C be the vertex cover of G of size k. Let

B = {ei/ei ∈ E(G
′

)∩E(G), ei is incident with V
′ ∈ C and V

′ ∈ V −C in G}. Then it is clear

that B is a total lict dominating set of a split graph with cardinality k + (p − k) − 1.

On the other hand, suppose D is the total lict domination number of the graph G
′

with
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cardinality k + (p − k) − 1. Let A = {vi/vi ∈ V
′

, vi is incident with ei ∈ D ∩ E(G)} with

cardinality equal to |D|+ 1 = k + (p− k). The vertex set A in G
′

is V (G) such that A consists

copies of V and V −C whose vertices are adjacent to at least to one vertex of C. So, the graph

Ghas a vertex cover of size k. 2
Theorem 4.3 The total lict domination number problem is NP-Complete for chordal graph.

Proof we shall transform the vertex cover problem in general graph to the total lict

domination in chordal graph. Therefore, the NP-Completeness of the total lict domination

problem in chordal graph follows from that of the vertex cover problem in general graph. For any

graph G consider the chordal graph G
′

= (V
′

, E
′

) with vertex set V
′

= {v1, v2, v3, v4/v ∈ V }
and the edge set E

′

= {v1v2, v2v3, v3v4/v ∈ V } ∪ {u3v4/uv ∈ E} ∪ {u4v4/uv ∈ V, u 6= v}.
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Fig.3 A constructed chordal graph G1 from a graph G

We claim that G = (V, E) has vertex cover of size k if and only if G
′

= (V
′

, E
′

) has a

minimal total lict domination set of size 2(k + (p − k)). Let C be the vertex cover of G of size

k. Let B = {v2v3, v3v4/v ∈ V }. Then it is clear that B is a minimal total lict dominating set

of a chordal graph with cardinality 2(k + (p − k)).

On the other hand suppose D is the minimal total lict domination number of the graph

G
′

with cardinality 2(k + (p − k)). Let A = {v3/v3 ∈ V
′

, v3 is incident with v2v3, v3v4 ∈ D}
with |A| = D

2 =k + (p − k). The vertex set A in G
′

is V (G) such that A consists copies of V

and V − C whose vertices are adjacent to at least to one vertex of C. So, the graph G has a

vertex cover of size k. 2
§4. Conclusion

The main purpose of this paper is to establish an algorithm for the total lict domination problem

in general graph. NP-Complete results for the problem are also shown for split graph, chordal

graph and for bipartite graphs.
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