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Abstract: In this paper we introduce the concept of pathos adjacency blict graph PBn(T )

of a tree T and present the characterization of graphs whose pathos adjacency blict graphs
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§1. Introduction

All graphs considered in this paper are finite and simple. For standard terminology and notation

in graph theory, not specifically defined in this paper, the reader is referred to Harary [3]. The

operation of forming a graph valued function of a graph G is probably the most interesting

operation by which one graph is obtained from another. The concept of pathos of a graph G

was introduced by Harary [4], as a collection of minimum number of edge disjoint open paths

whose union is G. The path number of a graph G is the number of paths in any pathos. The

path number of a tree T is equal to k, where 2k is the number of odd degree vertices of T . Also,

the end vertices of every path of any pathos of a tree T are of odd degree [2]. The line graph

of a graph G, written L(G), is the graph whose vertices are the edges of G, with two vertices

of L(G) adjacent whenever the corresponding edges of G are adjacent.

A pathos vertex is a vertex corresponding to a path P in any pathos and a block vertex is

a vertex corresponding to a block(or an edge) of a tree T . The edge degree of an edge pq of a

tree T is the sum of the degrees of p and q.

The lict graph (Here “lict” indicates “line cut vertex”) of a graph G [6], written n(G), is

the graph whose vertices are the edges and cut vertices of G, with two vertices of n(G) adjacent

whenever the corresponding edges of G are adjacent or the corresponding members of G are

incident, where the edges and cut vertices of G are called its members. Let C be a block set of

G. A Smarandachely blict graph BC(G) is the graph whose vertices are the edges, cut vertices
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and blocks in C, with two vertices of Bn(G) adjacent whenever the corresponding members of

G are adjacent or incident, where the edges, cut vertices and blocks in C are called its members.

Particularly, if C is all blocks of G, such a BC(G) is called a blict graph (Here “blict” indicates

“block line cut vertex”) of a graph G [1], written by Bn(G).

The pathos line graph of a tree T [1], written PL(T ), is the graph whose vertices are the

edges and paths of pathos of T , with two vertices of PL(T ) adjacent whenever the corresponding

edges of T are adjacent and the edges that lie on the corresponding path Pi of pathos of T . The

pathos lict graph of a tree T [1], written Pn(T ), is the graph whose vertices are the edges,

cut vertices and paths of pathos of T , with two vertices of Pn(T ) adjacent whenever the

corresponding edges of T are adjacent, edges that lie on the corresponding path Pi of pathos

and the edges incident to the cut vertex of T .

A graph G is planar if it has a drawing without crossings. For a planar graph G, the inner

vertex number i(G) is the minimum number of vertices not belonging to the boundary of the

exterior region in any embedding of G in the plane. If a planar graph G is embeddable in the

plane so that all the vertices are on the boundary of the exterior region, then G is said to be an

outerplanar, i.e. i(G) = 0. An outerplanar graph G is maximal outerplanar if no edge can be

added without losing its outer planarity. A graph G is said to be minimally non-outerplanar if

i(G)=1 [5]. The least number of edge-crossings of a graph G, among all planar embeddings of

G, is called the crossing number of G and is denoted by cr(G).
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Figure 2 Pathos adjacency blict graph PBn(T ) of T
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Definition 1.1 The pathos adjacency blict graph of a tree T , written PBn(T ), is the graph

whose vertices are the edges, paths of pathos, cut vertices and blocks of T , with two vertices

of PBn(T ) adjacent whenever the corresponding edges of T are adjacent, edges that lie on the

corresponding path Pi of pathos, edges incident to cut vertex and edges that lie on the blocks of

T . Two distinct pathos vertices Pm and Pn are adjacent in PBn(T ) whenever the corresponding

paths of pathos Pm(vi, vj) and Pn(vk, vl) have a common vertex, say vc in T .

Since the pattern of pathos for a tree is not unique, the corresponding pathos adjacency

blict graph is also not unique. Figure 1 shows a tree T and Figure 2 is its corresponding

PBn(T ).

The following existing results are required to prove further results.

Theorem A([1]) The pathos line graph PL(T ) of a tree T is planar if and only if ∆(T ) ≤ 4.

Theorem B([1]) Let T be a tree on p vertices and q = p− 1 edges such that di and Cj are the

degrees of vertices and cut vertices C of T , respectively. Then the pathos lict graph Pn(T ) has

(q + k + C) vertices and
1

2

p∑

i=1

d2
i +

C∑

j=1

Cj edges, where k is the path number of T .

Theorem C([1]) The blict graph Bn(G) of a graph G is planar if and only if ∆(T ) ≤ 3 and

every vertex of degree three is a cut vertex.

Theorem D([3]) If G is a graph on p vertices and q edges, then L(G) has q vertices and

−q +
1

2

p∑

i=1

d2
i edges, where di is the degree of vertices of G.

Theorem E([6]) The lict graph n(G) of a graph G is planar if and only if G is planar and the

degree of each vertex is at most three.

§2. Preliminary Results

Remark 2.1 For any tree T with p ≥ 3 vertices, L(T ) ⊆ PL(T ) ⊆ PBn(T ), L(T ) ⊆ Bn(T ) ⊆
PBn(T ) and L(T ) ⊆ Pn(T ) ⊆ PBn(T ). Here ⊆ is the subgraph notation.

Remark 2.2 If the edge degree of an edge pq in a tree T is even(odd) and p and q are the cut

vertices, then the degree of the corresponding vertex pq in PBn(T ) is even(odd).

Remark 2.3 If the degree of an end edge(or pendant edge) in a tree T is even(odd), then the

degree of the corresponding vertex in PBn(T ) is odd(even).

Remark 2.4 For any tree T (except star graph), the number of edges in PBn(T ) whose end

vertices are the pathos vertices is given by (k − 1), where k is the path number of T .

Remark 2.5 If T is a star graph K1,n on n ≥ 3 vertices, then the number of edges in PBn(T )

whose end vertices are the pathos vertices is given by
k(k − 1)

2
, where k is the path number of

T . For example, edge P1P2 in Figure 2.
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Remark 2.6 Since every block vertex of PBn(T ) is an end vertex (For example, the block

vertices B1,B2 and B3 in Figure 2 ), PBn(T ) does not contain a spanning cycle. Hence it is

always non-Hamiltonian.

§3. Lemmas

Here we present two simple lemmas on the graph PBn(T ).

Lemma 3.1 Let T be a tree (except star graph) on p vertices and q edges such that di and

Cj are the degrees of vertices and cut vertices C of T , respectively. Then PBn(T ) contains

(2q + k + C) vertices and

1

2

p∑

i=1

d2
i +

C∑

j=1

Cj + q + (k − 1)

edges, where k is the path number of T .

Proof Let T be a tree (except star graph) on p vertices and q edges. By definition, the

number of vertices in PBn(T ) equals the sum of number of edges, paths of pathos, cut vertices

and the blocks of T . Since every edge of T is a block,PBn(T ) contains (2q + k + C) vertices.

By Theorem B, the number of edges in Pn(T ) is
1

2

p∑

i=1

d2
i +

C∑

j=1

Cj . The number of edges

in PBn(T ) equals the sum of edges of Pn(T ), edges that lie on the corresponding path Pi of

pathos of T and the number of edges whose end vertices are the pathos vertices.By Remark

2.4, the number of edges in PBn(T ) is given by

1

2

p∑

i=1

d2
i +

C∑

j=1

Cj + q + (k − 1). 2
Lemma 3.2 Let T be a star graph K1,n on n ≥ 3 vertices and m edges such that di and Cj are

the degrees of vertices and cut vertex C of T , respectively. Then PBn(T ) contains (2m+k+1)

vertices and
1

2

n∑

i=1

d2
i + 2m +

k(k − 1)

2
edges, where k is the path number of T.

Proof Let T be a star graph K1,n on n ≥ 3 vertices and m edges. Since T has exactly one

cut vertex C, PBn(T ) contains (2m + k + 1) vertices. For a star graph T , the number of edges

in PBn(T ) equals the sum of number of edges of L(T ), thrice the number of edges of T and

the number of edges whose end vertices are the pathos vertices.

By Theorem D and Remark 2.5, we know that

−m +
1

2

n∑

i=1

d2
i + 3m +

k(k − 1)

2
=

1

2

n∑

i=1

d2
i + 2m +

k(k − 1)

2
.

Whence, we get the conclusion. 2
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§4. Main Results

Theorem 4.1 The pathos adjacency blict graph PBn(T ) of a tree T is planar if and only if

∆(T ) ≤ 3, for every vertex v ∈ T .

Proof Suppose PBn(T ) is planar.Assume that ∆(T ) > 3. If there exists a vertex p of

degree 4 in T , by Theorem[A], PL(T ) is planar and contains K4 as an induced subgraph. In

Pn(T ), the vertex p is adjacent to every vertex of K4. This gives K5 as subgraph in PBn(T ).

Clearly, PBn(T ) is nonplanar, a contradiction.

For sufficiency, we consider the following two cases.

Case 1 If T is a path Pn on n ≥ 3 vertices, then each block of n(T ) is K3 and it has exactly

(n − 2) blocks. The path number of T is exactly one and the corresponding pathos vertex is

adjacent to at most two vertices of each block of n(T ). The pathos vertex together with each

block of of n(T ) gives (n−2) number of 〈K4−e〉 subgraphs in Pn(T ). Furthermore, every edge

of T is a block. Hence the adjacency of block vertices and the vertices of L(T ) gives (n − 2)

number of 〈K4− e〉 subgraphs in PBn(T ). Clearly, the crossing number of PBn(T ) is zero, i.e.

cr(PBn(T ))=0. Hence PBn(T ) is planar.

Case 2 Suppose that T is not a path such that ∆(T ) ≤ 3. By Theorem E, n(T ) is planar.

Moreover, each block of n(T ) is either K3 or K4. The path number of T is at least one and

the corresponding pathos vertices are adjacent to at most two vertices of each block of n(T ).

Hence Pn(T ) contains at least one copy of K3 and K4 as its subgraphs.Finally, on embedding

PBn(T ) in any plane for the adjacency of pathos vertices corresponding to paths of pathos

in T , the crossing number of PBn(T ) becomes zero, i.e., cr(PBn(T ))=0. Hence PBn(T ) is

planar. This completes the proof. 2
Theorem 4.2 The pathos adjacency blict graph PBn(T ) of a tree T is an outerplanar if and

only if T is a path on Pn on n ≥ 3 vertices.

Proof Suppose PBn(T ) is an outerplanar. Assume that T has a vertex p of degree

three. The edges incident to p and the cut vertex p gives K4 as subgraph in Pn(T ). By Remark

2.1, the inner vertex number of PBn(T ) is non-zero, i.e. i(PBn(T )) 6= 0, a contradiction.

Conversely, suppose that T is a path Pn on n ≥ 3 vertices. By Case 1 of Theorem 4.1,

PBn(T ) contains (n − 2) number of 〈K4 − e〉 as its subgraphs. Clearly, i.e. i(PBn(T ))=0.

Hence PBn(T ) is an outerplanar. This completes the proof. 2
Theorem 4.3 For any tree T , PBn(T ) is not maximal outerplanar.

Proof By Theorem 4.2, PBn(T ) is an outerplanar if and only if T is a path Pn on

n ≥ 3 vertices. Suppose that T is a path Pn on n ≥ 3 vertices with the edge set E(T ) =

{e1, e2, . . . , en−1}. By Case 1 of Theorem 4.1, Pn(T ) contains (n − 2) number of 〈K4 − e〉 as

its subgraphs. Moreover, each edge of T is a block. Hence by definition, block vertices and the

vertices of L(T ) are adjacent in PBn(T ), which in turn forms (n − 1) number of end edges in

PBn(T ). Finally, since the addition of an edge between the block vertices increases the inner
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vertex number of PBn(T ) by at least one, PBn(T ) is not maximal outerplanar. This completes

the proof. 2
Theorem 4.4 For any tree T , PBn(T ) is not minimally non-outerplanar.

Proof Proof by contradiction. Suppose that PBn(T ) of a tree T is minimally non-

outerplanar.We consider the following cases.

Case 1 Suppose that ∆(T ) ≤ 2. By Theorem 4.2, PBn(T ) is an outerplanar, a contradiction.

Case 2 Suppose that ∆(T ) ≥ 3.

We consider the following subcases of Case 2.

Subcase 2.1 Suppose that ∆(T ) > 3. By Theorem 4.1, PBn(T ) is nonplanar, a contradiction.

Subcase 2.2 Suppose that ∆(T ) = 3. Let p be a vertex of degree 3 in T . By Case 2 of Theorem

4.1, cr(PBn(T ))=0, but it is easy to observe that (For example, the graph PBn(T ) in Figure

2) on embedding PBn(T ) in any plane for the adjacency of pathos vertices corresponding to

paths of pathos in T , the inner vertex number of PBn(T ) is at least two, i.e. i(PBn(T )) ≥ 2.

Hence PBn(T ) is not minimally non-outerplanar.This completes the proof. 2
Theorem 4.5 For any tree T with p ≥ 3 vertices, PBn(T ) is non-Eulerian.

Proof Suppose that T is a tree with p ≥ 3 vertices. Then there exists at least one cut

vertex C of T which is incident to at least one end edge q or at least one block B. We consider

the following two cases.

Case 1 If the degree of cut vertex C is odd, then the edge degree of q in T is even. By Remark

2.3, PBn(T ) contains odd degree vertex. Hence PBn(T ) is non-Eulerian.

Case 2 If the degree of cutvertex C is even, then the edge degree of q in T is odd. By Remark

2.3, PBn(T ) contains even degree vertex. But, since every edge of T is a block, degree of the

corresponding block vertex in PBn(T ) is exactly one.Hence PBn(T ) is non-Eulerian. This

completes the proof. 2
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