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Abstract: Let G be a graph without isolated vertices. A total dominator coloring of a graph

G is a proper coloring of G with the extra property that every vertex in G properly dominates

a color class. The smallest number of colors for which there exists a total dominator coloring

of G is called the total dominator chromatic number of G and is denoted by χtd(G). In this

paper we determine the total dominator chromatic number in caterpillars.
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§1. Introduction

All graphs considered in this paper are finite, undirected graphs and we follow standard defini-

tions of graph theory as found in [4].

Let G = (V,E) be a graph of order n with minimum degree at least one. The open

neighborhood N(v) of a vertex v ∈ V (G) consists of the set of all vertices adjacent to v. The

closed neighborhood of v is N [v] = N(v)∪ {v}. For a set S ⊆ V , the open neighborhood N(S)

is defined to be
⋃

v∈S

N(v), and the closed neighborhood of S is N [S] = N(S) ∪ S.

A subset S of V is called a total dominating set if every vertex in V is adjacent to some

vertex in S. A total dominating set is minimal total dominating set if no proper subset of S is

a total dominating set of G. The total domination number γt is the minimum cardinality taken

over all minimal total dominating sets of G. A γt-set is any minimal total dominating set with

cardinality γt.

A proper coloring of G is an assignment of colors to the vertices of G, such that adjacent

vertices have different colors.

The smallest number of colors for which there exists a proper coloring of G is called

chromatic number of G and is denoted by χ(G). Let V = {u1, u2, u3, · · · , up} and C =

{C1, C2, C3, · · · , Cn}, n 6 p be a collection of subsets Ci ⊂ V . A color represented in a

vertex u is called a non-repeated color if there exists one color class Ci ∈ C such that Ci = {u}.
A vertex v of degree 1 is called an end vertex or a pendant vertex of G and any vertex

1Received June 6, 2013, Accepted June 12, 2014.



Total Dominator Colorings in Caterpillars 117

which is adjacent to a pendant vertex is called a support.

A caterpillar is a tree with the additional property that the removal of all pendant vertices

leaves a path. This path is called the spine of the caterpillar, and the vertices of the spine are

called vertebrae. A vertebra which is not a support is called a zero string. In a caterpillar,

consider the consecutive i zero string, called zero string of length i. A caterpillar which has no

zero string of length at least 2 is said to be of class 1 and all other caterpillars are of class 2.

Let G be a graph without isolated vertices. For an integer k > 1, a Smarandachely k-

dominator coloring of G is a proper coloring of G with the extra property that every vertex

in G properly dominates a k-color classes and the smallest number of colors for which there

exists a Smarandachely k-dominator coloring of G is called the Smarandachely k-dominator

chromatic number of G and is denoted by χS
td(G) . Let G be a graph without isolated vertices.

A total dominator coloring of a graph G is a proper coloring of G with the extra property that

every vertex in G properly dominates a color class. The smallest number of colors for which

there exists a total dominator coloring of G is called the total dominator chromatic number of

G and is denoted by χtd(G). In this paper we determine total dominator chromatic number in

caterpillars.

Throughout this paper, we use the following notations.

Notation 1.1. Usually, the vertices of Pn are denoted by u1, u2, · · · , un in order. For i < j ,

we use the notation 〈[i, j]〉 for the sub path induced by 〈ui, ui+1, · · · , uj〉 . For a given coloring

C of Pn , C/〈[i, j]〉 refers to the coloring C restricted to 〈[i, j]〉 .

We have the following theorem from [1].

Theorem 1.2([1]) Let G be any graph with δ(G) > 1. Then max{χ(G), γt(G)} 6 χtd(G) 6

χ(G) + γt(G).

From Theorem 1.2, χtd(Pn) ∈ {γt(Pn), γt(Pn) + 1, γt(Pn) + 2}. We call the integer n,

good (respectively bad, very bad) if χtd(Pn) = γt(Pn) + 2 (if respectively χtd(Pn) = γt(Pn) +

1, χtd(Pn) = γt(Pn)). First, we prove a result which shows that for large values of n, the

behavior of χtd(Pn) depends only on the residue class of n mod 4 [More precisely, if n is good,

m > n and m ≡ n(mod 4) then m is also good]. We then show that n = 8, 13, 15, 22 are the

least good integers in their respective residue classes. This therefore classifies the good integers.

Fact 1.3 Let 1 < i < n and let C be a td-coloring of Pn. Then, if either ui has a repeated

color or ui+2 has a non-repeated color, C/〈[i+ 1, n]〉 is also a td-coloring.

Theorem 1.4([2]) Let n be a good integer. Then, there exists a minimum td-coloring for Pn

with two n-d color classes.

§2. Total Dominator Colorings in Caterpillars

After the classes of stars and paths, caterpillars are perhaps the simplest class of trees. For

this reason, for any newly introduced parameter, we try to obtain the value for this class. In
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this paper, we give an upper bound for χtd(T ), where T is a caterpillar (with some restriction).

First, we prove a theorem for a very simple type which however illustrates the ideas to be used

in the general case.

Theorem 2.1 Let G be a caterpillar such that

(i) No two vertices of degree two are adjacent;

(ii) The end vertebrae have degree at least 3;

(iii) No vertex of degree 2 is a support vertex.

Then χtd(G) 6

⌈3r + 2

2

⌉

.

Proof LetC be the spine ofG. Let u1, u2, · · · , ur be the support vertices and ur+1, ur+2, · · · ,
u2r−1 be the vertices of degree 2 in C. In a td-coloring of G, all support vertices receive a non-

repeated color, say 1 to r and all pendant vertices receive the same repeated color say r + 1

and the vertices ur+1 and u2r−1 receive a non-repeated color say r + 2 and r + 3 respectively.

Consider the vertices {ur+2, ur+3, · · · , u2r−2}. We consider the following two cases.

Case 1 r is even.

In this case the vertices ur+3, ur+5, · · · , ur+( r
2−2), ur+ r

2
, ur+( r

2+2), · · · , u2r−3 receive the

non-repeated colors say r+4 to r +
( r

2
+ 1
)

=
3r + 2

2
and the remaining vertices ur+2, ur+4, · · · ,

u2r−2 receive the already used repeated color r + 1 respectively. Thus χtd(G) 6
3r + 2

2
.

Case 2 r is odd.

In this case the vertices ur+3, ur+5, · · · , ur+( r
2−2), ur+ r

2
, ur+( r

2+2), · · · , u2r−4, u2r−2 re-

ceive the non-repeated colors say r + 4 to r +

(
r + 3

2

)

=
3r + 3

2
and the remaining vertices

ur+2, ur+4, · · · , u2r−3 receive the already used repeated color r + 1 respectively. Thus

χtd(G) 6
3r + 3

2
=
⌈3r + 2

2

⌉

. 2
Illustration 2.2 In Figures 1 and 2, we present 2 caterpillars holding with the upper

bound of χtd(G) in Theorem 2.1.

···

1 2 3 4 5 68 7 10 7 9

7 7 7 7 7 7

··· ··· ··· ··· ···

Figure 1

Clearly, χtd(G) = 10 =
3r + 2

2
.
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···

1 9 2 8 3 11 4 8 5 12 6 10 7

8 8 8 8 8 8 8

··· ··· ··· ··· ··· ······

Figure 2

Clearly, χtd(G) = 12 =
⌈3r + 2

2

⌉

.

Remark 2.3 Let C be a minimal td-coloring of G. We call a color class in C, a non-dominated

color class (n− d color class) if it is not dominated by any vertex of G. These color classes are

useful because we can add vertices to those color classes without affecting td-coloring.

Theorem 2.4 Let G be a caterpillar of class 2 having exactly r vertices of degree at least 3

and ri zero strings of length i, 2 6 i 6 m,m = maximum length of a zero string in G. Further

suppose that rn 6= 0 for some n, where n − 2 is a good number and that end vertebrae are of

degree at least 3. Then

χtd(G) 6 2(r + 1) +

m∑

i=3
i≡1,2,3(mod4)

ri

⌈ i− 2

2

⌉

+

m∑

i=4
i≡0(mod4)

ri

(⌈ i− 2

2

⌉

+ 1

)

.

Proof Let S be the spine of the caterpillar G and let V (S) = {u1, u2, · · · , ur}. We give

the coloring of G as follows:

Vertices in S receive non-repeated colors, say from 1 to r. The set N(uj) is given the color

r + j, 1 6 j 6 r (uj is not adjacent to an end vertex of zero string of length 3 and if a vertex

is adjacent to two supports, it is given one of the two possible colors). This coloring takes care

of any zero string of length 1 or 2. Now, we have assumed rn 6= 0 for some n, where n− 2 is a

good number. Hence there is a zero string of length n in G.

By Theorem 1.4, there is a minimum td-coloring of this path in which there are two n− d

colors. We give the sub path of length n this coloring with n − d colors being denoted by

2r + 1, 2r + 2. The idea is to use these two colors whenever n− d colors occur in the coloring

of zero strings. Next, consider a zero string of length 3, say

ui x1 x2 x3 ui+1

Figure 3

where ui and ui+1 are vertices of degree at least 3 and we have denoted the vertices of the string

of length 3 by x1, x2, x3 for simplicity. Then, we give x1 or x3, say x1 with a non-repeated color;
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we give x2 and x3 the colors 2r + 1 and 2r + 2 respectively. Thus each zero string of length

3 introduces a new color and
⌈3 − 2

2

⌉

= 1. Similarly, each zero string of length i introduces
⌈ i− 2

2

⌉

new colors when i ≡ 1, 2, 3(mod 4). However, the proof in cases when i > 3 is different

from case i = 3 (but are similar in all such cases in that we find a td-coloring involving two

n− d colors). e.g. a zero string of length 11.

We use the same notation as in case i = 3 with a slight difference:

ui xi y1 y2 y3 y4 y5 y6 y7 y8 y9 xi+1 ui+1

Figure 4

ui and ui+1 being support vertices receive colors i and i+1. xi and xi+1 receive r+i and r+i+1

respectively. For the coloring of P9 , we use the color classes {y1, y4}, {y2}, {y3}, {y5, y9}, {y6},
{y7}, {y8}. We note that this is not a minimal td-coloring which usually has no n − d color

classes. This coloring has the advantage of having two n − d color classes which can be given

the class 2r+1 and 2r+2 and the remaining vertices being given non-repeated colors. In cases

where i is a good integer, Pi−2 requires
⌈ i− 2

2

⌉

+ 2 colors. However there will be two n − d

color classes for which 2r + 1 and 2r + 2 can be used. Thus each such zero string will require

only
⌈ i− 2

2

⌉

new colors (except for the path containing the vertices we originally colored with

2r + 1 and 2r + 2). However, if i ≡ 0(mod4), i− 2 ≡ 2(mod4), and we will require
⌈ i− 2

2

⌉

+ 1

new colors. It is easily seen this coloring is a td-coloring. Hence the result. 2
Illustration 2.5 In Figures 5 − 7, we present 3 caterpillars with minimum td-coloring.

···

···

···

···

1

2

5 7 9 10 7 8 11 12 8 6

3

4

7

65

7

Figure 5

Then, χtd(T ) = 12 < 2(r + 1) + r10

⌈10 − 2

2

⌉

.
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··· ·· · ·· · ·· ·

1 5 6 2 11 9 7 3 7 9 12 13 9 10 14 15 9 8 4

8765

Figure 6

Then, χtd(T2) = 15 = 2(r + 1) + r3

⌈3 − 2

2

⌉

+ r10

⌈10 − 2

2

⌉

··· ·· · ·· · ·· ·

1 5 6 2 6 9 11 12 9 10 13 14 15 16 9 7 3 17 9

8765

8 4

Figure 7

Then, χtd(T3) = 17 = 2(r + 1) + r3 + r12

(⌈12 − 2

2

⌉

+ 1

)

.

Remark 2.7 (1) The condition that end vertebrae are of degree at least 3 is adopted for the

sake of simplicity. Otherwise the caterpillar ’begins’ or ’ends’ (or both) with a segment of a

path and we have to add the χtd -values for this (these) path(s).

(2) If in Theorem 2.1, we assume that all the vertices of degree at least 3 are adjacent

(instead of (ii)), we get χtd(G) = r + 1.

(3) The bound in Theorem 2.4 does not appear to be tight. We feel that the correct bound

will have 2r + 1 on the right instead of 2r + 2. There are graphs which attain this bound.
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