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Abstract

New equations for the motion of bodies are derived. The previsions of the theory are: a) if the
galaxy is a spiral, the plane galaxy is moving in direction of the CMB, like our Milk Way galaxy.
b) dark matter calculated from rotation curves in spiral galaxies is less than the actual theory and
can be zero. This theory use some equations of Special relativity and the concept of non-
instantaneous force.

1. Introduction

In table 1 we have a comparative between the equations of special relativity (SR) and this theory
that we call New Newtonian Theory (NNT).

Equations (1) to (4), (25) and (53) are the same than SR. Coulomb (47) and gravitational forces
are different than SR.

All equations are derived and explaineds in next next sections. Equations (1) to (4) was derived
by Lewis (who received 35 nominations for the Nobel prize in chemistry) [1] using Newtonian
concepts. Equations (25), (47) and (53) are derived in this paper.

So, NNT is a theory that uses Newtonian concepts, a preferred frame (CMB) and non-
instantaneous force.

Experiment Special Relat. New Newton. Th. |Equ. |Sect.
Mass variation m=m,y same (1) 4
Kinetic energy k =m,c?(y-1) same 2 |4
Relation mass-energy | E = mc?2 same (3) 4
Force dv v(F.v) same 4) 5
F=m—+
dt c?2

Time dilation At =Atyy same (25) [8.2
Transv. Doppler eff. f=foly same (53) |10
Transformations: Lorentz Galilean XX |7,8,
position, veloc., time 9.2
Coulomb force transf. | F’ =F » different 47 |7,

oy 9.2.3
Force propagation XXX non-instantaneous | xx |7,8
Michelson-Morley 0=0 open question xx |11

Table 1 - Comparison between equations of special relativity and new Newtonian theory.
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2. Previsions of the theory

The previsions of NNT are:

a) If the galaxy is a spiral, the plane galaxy is moving in direction of the CMB, like our Milk Way

galaxy. From [2] we have: “It is in a direction aligned with the flattened disk of our galaxy and...”
Let us suppose particle M with velocity V in relation to CMB. Particle mat position 1 has

velocity u in relation to M and tangential to a circle of radius r, V >u, c>>Vand M >>m.

For others positions of the circle from 2 to 6 with same velocity u and radius r we have Fig.1.
The gravitational forces in m from positions 1 to 6 are: F1 < F2 < F3 < F4 < F5 < Fe' The

equations of forces are in sections (5), (7) and (8).
So, the movement is a spiral, see Fig. 2.
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Fig. 1 — Particle M with velocity V in relation to CMB and particle m with rotational velocity u
in relationto M

X observer

Fig. 2 — Rotation velocity u, >u, in spiral galaxy.

b) Dark matter calculated from rotation curves of spiral galaxy.
From sections (7) and (8) we have u, >u,, see Fig. 2, where U is the rotational velocity in

relation to M and from section 7 we have v=V +U.
i ~ 2 _ 2 _ 2
An observer measures uay and uby. From Fig. 2 we have uay =u, and uby =ug —ug. . So,

dark matter is smaller than the actual theory or can be zero.



3. Postulates and work assumptions

a) The velocity of light is a constant ¢ with respect to the preferred frame, independent of the
direction of propagation, and of the velocity of the emitter.

b) An observer in motion with respect to the preferred frame will measure a different velocity of
light, according to Galilean velocity addition.

c) The preferred frame is the cosmic microwave background (CMB), and the velocity of the earth
with respect to the CMB is approximately 390 km/s (0.0013c).

d) According to Zeldovich, at every point in the Universe, there is an observer in relation to which
microwave radiation appears to be isotropic.

e) A Coulomb force is generated by an electric wave. A gravitational force is generated by a
gravitational wave. The electric and gravitational waves have constant velocities ¢ with respect to
the preferred frame, independent of the direction of propagation, and of the velocity of the emitter.

4. Mass variation, kinetic energy and mass-energy relation

Using the concepts of Newtonian physics, Lewis (who received 35 nominations for the Nobel
prize in chemistry) [1] derived the equations for mass variation, Kinetic energy and mass-energy.

Equations (1), (2) and (3) are, respectively, equations (15), (16) and (18) in [1].

The following is from [1]: “Recent publications of Einstein and Comstock on the relation of mass
to energy has emboldened me to publish certain views which | have entertained on the subject and
which a fews years ago appeared purely speculative, but which have been so far corroborated by
recent advances in experimental and theoretical physics... In the following pages | shall attempt to
show that we may construct a simples system of mechanics which is consistent with all known
experimental facts, and which rests upon the assumption of the truth of the three great conservation
laws, namely, the law of conservation of energy, the law of conservation of mass, and the law of
conservation of momentum”.

5. Force

From equations (1), (2) and (3), we derive the equation of force:

Fodm) _pav, vFY)

, 4
dt dt c2 )
dv, V2F
E = X 4 X x, 5
X dt  ¢? ®)
dv, VZF
Fo=m—>Y+ Y
y dt ¢
Substituting (1), we have:
dv
Fy =moyyg —= 6
X 0V qt (6)
E , dvy
=M —_—,
y o7y qt



Where m, Vv are respectively the particle mass, velocity of the particle in relation to the preferred

frame, B =v/c, ;/:1/ 1-B% vy :1/1/1—ﬂ)% and :]/,/1—,85 , M, is the particle rest

mass in relation to the preferred frame.
The earth has velocity V =0.0013c in relation to the preferred frame, the mass of the electron

measured in earth is m_ =9.1093897x10-3! Kgand m_ =m_ /\/l—V 2/¢c2 =
— 9.1093973x10-31Kg.

6. Inertial and non-inertial frames

From (1) to (6), Galilean transformations, non-instantaneous force, preferred frame S (cosmic
microwave- background) and frame S', we can obtain the equations for the motions of bodies.

7. Inertial frames and non-instantaneous force

Suppose two inertial frames (S and S'), one particle without acceleration (charge Q, mass M)
and one particle with acceleration (charge g, mass m).

S is the preferred frame (CMB) and S' has constant velocity V in relation to S and parallel to
the X axis. The velocity of g isvinrelationto S.

Charge Q isatrestin S' (it is an approach for M >>m and Q>q or Q>>qg andM >m );
the frames and particles are illustrated in Figure 3.
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Figure 3 — Inertial frames S, S’ and particles g,Q.

At time ty charge Q emits an electric wave front that reaches charge q attime t,. Attime t,,
charge Q emits an electric wave front that reaches charge g at time t2 , and so forth. The electric

wave has velocity ¢ inrelationto S.
For constant V > 0, from Galilean transformations, we have:



Xx=Vt+x'

y=y (7
t=t'" (see discussion of time dilation in Section 8.2, Equation (25)),

Ry =VAt + X', (8)
where At is the time interval in which the force travels distance R and R =CAt,
Ry =y=y ©)

R 1 1
Ry =V€+x: BR+ X',

and

_ Bx'J_r\/x'2+y‘2 (1-B2)
- 1-B2

: (10)

where B=V /c.

The non-instantaneous Coulomb force in ¢ is:

99 Re (11)
dre, R3

X

- _ @Ry
y 47zgoR3'

Equating (6) and (11) yields the folowing differential equations:

) dv qQ R,

X _

m A S . . A
077 dt 4re, R3

Wzdi: qQ R_
077y dt dre, R3

(12)

Multiplying and dividing the first term of (12) for dx', and from dv, = dv,., we have:

Moy 2 [V, dv, =t qQ j de (13)



R
2, v qQ Y
moyyyfvydvy _i—47730 I—RS dy',

where (+) is a repulsive force and (-) is an attractive force.
The differential equation is second-order and requires two integrations.

In the first integration, we have:
v, = f(x) (14)
v, = f(y').

In the second integration, we have:

x'= f(t) (15)

7.1 - Gravitational force

The non-instantaneous gravitational force in g, from (12) substituting qQ/47rgo for GmM

where m=m_y, M =M 5, 7/:]7/w/1—v2/02 and 7, :]7/w/1—V2/c:2 is:

) dvX RX
mOWX F = GmO]M Oj/v E (16)
and
dv R
g =M s o

where 7, :]7/w/1—V 2/c2,

For V =0, we have an instantaneous force (R =r). From (9) and (10), we have:

RX =X=X

R=\x2+y? (18)
2N o R

"X at OR3"



8. Non-inertial frame and non-instantaneous forces

a) We have one preferred frame (S ) and one non-inertial frame (S"'). Particle Q is at restin S',
and q is accelerating in relationto S'.

b) Let us suppose the particular case of repulsive forces between two equal particles (same mass
mand same charge g). We can make a mathematical construct with: two inertial frames (S,S")

and two particles g with acceleration between them. The particles have velocity equal in modulus
but with inverse y directions.
Thus, cases a) and b) are similar and mathematically equal; the calculated values of R,v,F,t and

others are the same when calculated in relation to S .
The velocity of S' in relationto S is constant, and V > 0. We consider only the Coulomb force.

(Fig. 4).
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Figure 4 — Non inertial frame - Mathematical construct using two inertial frames (S ,S") and two
particles g with acceleration between them. The particles have velocity equal in modulus but with

inverse y directions. For t, to t;, the particles haves no acceleration; for t >t;, the particles
accelerate in relationto S and S'.

8.1 From t, to t; - First sequence

In this time interval, the particles have no acceleration, and the trajectories are parallel.
This is an approach, see Fig. 5.



K

\ q
el

Figure 5 — Trajectories of the two particlesq. In the time interval time t, to t;, the trajectories

are approximately parallel.

The initial velocity of the particlesq areV , which is parallel to x, x'.
From Galilean transformations, we have:

X =Vt
t=t' (see discussion of time dilation in Section 8.2, Equation (25)).

From Fig. 4, we have:
R = CAt, (20)

where At = t1 —t0 is the time interval in which the force travels distance R.

Ry, =VAt (21)

Ry = y = y',

R=—J (22)
1-B2

R, = n
1-B2

and

RX1 = BR1 (23)

Ryl =Y

8.2 Time dilation

From (22) and dividing both terms by c, we have:

A
=

<
- -
|

(24)



L=t -t =——2—. (25)

Equation (25) expresses time dilation, where t, = yi/c (for V =0). The equation is only

applicable to the first sequence. For the others sequences, the time dilation differs from equation
(25). This subject should be further explored. Thus, time dilation in new Newtonian physics is due
to the variation of forces (inside the atom) in relation to the velocity of the atom (V). For the

example above, we have t, —t = ta/wll—ﬂ2 and B =v/c.

8.3 From t; to t, - Second sequence

X=Vt+x'

y=y (26)
t=t'

From Fig. 4, we have:

R = CAt, (27)
R, =VAt+X' (28)
Ry =y=Y,

where At =t, —t;, and

R Bx'i\/x'2+y'2 (1-B2)
- 1-B?2 '

(29)

From (29) and differential equation (13), in the first integration, we have:

vV, = f(x')tz_tl (30)
Vy = f(y')t2 —tll

In the second integration, we have:

x'=f, (t)t2 , (31)

y=1,0, .



and, at time t2 , we have:
Xy = fx(tZ)t2 —t,

Y2 = fy(tZ)tz—tl

X, =Vt, +X, (32)

8.4 From t, to t3 - Third sequence

X=Vt+x'

y=y (33)
t=t'

From Fig. 4, we have:

R =CAt, (34)

where At = t3 —t2,

Ry =VAt+ X — Xy (35)

R
Ry =y+ fy(t_g)tz—tl -y,

For example, for R2.1 (Figure 6), we have:

Ry21= Y21 tAY1 1 =Y51 Y11~ Yo (36)

R
where 'y, | = fy(tz_l —A] :
t,—t

10
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Figure 6 - Function fy(tz,l B R2.1/(:)t2 -t
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1-B2

R=

(37)

From (37) and differential equation (13), in the first integration, we have:

v, = f(x‘)t3 -, (38)
v, = f()/')tB_t2 ,

In the second integration, we have:

X'= fx(t)t3 t, (39)
y=1,0, .

and, at time t3, we have:

X3 = fx(t3)t3 ~t,

Y3 = fy (ts)t3 ~t,

Xg =Vig + X, (40)
Y3 =Y,
R.=BR,+ x'3 - X,

11



Riz=Y3+Y, Y
8.5 From t3 tot, - Fourth sequence

R, =VAt+ X' —x; (41)

R, =y+ fy(t— R/c)t?’_t2 -Y

and, at time t, , we have:

Xy = fx(t4)t4—t3

Vg = fy(t4)t4—t3

X, =Vt, +x;1 (42)
Ys =Yy

'y

R, =BR, +X, — X,

X

Rys=YstY3— Y

The same calculations can be repeated for the following sequences.

9. Coulomb force — comparative between SR and NNT

We compared the simple cases of Coulomb forces betweem SR and NNT.

9.1 SR transformation of Coulomb force

Let us suppose two inertial framesS,S"', two charged particles  with velocityV constant in
relation to S and at rest in relation to S', where X is parallel to X', see Fig.7.

The SR transformation of forces for this simple case are:
F,=F,=0 (43)
=

F :_y_ﬂi,ll_gz

y - 2
vy bmegr

12
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Fig. 7 — SR force transformation. Two charges ¢ with velocityV in frame S and at rest in frame S’

9.2 NNT transformation of Coulomb force

In the NNT the Coulomb force is calculated in the preferred frame S and we use the Galilean
transformations to calculate in another frame the position (X, Y, z), velocity, etc.
The simplest cases are described below.

9.2.1 — The more simple example: V =0

Suppose particle Q at rest in CMB (V =0) and particle g with rotational velocity v in relation

t0Q.
The force is instantaneous because r = R wherer is the distance between the particles and R is
the distance travelled by the Coulomb wave.

Fig. 8 — Particle Q at rest in CMB and g with rotational velocity v in relation to Q

F-9Q 1 (44)
4re 12
0
9.22- V>0

Let us suppose S with velocity V >0 and constant in relation to S , particleQat restinS',
with rotational velocity v'in relation toQ andv =Vv' +V, see Fig. 9.

13
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Fig. 9 — Particle Q atrestin frame S', S with velocity V in relation to S and particle q with
rotational velocity v'in relation to Q.

The force inq is:

_qQ 1
“ans, R? ()

where R comes from (10).

n_ Bx'i\/x'2+y'2 (1-B2)

1_B? (46)

9.2.3 — Coulomb force between two frames

Let us suppose the case studied in the Section 9.1 and where S is the CMB.
From Fig. 10 and Section 8.1 for time t, we have:

qq 1 qq 1 2
_ 99 2 _ %M C_g 47
dre, R*  4ze, r2( ) 47)

F, =Fsing=Fv1- B2

F,=Fcosp=FB

14
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Fig. 10 — NNT Coulomb force — two particles g with velocity V (at time t,) in frame S and at

restin S'.

The forces are calculated in frame S and we transfom to S the velocity, position, etc., see Sect.
8

For NNT we have the forces FX F Fy and Fy'different from zero and for SR we have

y oy

F. =F =0, see Sect. 9.1.

10. Doppler effect
10.1 Transverse Doppler effect

From section 8.2 we have: “ time dilation in new Newtonian physics is due the variation of forces
(inside the atom) in relation to the velocity of the atom”.

If the atom and observer are at rest in the preferred frame S (CMB), the internal Coulomb
potential energy is:

u -1 (48)

0 4re, T,

where r is the distance between the nucleus and the electron (for example the hydrogen) and the
emitted frequency is f .
If the atom is atrestin S'and S' is with velocityV inrelationto S, from (22) we have:

- QL i (49)
drze, R

And we have the frequency proportional to the Coulomb potential energy. Substituting U by f
in (49) we have:

15



f, =f+1-B2 (50)

where f | Is the transverse Doppler effect measured by the observer at rest in S and perpendicular
to the hydrogen velocity and f o Is the observed frequency with the atom and observer at rest in S.
The longitudinal Doppler effectin S is:
J1-B2
¢ _ f L f0 1-B
‘ 1+B 1+B

(51)

The sign is positive (negative) when S' (source) is moving away from (towards) S .
If we have another frame S" with same velocity V thatS' we have the longitudinal frequency
measured in S":

f"zfﬂi&zf—ﬁzgi@iM=f@ﬂ—Bz (52)

© 1+B

The sign is negative (positive) when S'' (observer) is moving away from (towards) S .
The situation of S'and S"is the same because the atom and observer are at rest in relation to
S'and S". So, the frequency measured by the observer at rest in S' for any position (transverrsal,
longitudinal, etc) from (52) is:

f = f 1-B2 (53)

where f 0' is the frequency measured by the observer and atom at rest in S' (for any position of

the observer in relation to atom) and f0 is the frequency measured by the observer and atom at rest
inS.
10.2 Longitudinal Doppler effect

Let us suppose a distant star source with velocity v away from CMB and emitts from hydrogen

atom. The observer is at rest in earth and in direction of the star with velocity V towards from
CMB. S, S'and S" are respectively the CMB, earth and star, see Fig. 11.

” —
S’ (earth) Vv S (CMB) S” (star) v
X
— ——
f, (star f, (star
measured) "~ measured)
fo (hydrogen hvdroaen fo (hydrogen
at rest) fo ( yat rgst) at rest)

Fig. 11 — Longitudinal Doppler effect. Star frequency measured by an observer at rest in earth.
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From (53) we have:
f(; = fox/l— B2 (54)
fc;' = f0 1- 32 (55)

Where f0 , f O' and f c;' are the hydrogen frequency measured with the atom and observer at rest

respectively in S (CMB), S' (earth) and S"' (star). The frequencies fo' and fc;' are the transverse

Doppler effect.
The longitudinal star frequency at CMB is:

f(;'
f, =15 (56)

The longitudinal star frequency measured in earth is:
f,=f,(1+B) (57)
Substituting (54), (55) and (56) in (57) we have:

. J1-4 1+B
fl=f
Lo i+p1-B2 59

f Z and f c; are respectively the longitudinal star frequency measured in earth with observer at rest
in earth and hydrogen frequency measured in earth with the atom and observer at rest in earth.

For B = 0we have the same equation of SR longitudinal Doppler effect.

11. Michelson-Morley experiment and new Newtonian physics

The Michelson-Morley experiment [3] involves one semi-transparent mirror (half-silvered) in
which the incident ray r, is refracted, reflected and divided into two rays (r,and r,), as shown in

Fig. 12.
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Figure 12 - Semitransparent mirror M with velocity V as well as, incident ray (r, ), the refracted-
reflected-refracted ray (r,) and refracted-refracted ray (r,).

For complete calculations of the trajectory and displacement of the interference fringes, we must
study the equations of refraction and reflection in vacuum and in glass.

The Michelson-Morley experiment requires one semi-transparent mirror, 16 mirrors, a lens and a
telescope.

11.1 Reflection in vacuum

In the Supplement of the MM paper [3], the equations of ray reflections in a moving

mirror are shown in relation to a preferred frame. The equations in relation to the CMB are the same.
From [3]:

“Let ab (Fig. 13) be a plane wave falling on the mirror mat an incidence of 45°. If the mirror is at

rest, the wave front after reflection will be ae. Now suppose the mirror to move in a direction which

makes an angle ¢ with its normal, with velocity V. Let ¢ be the velocity of light in the ether

supposed stationary, and let ed be the increase in the distance the light has to travel to reach d .”

Fig. 13 — Reflection in vacuum. Incident and reflection plane waves

Michelson and Morley also demonstrated the following equation:

tan(45° —Qj _ae_, V2cosp (59)
2 ad Cc

Below, we have an equivalent and more general equation for any angle of incident rays. From
Equations (5) and (6) in the work of Kohl [4], we have:

1- B2 cos2 3
cos" ¢ _tani, (60)

tanf = .
1+ B2 cos2 ¢+ 2Bcosgseci

where | and f are respectively, the angles of incidence and reflection in relation to the normal of the
mirror. Additionally, B =V /c, where V is the velocity of the mirror in relation to the CMB, and ¢ is

the angle of V with respect to the normal of the mirror.
The sign is negative (positive) when the mirror is moving away from (towards) the incident ray.

18



11.2 Reflection in glass

ForV =0:
C
u=——=0.658c, (61)
1.52

where u is the velocity of light inside the glass in relation to the CMB and glass with V =0.

ForV >0:
U2
Ugyg = U+ V[l— —Zj (62)
c
and

2 2 2 2
U2, :{ux +vx(1—“—zﬂ {uy +vy(1—“—zﬂ , (63)
C C

where U is the velocity of light inside the glass in relation to the CMB, V is the velocity of

CMB
glass in relation to the CMB and V (1—u2/c2) is the Fresnel drag.

In addition,

u -V, (64)

u glass ~YcmB

where U is the velocity of light inside the glass in relation to glass.

glass

Figure 14 — Reflection in glass. Incident plane wave and reflected non-plane wave.

As shown in Fig. 14, after reflection, we have a non-plane wave.
The equations of reflection in glass must be further developed.
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11.3 Refraction in vacuum-glass for V =0

From Snell’s law of refraction we have:
A R LA
sini =—sin f, =1.52sin f . (65)
u

11.4 Refraction in vacuum-glass for V > 0

Additionally,

A

sini =

sin f , (66)

uCMB

where i , f and f are the angles, respectively, of incidence, refraction for V =0 and refraction
for V > 0. The angles are in relation to the normal of the glass (Fig. 12).

11.5 The Michelson-Morley experiment

The Michelson-Morley experiment requires one semi-transparent mirror, 16 mirrors, a lens and a
telescope. In Fig. 15, we substitute 2 mirrors for 15 mirrors.

M2

M1

Figure 15 — Michelson-Morley experiment with one semi-transparent mirror, 2 mirrors, a lens and
a telescope.

In Fig. 15, S, I, M, M1, M2 and T are, the light source, lens, semi-transparent mirror, mirror 1,
mirror 2 and telescope, respectively.

For calculus simplification, we substitute for lens I the sun or star light, which has wave front that
is practically planare when reaching the earth. The interchange between sun or star lights and
laboratory sources in no way alters the results [5-7].

For the telescope, we substitute screen B, as shown in Fig. 16.
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Figure 16 — Michelson-Morley experiment with sun light and secreen B. Panel (a) shows the x-z
plane, while (b) shows the x-y plane.

M3 is a mirror to capture sun or star light.
The displacement of interference fringes must be calculated using the equations above and
further development of the complete equations is needed.

Conclusion

New equations for the motions of bodies are derived for inertial and non-inertial frames using:

a) some special relativity equations (but derived from Newtonian physics)

b) non-instantaneous forces

a) Galilean transformations and a preferred frame (the cosmic microwave background).

The previsions of the theory are: a) if the galaxy is a spiral, the plane galaxy is moving in
direction of the CMB, like our Milk Way galaxy. b) dark matter calculated from rotation curves in
spiral galaxies is less than the actual theory and can be zero.

The same special relativity equations of mass variation, kinetic energy and mass-energy relations
are derived by Lewis (who received 35 nominations for the Nobel prize in chemistry) using
Newtonian concepts and the laws of conservation of mass, energy and momentum.

Time dilation and transverse Doppler effect are the same that the SR and are derived by our new
Newtonian theory.

Coulomb and gravitational forces are different from the SR and are derived again, by our new
Newtonian theory.
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