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Abstract
The relativistic problem of the rotating disc or rotating frame is studied. The solution
given implies the contraction of the radius and the change of the value of π depending on
the type of observer. Two forms of rotation are considered. One is with constant angular
velocity, independent of the radius, implying a horizon, the other is with exponentially
decreasing angular velocity with respect to the radius and does not imply a horizon. In all
cases the paths of signals emanating from the origin of the rotating frame advance
helically in the positive and negative z direction, where they are concentrated, due to the
contraction of the radius, and in some cases appear as jets.

1. Introduction
The rotating disc has been the subject of a multitude of papers since Ehrenfest [1]
published what is today known as the “Ehrenfest Paradox”. He noted that since the
perimeter of a rotating disc would relativistically contract, while the radius remained the
same, a deformation of the disc should take place. Many authors have since then
contributed to the understanding of the problem by studying the geometry of the rotating
disc. A historical review can be found in Rizzi and Ruggiero [2] and in Grøn [3]. The
approach in the present study is closer to the idea that there is a contraction of the radius of
the rotating disc. Similar ideas have been explored by Ashworth, Davies and Jennison [4],
[5] and by Grünbaum and Janis [6], [7]. In particular, Ashworth, Davies and Jennison
show that the radius of the rotating disc contracts according to an observer that is rotating
with the disc at a distance 0r  from the center. Grünbaum and Janis argue that an
observer that is not rotating with the disc will see the radius of the disc contract by the
same relativistic factor as the perimeter. The latter approach is closer to ours although we
do not find the same results because we allow the value of π to change for the non-rotating
observer, when he makes measurements regarding the rotating frame.

The paper is organized as follows: In section 2 we state our basic assumptions that will
help us derive the transformations in the following sections. In sections 3 we present our
notation and known relativistic results regarding the rotating frame. In section 4 we
formulate and solve the problem of the contraction of the radius of the disc and the
transformation of the value of π for the non rotating observer. In section 5 we present a
summary of the results up to that point. In section 6 we consider the space or disc
deformation as seen by the non-rotating observer and distinguish between two kinds of
non- rotating observers: one within the horizon of radius c/w and one outside. In section 7
we discuss the results. In section 8 we generalize to rotating frames in 3 dimensions and
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plot the signals emanating from the origin of the rotating frame in the radial direction, as
seen by the non-rotating observers. The signals gradually bend sideways until they reach a
90º degree angle with respect to the radius, while they advance in the positive and negative
z axis direction. In section 9 we examine rotation with slippage so that the angular velocity
is assumed to decrease exponentially as the radius increases and as z increases. We
examine both the close by non-rotating observer and the far away non-rotating observer.
The signals are in this case not limited to a horizon but gradually bend sideways until they
reach a maximum deflection from the radial direction and then turn asymptotically back to
the radial as the radius increases, while they advance in the positive and negative z
direction. In section 10 we present our conclusions.

2. Assumptions on the rotation of two concentric discs

In the following we will make three assumptions. Assumptions 2 and 3 are standard in
relativity theory. Only Assumption 1 is new.

1. Discussion to justify Assumption 1
Suppose an observer 1O is at any place on disc (disc 1) and a second observer 2O that sits
at any place of another disc (disc 2) parallel and coaxial to disc 1. 1O sticks a pencil
through his disc parallel to the axis of rotation with its point touching the other disc (disc
2). 2O does the same thing with the tip of his pencil touching disc 1. As there is relative
rotation of one disc with respect to the other, each observer will watch the perimeter of a
circle being drawn on his own and the other disc. Each will see that the duration of time,
according to his own clock, for a complete circle to be drawn on his own disc will be the
same with the duration it takes for him to draw a complete circle on the other disc. This
observation holds for half a circle or any fraction of a circle. In short, we say that the two
observers will agree on epicenter angles measured as fractions of a circle (not radians). If
we denote  the magnitude of an angle as fraction of a circle and θ the magnitude of the
same angle in radians then 2   . However, we will not use  for the moment because
we are not sure the observers agree on  .
Imagine now that the same two observers stand at the center O of their disc (one on top of
the other) and let the discs rotate with respect to each other. If the first observer announces
that according to his measurements the second disc is rotating with frequency  , since the
situation is exactly symmetrical we will expect the second observer to make the same
announcement regarding the first disc. But frequency is defined as revolutions per unit
time or Θ per unit time. Once they agree on Θ and  , they have to agree on time rate. In
fact, they may even use the same clock, since they are collocated. We may summarize in
the following,

Assumption 1
(a)Two observers sitting at two parallel concentric discs rotating with respect to each other
around an axis vertical at their center, will agree that the magnitudes of epicenter angles
traveled by the other disc, measured as fractions of a circle, are equal.
(b) If they also stand at the common center of their discs, they will further agree that time
rates are equal.

Remark:  The situation with the two observers at the center of their discs (one on top of the
other) is symmetrical and there is no point in arguing who is rotating and who is
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stationary. However, if they had a way to measure the centrifugal acceleration off their
center, they would probably find that it is different. In that respect we may rightfully call
the frame with zero centrifugal force the “preferred frame”. In what follows we will
assume that one observer, usually to be denoted as O (or 2O ), sits at the center of a
preferred frame K  (or 2K ), which coincides with the laboratory frame unless otherwise
specified.

2. Discussion to justify Assumption 2
Many experiments have verified the constancy of the speed of light, which is the basic
assumption for special relativity theory. The speed of light is not the same for observers
under acceleration or, according to the Principle of Equivalence, gravity.

Assumption 2
Light speed does not depend on the speed of the emitting source and its speed is constant
for all observers that are not under the influence of acceleration.

3. Discussion to justify Assumption 3
An observer on a frame will agree with another observer on the same frame on the
measurements of lengths. This is expected if measurements are made not by signals but by
actually placing the measuring stick on the length to be measured and counting how many
times it fits to it. We state then,

Assumption 3
Observers on the same frame will agree on measurements of length.

3. Time Rate and the Contraction of the Perimeter on a Rotating
Disc

As we talk interchangeably about rotating discs and frames, we need to clarify that when
we talk of a disc, we imagine it placed at the x-y pane of the respective frame with center
at the origin.
Let two frames 1K and 2K with cylindrical coordinates, common origin O and common
axis of rotation Z . Let observer 1O sit at the origin of 1K and 2O at the origin of 2K . Let

2K be a non rotating frame - laboratory frame- and let 2O observe frame 1K rotate. Let a
third observer 3O on 1K sit at a distance from the center. When there is no danger of

confusion we will rename the three observers using 1O O , 2O O  , 3O O and the
frames 1K K , 2K K  .
To help clarify ideas we introduce the two subscript notation, which we will abandon
shortly afterwards for economy:
A quantity ijQ is defined as the quantity measured by observer i given it is stationary in
the frame of observer j
For example, 21L is the length measured by observer 2 for a line segment on the
perimeter of the disc that is stationary in the frame of observer 1. Also, 21t is the time
interval that observer 2 sees that a clock stationary and with observer 1 shows for the
duration of an event.
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Note that by Assumption 3, iiL is a constant for all i and will be denoted as statL since
all observers agree on the same segment when stationary in their frame. The same is not
true for iit . In particular, we expect 11 22 33statt t t t       , and 12 21 statt t t    
because observers 1 and 2 have the same clock , while observer 3 is under the influence of
centrifugal acceleration, which we suspect that will affect 33t in some unknown as yet
way. Therefore, the clock of observer 1 and 2 represents stationary clock time intervals
and are denoted as statt . Also, 13 33t t   because observers 1 and 3 are on the same
frame and  time intervals measured by observer 1 looking at the clock of observer 3, agree
with what observer 3 sees looking at his own clock. Distances in the radial direction are
measured as ijr , while the angular velocity of a disc is measured by ijw . Specifically,

21 23r r is the radial distance as seen be the non rotating observer 2 regardless of the
second subscript since both observers 1 and 3 are stationary on the rotating disc. Similarly,

21 23w w because the angular velocity of the rotating disc as seen by the non rotating
observer 2, using his own clock does not depend on the second subscript since both
observers 1 and 3 are stationary on the rotating disc.

Most of the authors (see for example Møller [8] pp.222-250 on rotating disc) start from the
transformation between a rotating frame 1K and a non rotating frame 2K and the
transformation relation of cylindrical coordinates 1 2r r , 1 2z z , 1 2 1wt   . In this case
The metric for the rotating frame is

2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 12 ( )ds dr r d dz wr d dt c w r dt       (1)

For a non-moving point in space, the space differentials are null and equating the metrics
of the rotating and non-rotating frames we find 2 2 2 2 2 2

2 1 1( )c dt c w r dt  from which we find
that the clock of the rotating system runs slower,

2
1 2 2

1
21

dtdt
w r
c





(2)

The line element 2d is given by 2d dx dx 
  where x takes the values 1 1{ , , }r z and

0  except for 1rr  ,
2

1
2 2

1
21

r
w r
c

 


, 1zz  . Hence, we find,

2
2 2 2 21

1 12 2
1

21

rd dr d dz
w r
c

   


(3)

For a line segment idL along the perimeter this formula implies that

1
2 2 2

1
21

dLdL
w r
c





(4)

Where ( 1 1 1dL r d and 2 2 2dL r d ).
Whereas the result (2) is within our expectations from the special theory of relativity, the
result (4) is contrary to the expected result. Since the normal Lorentz contraction would
give a contraction of the perimeter instead of a lengthening as we have found above. The
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result (4) is counterintuitive for another reason also: If we increase the radius, while
decreasing the angular velocity so that that tangential velocity is constant ( 1wr  ) then
the perimeter tends to a straight line and the transformation should approach the Lorentz
length contraction. Instead, according to (4) since 1wr  is constant the lengthening
factor remains constant and there is no way of approaching the Lorentz contraction.
As the method with which the result is obtained is correct, the only suspect is the form of
transformation assumed. We are motivated, therefore, to search for another transformation
that will also satisfy the contraction of the perimeter according to the Lorentz length
contraction of special relativity.

Our quest is, therefore, to find a transformation that satisfies in our notation the following,

(a) The rate of the clock of 3O will appear slower to observer 2O :

23 2 2
21 21

2

1

1
statt t

w r
c

  



(5)

(Recall that 21 23w w and 21 23r r as we mentioned above)
(b) Line segments along the perimeter are contracted,

2 2
21 21

21 21stat
w rL L

c
    (6)

Observe that (5) implies that the rate of the clock of 3O will also appear slower to 1O , who
has the same clock as 2O . Namely,

13 33 2 2
21 21

2

1

1
statt t t

w r
c

    



(7)

But since there is no relative motion between 1O and 3O , 1O will think that is due to the
centrifugal acceleration that 3O feels. Requirements (a), (b) along with the assumptions 1,
2, 3 imply a transformation (contraction) on the radial distance as we will see below.

4. The Contraction of the Radius of the Rotating Disc

Refer again to observers O (or 2O ) on K  (or 2K ), O (or 1O ) and O (or 3O ) on K (or

1K ) , with K rotating with respect to K with frequency v according to O (and 
according to O ). Suppose observer O has a rod that extends radially from the center O to
some point A (see Figure 1). The rod is hollow mirrored inside and infinitesimally thin so
that light traveling through it follows a straight line. The rod is just an artifact to help
imagine things, a statement saying that O sends a light signal radially outward is enough.
ObserversO and O will agree on time rates ( dt dt ) (Assumption 1) and the
frequencies of rotation they observe will be equal (   ) (Assumption 1). They will not
agree on angular velocity measured in radians per unit time, because they will in general
disagree on  and, therefore, we may say that for observer O the angular velocity is,

2w  ( 11 112w v  ), while for O , 2w    ( 21 212w v  ).
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Observer O (who is not under acceleration because he sits at the origin although he is
rotating with the disc) sends a light signal from O towards A through the rod. According to
him the signal travels with velocity c  (Assumption 2) the distance OA = r (see Figure
1). Until the signal reaches the end of the rod, the rod will have moved to position OB.
Observer O will see the signal travel a curved path (OCB') with constant tangential
velocity c  (Assumption 2). At the perimeter the direction of the velocity of the signal,
according to O , will make an angle  with respect to the radius OB' which will have
length OB r  ( 21r ).

Figure 1 The path of the light signal originating at O is OCB' according to observer O (the lab
observer)

Let
r : the radius as observer O measures it (stationary length) (OA=OB)
r : the radius according to observer O (OB')

r  :  the radial component of the velocity  according to observer O

  : the component of  perpendicular to the radius according to observer O

 : the angle between r  and  (to be called angle of deflection from the radial direction)

We may write the following relationships for light signals letting c  for :
For a light signal c  and then

cosr c   (8)

sinc   (9)

w r    (10)
where w is the angular velocity in radians as observed by O and therefore,

2w    (11)
From (9) and(10)

sin w r
c


 

 (12)

And substituting in (8)

φ

O

C

B

O'

B'
r

r'

θ

A

O
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2 2

21r
w rc

c


    (13)

In order to satisfy the condition for the contraction of the perimeter (see (6)) we further
require that

2 2

22 2 1 w rr r
c

 
 

    (14)

Solve for   and substitute in (11) to obtain
2 2

21
2
w r w r

r c
  
 


(15)

We already defined 2w  . Substitute in (15) and solve for w to obtain
2 2 2

2
2 2 2 2 2

w r cw
c r r w r

 
 

(16)

Now substitute 2w in (13) noting that r
dr dr
dt dt


  


 and we find

2 2

2 2 21dr w rc
dt c w r

 


(17)

Using r ct , (17) becomes

2 21
dr c
dt w t





(18)

and integrating with respect to t we find
2 2 2 2ln( 1 ) ln( 1 ) arcsinh( )c ct rr wt w t wt w t wt

w wt wt
        (19)

where, the constant of integration is zero because we require that 0r  for 0t  .
Equivalently, since r ct , (19) can take the form

sinh wr wr
c c

 (20)

Using (20), (16) becomes,

4 2 4 2 4 2
2

2 2 22 2 2 2 2 2 2
2 2 2 2

2

(1 )arcsinh(1 ) ln ( 1 )( ) ln ( 1 )

w r w t w tw
w t wtwr w r w t wt w tc r w

c c

   
  

  

(21)
A similar relation (21) holds also between  and because 2w    and 2w  (see
(14) and (15) )
Using (12) and (16) we find

2 2

22 2 2
cos 1c w r

cc w r


 
  


(22)

and we require that w r c   .
We have shown that O (the laboratory observer) will see a contraction of the radius of the
rotating disc given by (19) or (20). Observers O and O will not agree on the angular
velocity, w and on the value of  . In fact, observer O will perceive wand   as varying
with the distance r . This situation arises from the fact that the contraction factor along the
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perimeter is different from the contraction factor along the radius and the requirement that
the speed of the signals is constant and agreed by all observers.
One remark about angular velocities is useful to clarify things. Observers O , O and O
will agree on epicenter angle  , measured as fraction of a circle (see Assumption 1).

But according to the definition of angular velocity we may write 2w
t





, 2w
t

  


,

2w
t





 , while for angles 2   , 2    , 2    , where the tildas refer to

observer O ( 3O ) , the primes to observer O ( 2O ), and the plane letters refer to observer O
( 1O ). The correct notation using the subscript notation of section 3 is

11 11
11

11

2 22

stat

w w
t t t

   
   
  

, 21 21
21

21

2 22

stat

w w
t t t

        
  

,

33 33
33

33

2 22 cos
stat

w w
t t t

 


 
   
  

 . But 11 22 33      (or    ), because

observers agree both on radial and on perimeter lengths when stationary on their frame
(Assumption 3). We conclude, therefore, that

21 21

11 11

ww
w w

 
 

 
   (23)

3311

33 11

1
cos

tww
w w t 


  


(24)

and
21 3321 21

33 33 21 33 cos cos
tww

w w t
  
    

 
   


(25)

5. Summary of Results

The angle of deflection  and in particular cos takes many equivalent forms that are
presented here for ease of calculations

2 2 2 2

2 2 2 2 2 2 2 2 2

2

11 1 cos
1

w r w r c w r
c c w r wrc w r w r

c


   

      
 



(26)

2 2

2 2 2 sinw r w r
c c w r


 
 


(27)

tan sinhwr wrwt
c c

 


    (28)

Where  is the angle of the circle traveled by the signal until it reaches the distance r
from the center (see Figure 1).

The transformation among the observers O , O and O is summarized below in Table1(a),
1(b),1(c). However, our interest in this study will be focused on the relation between
observer O and O .
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Table 1(a) Transformations between Observers O ( 1O ) and O ( 2O )
Quantitities Transformations
Time interval statt t t     ,  ( 21 12 11 22statt t t t t         )
Length segment on perimeter cosL L    ,  ( 21 cosstatL L    )
Radius

arcsinhc wrr
w c

 

Angular velocity 2 cos

arcsinh( )

rw w wrc
c

 

Pi and angles
cosw r

w r
 


 

  
  



Table 1(b) Transformations between Observers O ( 1O ) and O ( 3O )
Quantitities Transformations
Time interval

cos
tt



  , ( 13 33 cos
stattt t



    )

Length segment on perimeter L L   , ( 13 31 statL L L     )
Radius r r 
Angular velocity 11

33

costw
w t



 




Pi and angles    ,   

Table 1(c) Transformations between Observers O ( 2O ) and O ( 3O )
Quantitities Transformations
Time interval

cos
tt



  , ( 23 33 cos
stattt t



    )

Length segment on perimeter cosL L     , ( 23 cosstatL L    )
Radius

cos arcsinh
cos

c wrr
w c




 
 


Angular velocity 2

cos arcsinh( )
cos

w rw wrc
c




 
 

 

Pi and angles
33

21 33

cosstattw r
w t r

 


 


  
 


, 33

21

 
  
 
 


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6. Warp or Ripples?

From (14) and using (20) we see that cos
arcsinh

wr
c

wr
c

    . This implies that   

except for 0wr  for which equality holds. The decrease of  implies a warping of the
disc or the creation of ripples (see Figure 2(a) and Figure 2(b)). In the case of warping
(Figure 2(a)) observer O sees the radius as the segment OA with length r , observer O
sees the curved segment OB with length r , which for him looks as straight and PB is the
theoretical straight line (projection of r on Euclidean space) with length r .
However, we may exclude warping, because of the following argument: Consider three
parallel concentric discs. Let the middle one rotate with frequency  and with respect to
the other two that are stationary. If indeed warping occurred the middle disc would
intersect one of the other two discs, since we are allowed to bring them arbitrarily close to
the middle disc. This seems unphysical. We are, therefore, inclined to exclude warping as
a possibility and to consider ripples instead.
The ripples formed on the disc (Figure 2(b)) make the radius be looked in two different
ways. One is the radius touching the surface of ripples ( r ) (the surface radius) and
another is the theoretical straight line disregarding ripples ( r ) (the straight radius or the
projection of r on the flat plane of rotation). The latter one satisfies the equation
2 2 2 cosr r r       and therefore,

cosr r   (29)

(a) (b)
Figure 2 (a) The rotating disc is warped. The radius on the surface of the warped disc is r . The
straight line (Euclidean) radius is r .The stationary radius is r . (b) The rotating disc forms
ripples. The length of the radius on the rippled surface is r . The straight line (Euclidean) radius of
the disc is r . The stationary radius is r .

As we will see in the discussion below (section 7), if w is finite but r then r ,
cr
w

  , 0w , cos 0  . The lab observer O will see the surface radius ( r ) tend

very slowly (logarithmically) to infinity and w r c  , while the straight (on the flat

Euclidean surface) radius r tends to c
w

.

Physically, r is the radius that an observer Oon the laboratory frame will observe, who

is located at a distance greater than c
w

from the axis of rotation of the disc. If O , enters

into the region of distance less than c
w

from the axis of rotation, then his geometry ceases

Or''
r r'O A

BP

r

r''
r'
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to be Euclidean. He becomes observer of type O . He is now on the rippled surface (which
he perceives as flat) his pi is now   and the radius of the disc is now given by r , which
is not limited by any boundary. Since rotation of the disc does not affect the time rate of
their clocks, because they do not participate in the rotation, we expect that the time rate for
O and Oafter O crosses the boundary to remain equal or that statt t t      , although
they cannot exchange light signals. If we denote by double primes the quantities observed
by O , the above implies that

2 2

2

1

1
t t t

w r
c

     
 



 (30)

Regarding lengths (perimeter and radial) observer Osees the lengths of observer O
smaller by a factor of cos because of (29). Hence,

cosrL L L
r




     (31)

Further, epicenter angles are not affected,
   (32)

Hence, there is agreement on frequency of revolution measurements, that is v v v  

because
stat

v
t
 



Also from (14) and (29) r r    . Since observer O lives in Euclidean space, his pi
denoted as  must be equal to the normal pi or    . It follows that

2 2w w       . From these observations one easily deduces using (26) that
w r w r wr      . Substituting in (26) we find,

2 2 2 2 2 2

2 2 2cos 1 1 1w r w r w r
c c c


    

      (33)

This was expected since the Lorentz contraction of the perimeter for O is given by
2 2

21 w r
c
 

 . Finally, substituting (33) into (29) we obtain,

2 2

21 w rr r
c


   (34)

And solving we find

2 2 2

cr r
c w r

 


(35)

Which was also expected since by (26)
2 2 2

cos c
c w r

 


7. Discussion of Results

First we note that from (26), (29) and because w r w r wr     
lim lim

wr wr
w r w r c

 
     (36)

2 2
lim lim lim( ) 0

1w w w

rr r
w t  

   


(37)

And similarly,
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2 20 0 0
lim lim lim( )

1w w w

rr r r
w t  

   


(38)

Also
lim 0
r

w

  (39)

And
lim
w

w

   (40)

1. As wr ; wr w r c    , and cos 0  and 0r   and c   . This says
that as the tangential velocity of the rotating disc becomes big, the rays at the
circumference are almost tangential and their tangential velocity approaches the
speed of light, while their radial velocity tends to zero. In other words, light signals
emanating from the center, O, will bend and turn around in circles expanding very
slowly as they will be bend almost entirely tangentially.

2. In particular if w while r (and hence t ) remains finite, w , cos 0  ,

0r , 0r , 0r   and c   . In this case, when the angular velocity ( w )
becomes big, while the rest radius ( r ) remains finite, the radius ( r and r ) for the
lab observers O and O shrinks to become very small (but wr w r c    ), the
light signals starting from the center, O, bend to turn in circles ( cos 0  ) with

tangential velocity c   and the radial velocity of the light signals tends to

zero ( 0r   )

3. If w is finite but r then r , cr
w

  , 0w , cos 0  . Observer

O will see the surface radius ( r ) tend very slowly (logarithmically) to infinity

(while w r c  ), while O will see the radius ( r ) tend to c
w

. The light signals

bend and go around in tighter and tighter circles with tangential velocity that tends
to c ( c   ), while the radial velocity drops to zero.

4. It is straightforward that when there is no rotation 0w  we end back in frame K
with r r r   , L L L      , r r   as expected.

5. To show that the light signals will spiral out in tighter and tighter circles we may
examine

1
2 2 2

2

1 cos

1

dr
dr w r

c



 
 
 
 

(41)

which is increasing with diminishing rate as r increases. Similar observations hold
for r where

3
2 2 2

2

1

1

dr
dr w r

c



 
 
 

(42)



13

6. Angle AOB  in Figure 1 is traversed by the signal whilst it travels the length

r , and is given by wt  where rt
c
 or tan sinhwr wr

c c
 


   . Angle  can

become very big and even be the result of many revolutions.
7. If the signal originates from the perimeter towards the center, then its path will be

symmetric with respect to the radius OB' in Figure 1.
8. A plot of r for increasing time will look like the following Figure 3

Figure 3 The path of a light signal originating from the center of a rotating frame as seen by the
non rotating observer O . Numbers on the axes are nonessential since scaling changes with w .

8. Generalization to three Dimensions

An observer O at the center O of a rotating frame K is rotating with the frame. He carries
a rod (similar to the one we used in the 2 dimensional case above) pointing radially but
with an angle  with respect to the z axis. As we said in the 2-dimensionalcase, the rod is
simply an artifact to help us imagine the situation. It suffices to say that observer O sends
a signal from the origin with an angle  to the z axis. The situation is depicted in Figure 4

1.5108 1.0108 5.0107 5.0107 1.0108 1.5108

1.5108

1.0108

5.0107

5.0107

1.0108

1.5108



14

Figure 4 The signals originate from O and move along the rod OA for observer O , who rotates
with the frame. The non-rotating observer O sitting at O will see the signal travel a helical path
OCB' while the rod travels from position OA to OB until the signal traverses the rod. The
projection of the velocity vector B'F of the signal on the plane of rotation is B'F', as observer O
perceives it, has magnitude sinc  . The angle ˆE B F  = is the angle of deflection from the
radius zO B =OD= where zO B is drawn from Bperpendicular to the z axis. The angle

traversed by the rod is ˆGOH=

8.1 Non-rotating nearby observer O

Suppose a signal with velocity c originates from O with angle  with respect to the axis
of rotation as seen by observer O and is directed towards A through the rod OA (see
Figure 4). The radial (in cylindrical coordinates ( , , )z  ) velocity of the signals for

observer O is
2 2

sinc c
z








and the z component is cosc  . Suppose now that O

rotates with the rod OA with frequency   as seen by another observer O that sits on top
of O but does not rotate withO . Let also  be the frequency that O thinks his frame, K ,
rotates with respect to K  of observer O . Because of Assumption 1,    and it has
meaning to define the angular velocity of the frame K as 2w  . Observer O will see
the signal travel the helical path OCB' in the same time that it takes to traverse the rod for
observer O , while the rod moves from position OA to OB. For him light travels along the
helical path with the same velocity c and the z component equals that of observer O (

cosc  ). The velocity vector for observer O is B'F and it makes an angle  with the z-

O

A

B'

C
Oz

D

E

F

ρ'

φ

w

θ

E'

F'

G
ξ

Β

ρ

z

Η
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axis. The projection B'F' of the velocity vector B'F (tangential to the helical path for
observer O ) on the plane of rotation is denoted as proj and

sinproj c   (43)
The angle between it and the radial (in cylindrical coordinates) B'E' for Observer O is  .
This angle is called the angle of deflection of the velocity vector of the signal from the
radial direction. Let us denote the velocity in the radial direction (in cylindrical
coordinates) as observer O sees it by   . Then cosproj    and therefore,

sin cosc    (44)
The tangential component of the light signal for observer O on the plane of rotation will
be perpendicular to   and will be given by

sin sinc w    (45)
Also, by the definition of angular velocity,

w    (46)

As usual, the primed quantities proj  ,   ,   ,   , ware as observer O perceives them.
For the same reasons (Lorentz contraction of perimeter) as in the two dimensional case we
require that (14) holds. Namely,

2 2

22 2 1 w
c


  
 

    (47)

Solving for   and substituting in 2w v  we find
2 2 2

2
2 2 2 2 2

w cw
c w


  

 
 

(48)

where 2w v and we note that (48) is the same as (16), as expected.
Finally,

d
dt





  (49)

Equations (44), (45), (46), (48), (49) are five equations in five unknowns: , , , ,w        

given , ,w   .
From (45) and (46)

sin
sin
w

c




 

 (50)

and hence,
2 2

2 2cos 1
sin

w
c





 

  (51)

with the condition sinw c    . And using (48)
2 2

2 2 2 2cos 1
( )sin

w
c w




 
 


(52)

Since sinct  and cosz ct  , we may write the above relation as,
2 2 2 2 2 2

2 2 2 2 2 2

1 coscos
1 sin

w t c w z
w t c w




 
 

 
 

(53)
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with the condition that 2 2 21 cos 0w t   (or cz
w
 ) (or sinw c    )

(Note that cos 0  either when cz
w
 or when w goes to  )

Substituting in (44)
2 2 2

2 2 2

1 cossin cos sin
1 sin

w tc c
w t


   


  


(54)

and since d dt d
dt dt dt

 


 
  


,

2 2 2

2 2 2
0

1 cossin
1 sin

t w tc dt
w t


 


 
 (55)

It is convenient to represent the integral in the RHS of (55) as a function of  and t . So
we define,

2 2 2

2 2 2
0

1 cos( , )
1 sin

t w tI t dt
w t








 (56)

Then we may rewrite (55) as
sin ( , )c I t    (57)

Note that for
2


  , (57) becomes


2 22 0

arcsinh arcsinh
1

t dt c c wrc wt
w w cw t






   


 , which is what we found for the two

dimensional case (recall (19)).
Below we summarize the following equations that are useful for calculations,

(see (48))

2 2 2 2 2 2
sin

sin sin 1 sin
w w wt

c c w w t
 


   

 
  

 
(58)

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 coscos 1
sin 1 sin

w c w z w t
c c w w t

 


  
   

   
 

(59)

2 2 2 2 2 2 2 2 2 2
tan

1 cos sin sin
wt w w

w t c w z c w
 


   

 
  

   
(60)

 02 2 2 2

2 cos cos
2 z

w c
w c w




    
 

     

     
    


(61)

0

( , ) cos
t

I t dt   (62)

8.1.1 Plot of signals for observer O

Under the condition that 2 2 21 cos 0w t   (which is required for cos to be a real

number) and 0w  , and 0
2


  we want to calculate ( , )I t

Make the substitution
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cotk i  (63)
And

sinx iwt  (64)
Where 1   and then (56) becomes

2 2

2
0

1 1( , )
sin 1

x k xI t dx
iw x







 (65)

But the integral on the RHS is an incomplete Elliptic integral of the second kind denoted
as ( , )E k x . Therefore, (65) can be written as

1( , ) ( cot , sin )
sin

I t E i iwt
iw

  


 (66)

which can be used for calculations.

If we take the definite integral of (55) for 10
cos

t
w 

  (the limit allowed by the

condition 2 2 21 cos 0w t   ) we find the max value that  can take for each particular w
and  . Namely,

1
cos 2 2 2

m 2 2 2
0

1 cos 1( ) sin sin ( , )
1 sin cos

w w tc dt c I
w t w

 
    

 
  
 (67)

This says that for any fixed  , the signals in the radial direction are bounded (see Figure

5). The signals bend and rotate until they reach cz
w
 at m

1
cos

t
w 
 , the angle of

deflection becomes 90º  degrees, the radial velocity diminishes to zero and the radial
distance of the signal becomes.

m m( ) sin ( )c I     (68)

where, we denote m
1( ) ( , )

cos
I I

w
 




However, for
2


  we come back to the two dimensional case and the signal is not

bounded. It expands slowly all the time logarithmically and again the radial velocity tends
to zero.

We said that all signals, when they reach m msin ( )c I    , they are at m
cz
w
 . After

that, the signals are not observable by O
Further, because of (50) sin sin sinw c c       and for m  , where sin 1  , we
have

m m sinw c    (69)
and hence at m  the angular velocity of the signals mw for observer O is

m
m

cw


 


(70)

In order for the normal Lorentz contraction of the perimeter to hold we must satisfy (47)
and (48) which lead to
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2 2 2

c
c w

 
  



 

(71)

The effect of w is to scale down distances as it increases. The faster the body rotates, the
faster the signals bend making tighter revolutions closer to the body.
The signals are not limited in the radial direction but cover the whole space allowed by

cz
w
 , as angle  varies from 0 to 2

In Figure 5 we plot the path of the signals in the region 0 cz
w

  for several signals with

different values of  .The paths are for the region 0c z
w
   are symmetric with respect

to the plane of rotation.

Figure 5 Plot of signals emanating from O for observer O as they rotate with radius   while
advancing in the z direction for the region 0 /z c w  for different values of  . The numbers on
the axes are not essential since they depend on the value of w .

8.2 Introduction of precession

Up till now we talked of K as rotating frame. However, as we plan later to place a point
mass at the origin and imagine the signals it sends out, it is useful to add precession to , K
since rotating bodies also precess as they rotate unless they are symmetrical in their axes
of inertia. It is also possible to add nutation as well (if the rotating body is subject to an
external force). However, we will not consider nutation in this study as it does not add
much to what we want to demonstrate. The effect of precession (and nutation) is the same
as if observer O oscillates his rod, through which the light ray travels, up and down
around an angle  from the z axis. The addition of precession (and nutation) to the case of
observer O will make him see a wavy and curved path for the signal, instead of only
curved. The precession thus also justifies our preference for “ripples” in the two

500000

0

500000

500 000

0

500000

050 000100 000150000
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dimensional case that was studied above. Referring to Figure 6, a point body at O is
rotating around the axis OC. The axes OC rotates around the z axis with the angular
velocity of precession  . The angle of inclination of OC with the z axis is 0 . The
projection of AC on AB which is drawn parallel to the x axis is AD. Hence,

cosAD AC t  . It follows that cosAD AC t
OA OA
  or 0tan tan cos t   where

0 AOC  and AOD 

Figure 6 A point body at O rotates with angular velocity w around axis OC which itself rotates
around the z axis with inclination 0 AOC  and angular velocity  . If we let AOD 
then 0tan tan cos t   .

A signal that is emitted by the point body at angle  from the z axis when the body does
not precess (when 0 0  ) , when it precesses it will have an angle   to the z axis.
The average of angle   over time is  . In this formulation the problem for observer
O is given by

2 2

22 2 1 w
c


  
 

    (72)

sin( ) sinc w      (73)

sin( ) cosd c
dt


  

  (74)

sin( )ct    (75)
2w v  (76)

cos( )z ct    (77)
2w v (78)

Solving the same way we did for the no precession case we find,

x

z

y

C

O

A BD
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2 2 2

2 2 2

1 cos ( )cos
1 sin ( )

w t
w t

 


 
 


 

(79)

And

0

sin( ) cos
t

c dt      (80)

8.3 Non-rotating far away observer O

Assuming we have precession, the far away observer O does not see ripples, or even if
he observes them he cares about the straight line average for the radius   . This average
path is given by a signal that has inclination   but no precession, as if it originates from a
signal with inclination  and 0  in the world of observer O . The light signal starting
from the center with radial direction that will follow a wavy and curved path (as if the
space has ripples) with velocity c according to observer O , will appear to observer Oas
curved but non wavy having velocity c and inclination   .
The equations describing the problem of observer Oare:
Lorentz contraction of the perimeter,

2 2

22 2 1 w
c


 


   (81)

The tangential velocity must equal w  ,
sin sinc w      (82)

The rate of change of  must equal the radial velocity,

sin cosc
d
dt


  


  (83)

The distance traveled in the z direction is equal for observers O and O ,
cos coscc     (84)

Where sin( )ct    and the average over time is  given by
sinct  (85)

Since the average of 0  .
Solving (81) and denoting for economy  as simply  we find

2 2 2

c
c w

 


 


(86)

Now solving (86) for  we find that

2 2 2

c
c w










(87)

From (87) we see that c
w

   and as   , c
w

   . This is also obvious by setting

sinct  in (86) and letting t thus c
w

   regardless of the value of  .

From (86) using (85) and taking the derivative with respect to t we find
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3
2 2 2 2

sin

(1 sin )

d c
dt w t

 







(88)

From (82) and (83) we have,

tan w
d
dt







   (89)

And using (86) and (88) we find
2 2 2tan (1 sin )wt w t    (90)

Dividing (82) by (84) we find

tan sin
cos
w

c


 



   (91)

And using (86) and (90) we obtain
2 2 2 2 2 2

2
32 2 2

2 2 2 2

1 (1 sin )sintan 1 cot tan
cos 1 sin (1 sin )

w t w twt
w t w t


  

  

 
   

 
(92)

Finally from (84) and using
2

1cos
1 tan




 


we find

2 2 2 2 2 2 2

2 2 2 3

cos tan (1 (1 sin ) )cos 1
cos (1 sin )c
c w t w tc

w t
  

 
 

 
  

 
(93)

This equation allows c to take values greater and smaller than c.
The signals according to observer Oare limited in the radial direction to /c w which they
approach asymptotically, as we remarked in (87) and therefore lie within the cylindrical
surface of radius /c w without being limited in the z direction since z z  due to (84).

9. Rotation with Slippage

9.1 The two-Dimensional Case for observer O

If we allow the angular velocity w to vary as a function of the radius it is like having a
disc that consists of rings with small width that slide one after the other. Let for example

0 ( )w w f r (94)
where, 0 ( ) 1f r  and non-increasing in r
In this setup there is a multitude of O type observers, who stand at the origin O, one for
each particular value of the radius r , who rotate with the angular velocity of that
particular ring. Observer O is standing on the center on top of O but is not rotating with
the disc. The clocks of the two types of observers will run at the same rate. Again
equations (11) to (18) continue to hold. Substituting (94) into (18) we find,

2 2 2
0

cos
1 ( )

dr c c
dt w t f r



 


(95)

and
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2 2 2 2 2 2 2
0 0

1cos
( ) 1 ( )

c
c w r f r w t f ct

  
 

(96)

If we let ( ) rf r e  we find

2 2 2
01 r

dr c
dt w t e 





(97)

or

2 2 2
0

s
1 r

dtr c con t
w t e 

  


 (98)

To see how r behaves take the derivative of cos
2 2
0

3
2 2 2 2
0

(1 )1cos cos
(1 )

ct

ct

w te ctd d
dr c dt c w t e






 






  


(99)

At 0t  the derivative is negative then as t increases the derivative increases and at
1t
c

 it becomes zero and then positive and finally for big t it tends to zero. A plot of

cos appears in Figure 7

Figure 7 The cosine of deflection angle φ versus r. The deflection angle starts at zero (cos0º=1).

Then it increases reaching almost 90º degrees (for big enough 0w ) at
1r

 . Then it falls again to

zero (cos90º=1) asymptotically.

The deflection angle initially at 0º increases approaching 90º degrees (closer to 90º for
higher 0w ) and then drops again to zero. This behavior is similar to the behavior we have
examined for the rotation without slippage. Namely, as the angle of deflection increases

the signals start rotating in tighter circles until they reach 1r

 . Then the signals rotate in

less and less tight circles until they are directed asymptotically radially outward ( 0  ).

The choice of slippage according to the rule ( ) rf r e  can be justified by the assumption
that for a disc consisting of slipping rings each rings slips with respect to the previous by
the same proportion in angular velocity. Consider for example a width r of n layers. The
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first has velocity 0w , the second 0

r
nw  , the third 2

0 ( )
r
nw  the nth 0

nw  where
r
n  .

Each layer slips with respect to the previous by proportion  forming a geometric series.
Therefore, letting n the ring at radius r will have angular velocity 0

rw  . For the
case that 0 1  , where we are interested, we may substitute e   where 0  and
then 0 0

r rw w e   or ( ) rf r e  .

9.2  The three-Dimensional Case for observer O

For the three dimensional case we assume that there is slippage both in the radial and the z
direction. To achieve this we assume that

( sin cos )
0 0

z ctw w e w e          (100)
where, 0  , 0  . We disregard precession (assuming the amplitude of precession is
very small) otherwise  must be replaced by   complicating the problem since  is a
function of t . Relations (44) to (49) continue to hold, with

( sin cos )
0 0

z ctw w e w e         
2 ( sin cos ) 2 2 2

0
2 ( sin cos ) 2 2 2

0

1 cossin cos sin
1 sin

tc

ct

e w td c c
dt e w t

   

   


  



 

 

 
 


(101)

where
2 2( ) 2 2 2 ( sin cos ) 2 2 2

0 0
2 2( ) 2 2 2 ( sin cos ) 2 2 2

0 0

1 coscos
1 sin

z tc

z ct

c e w z e w t
c e w e w t

     

     




 

   

   

 
 

 
(102)

because cosz ct  and sinct  . Therefore,
sin ( , , , )c I t      (103)

where
2 ( sin cos ) 2 2 2

0
2 ( sin cos ) 2 2 2

00

1 cos( , , , )
1 sin

t tc

ct

e w tI t dt
e w t

   

   


  



 

 




 (104)

For 90   we have,

2 2 2
00

1( , , , )
2 1

t

ctI t dt
w t e 


  

 (105)

Observe that (102) is the same as (59), where 0
zw w e    . The same is true for (58)

(60), (61). The required condition for (102) to be real, is

( sin cos )

0

1
cos

tcte
w

   


   (106)

It is obvious that for t close to 0 and t very big the above condition is satisfied, while the
left hand side has only one maximum. Therefore, for each  , it is either satisfied for all t
or there are positive 1t and 2t with 1 2t t so that it is satisfied for 1 2( , )t t t and not
satisfied within the interval ( 1 2( , )t t t ).
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Given a  , if it is satisfied for all t, then the angle of deflection  does not become 90º
degrees (except perhaps at a single point). Therefore, the signal is allowed to increase its
radius for all t and asymptotically become radial.
If it is not satisfied for an interval ( 1 2( , )t t t ), it means that at 1t the signal has reached
cos 0  (angle of deflection 90º degrees) and cannot increase its radius anymore. So
after 1t and until it reaches 2t the signal is not observable in the interval 1 2( , )t t . After 2t ,
the signal is again allowed to increase its radius, increase cos and become
asymptotically radial.
What is the condition so that given  , (106) is satisfied for all t? It is that the maximum of

( sin cos )tcte      is less than or equal to
0

1
cosw 

. And what is the maximum? Taking the

derivative ( sin cos ) ( sin cos ) (1 ( sin cos ))tc tcd te e tc
dt

                 , and maximum occurs

at 1
( sin cos )

t
c    



. So substituting in (106), if

0

cos
sin cos

ce
w


   




(107)

condition (106) is satisfied for all t and there is no 1t , 2t
In the opposite case, when

0

cos
sin cos

ce
w


   




(108)

In order to find 1t and 2t we solve (106)
( sin cos )

0

( sin cos )( sin cos )
cos

tc cc te
w

       
   


  

    and using the Lambert function

( (.)W ) we obtain
0

( sin cos )( sin cos ) ( )
cos

cc t W
w

   
   




    and finally

0

1 ( sin cos )( )
( sin cos ) cos

ct W
c w

   
    


  


(109)

This, by the theory on Lambert functions, gives two solutions, when

0

( sin cos ) 1
cos

c
w e

   



   , which by the way is the same as condition (108) as expected.

In particular, 1 0
0

1 ( sin cos )( )
( sin cos ) cos

ct W
c w

   
    


  


and

2 1
0

1 ( sin cos )( )
( sin cos ) cos

ct W
c w

   
    


  


where 0 (.)W is the solution near the

origin and 1(.)W is the solution further away from -1 on the negative branch of the
Lambert function.

Looking now at cos we take the derivative with respect to t to find its interior minimum
(that corresponds to a maximum of  ) along the path of the signal. After some straight
forward manipulation we find,
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2 2 ( sin cos )
0

2 ( sin cos ) 2 2 2
0

2 2 ( sin cos ) 2 2 22
0

2 ( sin cos ) 2 2 2 2 ( sin cos ) 2 2 2
0 0

(1 ( sin cos ))
1 sin

cos
sin 1 coscos

1 cos 1 sin

ct

ct

ct

ct ct

w te ct
e w td

dt e w t

e w t e w t

   

   

   

       

   




 

 

 

 

 

   

  


      
(110)

The second factor, in big parentheses, is positive. Therefore, looking at the first factor we
see that it starts negative for 0t  and then changes sign at

2 2

max
1

( sin cos ) ( )
zt

c c z


     


 

 
(111)

This corresponds to

max max
sinsin

sin cos
ct 


 

   
 


(112)

max max
coscos

sin cos
z ct 




   
 


(113)

Equations (112) and (113) can be combined using the definition of cos and sin in a
single equation giving the locus of points where  attains its maximum along the path of
a signal,

max max 1z    (114)
which is a straight line. The value of cos at the minimum is in ( , )z space,

max

2 2 2 2 2
2 2 2 2 20

max 02 2 2 2 2
0

( sin cos ) coscos cos  for ( sin cos ) cos 0
( sin cos ) sint t

c w e c w e
c w e

    
      

    






 
    

 
(115)

which is the same as
2 2 2 2

0 max
max 2 2 2 2

0 max

cos
c w e z
c w e
















(116)

The condition in (115) is a condition on  ,

max
0

cos
sin cos

cez
w


   
 


(117)

This by the way is the same condition as (107) that is required for the non existence of the
solutions 1t , 2t .

The parametric plot of maxz versus max is a straight line given by (114). The plot
appears in Figure 8 where two cases are shown. In Figure 8 (a) the condition (117) is
satisfied for all z and all  . In order for this to be true, we require the maximum over 
of the left hand side of (117) to be less or equal to the right hand side. This maximum
occurs at 0  and at this point condition (117) becomes

0

1 ce
w
 (118)
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In this case the minimum of cos in the direction of the path of the signal occurs on the
rhombus by revolution ABCD for all  .
In Figure 8 (b), (118) does not hold. This means that for some  (117) is valid and for the
rest it does not hold. In particular, talking about the first quadrant, because the same hold
for the rest by symmetry, for ˆGOB  it does not hold, but it holds for ˆGOB  . So for

ˆGOB  , cos does not attain a minimum on the rhombus, because it becomes zero
before reaching it, as it encounters the curve AB (marked as 1t ), which is the solution of 1t
. This solution as well as 2t (the curve between AB marked as 2t ) exist, when condition
(117), which the same as (107), holds. Between 1t and 2t the signal is not observable by O
, because cos becomes imaginary, unless we allow O to observe signals travelling with
speed greater than c. After 2t the radius starts to increase again and the angle of deflection

 returns asymptotically to zero. Observe that at A and B
0

cos
sin cos

ce
w


   




. In the

opposite case, when ˆGOB  , the local minimum of cos is attained on the remaining of
the rhombus BCD and EFA. After that the signal returns slowly to the radial direction.
Note that in Figure 8 we plot maxz vs max . But observer O sees  instead of  , which is
contracted with respect to  . Therefore, the shape that observer O will see will not be a
rhombus but will be deformed since it will be  contracted in the  direction.

(a)

ρ

z

ξ

-ce/wo
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B
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-1/λ

1/λ

ce/wo
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(b)
Figure 8 In (a) 01/ /ce w  . The rhombus ABCD (bold lines), describes the locus of points,

where cos is minimum. In (b) 01/ /ce w  . In this case for ˆGOB  , the signals reach

cos 0  , when they arrive at the curve marked 1t . So the deflection angle  has reached 90º
degrees and cannot increase any more. Between 1t and 2t the signal is not observable by observer
O . After that, the deflection starts decreasing and asymptotically becomes zero, thus the signal
returns to the radial direction. If on the other hand, ˆGOB  , then the signal attains its maximum
deflection on the line of the rest of the rhombus BCD and EFA and after that it decreases
asymptotically towards zero returning to the radial direction. The diagrams show maxz vs max ,

while observer O sees .  So we must imagine a contraction in the  direction to reflect what
observer O sees, and then the rhombus will be deformed accordingly.

In Figure 9 we plot maxcos as a function of  when (101) does hold. In (a) for a small
value of  and in (b) for a big value of  .

(a) (b)
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Figure 9 Plot of maxcos as a function of the inclination of the signal,  , as it varies
from 0 to / 2 when condition (118) is valid. (a) corresponds to small value of  while
(b) to a bigger one. In (b) the deflection of the signal in the z direction is smallest and it
increases (the cosine decreases) gradually as we approach the radial direction.

9.3 Rotation with Slippage for Observer O

Observer O is the far away observer. For him the problem is described by equations (81)
to (87) with the only difference that the angular velocity w is now not constant but varies
with the distance from the origin according to ( sin cos )

0 0
z ctw w e w e         

From (86) and using sinct  (recall from (85) that we denote  which is the average
of  by simply  )

2 2 2 2 2 2 2( ) 2 2 2 2 ( sin cos )
0 0

sin
1 sinz ct

c c ct
c w c w e w t e     

  


     
   

  
(119)

Taking the time derivative and equating to the radial velocity using equation (83) we
obtain,

3 2 2

3
2 2 2 2

(1 ( sin cos ) sin )sin sin cos
(1 sin )

c
c t wc

w t

    
   



   


(120)

By dividing (82) by (120) we find
2 2 2

3 2 2

1 sintan
1 sin

w twt
c t w




 
 


(121)

Where sin cos     
Dividing (82) by (84) and using (86) and (121) we find

3 2 2 2

2 2 2 2 2 22 2 2

(1 sin )tan tan 1
cos sin (1 sin )1 sin

w wt c t w
c w t w tw t

  
 

  

    
 

(122)

Using (84) we obtain

2 2 3 2 2 2
2 2

2 2 2 2 2 2 2 2 2

cos (1 sin )cos 1 tan cos 1 tan 1
cos 1 sin (1 sin )c

w t c t wc c c
w t w t w t

  
    

  
          

(123)

The ratio /c c tends to 1 when 0t or t . Also for 1t
c
 , 1c

c

 . (Recall that

1
c

is the time where  attains its maximum for observer O as we found in (111)). Since

/c c starts at 1 and tends at 1 at infinity and for 1t
c
 it is 1c

c

 , it must either be flat

equal to 1 or have at least one maximum for 1t
c
 .
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The plot of tan  vs t appears in Figure 10(a) and shows that it has a maximum that
corresponds to a max for   . In Figure 10(b) we plot /c c for small angular velocity 0w
and in Figure 10(c) /c c for big 0w .

(a) (b)

(c)
Figure 10 In (a) is the plot of tan  vs t . In (b) and (c) is the ratio /c c vs t , for small 0w
small (about10 rad/sec) and for 0w big (about 3*105rad/sec) respectively.

Taking d
d




we see that it is positive:
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and hence lim




   unless 0  in which case

0

lim c
w



  , which agrees with the

result for the no slippage case. Further, for t big,    .

The plot of the signal as a function of time, t , as it is given by (119), while z advances
according to cosz ct  and  given by,

 ( sin cos ) ( sin cos )0
0

0

1
( sin cos )

t
ct ctww e dt e

c
       

   
     

 (125)

appears in Figure 11, where the inclination  is a parameter.
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(a) (b)
Figure 11 The signal path as it advances in time upward in the z direction, while revolving
around the z axis at increasing in time radial distance   . (a) A single signal path. (b) Many signal
paths for the same time interval with different  . The signals paths towards the positive z semi
axis only are drawn. To complete the picture one must imagine the same jet of signals towards the
negative z direction.

We see how most of the signal except those close to 090  travel tight to each other in
the z direction until they break up to return asymptotically to the radial direction. The jet
like formation is symmetric with respect to the plane of rotation and another jet emanates
towards the negative z direction.

The maximum of tan (or max for  ) is hard to calculate although manipulation of the
graph that appears in Figure 10(a) shows clearly that a maximum occurs very close to

max
1

( sin cos )
t

c    



, the minimum of cos (or max of  ) as we found in (111),

when we studied the case of observer O . It is logical that they must be very close since
observer O sees an average of what O sees. We will, therefore, proceed to a first
approximation as if they are the same so that

max max
1

( sin cos )
t t

c      


 (126)

This, as we mentioned in (111) to (114) implies that our maximum tan is very close to
the locus of points ( max max, z  ), where the minimum of cos is attained, namely, the
rhombus described by

max max 1z    (127)
Where
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max max
sinsin

sin cos
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(128)

max max
coscos

sin cos
z ct 




   
 


(129)

Then we calculate what shape observer O sees as the rhombus where  is maximized.
For this we use (119) and calculate it at maxt to find

max
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(130)

Using (130) along with (128) and (129) we plot the line or locus of points ( max max, z   ),
(recall this is an approximation as we said above) where  attains its maximum, in
observer’s O space ( , )z  as a function of  . This plot appears in Figure 12 and it forms
a cigar like locus but it may be wider close to a rectangle with rounded corners depending
on the values of  and  .The width of the locus decreases with increasing 0w . Observe

that
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Figure 12 The locus of points max max( , )z   , (where  attains its maximum) as parameter 
varies from 0 to / 2 . The other quadrants are obtained by symmetry. The width narrows
dramatically as w increases. The shape and roundness also varies with parameters  and  . For

90   the distance
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10. Conclusion

Starting from the assumption that two observers rotating with respect to the other around a
common axis will agree on epicenter angles as fractions of a circle but not necessarily on
the value of π, we find the length of the radius of a rotating disc as seen by the non rotating
observer. The radius will be contracted but not with the same factor as the perimeter
because we allow the value of π to change for the non rotating observer with regards to his
measurements on the rotating disc. We argued that we have to consider two types of non
rotating observers. One within the radius c/w and one outside. For the non rotating
observer Owithin c/w, a light signal starting radially from the origin of the rotating disc
(frame) that rotates with the frame at an angle 90   from the z axis, will gradually turn
sideways forming tighter circles until it asymptotically reaches 90º degrees deflection
from the radial as the radius tends to infinity. His space is distorted and π is different. If a
signal is emitted from the origin at an angle 90   from the z axis it again expands

rotating in ever tighter to one another circles, until it reaches cz
w
 . After that the signal

is not observable by observer O .
For the outside observer O , who stands outside the cylinder with radius /c w , the light
rays follow helical paths with increasing radius, which asymptotically tends to /c w .

Next we examined rotation with slippage (rotation is not uniform but decreases
exponentially as the radius and z increases with slippage parameters  and 
respectively). In this case, the space is not divided by a cylinder of radius c/w, but still
there is contraction of the radial distances. The light rays originating from the origin at an
angle  from the z axis change their initial direction sideways until they reach a maximum
deflection from the radial direction and then asymptotically turn back to the radial. The
locus of points, where the maximum deflection occurs is determined. For an observer O
within or near this locus it (the locus) looks close to a deformed rhombus by revolution
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with the radial distance contracted, while for an observer O located far away it looks like
a cigar depending on the slippage parameters.
For the slippage case and for observer O , it is worth noting the jet like formations, in the
direction of the positive and negative z axis, of the signals that emanate from the origin of
the rotating frame. Similar jet effects, but less pronounced, should appear for observer O
for the slippage case.
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