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Abstract

The relativistic problem of the rotating disc otating frame is studied. The solution
given implies the contraction of the radius anddhange of the value afdepending on
the type of observer. Two forms of rotation aressdared. One is constant, independent
of the radius, implying a horizon, the other is @xgentially decreasing with the radius and
does not imply a horizon. In all cases the patrsgials emanating from the origin of the
rotating frame advance helically in the positivel megative z direction, where they are
concentrated, due to the contraction of the ra@ind,in some cases appear as jets.

1. Introduction

The rotating disc has been the subject of a mdkitf papers since Ehrenfest [1]
published what is today known as the “Ehrenfesa@ax”. He noted that since the
perimeter of a rotating disc would relativisticatlgntract, while the radius remained the
same, a deformation of the disc should take plsleay authors have since then
contributed to the understanding of the problenstiglying the geometry of the rotating
disc. A historical review can be found in Rizzi @dggiero [2] and in Grgn [3]. The
approach in the present study is closer to thetitgiathere is a contraction of the radius of
the rotating disc. Similar ideas have been explbsedshworth, Davies and Jennison [4],
[5] and by Grinbaum and Janis [6], [7]. In partaulAshworth, Davies and Jennison
show that the radius of the rotating disc contractording to an observer that is rotating
with the disc at a distanae> 0 from the center. Grinbaum and Janis argue that an
observer that is not rotating with the disc wilkgbe radius of the disc contract by the
same relativistic factor as the perimeter. Thetapproach is closer to ours although we
do not find the same results because we allow ahgevofz to change for the non-rotating
observer, when he makes measurements regardimgt#tieg frame.

The paper is organized as follows: In section Zta¢e our basic assumptions that will
help us derive the transformations in the followssgtions. In sections 3 we present our
notation and known relativistic results regardihg totating frame. In section 4 we
formulate and solve the problem of the contractibthe radius of the disc and the
transformation of the value affor the non rotating observer. In section 5 wespn a
summary of the results up to that point. In secame consider the space or disc
deformation as seen by the non-rotating observédastinguish between two kinds of
non- rotating observers: one within the horizomasfiusc/w and one outside. In section 7
we discuss the results. In section 8 we genertdizetating frames in 3 dimensions. In
section 9 we plot the signals emanating from thgroof the rotating frame in the radial



direction, as seen by the non-rotating observers.signals gradually bend sideways until
they reach a 90° degree angle with respect tcatlies, while they advance in the positive
and negative z axis direction. In section 10 wev@ra rotation with slippage so that the
angular velocity is assumed to decrease expongramskhe radius increases. We find that
the signals gradually bend sideways until theymesmaximum deflection from the radial
direction and then turn asymptotically back to héial as the radius increases, while they
advance in the positive and negative z directinrsdction 11 we present our conclusions.

2. Assumptions on the rotation of two concentrexcdi

In the following we will make three assumptionssAsptions 2 and 3 are standard in
relativity theory. Only Assumption 1 is new.

1. Discussion to justify Assumption 1
Suppose an observé), is at any place on disc (disc 1) and a secondrods®, that sits

at any place of another disc (disc 2) parallel emakial to disc 10, sticks a pencil

through his disc parallel to the axis of rotatiothwts point touching the other disc (disc
2). O, does the same thing with the tip of his pencittong disc 1. As there is relative

rotation of one disc with respect to the otherhealaserver will watch the perimeter of a
circle being drawn on his own and the other digzEwill see that the duration of time,
according to his own clock, for a complete cirdéoe drawn on his own disc will be the
same with the duration it takes for him to drawoeplete circle on the other disc. This
observation holds for half a circle or any fract@fra circle. In short, we say that the two
observers will agree on epicenter angles measwwé&aetions of a circle (not radians). If
we denote® the magnitude of an angle as fraction of a ciroléthe magnitude of the
same angle in radians thér= 220 . However, we will not user for the moment because
we are not sure the observers agreeron

Imagine now that the same two observers stanceatehter O of their disc (one on top of
the other) and let the discs rotate with respeettth other. If the first observer announces
that according to his measurements the secondddistating with frequency, since the
situation is exactly symmetrical we will expect gexond observer to make the same
announcement regarding the first disc. But frequesidefined as revolutions per unit
time or® per unit time. Once they agree ®rand v, they have to agree on time rate. In
fact, they may even use the same clock, sincedheygollocated. We may summarize in
the following,

Assumption 1
(a)Two observers sitting at two parallel concendlisrs rotating with respect to each other

around an axis vertical at their center, will agitesst the magnitudes of epicenter angles
traveled by the other disc, measured as fractibascocle, are equal.

(b) If they also stand at the common center ofrttisics, they will further agree that time
rates are equal.

Remark The situation with the two observers at the eeaf their discs (one on top of the
other) is symmetrical and there is no point in argwvho is rotating and who is
stationary. However, if they had a way to meashieecentrifugal acceleration off their
center, they would probably find that it is diffateln that respect we may rightfully call
the frame with zero centrifugal force the “preferfeame”. In what follows we will
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assume that one observer, usually to be denot&@i@s O,), sits at the center of a
preferred frameK’ (or K, ), which coincides with the laboratory frame unletiserwise
specified.

2. Discussion to justify Assumption 2

Many experiments have verified the constancy ofsfheed of light, which is the basic
assumption for special relativity theory. The spetlight is not the same for observers
under acceleration or, according to the PrinciplEgquivalence, gravity.

Assumption 2
Light speed does not depend on the speed of théremsource and its speed is constant

for all observers that are not under the influesicacceleration.

3. Discussion to justify Assumption 3

An observer on a frame will agree with another oleseon the same frame on the
measurements of lengths. This is expected if measemts are made not by signals but by
actually placing the measuring stick on the lerigthe measured and counting how many
times it fits to it. We state then,

Assumption 3
Observers on the same frame will agree on measutsraelength.

3. Time Rate and the Contraction of the Perimetes &otating
Disc

As we talk interchangeably about rotating discs faaches, we need to clarify that when
we talk of a disc, we imagine it placed at the paye of the respective frame with center
at the origin.

Let two framesK, and K, with cylindrical coordinates, common origin O ac@mmmon
axis of rotationZ . Let observelO; sit at the origin ofK, and O, at the origin ofK,. Let

K, be a non rotating frame - laboratory frame- andlgobserve framé<, rotate. Let a

third observerO, on K; sit at a distance from the center. When there idanger of

confusion we will rename the three observers uirgQ, O'=0,, O= O,and the
framesK, =K, K, =K".

A quantity Q, is defined as the quantity measured by obsengiven it is stationary in
the frame of observey

For example AL,, is the length measured by observer 2 for a ligengst on the
perimeter of the disc that is stationary in therfeaof observer 1. Alsajt,, is the time

interval that observer 2 sees that a clock statjoaad with observer 1 shows for the
duration of an event.

Note that by Assumption 3\L; is a constant for ailand will be denoted a4l since

all observers agree on the same segment whennstgtim their frame. The same is not
true for At; . In particular, we expecht; = At,, = At # At,,, and At,, = At,, = At

because observers 1 and 2 have the same clocke, atdsierver 3 is under the influence of
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centrifugal acceleration, which we suspect that affect At,, in some unknown as yet

way. Therefore, the clock of observer 1 and 2 regmts stationary clock time intervals
and are denoted a,,,. Distances in the radial direction are measurer] aghile the

stat *
angular velocity of a disc is measured\y. Specifically,r,, =ris the radial distance as
seen be the non rotating observer 2 regardleseddcond subscript since both observers
1 and 3 are stationary on the rotating disc. Sitgilaw,, = w,;because the angular

velocity of the rotating disc as seen by the ndatiog observer 2, using his own clock
does not depend on the second subscript sinceobstrvers 1 and 3 are stationary on the
rotating disc.

Most of the authors (see for example Mgller [8]222-250 on rotating disc) start from the
transformation between a rotating fraigand a non rotating framik, and the
transformation relation of cylindrical coordinatgs-r,, z = z,, 6, =6, —wt,. In this case
The metric for the rotating frame is
ds’ = df + £°d07+ dZ+2 wP b, di— ( é— W f) df (1)
For a non-moving point in space, the space diffganare null and equating the metrics
of the rotating and non-rotating frames we ficfdit; = (¢*— w?¢?) dt*from which we find
that the clock of the rotating system runs slower,
dt, = dt,
Wr?
1- 2
c
The line elementlo? is given bydo? = y, dxX dX where x'takes the valuefr, 6, 7 and

(2)

r2

7. =0 except fory, =1, 7, :?, 7,, =1. Hence, we find,
1-Yh
Cc
2
do? = di? + :/1\/2r2 o2 + dZ 3)
1_ 1
C2
For a line segmendL, along the perimeter this formula implies that
d
dl, == @
Wr,
1- o

Where dL, =r,dé, anddL, =r,dd,).

Whereas the result (2) is within our expectationsifthe special theory of relativity, the
result (4) is contrary to the expected result. Sith® normal Lorentz contraction would
give a contraction of the perimeter instead ofreyleening as we have found above. The
result (4) is counterintuitive for another reastsoalf we increase the radius, while

decreasing the angular velocity so that that tamajerelocity is constant\r, =v ) then

the perimeter tends to a straight line and thesttamation should approach the Lorentz
length contraction. Instead, according to (4) simee= v is constant the lengthening

factor remains constant and there is no way of@gagting the Lorentz contraction.



As the method with which the result is obtaineddsrect, the only suspect is the form of
transformation assumed. We are motivated, thergforgearch for another transformation
that will also satisfy the contraction of the pegber according to the Lorentz length
contraction of special relativity.

Our quest is, therefore, to find a transformatiwat satisfies in our notation the following,

(a) The rate of the clock @, will appear slower to observéd,:

At,=——— T At 5)

2 stat
/ 1— V\é1r21
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(Recall thatw,, = w,,andr,, =r,, as we mentioned above)
(b) Line segments along the perimeter are conttacte

W2 r2
. 212 21 (6)

Observe that (5) implies that the rate of the clotlo, will appear slower t@®,, who has

the same clock a®,. Namely,
B
[ vér?
CZ

But since there is no relative motion betwé&@nand O,, O, will think that is due to the
centrifugal acceleration th&, feels,

AL, = AL

stat

1

Aty = Aty = JA\ S (7)

[y

4. The Contraction of the Radius of the RotatingdDi

Refer again to observe@' (or O,) on K’ (or K,), O (or O,) andO (or O,) on K (or
K,) , with K rotating with respect t&’ with frequencyv’ according toO’ (and v

according toO). Suppose observer ¢ has a rod that extendsIyafil@h the center O to
some point A (see Figure 1). The rod is hollow ored inside and infinitesimally thin so
that light traveling through it follows a straigite. The rod is just an artifact to help
imagine things, a statement saying tRedends a light signal radially outward is enough.
Observer® and O’ will agree on time ratesdf = dt' ) (Assumption 1) and the
frequencies of rotation they observe will be equakv') (Assumption 1). They will not
agree on angular velocity measured in radians peétime, because they will in general
disagree onr and, therefore, we may say that for obse®ethe angular velocity is,
w=2zv (=W, =27,V), while forO', W =27"v (=w,, =27,\V).

ObserverO (who is not under acceleration because he siteeatrigin although he is
rotating with the disc) sends a light signal fromio@ards A through the rod. According to
him the signal travels with velocity = ¢ (Assumption 2) the distance OA =(see Figure
1). Until the signal reaches the end of the rod,rtid will have moved to position OB.
ObserverQ’" will see the signal travel a curved path (OCBhwagonstant tangential
velocity 0" =c¢ (Assumption 2). At the perimeter the directiortiod velocity of the signal,



according toO', will make an angle» with respect to the radius OB' which will have
lengthOB' = r'(=r,,).

Figure 1 The path of the light signal originating at O is B¥Gaccording to observ€®’ (the lab
observer)

Let
r : the radius as observ@r measures it (stationary length) (OA=0B)
r' : the radius according to obsen@r (OB}

v, : the radial component of the velocity according to observed’
v, : the component of’ perpendicular to the radius according to obse@er
¢ : the angle between,' and v’

We may write the following relationships for ligkignals lettingy’ = cfor :
For a light signab’ = ¢ and then

v, =ccosp (8)
v, =Ccsing 9)
v, =Wr’ (10)
where W is the angular velocity in radians as observedbynd therefore,
W =2r'v (12)
From (9) and(10)
sing = (12)

And substituting in (8)

2,12
v, =c,[1- "‘/Czr (13)

In order to further satisfy the condition for thentraction of the perimeter (see (6)) we
further require that



WerZ

27'r" = 271, |1~ 2 (14)
Solve forz’ and substitute in (11) to obtain
W w?r'?
— = 1- 15
2zv 1’ c’ (15)
We already definedv=2zv . Substitute and solve (15) fev to obtain
2.2
w? :% (16)
cr?+rw
Now substitutew® in (13) noting thab,” = 3;, = c(ljrt and we find
dr’ wr?
= [l-—— 17
dt c+ wWr? (17)
Using r =ct (17) becomes
dr _ c (18)

dt 1wt

and integrating with respectttave find
t = S in(wt + 1+ W) = itt In(Wt+ 1+ W)= —rt arcsinht (19)
w w w

where the constant of integration is zero becawseequire that'=0 for t =0.
Equivalently sincer =ct (19) can take the form
wr' _ wr

sinh— = (20)
c c
Using (20), (16) becomes,
W2 = w'r? - w't? ~ W2
@+ )2V o e WYy W) In?(wt+ 1+ w?) (+w't?)arcsinif wt
C c

(21)

A similar relation (21) holds also betweerandz’ becausew’ = 2z'v and w=2zv (see
(14) and (15) )
Using (12) and (16) we find

CoSp = _° | wer”

VP +wWor? c?

and we require thatv'r' <c.
We have shown thad’ (the laboratory observer) will see a contractibthe radius of the
rotating disc given by (19) or (20). Observé&'sand O will not agree on the angular
velocity, w and on the value ot . In fact, observeO’ will perceive w and 7' as varying
with the distance . This situation arises from the fact that the caction factor along the
perimeter is different from the contraction facédwng the radius and the requirement that
the speed of the signals is constant and agreadl bigservers.

One remark about angular velocities is useful #ifl things. Observer®, O’ and O
will agree on epicenter angle® , measured as fraction of a circle (see Assumgtjon

(22)



But according to the definition of angular veloong may writew = 272At® , W = ZZtA’® ,

- 27A®
W=

while for angles? =220, 8’ =270, 6 = 270 , where the tildas refer to

observerO(0,) , the primes to observé (O,), and the plane letters refer to observer
O(0,). The correct notation using the subscript notatbsection 3 is

27AO 27, A® 27, AO 27A® 27, A® 27, AO
W= :\Ml: 11 = 11 s V\/:—, =W21= 21 = 21 ,
At At At At At,, At
W= 20 _ - 27hO _ 270 cosp . But 7, =7,,=7,,=7 (or 7 =7), because

AF Vs At,, At

observers agree both on radial and on perimetgtisrwhen stationary on their frame
(Assumption 3). We conclude, therefore, that

W Wy Ty 7 (23)
wow, 7, 7«
W, Ay 1 (24)
W w,; At, cosp
and
W _ Wy 7y 7y 7 (25)
W W, mgAl, 7,080 7 COP

5. Summary of Results

The angle of deflectiow and in particulaccosy takes many equivalent forms that are
presented here for ease of calculations

w2r'? \/ w?r? c 1 wr'
\/ C2 Cz-i—VVZI’2 \/CZ+V\IZI'2 \/ W2r2 Wr ¢ ( )
1+—
C
wr' / wAr? .
= =sin 27
Cc c?+ Wr? ¢ 27
tango:M:wt: 0 = sinh?— (28)
c c

Where @ is the angle of the circle traveled by the sigmail it reaches the distance
r from the center (see Figure 1).

The transformation among the observésO’ and O is summarized below in Tablel1(a),
1(b),1(c). However, our interest in this studyasused on the relation between observer
O andO' .

Table 1(a) Transformations between Observé$0O,) and O’ (O,)

Quantitities Transformations
Time interval At = At' = At (At

stat ? stat At21 = At12 = Atll: At 22)




Length segment on perimeter AL’ = AL cosp, (AL, =AL,, COSp)

Radius c . Wr
r'=—arcsinh—
w C

Angular velocity W= W I COSp
carcsinh%)

!

Pi and angles 0 ' r
=—="—=—CO0Sp
0 © 1

s|=

Table 1(b) Transformations between Observ€@s(O,) andO (G;)

Quantitities Transformations
Time interval - At At
AT =——, (At = Aty =—S2)
Cosp Cosp
Length segment on perimeter AL = AL, (AL, =AL, =AL_,)
Radius r=r
Angular velocit A
9 y W_AY% _ cosp
W At,
Pi and angles T=7, 0=0

Table 1(c) Transformations between Observés(0O,) andO (G;)

Quantitities Transformations
Time interval - At At
AT =——, (Aty, = At =—=311)
cosp cosp

Length segment on perimeter AL’ = AL cosp, (AL,, = AL, COSp)

Radius c . WT
r'=—cosp arcsinh——
W

CCcosp
Angular velocity o/ WAT
Bl . WP

ccosp arcsinh{(——

ccosp
Pi and angles ﬂ: Tty _7. :L' ézﬂzﬁ
! ’ '
W oz, Al 7 r 0 =, =«

6. Warp or Ripples?

wr

From (14) and using (20) we see thdt= 7——C&—cosp . This implies thatz’ <

. WIr
arcsinh—
c

except forwr =0 for which equality holds. The decreasemimplies a warping of the
disc or the creation of ripples (see Figure 2(a) Rigure 2(b)). In the case of warping
(Figure 2(a)) observeD sees the radius as the segment OA with lengtbbserver



O’ sees the curved segment OB with lengthwhich for him looks as straight and PB is
the theoretical straight line (projection ©df on Euclidean space) with length.

However, we may exclude warping, because of tHevihg argument: Consider three
parallel concentric discs. Let the middle one etaith frequency and with respect to
the other two that are stationary. If indeed wagmocurred the middle disc would
intersect one of the other two discs, since wealoaved to bring them arbitrarily close to
the middle disc. This seems unphysical. We areetbee, inclined to exclude warping as
a possibility and to consider ripples instead. Aayywwhether warp or ripples the results
in this paper are not affected.

The ripples formed on the disc (Figure 2(b)) mdleeradius be looked in two different
ways. One is the radius touching the surface g@iegp (') (the surface radius) and
another is the theoretical straight line disregagdipples ¢”) (the straight radius or the
projection ofr’ on the flat plane of rotation). The latter onesas the equation

2zr" = 2zr cosp and therefore,

r"=r cosp (29)

(a) (b)
Figure 2 (a)The rotating disc is warped. The radius on theasarbf the warped disc is. The
straight line (Euclidean) radius i€ .The stationary radius is. (b) The rotating disc forms
ripples. The length of the radius on the rippledaae isr’. The straight line (Euclidean) radius of
the disc isr”. The stationary radius is.

As we will see in the discussion belowwf is finite butr -« then r' > o , r" —»> —,
w

w — 0, cosp — 0. The lab observe®’ will see the surface radius’() tend very slowly
(logarithmically) to infinity andw'r" — ¢, while the straight (on the flat Euclidean
surface) radius” tends toE :

w
Physically,r"is the radius that an obsern®f on the laboratory frame will observe, who

is located at a distance greater tharfirom the axis of rotation of the disc. @' enters
w

into the region of distance less th&hn from the axis of rotation then his geometry ceases
w

to be Euclidean. He becomes observer of {@beHe is now on the rippled surface (which
he perceives as flat) his pi is now and the radius of the disc is now giveniy which

is not limited by any boundary. A question, howevemains: How is the time rate @’
related to that oD". We argue as follows: At first since signals bend da not reach out

of the radiusE, there can be no communication betwé&®and O". Suppose now that
W
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both O’, O" lie within the region of radius- . They can fix their clocks and indeed since
w

both lie on the same non rotating frame and araindeér the influence of acceleration,
they find that their time rates are the same. line® increase gradually the frequency of
the disc rotation, their time rates will not beeatied since they are stationary on the same
non-rotating frame. If we continue to increaseftleguency of rotation©" will

eventually lie outside the region of radids. Just before he crosses the boundary the
w

clock of O” will have a certain delay (due to their distartwaf) run at the same rate as that
of O'. Since rotation of the disc does not affect theetrate of their clocks, because they
do not participate in the rotation, we expect thattime rate folO’ and O" after O”

crosses the boundary to remain equal or ftiat At” = At although they cannot

exchange light signals. If we denote by double psrthe quantities observed By, the
above implies that

At AU = Af—— = (30)
W2r!2
1- 2
Regarding lengths observeX’ sees the lengths of observer smaller by a factor of

cosp . Hence,

AL"= AL = AL cosyp (31)
r
Further, epicenter angles are not affected,
A® = A®" (32)
Hence, there is agreement on frequency of revalutieasurements, that is

"
v=V =V because/ = ——

stat

Also from (14) and (29)'r' = zr". Sincerx = " (the pi on the flat contracted disc is the
normal pi) it follows thatw' = 27"v" = 2z7v = w. From these observations one easily
deduces using (26) that'r' =w'r" = wr". Substituting in (26) we find,

2,12 2,12
cosp = \/ - Wczr = \/ i Wczr (33)

7. Discussion of Results

First we note that from (26), (29) and becauwsg =w'r" =wr”
lim wr'=Ilim w'r"=c (34)

WIr —o0 WIr —o0

: : . r
imr"=limr’'=lim(—) =0 (35)
W—0 W—o0 W00 /1+ W2t2

And similarly,

e e r 3

L U Sy e 36)
Also
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And

limw =0 (37)

r—o

lim w = oo (38)

W—>00

As wr —>o0; wr"=wr'—c, andcosp - Candv,” — 0 andv, — c. This says

that as the tangential velocity of the rotatingcdiecomes big, the rays at the
circumference are almost tangential and their tatiglevelocity approaches the
speed of light, while their radial velocity tendszero. In other words, light signals
emanating from the center, O, will bend and tuuad in circles expanding very
slowly as they will be bend almost entirely tangght.

In particular if w— o while r (and hence) remains finite W — «, cosp — C,
r'—0,r"—0, v —0andy, —c. In this case, when the angular velocity)(

becomes big, while the rest radius) femains finite, the radiug(and r") for the
lab observer®’and O" shrinks to become very small (bwt” =w'r’ — c), the
light signals staring from the center, O, bendutm in circles €osp — () with

tangential velocity, — ¢ and the radial velocity of the light signals tenals
zero (v, — 0)

If w is finite butr — o then r’' — o, r"—>V£v, w — 0, cosp — 0. Observer
O’ will see the surface radius’() tend very slowly (logarithmically) to infinity
(while w'r"— c), while O" will see the radiusr(') tend to%. The light signals

bend and go around in tighter and tighter circlék tangential velocity that tends
to c(v, — c), while the radial velocity drops to zero.

It is straightforward that when there is no rotatiw=0 we end back in fram&
with r=r"=r", AL'=AL=AL, v, =0, as expected.

To show that the light signals will spiral out ighter and tighter circles we may
examine

dr’ _ ;1 =COSp (39)

.
)

c

which is increasing with diminishing rate asncreases. Similar observations hold

for r” where

dr” 1
o« aa (40)
' wWor? )2
1+ 2

6. Angle 8 = XAOB in Figure 1 is traversed by the signal whilstaels the length

r, and is given by =wt wheret “Lor G:M: tang = sinhvﬂ. Angle @ can
c c c

become very big and even be the result of manyluéoeas.

If the signal originates from the perimeter towaituks center, then its path will be

symmetric with respect to the radius OB' in Figlre

12



8. Aplotof r" for increasing time will look like the followingifure 3
_ AR E

1 /
I [
i ( Lol
71%\1(33 \\*lk\)x 108‘\“75,0><107

Figure 3 The path of a light signal originating from thenter of a rotating frame as seen by the
non rotating observe®’. Numbers on the axes are nonessential since galanges withw.

8. Generalization to three Dimensions

An observerO at the center O of a rotating franke is rotating with the frame. He carries
a rod (similar to the one we used in the 2 dimeraicase above) pointing radially but
with an angleZ with respect to the z axis. The situation is deguien Figure 4

.

A
O,l--
Ne c
d -
Z-axis

Figure 4 The signals originate from O and move along the@ddfor observerO, who rotates
with the frame. The non-rotating obsen@f sitting at O will see the signal travel a helipath
OCB' while the rod travels from position OA to OB uritie signal traverses the rod. The
projection of the velocity vector'B of the signal on the plane of rotation {&'Bas observe’
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perceives it, has magnitudssiné . The angleE’é’F’zgo is the angle of deflection from the
radius O,B'=0OD=p’ (in cylindrical coordinates). The angle traversgdte rod isGOH=0

Suppose a signal with velocity originates fromO with angle& with respect to the axis

of rotation as seen by observ@rand is directed towards A through the rod OA (see
Figure 4). The radial (in cylindrical coordinatés, @, z)) velocity of the signals for

__P

/pz 4 72
rotates with the rod OA with frequeneyas seen by another obseng@r that sits on top
of O but does not rotate wifD. Let alsov be the frequency th& thinks his frameK,
rotates with respect t&’ of observerQ’. Because of Assumption ¥, =v and it has
meaning to define the angular velocity of the frakheas w= 2zv . ObserverO' will see
the signal travel the helical path OCB' in the saime that it takes to traverse the rod for
observerO, while the rod moves from position OA to OB. FamHight travels along the
helical path with the same velocityand thez component equals that of obser¢@r
(ccosé). The velocity vector for observ€)’ is B'F and it makes an anglewith the z-
axis. The projection B'F' of the velocity vectoFRtangential to the helical path for
observe') on the plane of rotation is denotedws; and

vl =CSINE (41)
The angle between it and the radial (in cylindricabrdinates) B'E' for Observ€y is ¢.

This angle is callethe angle of deflectioof the velocity vector of the signal from the
radial direction. Let us denote the velocity in thdial direction (in cylindrical
coordinates) as observ&' sees it by’,. Thenv! = v, cosp and therefore,

observerO is csiné=c and thez component icosé . Suppose now thad

proj
v, =Ccsing cosp (42)
The tangential component of the light signal fosetverO’ on the plane of rotation will
be perpendicular te’, and will be given by
v, =csiné sing (43)
Also we want
v =wp' (44)

As usual, the primed quantitie§roj', v, v,,p',Ware as observed' perceives them.

For the same reasons (Lorentz contraction of peerpas in the two dimensional case we
require that (14) holds. Namely,

2 12
27p' = 27p, | 1- ch (45)

Solving for z' and substituting inv' = 2z'v we find

2.2
W = 2 r\zszzc 2 12 (46)
Cp +pWp
wherew=2zv and we note that (46) is the same as (16), axteghe
Finally,
v, =92 (47)

£ dt
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Equations (42), (43), (44), (46), (47) are five &pns in five unknownsp,w', p",v’ v,

givenw, p,¢&.
From (43) and (44)

!

sinp =P (48)
csiné

W2p!2
cosp=,|1- 49
% \/ c’sin® & (49)

with the conditionw'p’ < csiné . And using (46)

and hence,

Wp?
cosp=, |1 50
* \/ (C* + p*WA)sin®& (50)
Since p =ctsiné and z = ctcosé, we may write the above relation as,
1-w’t* cos & c’- w7
Cosp = = 51
% \/1+ Wt% sin® & \/cz+ wp? D)

with the condition thal—w?t*> cos & > C(or st) (or Wwp' < csiné)
w

(Note thatcosp = C either whenz:E or whenwp goes tow)
w

v, =csiné cosp = C sirg /% (52)

dp' dt_ dp
dt dt dt

Substituting in (42)

and sinceu; =

1-w’t® cos & .
1+ w2 sin® &

It is convenient to represent the integral in th#SR0f (53) as a function of andt. So
we define,

p'= csinr:j' (53)

2
1-wt coszfjdt

1+wWt?sin®& ()

&=
Then we may rewrite (53) as
p'=csinél (&) (55)

Note that foré = % , (55) becomes

t
t c : c . Wr N
p']gl = cjd— =—arcsinhwt=— arcsinh—, which is what we found for the two
2 o V1+ W2t2 w w C
dimensional case.
Below we summarize the following equations thatwseful for calculations,

!

wp' wp 3 wt
CSiNE  singyc2+ pW 1+ WP sin’E

sing = (56)
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w?p'? c—-wZ  [1- wtcos*E
o= \/ c?siné& \/cz+p2w2_\/1+ WAt sin®s 1)

tang = wt = Wp wp' (58)

JI-W2cofé sy ci— W2 \/ ¢ sifé— wop' 2

Wp' 2z'vp' xp c
- = = =Co = COp|, ~ 59
Wp  2zvp  7p /Cz LWl Sp ]z:o $0]§:§ (59)
t
(&) = Icospdt (60)

It is also useful to keep in mind thainé =

ct=+p°+2
In most of the cases below we will express formelétser using the pair of variabl@st)
or the pair(p, z) and using the above relations we will be abledoagfer from one type of

expression to the other.
As in the two dimensional cas€’ is the (Euclidean) straight radius regardlesthef

value of zand must satisfy the Lorentz contraction of therpeter
"2
21p" = 27p, | 1- sz (61)
c?

c
p'=p———==pcCosp| (62)
G+ Wp? b

where we used (57) to write,

, tané =—

, COSE =
\/p +7° \/

Solve to find

c

N v %
Now solving (62) forp we find that
£ (64)

From (64) we see that” <L and asp » «© , p" —>£
w w

We are led, therefore, to consider two types obtatory observers as we did in the two
dimensional case. One @', who is far enough so that he is outside the dglirof radius

— and axis the axis of rotation. This observer liveEuclidean space and he regards all
w

light signals from O bounded by the above mentiandohder, which (signals) for him
have radiusp” . The other laboratory observ€¥ is near the body of rotation and in fact

within the above cylinder, where he perceipésFor the latter observer, as we will see,

the signals are not bounded but cover the wholeespad he does not see an outside
region asO" does.

16



9. Plot of Signals in three Dimensions
9.1. In the Rippled Space (radiy$) : observero’

Under the condition that—w’t? cos' & > C (which is required focosyp to a real number)
andw=0, and0<¢& g% we want to calculaté(&,t)
Make the substitution
k=icoté (65)
And
X =iwtsiné (66)
Where:=+/-1 and then (54) becomes

1 /1—k2x2
l(cf't):iwsiné!; 1- X2 dx 67)

But the integral on the RHS is an incomplete Eitipttegral of the second kind denoted
as E(k, X). Therefore, (67) can be written as

&)= iwsiné

which can be used for calculations.

E (i coté jwt siné ) (68)

If we take the definite integral of (53) f@r<t < 1 (the limit allowed by the
WCo

condition1-w?t? cos & > () we find the max value that’' can take for each particulay
and £. Namely,

1

weost [ 202
pu(&)=csing [ /%dh csinchG,WC(l)sf) (69)

This says that for any fixed, the signals in the radial direction are boundst (Figure

5). The signals bend and rotate until they reaehS att = , the angle of
w

wcosé

deflection becomes 90° degrees, the radial vgldaiinishes to zero and the radial
distance of the signal becomes.

Pn(&) =csingl (&) (70)
- )
wcoss

However, foré :% we come back to the two dimensional case andigimalsis not

where we denote¢, (&) =1 (&,

bounded. It expands slowly all the time logarithatliz and again the radial velocity tends
to zero.

We said that all signals when they reggh=csinél (), they are atz,, :E. After that
w

the signals have fixed radiug/ (&) ) but continue to spiral in the z direction accagito
z = ctcosé (see Figure 5 and 6).
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Further, because of (48Y o’ = csin& sing < csing and for p,, , wheresing = 1 we have

W, ol = csing (71)
and hence ap;, the angular velocity of the signalg, for observerQ’ is
W, =— (72)
Prm

In order for the normal Lorentz contraction of ffeximeter to hold we must satisfy (45)
and (46) which lead to

r_p,P__ & (73)

NI
This holds for both the region befoggreaches its maximum value, and after that.

The effect ofw is to scale down distances as it increases. W®terfthe body rotates, the
faster the signals bend making tighter revolutidoser to the body.
The signals are not limited, but cover the wholacgpas anglée varies from 0 ta2z

It will be convenient to call “Inner Region” thepaf space whergz| < £ and “Outer
w
Region” the space fde] > <.
w
In Figure 5 we plot the path of the signals inrbgion 0 < 2< £ for several signals with
w

different values off .The paths are for the regienE < z<0are symmetric with respect
w

to the plane of rotation.

500000

-500000

-500 000
500000

Figure 5 Plot of signals emanating from O for obsen@ras they rotate with radiug’ while

advancing in the z direction for the regifr< z < ¢/ w for different values off . The numbers on
the axes are not essential since they depend orathe of w.
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A z-axis

Outer —_—
Region ——
o ——
E——
o ——
clw
Inner o
Region m P
-clw
Pm
o
Outer —_
Region S
—_

Figure 6 The path of a signal originating at O with cyliradi coordinates®, p') as observer
O'sees it. The signal has constant velocity in tb&ection, while it circles around the z axis
with radius p’. The radiusp’ is increasing in the regid| < ¢/ w and at|z] = ¢/ wit reaches a
maximum valuep, . After that, for|z| > ¢/ w, the signal rotates around the z axis with carsta

radius p;, . Similar observations hold for the negative z saxis. Foré = 7z / 2 the signal rotate
in a disc atz=0 and expands slowly (logarithmically) outward. Asaries the signals cover the
whole space according to obseré@r.

9.2. Outside the Rippled Space (straight ragius: observero”

The signal has constant velocity in the z direcgquoal toccosé as in the previous case
c

and rotates around the z axis with radius (re€@))( p" = p———.
JC+Wp?
Since z= ctcosé and p =ctsiné,

. ctsiné

B J1+ W2 sin®é

(74)
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As we discussed above, the radius of the signe¢ases Whi|¢2| < £, which means that
w

0<t< 1 . The maximum radius is
wcosé
” ct_ siné
Pm= 1+ W2 sin? &

(75)

wheret, = , Which corresponds tp_ =ct,_siné = < tan , and simplifying (75)

wcoss w
we get,

plh=—siné (76)
W

After it reachesp’, the signal keeps the radius of revolution coristad advances in the
z direction with constant speed describing a hepe#h. In Figure 7we plot the signal in

the inner region. That is the region before it heecp), at Z=£. The paths are
w

symmetrical with respect to the plane of rotationthe region—E <z<0.
w

.
4.><71074' <18 107 0
210 4. x107
—2.><7107
-4, x 1
4.x107 375368 (-

2.x108

(@) (b)

Figure 7 The path of signals for observ€)' in the region0< z< ¢/ w (a) The path of a single
signal(b) Paths of multiple signals with different valueséoffor the same time interval.

In Figure 8 we present a sketch of the path ogaadiboth in the inne|1£| < c/ w) and

outer region |(z| > ¢/ w) as seen by observ€)’. Observe thap; = Esing < < and
w w

becomes equal to/ w for & =z /2. Therefore, all signals are bounded by the cylirde
radiusc/ w and axis the z-axis. We call the region outsigedylinder “External Region”.
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The path of the signal in the inner region was dieed above. For the outer region the

signal having reached the radip§ =—sin& , continues to move helically in the z
w

direction (-z for the negative z axis) keeping thedius fixed atp,.

z
External I I
Region : :
L-¥» |
Outer ___.---7"1 l External
Region : <’ : Region
! —
g L.
1
1 L-
___________________________ Ap oo Clw
: =
________ i |
Inner -~ ! o = | -
Region - ---- > | 1CTW s
| 1
| > 1
----------- Lé.--------b----------- -clw
| |
Outer ! <> !
Region J'A<> : External
| — 'y Region
Extgrnal P N
egion S I SRR *Cylinder of
radiusc/w

Figure 8 The path of a signal originating at O with cylirghi coordinatesz and p". The
signal has a constant velocity in the z directidlevit forms circles around the z axis of radius

. . . C . c
p". The radiusp” increases and reaches a maximpfn=—siné, whenz=—. Then the
w w

: : c . . :
signal travels parallel to the z axis @} = —sin& . The same observations hold for the negative z
w

semi axis as well. Fof = 7 / 2 the signals stay on a disc 2a& 0 and cycle with increasing

radius that tends asymptotically ¢d w. All signals are bounded by the cylinder of radausw
and axis z.

In an alternative view, the requirement thatije= ¢/ wthe signal is restricted in keeping the

same radius is not natural and is not needed iodbke of the far away observer. If we
assume this view, then what holds for the inneioregontinues to hold for the outer
region and there is no division between inner & oregion and the radius continues to
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increase as in the inner region accordingte- p . and all signals are

c
G+ Wp?

bounded by the cylinder wit radiws w and axis the z axis.
10. Rotating Disc with Slippage

10.1. The two-Dimensional Case

If we allow the angular velocityv to vary as a function of the radius it is like hmaya
disc that consists of rings with small width thisdes one after the other. Let for example
w=w, f(r) (77)

whereO< f (r) <1 and non-increasing in
In this setup there is a multitude Of type observers, who stand at the origin O, one for
each particular value of the radius who rotate with the angular velocity of that
particular ring. Observe®'is standing on the center on top@but is not rotating with
the disc. The clocks of the two types of observalisrun at the same rate. Again
equations (11) to (18) continue to hold. Substiy{{j77) into (18) we find,

dr’ c

=2 =ccosp (78)
dt 1+ w@t £ (r)?
and
c 1
CoSp = = (79)
JEE+WErrf(r? 1w f(ct)?
If we letf (r)=e*" we find
ar’ - ° (80)
dt 1+ witte?
or
= cj'—dt +const (81)
JLrwtte
To see how' behaves take the derivative adsp
F2Act (1
dicogp = Edﬂt Co®p =— vpte (14 C? (82)
' ¢ oL+ Wt 2 )?

At t =0 the derivative is negative then as t increasesl¢hi@ative increases and at

t:/li it becomes zero and then positive and finallylfigrt it tends to zero. A plot of
c

cosp appears in Figure 9

22



cos(¢)
10

1/x

L * L T T T Y I M I I S N Y H B |

L \%0/ 40 60 80 100 120 140

Figure 9 The cosine of deflection angpeversus. The deflection angle starts at zero (€e4).

Then it increases reaching almost 8@grees (for big enough,) atr = % Then it falls again to

zero (cos98=1) asymptotically.

The deflection angle initially at 0° increases lta@st 90° degrees (closer to 90° for higher
W, ) and then drops fast to zero. This behavior islamo the behavior we have examined
for the rotation without slippage. Namely, as thgla of deflection increases the signals

start rotating in tighter circles until they reacl&z. Then the signals rotate in less and

less tight circles until they are directed asymipadly radially outward ¢ =0).

In this setup although space is not divided, we taliyabout an observeéd' within the
circler g% or close to it if outside, and an obser@at infinity (the far away observer)

so that the space of the second observer is rexttatf by the rotation and is Euclidean in
his vicinity. This observer will extend his percept of space as Euclidean to cover the
rotating body too. What he will see is the projectr” of r’ in his space as we described
in Figure 2(a) and Figure 2(b). Since both obsereéitypeOand O" have the same the
contraction of the perimeter due to normal Lorexgmtraction requires that,

"2

2zr" = 271 | 1-

. rc

and solving we get" = ————
c* N+ wr?
The choice of slippage according to the rdle =(e)*" can be justified by the assumption

that for a disc consisting of slipping rings eaictys slips with respect to the previous by
the same proportion in angular velocity. Considereixample a widthr of n layers. The

r r r

first has velocityw,, the secondy,e", the thirdw,(a")? the nthw, 8" where 8 =a".
Each layer slips with respect to the previous lmpprtion § forming a geometric series.
Therefore, lettingn — oo the ring at radius will have angular velocityy,e" . For the
case thaD < a <1, where we are interested, we may substitutee * where 4 >0 and
thenw,a" =w,e”or f(r)=e".

=r cosp wWherew=w, f(r).
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10.2. The three-Dimensional Case

For the three dimensional case we assume thatighslippage both in the radial and the z
direction. To achieve this we assume that

W= V\{Je—ip—yz _ V\s ect(/isméﬂlcosf) (83)
where4 >0, x>0 and usuallyt < £, since we expect slippage to be less in the radial
direction than in the z direction for a rotatingkdiRelations (42) to (47) continue to hold
with wherew= w e #* = yy g sinerueos)

A For observelO’

dp' . . 1— e—2tc(/15in§+y cos )\N)Zt ZCOSZQZ
E = CSIn‘): coxp=C_C Slnf\/l e—2ct(lsm§+/z cost )V\ﬂthSin 2‘);; (84)
where
2 —2(lp+y2) Z2 1— ~2AC @ SirE+u co§ ) t
COS¢ = - 2(4, z) Vf e2ct@ si CO! )\Gf 2COS % (85)
2+ g 2UruRlyfn? |14 @X ¥ siu cof D2tiin %
becausez = ctcosé and p = ctsiné . Therefore,
p'=csinél (&t A,u) (86)
where
1— e—2tc(/15|n§+;z cog )V\62t ZCOS é;
I (é: t A ,Ll) j\/ —2ct(lsm§+;z cog >V\62t ZSIn égd (87)
For & :% we have,
Vs 0 1
I(E!t’ﬂ'uu)zj‘ 1+ Vv2t2 —2ct/1dt (88)

Observe that (85) is the same as (57), whare w e **. The same is true for (56) (58),
(59). The required condition for (85) to be real, i

te tc(Asiné+u cost )< 1 (89)

W, COS&

It is obvious that fot close to 0 antlvery big the above condition is satisfied. Therefo
for each¢, it is either satisfied for atlor there are positivgandt, with t, <t,so that it is
satisfied fort ¢ (t;,t,) and not satisfied within the intervail< (t,,t,))
Given a¢, if it is satisfied for alk, then the angle of deflectiop does not become 90°

degrees (except perhaps at a single. Thereforsjdhal is allowed to increase its radius
for all t and asymptotically become radial.
If it is not satisfied for an intervak € (t,t,)), it means that at, the signal has reached

cosp = C (angle of deflection 90° degrees) and cannoesms its radius anymore. So
after t, and until it reaches, the signal keeps the radius it has, atAfter t,, the signal is
again allowed to increase its radius, increesgp and become asymptotically radial.
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What is the condition so that giventa (89) is satisfied for alf? It is that the maximum of

te te#snerueos )ig |ess than or equal%el—Sgg . And what is the maximum? Taking the
W, CO

A s el si . , .
denvaﬂveate we(rsincucos ) — gte @ sihu €05 11 _ (A siné + 1 cost ), and maximum occurs

1
- c(Asiné+ p cost )

att So substituting in (89), if

cos, _ ce (90)
Asiné+pucost  w,
condition (89) is satisfied for dlland there is nd,, t,
In the opposite case, when
cos ce (91)

>
Asiné+pcoss  w,

We solve (89)-c(ASin& + u cost Jegcitsinerucos)> _ C(ASing + 4 C0% ) g using the

W, COS&
Lambert function \V(.)) we obtain—c(Asin& + x cost y>W ¢ c(lsi\:f;;cosﬁ )} and
finally
=" c(4 sin(fi 1 COSE )W(_ “ Si\?\f Zé‘;of 3 ®2)

This, by the theory on Lambert functions, gives sotutions when

_Cising+ 0% ). 1 \ihich by the way is the same as condition (919xamcted.
e

W, COS&
In particular,t, = — : 1 W, (— c(asine + u cos 3 and
c(Asiné+ u cost) W, cog
) == - 1 W, _cdsing +p cog 3 wheré\,(.) is the solution near the
c(Asiné + u cost ) W, cog

origin andW,(.) is the solution further away from -1 on the negatiranch of the
Lambert function.

Looking now atcosp we take the derivative with respectttdoo find its interior minimum
(97) along the path of the signal.. After someigtriaforward manipulation we find,
| whterE s X1 e sing + 1 oSt )

d \/1+ e—2ct(lsin§+y cog )\/\621: ZSin Zgg

_COS(D - HJ —2ct (A siné+u cog 2 2

dt cog & L Sin £\1-e #eo% Wy 2cos%
\/1_ @20t (Asing+ 1 cost >V\62'[ 2COSZ§ \/]:I— @ 2 A sidru cas w% Zsinf

The second factor in parentheses is positive. Therelooking at the first factor we see
that it starts negative fdr=0 and then changes sign at

1 B PP+ 7 (94)

T C(ASINE+ 1 COSE) Clp+uz)

(93)

min
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This corresponds to

3 L sing

Prmin = Ctmin Sln‘): - lSiné-i-,u COS.f (95)
B B cosé

Zyin = Clyn COSS = ASINE + 11 Co% (96)

Equations (95) and (96) can be combined using é¢fieitlon of cosé andsiné in a
single equation giving the locus of points whesy attains its minimum along the path
of a signal,

ADpin + HZin =1 (97)
which is a straight line. The value obsp at the minimum is

for (Asiné + i cost jc° —wie? codE > (

(Asiné + u cost fc—wie? cosé
c05¢|t:tmm = \/(/lsin§+y cost fc’+wie? sirfé
0 otherwise
(98)

€ -we’Z,
COS(”L:tmin - ¢+ Weep2 (99)

The condition in (98) is a condition ah
_cos,  _ce (100)
AsIné +ucost  w,
This by the way is the same condition as (90) ihatquired for the non existence of the
solutionst, t,
The parametric plot o, versusp,,, is a straight line given by (97): The plot appdars

Figure 10 where two cases are shown. In Figura)Lthé condition (100) is satisfied for
all z and all&. In order for this to be true, we require the maxm of the left hand side
of (100) to be less or equal to the right hand.sldes occurs at = 0and at this point
condition (100) becomes

which is the same as

1 ce (101)
H W
In this case the minimum afosy in the direction of the path of the signal ocoomsthe
rhombus by revolution ABCD.
In Figure 10 (b), (101) does not hold. This medyad for someZ (100) is valid and for
the rest it does not hold. In particular, talkirgpat the first quadrant because the same
hold for the rest by symmetry, fdr< GOBIt does not hold, but it holds faf > GOB. So
for £< GOB, cosyp does not attain a minimum on the rhombus, beciiwEomes zero
before reaching it, as it encounters the curve wBrked ag,), which is the solution of
t,. This solution as well as, (the curve between AB marked g9 exist, when condition
(100), which the same as (90), holds. Betwgandt, the signals keep their radius fixed.

After t, the radius starts to increase again and the afgleflection ¢ returns
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cosé

asymptotically to zero. Observe that at A and-B: %€ Inthe opposite
AsIiné + pcost  w,

case, whert > GOB, the local minimum otosyp is attained on the remaining of the
rhombus BCD and EFA. After that the signal retwslasvly to the radial direction.

z
E
1/
celw, ——'/J A

A
-1/
D —
1/
-1/A
€ _»

1/

(b)
Figure 101In (a)1/ x < ce/ w;,. The rhombus ABCD (bold lines), describes the $oatipoints,

where cosp is minimum. In (b)L/ x> ce/ wj. In this case fog < GOB, the signals reach
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cosp = C, when they arrive at the curve markgdSo the deflection angle has reached 90°
degrees and cannot increase any more. It stays#yisintil the signal spiraling around the z axis
with the same radius reaches the curve matkedfter that, the deflection starts decreasing and

asymptotically becomes zero, thus the signal rsttarihe radial direction. If on the other hand,
¢ > GOB, then the signal attains its maximum deflectiorttanline of the rest of the rhombus

BCD and EFA and after that it decreases asympthticavards zero returning to the radial
direction. The diagrams show vs. p , while observelQ’ seesp’.So we must imagine a

contraction in thep to get into the position oD’ and then the rhombus will be deformed
appropriately.

Finally, observe that due to (99) the deflectionhaf signals reach their maximum at
& =90° and their minimum a£ = 0. Hence the “barrier” due to deflection is mininval

the z direction.

B For Observe®’
ObserverQ" is the far away observer that is not influencedhgyrotation. For him the

n2
space is flat and the perimeter he sees is coattdut the relativistic factO{/l— ’Z at
c

any z. That is
"2
21p" = 27p, | 1- szj (102)
C

or solving ,
o = pC _ pC _ ctsiné . (103)
\/C2+W2p2 \/C2+ W)zp 2 20p+uz ) \/1+ vflzsin 2§ ézu sifi+u cas )
We may denote the angle of deflection as
cosp” = 1 _ = ¢ (104)
\/1_’_ Wgtz Sinzé;e—mt(/lsmfﬂz cog ) \/C2+ V\g,zo 25 iz )
and then (103) becomes
p" = pcosp” (105)
Taking (:jp we see that it is positive
Y2
" 2 3 s 2lp+uz)
dp e ¢’ + Ap’we (106)

3
dp (C2+pzmée—2(/1p+yz))5
and hencdim p" = unlessA =0 in which caseim p" :i, which agrees with the
P> P> W,
result for the no slippage case. Further,tfdnrig, cosp” — 1and because of (105)
p!I % p .
Looking at the derivative ofose”
d | WhteZHEemreos logs % (- ct@d sinf+ . co§ )

—C0sp" =
dat

(107)
3
(1+ \Ngtz Sin2 gge—zzt(l SiE+u cog ))2
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It starts att =0 with value equal to 0 and immediately becomes tigalhen increases
to change sign at the minimum obse” at,

1 NP+ 7 (108)

T C(ASINE+ 4 COSE ) CQp+uz)

min

Hence
Prmin == Ctmin Sin‘f = . Slné: (109)
Asiné + u cost
while for z" at the minimum we have
cosé
"o=2. = Ct. COSE= 110
Zmln Z]’lln tmn S§ ﬂ,S|né‘+ ﬂ COS(;‘ ( )
Solving (109) usingsiné = P __and cosé -z , we have
/pz 4 72 p2 4 72
Prmin :ip pI":UZ (111)
from which it follows that
ﬂ’pmin +ILlZmin :1 (112)
The value ofcosp” at the minimum is
1
oSy, = (113)
" wie’sin®é&
c*(ASINE + u coE §
And using (112) we obtain,
cosgl, = ———— (119)
1+ \ngmin
c’€
And using (105) the value g" at the min is
pr,;in = Prmin Cowgﬂn = #ﬂz (115)
1+ Wgpmin

c’€
The plot of the signal as it is given by (103), kwhe advances according to
z= ctcosé appears in Figure 11
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Figure 11 The signal path as it advances in time upwarderettirection, while rotating at
increasing in time radial distange’ . (a) A single signal pathb) Many signal paths for the same

time interval with differentS. The signals paths towards the positive z semi@xig are drawn.
To complete the picture one must imagine the samef jsignals towards the negative z direction.

We see how most of the signal except those for hwvkie 90° travel tight to each other in

the z direction until they break up to return asyotipally to the radial direction. The jet
like formation is symmetric with respect to thenmeof rotation and another jet emanates
towards the negative z direction. To draw Figure@té& must note that the andglethat
the rotating signal traverse (see Figure 1) ismgive,

t

0= Iwoe—ct(/isimfﬂz cost )dt: : W (1_ e—ct(ﬂsin¢f+y cost )) (116)

5 c(Asiné+ ucost)
We may also plot the line or locus of poinjs.( , z.,, ), wherecosy” attains its minimum
as a function of . This plot appears in Figure 12(a) and it forntsgar like locus but it
may be wider close to a rectangle with rounded @srdepending on the values.bfand
4 . The width of the locus decreases with increasiggObserve that

OA=0B= __r (substitute (109) into (115ynd that the locus crosses the z axis at

2 0
A+ 2

1 and at—i . The value ofcosp” (Figure 12(b)), which measures the deflection from

U U
the radial direction is 1 fo£ = 0. This says that for the locus points that areectosthe z

axis the signals have no deflection. Buttascreases te725, cosp” rapidly decreases to
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zero thus making a 90° degrees angle to the rdudeadtion. The deflection of the signals
at the locus of maximum deflection @f , forms a sideways “barrier” for the signals.
After that the signals gradually regain their radigection. This “barrier is the reason that
signals are kept together in a jet like formatisnraFigure 11(b).

z
l— 1

T

-20+

L—«}% -1y - 0‘.5 - 1.0 1.‘5 S
(a) (b)
Figure 12 In(a) is the locus of point§p”, z), wherecosp” is minimum (parametef varies

from 0 to z / 2). The width narrows dramatically &8 increases. The shape and roundness also

varies with parameterd and u . For & :% the distanceOA:OBzé. In (b) the

A%+ czéz
value of cosp” at the previous locus points is shown as a funaifofi. The value which starts at
1 whené =0 drops very fast to almost zero and remains tHérs. means that at the locus points
described bya) form a sideways deflection “barrier” except foiirge close to the z axis.

11. Conclusion

Starting from the assumption that two observeratiog with respect to the other around a
common axis will agree on epicenter angles asifmastof a circle but not necessarily on
the value ofr, we find the length of the radius of a rotatingadas seen by the non rotating
observer. The radius will be contracted but nohwhie same factor as the perimeter
because we allow the valuemto change for the non rotating observer with rdgao his
measurements on the rotating disc. We argued taditave to consider two types of non
rotating observers. One within the radaf& and one outside. For the non rotating
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observer withirc/w, a light signal starting radially from the origifithe rotating disc
(frame) that rotates with the frame will graduallyn sideways forming tighter circles
until it asymptotically reaches 90° degrees defdectrom the radial as the radius tends to
infinity. His space is distorted amds different. For the outside observer light raghave
as above but they are confined to the radius while his space remains Euclidean. In
three dimensions the light rays follow helical ga#imd we have a cylinder of raditfsv to
distinguish between observers.

If we allow rotation with slippage (rotation is naiform but decreases exponentially as
the radius increases), the space is not divideal dyinder of radius/w, but still there is
contraction of the radial distances. The light ragiginating from the origin with radial
direction will again turn sideways until they reacimaximum deflection from the radial
direction and then asymptotically turn back tothéial. The locus of points, where the
maximum deflection occurs is determined. For areples within this locus it (the locus)
looks close to a rhombus by revolution with bulgagop and bottom, while for an
observer far away it looks like a cigar.

Although more space in this paper was devoteddmthslippage case, the physical
importance of the slippage case is perhaps biggese it is related to the notion of frame
dragging and does not impose a horizon.

For the case of observ@’, it is worth noting the jet like formations in tdéection of

the positive and negative z axis of the signalseh@anate from the origin of the rotating
frame. Similar jet effects but less pronounced &happear to th&' too.
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