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Abstract: In this paper, we studied the timelike and the spacelike ruled surfaces in

Minkowski 3-space by using the angle between unit normal vector of the ruled surface and

the principal normal vector of the base curve. We obtained some characterizations on the

ruled surfaces by using its rulings, the curvatures of the base curve, the shape operator and

Gauss curvature.
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§1. Introduction

It is safe to report that the many important studies in the theory of ruled surfaces in Euclidean

and also in Minkowski and Galilean spaces. A surface M is ruled if through every point of M

there is a straight line that lies on M . The most familiar examples are the plane and the curved

surface of a cylinder or cone. Other examples are a conical surface with elliptical directrix, the

right conoid, the helicoid, and the tangent developable of a smooth curve in space. A ruled

surface can always be described (at least locally) as the set of points swept by a moving straight

line. For example, a cone is formed by keeping one point of a line fixed whilst moving another

point along a circle. A developable surface is a surface that can be (locally) unrolled onto a

flat plane without tearing or stretching it. If a developable surface lies in three-dimensional

Euclidean space, and is complete, then it is necessarily ruled, but the converse is not always true.

For instance, the cylinder and cone are developable, but the general hyperboloid of one sheet

is not. More generally, any developable surface in three-dimensions is part of a complete ruled

surface, and so itself must be locally ruled. There are surfaces embedded in four dimensions

which are however not ruled. (for more details see [1])(Hilbert & Cohn-Vossen 1952, pp. 341–

342).

In the light of the existing literature, in [8,9,10] authors introduced timelike and spacelike

ruled surfaces and they investigated invariants of timelike and spacelike ruled surfaces by Frenet-

1Received December 26, 2013, Accepted May 18, 2014.
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Serret frame vector fields in Minkowski space.

In this study, we investigated timelike ruled surfaces with spacelike rulings, timelike ruled

surfaces with timelike rulings and spacelike ruled surfaces with spacelike rulings. Since unit

normals of a ruled surface lies in normal planes of the curves on that surface then we investigated

all of invariants of base curve of a ruled surface with respect to the angle between unit normal

of surface and principal normal.

Now we review some basic concepts on classical differential geometry of space curves and

ruled surfaces in Minkowski space. Let α : I −→ IR3 be a curve with α′ (s) 6= 0, where

α′ (s) = d α (s) /ds. The arc-length s of a curve α (s) is determined such that ‖α′ (s)‖ = 1. Let

us denote T (s) = α′ (s) and we call T (s) a tangent vector of α at α (s). Its well known that

there are three types curves in Minkowski space such that if 〈α′, α′〉 > 0, α is called spacelike

curve, if 〈α′, α′〉 < 0, α is called timelike curve and if 〈α′, α′〉 = 0, α is called null curve. The

curvature of α is defined by κ (s) =
√

‖α′′ (s)‖. If κ (s) 6= 0, unit principal normal vector N (s)

of the curve at α (s) is given by α′′ (s) = κ (s)N (s). The unit vector B (s) = T (s) ΛN (s) is

called unit binormal vector of α at α (s). If α is a timelike curve, Frenet-Serret formulae is

T ′ = κN, N ′ = κT + τB, B′ = −τN, (1)

where τ (s) is the torsion of α at α (s) ([2]). If α is a spacelike curve with a spacelike or timelike

principal normal N , the Frenet formulae is

T ′ = κN, N ′ = −ǫκT + τB, B′ = τN, (2)

where 〈T, T 〉 = 1, 〈N,N〉 = ǫ = ±1, 〈B,B〉 = −ǫ, 〈T,N〉 = 〈T,B〉 = 〈N,B〉 = 0 ([4]).

A straight line X in IR3, such that it is strictly connected to Frenet frame of the curve

α(s), is represented uniquely with respect to this frame, in the form

X(s) = f(s)N(s) + g(s)B(s), (3)

where f(s) and g(s) are the smooth functions. As X moves along α(s), it generates a ruled

surface given by the regular parametrization

ϕ(s, v) = α(s) + vX(s), (4)

where the components f and g are differentiable functions with respect to the arc-lenght pa-

rameter of the curve α(s). This surface will be denoted by M . The curve α(s) is called a base

curve and the various positions of the generating line X are called the rulings of the surface M .

If consecutive rulings of a ruled surface in IR3 intersect, the surface is to be developable.

All the other ruled surfaces are called skew surfaces. If there is a common perpendicular to two

constructive rulings in the skew surface, the foot of the common perpendicular on the main

ruling is called a striction point. The set of the striction points on the ruled surface defines the

striction curve [3].
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The striction curve of M can be written in terms of the base curve α(s) as

α(s) = α(s) − 〈T,∇TX〉
‖∇TX‖2 X(s). (5)

If ‖∇TX‖ = 0, the ruled surface doesn’t have any striction curves. This case characterizes the

ruled surface as cylindrical. Thus, the base curve can be taken as a striction curve.

Let Px be distribution parameter of M , then

PX =
det(T,X,∇TX)

‖∇TX‖2 , (6)

where ∇ is Levi-Civita connection on E3
v [1]. If the base curve is periodic, M is a closed ruled

surface. Let M be a closed ruled surface and W be Darboux vector, then the Steiner rotation

and Steiner translation vectors are

D =
∮

(α)

W, V =
∮

(α)

dα , (7)

respectively. Furthermore, the pitch of M and the angle of the pitch are

LX = 〈V,X〉 , λX = 〈D,X〉 , (8)

respectively [3, 5, 6].

§2. Timelike Ruled Surfaces with Spacelike Rulings

Let α : I → E3
1 be a regular timelike curve with the arc-lenght parameter s and {T,N,B} be

Frenet vectors. In generally, during one parametric spatial motion, each line X in moving space

generates a timelike ruled surface. Since ξ is normal to T, ξ ∈ Sp {N,B} and ξ can be choosen

as ξ = TΛX along the spacelike line X depending on the orientation of M . Thus, ξ and X can

be written as

ξ = − sinψN + cosψB, X = cosψN + sinψB, (9)

where ψ = ψ (s) is the angle between ξ and N along α [6]. From (2) and (9), we write

∇TX = κ cosψT + (ψ′ + τ) ξ. (10)

We obtain the distribution parameter of the timelike ruled surface M as

PX =
ψ′ + τ

(ψ′ + τ) 2 − κ2 cos2 ψ
(11)

by using (6) and (10). It is well known that the timelike ruled surface is developable if and only

if PX is zero from [1], so we can state the following theorem.
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Theorem 2.1 A timelike ruled surface with the spacelike rulings is developable if and only if

ψ = −
∫

τds+ c

is satisfied, where c is a constant.

In the case ψ = (2k − 1)π/2 and ψ = kπ, k ∈ Z, we get PX = PB and PX = PN ,

respectively. Thus, the distribution parameters are

PB =
1

τ
, PN =

τ

τ2 − κ2

and we obtain
PB

PN
= 1 −

(κ

τ

)2

.

Thus, we get a corollary following.

Corollary 2.2 The base curve of the timelike ruled surface with the spacelike rulings is a

timelike helice if and only if PB

PN
is a constant.

On the other hand, from (5) the striction curve of M is

α(s) = α(s) +
κ cosψ

(ψ′ + τ) 2 − κ2 cos2 ψ
X(s).

In the case that M is a cylindrical timelike ruled surface with the spacelike rulings, we get the

theorem following.

Theorem 2.3 i) If M is a cylindrical timelike ruled surface with the spacelike rulings, κ cosψ =

0. In the case κ = 0, the timelike ruled surface is a plane. In the case ψ = kπ, k ∈ Z, unit

normal vector of M and binormal vector of the base curve are on the same direction and both

the striction curve and the base curve are geodesics of M .

ii) A cylindrical timelike ruled surface with the spacelike rulings is developable if and only

if

κ cos

(∫

τds+ c

)

= 0

is satisfied. In this case, the base curve is a timelike planar curve.

On the other hand, the equation (4) indicates that ϕv : I × {v} → M is a curve of M for

each v ∈ IR. Let A be the tangent vector field of the curve ϕv then A is

A = (1 + vκ cosψ)T + v {τ + ψ′} ξ. (12)

Since the vector field A is normal to ξ, τ + ψ′ = 0 is satisfied. Thus, we get the theorem

following.

Theorem 2.4 The tangent planes of a timelike ruled surface with the spacelike rulings are the
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same along the spacelike generating lines if and only if

τ + ψ′ = 0

is satisfied.

Theorem 2.5 i) Let ψ be ψ′ 6= −τ and M be a closed timelike ruled surface with the spacelike

rulings as given in the form (4). The distance between spacelike generating lines of M is

minimum along the striction curve.

ii) Let α(s) be a striction curve of a timelike ruled surface with the spacelike rulings, then

κ cosψ

(ψ′ + τ) 2 − κ2 cos2 ψ

is a constant.

iii) Let M be a timelike ruled surface as given in the form (??), then ϕ (s, vo) is a striction

point if and only if ∇TX is normal to the tangent plane at that point on M , where

vo =
κ cosψ

(ψ′ + τ) 2 − κ2 cos2 ψ
.

Proof i) Let Xα(s1) and Xα(s2) be spacelike generating lines which pass from the points

α(s1) and α(s2) of the base curve, respectively ( s1, s2 ∈ IR and s1 < s2). Distance between

these spacelike generating lines along the orthogonal orbits is

J(v) =

s2∫

s1

‖A‖ ds.

So we obtain

J(v) =

s2∫

s1

(
2vκ cosψ − 1 +

(
(ψ′ + τ) 2 − κ2 cos2 ψ

)
v2
) 1

2 ds.

If J(v) is minimum for v0, J
′(vo) = 0 and we get

vo =
κ cosψ

(ψ′ + τ) 2 − κ2 cos2 ψ
.

Thus, the orthogonal orbit is the striction curve of M for v = vo.

ii) Since the tangent vector field of the striction curve is normal to X,
〈
X, dα

ds

〉
= 0. Thus,

we get
d

ds

(
κ cosψ

(ψ′ + τ) 2 − κ2 cos2 ψ

)

= 0

and so
κ cosψ

(ψ′ + τ) 2 − κ2 cos2 ψ
= constant.
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iii) We suppose that ϕ (s, vo) is a striction point on the timelike base curve α (s) of M,

then we must show that 〈∇TX,X〉 = 0 and 〈∇TX,A〉 = 0. Since the vector field X is an unit

vector, T [〈X,X〉] = 0 and we get 〈∇TX,X〉 = 0.

On the other hand, from (10) and (12), we obtain

〈∇TX,A〉 =
{
(ψ′ + τ) 2 − κ2 cos2 ψ

}
vo − κ cosψ.

Now, by applying

vo =
κ cosψ

(ψ′ + τ) 2 − κ2 cos2 ψ
,

we get 〈∇TX,A〉 = 0. This means that ∇TX is normal to the tangent plane at the striction

point ϕ (t, vo) on M.

Conversely, since ∇TX is normal to the tangent plane at the point ϕ (s, vo) onM , 〈∇TX,A〉 =

0 and from (10) and (12), we obtain

{
(ψ′ + τ) 2 − κ2 cos2 ψ

}
vo − κ cosψ = 0.

Thus, we get vo =
κ cosψ

(ψ′ + τ) 2 − κ2 cos2 ψ
and so ϕ (s, vo) is a striction point on M. 2

Theorem 2.6 Absolute value of the Gauss curvature of M is maximum at the striction points

on the spacelike generating line X and it is

|K|max =

{
(ψ′ + τ) 2 − κ2 cos2 ψ

}2

(ψ′ + τ) 2
.

Proof Let M be a timelike ruled surface as given in the form (4) and Φ be base of

the tangent space which is spanned by the unit vectors Ao and X where Ao is the tangent

vector of the curve ϕ (s, v = constant.) with the arc-length parameter s∗. Hence, we write

Ao =
dϕ

ds∗
=
dϕ

ds

ds

ds∗
where

dϕ

ds
= A , Ao =

1

‖A‖A and
ds

ds∗
=

1

‖A‖ . Thus, we obtain the

following equations after the routine calculations.

∇Ao
T =

κ

‖A‖ {cosψX − sinψξ} ,

∇Ao
ξ =

1

‖A‖ {−κ sinψT − (ψ′ + τ)X} ,

∇Ao
A =

1

‖A‖







{
(1 + vκ cosψ)′ − v (ψ′ + τ)κ sinψ

}
T

+
{

(1 + vκ cosψ)κ cosψ + v (ψ′ + τ)
2
}

X

+
{
(−vκ sinψ − 1)κ sinψ + (v (ψ′ + τ))

′}
ξ







.

On the other hand, we denote ξϕ(s,v) as the unit normal vector at the points ϕ (s, v = constant),
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then from (1), (9) and (12) we get

ξϕ(s,v) =
1

‖A‖ {v (ψ′ + τ) T + (1 + vκ cosψ) ξ} . (13)

By differentiating both side of (13) with respect to the parameter s, we get

dξϕ(s,v)

ds
=













(
v (ψ′ + τ)

′ − κ sinψ (1 + vκ cosψ)
)

1
‖A‖

+v (ψ′ + τ)
(

1
‖A‖

)′






T

+






(1 + vκ cosψ)

(
1

‖A‖

)′
+




(1 + vκ cosψ)′

−vκ sinψ (ψ′ + τ)



 1
‖A‖






ξ

− (ψ′ + τ) 1
‖A‖X







. (14)

Let S be the shape operator of M at the points ϕ (s, v), then we can obtain that the matrix

SΦ is following with respect to base Φ,

SΦ =




−〈S (Ao) , Ao〉 〈S (Ao) , X〉
− 〈S (X) , Ao〉 〈S (X) , X〉



 .

Since 〈S (X) , X〉 = 0 and 〈S (Ao) , X〉 = 〈S (X) , Ao〉, the Gauss curvature is

K(s, v) = detSΦ = 〈S (Ao) , X〉2 .

Suppose that s∗ is arc-length parameter of Ao, then we get

S (Ao) = ∇Ao
ξϕ(s,v) =

dξϕ(s,v)

ds∗
=
dξϕ(s,v)

ds

ds

ds∗
=

1

‖A‖
dξϕ(s,v)

ds
.

From (12) and (14), we obtain

S (Ao) =
1

‖A‖







(
v (ψ′ + τ)

′ − κ sinψ (1 + vκ cosψ)
)

1
‖A‖

+v (ψ′ + τ)
(

1
‖A‖

)′






T

+
1

‖A‖






(1 + vκ cosψ)

(
1

‖A‖

)′
+




(1 + vκ cosψ)′

−vκ sinψ (ψ′ + τ)




1

‖A‖






ξ

− (ψ′ + τ)
1

‖A‖2X.

Hence, the Gauss curvature is

K(s, v) =
(ψ′ + τ)

2

‖A‖4 . (15)

We differentiate both side of (17) with respect to v for finding the maximum value of the
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Gauss curvature along X on M . Thus, we obtain

∂K(s, v)

∂v
=

−4 (ψ′ + τ)
2
{(

v (ψ′ + τ)
2 − κ2 cos2 ψ

)

− κ cosψ
}

{v2 {(ψ′ + τ) 2 − κ2 cos2 ψ} − 2vκ cosψ − 1}3 = 0

and v =
κ cosψ

(ψ′ + τ) 2 − κ2 cos2 ψ
. It is easy to see that ϕ (s, v) is the striction point and we can

say that the absolute value of the Gauss curvature of M is maximum at the striction points on

X . Finally, by using (17), we get

|K|max =

{
(ψ′ + τ) 2 − κ2 cos2 ψ

}2

(ψ′ + τ) 2
. (16)

This completes the proof. 2
By using (11) and (16), we can write the relation between the Gauss curvature and the

distribution parameter as

|K|max =
1

(PX) 2
. (17)

Thus, we prove the following corollary too.

Corollary 2.7 The distribution parameter of the timelike ruled surface with the spacelike rulings

depends on the spacelike generating lines.

Moreover, the Darboux frame of the surface along the timelike base curve is







∇TT

∇TX

∇T ξ







=







0 κ cosψ −κ sinψ

κ cosψ 0 (ψ′ + τ)

−κ sinψ − (ψ′ + τ) 0













T

X

ξ







and the Darboux vector is

W = −ε2 (ψ′ + τ) T − ε1κ sinψX − ε1κ cosψξ,

where ε1, ε2, ε3 are the signs of standart vectors e1, e2, e3, respectively. Thus, we obtain the

geodesic curvature, the geodesic torsion and the normal curvature of the timelike ruled surface

with the spacelike rulings along its spacelike generating lines as

κg = ε1κ sinψ, τg = −ε2 (ψ′ + τ) , κξ = −ε1κ cosψ ,

respectively. Note also that if the timelike ruled surface with the spacelike rulings is a constant

curvature surface with a nonzero geodesic curvature, PX is a constant and from (8) and (15),

we obtain
τ2
g

τ2
g − κ2

ξ

=constant. Hence, we get the theorem following.

Theorem 2.8 A timelike ruled surface with the spacelike rulings is a constant curvature surface
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with a nonzero geodesic curvature if and only if
τ2
g

τ2
g − κ2

ξ

is a constant. In the case that the base

curve is one of the timelike geodesics of the timelike ruled surface, the timelike ruled surface is

developable.

On the other hand, the Steiner rotation vector is

D = −ε2






∮

(α)

(ψ′ + τ) ds




T − ε1






∮

(α)

κ sinψds




X − ε1






∮

(α)

κ cosψds




 ξ.

Furthermore, the angle of pitch of M is

λX = −ε1
∮

(α)

κ sinψds.

From (4), (5) and (17), we obtain that LN = λN = 0, LB = 0 and λB = −ε1
∮

(α)

κds for the

special cases, X = N and X = B.

§3. Timelike Ruled Surfaces with Spacelike Rulings

Let α : I → E3 be a regular spacelike curve with the arc-lenght parameter s. Since T and X

are spacelike vectors, ξ is a timelike vector and the functions f and g satisfy

f 2 − g2 = −ǫ

along α ([6]). From (2) and (3), we write

∇TX = −ǫfκT + {τ + ǫ(f ′g − fg′)} ξ. (18)

The distribution parameter of the timelike ruled surface with timelike rulings is obtained by a

direct computation as

PX =
τ + ǫ(f ′g − fg′)

f2κ2 + {τ + ǫ(f ′g − fg′)} 2
. (19)

Thus, we have the following result.

Theorem 3.1 A timelike ruled surface with timelike rulings is developable if and only if

τ + ǫ(f ′g − fg′) = 0

is satisfied.

In the cases f = 0, g = 1 and f = 1, g = 0, we get PX = PB and PX = PN , respectively.
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Thus, the distribution parameters are

PB =
1

τ
, PN =

τ

κ2 + τ

and we obtain
PB

PN
= 1 +

(κ

τ

)2

.

Thus, we get the following corollary.

Corollary 3.2 The base curve of the timelike ruled surface with timelike rulings is a spacelike

helice if and only if
PB

PN
is a constant.

On the other hand, from (5), the striction curve of M is

α(s) = α(s) +
ǫκf

f2κ2 + {τ + ǫ(f ′g − fg′)} 2
X(s).

In the case that M is a cylindrical timelike ruled surface with timelike rulings, we find the

following result.

Theorem 3.3 i) If M is a cylindrical timelike ruled surface with timelike rulings, κf = 0 . In

the case κ = 0, the timelike ruled surface is a plane. In the case κ 6= 0, unit normal vector of

M and binormal vector of the base curve are on the same direction and both the striction curve

and the base curve are geodesics of M .

ii) A cylindrical timelike ruled surface with timelike rulings is developable if and only if the

base curve is a planar spacelike curve.

The tangent vector field of the curve ϕv : I × {v} →M is

A = (1 − vǫκf)T + v {τ + ǫ(f ′g − fg′)} ξ (20)

on M for each v ∈ IR. Since the vector field A is normal to ξ, τ + ǫ(f ′g − fg′) = 0 is satisfied

along the curve ϕv. Thus, we have the following theorem.

Theorem 3.4 The tangent planes of a timelike ruled surface with timelike rulings are the same

along a timelike generating lines if and only if

τ + ǫ(f ′g − fg′) = 0

is satisfied.

Theorem 3.5 i) Let τ + ǫ(f ′g − fg′) 6= 0 and M be a closed timelike ruled surface with

timelike rulings as given in the form (4). The distance between timelike generating lines of M

is minimum along the striction curve.

ii) Let α(s) be a striction curve of M, then
ǫκf

f2κ2 + {τ + ǫ(f ′g − fg′)} 2
is a constant.
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iii) Let M be a timelike ruled surface with timelike rulings as given in the form (4), then

ϕ (t, vo) is a striction point if and only if ∇TX is normal to the tangent plane at that point on

M , where

vo =
ǫκf

f2κ2 + {τ + ǫ(f ′g − fg′)} 2
.

Proof i) Let Xα(s1) and Xα(s2) be timelike generating lines which pass from the points

α(s1) and α(s2) of the base curve, respectively(s1, s2 ∈ IR, and s1 < s2). Distance between

these timelike generating lines along the orthogonal orbits is

J(v) =

s2∫

s1

‖A‖ ds.

Then, we obtain

J(v) =

s2∫

s1

({

f2κ2 + {τ + ǫ(f ′g − fg′)}2
}

v2 − 2vǫfκ+ 1
) 1

2

ds.

If J(v) is minimum for v0, J
′(vo) = 0 and we get

vo =
ǫκf

f2κ2 + {τ + ǫ(f ′g − fg′)} 2
.

Thus, the orthogonal orbit is the striction curve of M for v = vo.

ii) Since the tangent vector field of the striction curve is normal to X,

〈

X,
dα

ds

〉

= 0. Thus,

we get
d

ds

(
ǫκf

f2κ2 + {τ + ǫ(f ′g − fg′)} 2

)

= 0

and so
ǫκf

f2κ2 + {τ + ǫ(f ′g − fg′)} 2
= constant.

iii) We suppose that ϕ (t, vo) is a striction point on the spacelike base curve α (t) of M,

then we must show that 〈∇TX,X〉 = 0 and 〈∇TX,A〉 = 0. Since the vector field X is an unit

vector, T [〈X,X〉] = 0 and we get 〈∇TX,X〉 = 0.

On the other hand, from (18) and (20), we obtain

〈∇TX,A〉 = −ǫfκ (1 − ǫvoκf) + vo {τ + ǫ(f ′g − fg′)} .

By using

vo =
−κ coshψ

(ψ′ + τ) 2 + κ2 cosh2 ψ

we get 〈∇TX,A〉 = 0. This means that ∇TX is normal to the tangent plane at the striction

point ϕ (s, vo) on M.

Conversely, since ∇TX is normal to the tangent plane at the point ϕ (s, vo) onM, 〈∇TX,A〉 =
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0 and from (18) and (20), we obtain

{
f2κ2 + {τ + ǫ(f ′g − fg′)} 2

}
vo − ǫκf = 0.

Thus, we get

vo =
ǫκf

f2κ2 + {τ + ǫ(f ′g − fg′)} 2

and so ϕ (s, vo) is a striction point on M. 2
Theorem 3.6 Absolute value of the Gauss curvature of M is maximum at the striction points

on the timelike generating line X and it is

|K|max =

{
f2κ2 + {τ + ǫ(f ′g − fg′)} 2

}2

{τ + ǫ(f ′g − fg′)} 2
.

Proof Let M be a timelike ruled surface with timelike rulings as given in the form (4) and

Φ be base of the tangent space which is spanned by the unit vectors Ao and X where Ao is the

tangent vector of the curve ϕ (s, v = constant.) with the arc-length parameter s∗. Hence, we

write Ao =
dϕ

ds∗
=
dϕ

ds

ds

ds∗
where

dϕ

ds
= A , Ao =

1

‖A‖A and
ds

ds∗
=

1

‖A‖ . Thus, we obtain

the following equations after the routine calculations.

∇Ao
T =

ǫκ

‖A‖ {−fX + gξ}

∇Ao
ξ =

1

‖A‖ {−ǫκgT + {τ + ǫ(f ′g − fg′)}X}

∇Ao
A =

1

‖A‖







{
(1 − ǫvκf)

′ − ǫvκg (τ + ǫ(f ′g − fg′))
}
T

+
{
−ǫκf (1 − ǫvκf) + v {τ + ǫ(f ′g − fg′)} 2

}
X

+
{
ǫκg (1 − ǫvκf) + {v {τ + ǫ(f ′g − fg′)}}′

}
ξ







On the other hand, we denote ξϕ(s,v) as the unit normal vector at the points ϕ (s, v =

constant), then using (2), (3) and (20) we get

ξϕ(s,v) =
1

‖A‖ {−v {τ + ǫ(f ′g − fg′)}T + (1 − ǫvκf) ξ} . (21)

By differentiating both side of (21) with respect to the parameter s, we get

dξϕ(s,v)

ds
=













−
{
v {τ + ǫ(f ′g − fg′)}′ + ǫκg (1 − ǫvκf)

}
1

‖A‖

−v {τ + ǫ(f ′g − fg′)}
(

1
‖A‖

)′






T

+






(1 − ǫvκf)

(
1

‖A‖

)′
+




(1 − ǫvκf)′

−ǫvκg {τ + ǫ(f ′g − fg′)}



 1
‖A‖






ξ

+ {τ + ǫ(f ′g − fg′)} 1
‖A‖X







. (22)
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From (20) and (22), we obtain

S (Ao) =
1

‖A‖







−
{
v {τ + ǫ(f ′g − fg′)}′ + ǫκg (1 − ǫvκf)

}
1

‖A‖

−v {τ + ǫ(f ′g − fg′)}
(

1
‖A‖

)′






T

+
1

‖A‖






(1 − ǫvκf)

(
1

‖A‖

)′
+




(1 − ǫvκf)′

−ǫvκg {τ + ǫ(f ′g − fg′)}




1

‖A‖






ξ

+ {τ + ǫ(f ′g − fg′)} 1

‖A‖2X.

So the Gauss curvature is

K(s, v) =
{τ + ǫ(f ′g − fg′)}2

‖A‖4 . (23)

We differentiate both side of (23) with respect to v for finding the maximum value of the

Gauss curvature along X on M . Thus, we obtain

∂K(s, v)

∂v
=

4 {τ + ǫ(f ′g − fg′)}2 {
v
{
f2κ2 + {τ + ǫ(f ′g − fg′)} 2

}
− ǫκf

}

{

v2 {τ + ǫ(f ′g − fg′)} 2 + (1 − ǫvκf)
2
}3 = 0

and v =
ǫκf

f2κ2 + {τ + ǫ(f ′g − fg′)} 2
. It is easy to see that ϕ (s, v) is the striction point and

we can say that the absolute value of the Gauss curvature of M is maximum at the striction

points on X . Finally, by using (23), we get

|K|max =

{
f2κ2 + {τ + ǫ(f ′g − fg′)} 2

}2

{τ + ǫ(f ′g − fg′)} 2
. (24)

This completes the proof. 2
By using (19) and (24), we can write the relation between the Gauss curvature and the

distribution parameter as similar to the equation (17). Thus, we prove the following corollary,

too.

Corollary 3.7 The distribution parameter of the timelike ruled surface with timelike rulings

depends on the timelike generating lines.

Moreover, the Darboux frame of the surface along the spacelike base curve is







∇TT

∇TX

∇T ξ







=







0 −ǫfκ ǫgκ

−ǫfκ 0 {τ + ǫ(f ′g − fg′)}
−ǫgκ {τ + ǫ(f ′g − fg′)} 0













T

X

ξ







and the Darboux vector is

W = −ε2 {τ + ǫ(f ′g − fg′)}T + ε1ǫgκX + ε1ǫfκξ.
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Thus, we obtain the geodesic curvature, the geodesic torsion and the normal curvature of the

timelike ruled surface with timelike rulings along its timelike generating lines as

κg = ε1ǫgκ τg = −ε2 {τ + ǫ(f ′g − fg′)} κξ = ε1ǫfκ,

respectively. If the timelike ruled surface with timelike rulings is a constant curvature surface

with a nonzero geodesic curvature, PX is a constant and from (8) and (15), we obtain
τ2
g

κ2
g + τ2

g

=

constant. Hence, we get the following theorem.

Theorem 3.8 A timelike ruled surface with timelike rulings is a constant curvature surface with

a nonzero geodesic curvature if and only if
τ2
g

κ2
g + τ2

g

is a constant. In the case that the spacelike

base curve is one of the geodesics of the timelike ruled surface, the timelike ruled surface is

developable.

The Steiner rotation vector is

D = −ε2






∮

(α)

{τ + ǫ(f ′g − fg′)} ds




T + ε1ǫ






∮

(α)

gκds




X + ε1ǫ






∮

(α)

fκds




 ξ.

The angle of pitch of M is

λX = −ε1ǫ
∮

(α)

gκds.

From (4), (5) and (17), we obtain that LN = λN = 0, LB = 0 and λB = −ε1ǫ
∮

(α)

κds for the

special cases, X = N and X = B.

§4. Spacelike Ruled Surfaces with Spacelike Rulings

Let α : I → E3 be a regular spacelike curve with the arc-length parameter s. Since T and X

are spacelike vectors, ξ is a timelike vector and the functions f and g satisfy

f 2 − g2 = ǫ

along α ([6]). From (2) and (3), we write

∇TX = −ǫfκT + {τ − ǫ(f ′g − fg′)} ξ. (25)

The distribution parameter of the spacelike ruled surface with spacelike rulings is

PX =
−{τ − ǫ(f ′g − fg′)}

f2κ2 − {τ − ǫ(f ′g − fg′)} 2
. (26)

Thus we have the following result.
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Theorem 4.1 A spacelike ruled surface with spacelike rulings is developable if and only if

τ − ǫ(f ′g − fg′) = 0

is satisfied.

In the cases f = 0, g = 1 and f = 1, g = 0, we get PX = PB and PX = PN , respectively.

Thus, the distribution parameters are

PN =
−τ

κ2 − τ
, PB =

1

τ

and we obtain
PB

PN
=
(κ

τ

)2

− 1.

Thus, we get the following conclusion.

Corollary 4.2 The base curve of the spacelike ruled surface is a spacelike helice if and only if
PB

PN
is a constant.

On the other hand, from (5), the striction curve of M is

α(s) = α(s) +
ǫκf

f2κ2 − {τ − ǫ(f ′g − fg′)} 2
X(s).

In the case that M is a cylindirical spacelike ruled surface, we know the result following.

Theorem 4.3 i) If M is a cylindrical spacelike ruled surface, κf = 0 . In the case κ = 0, the

spacelike ruled surface is a plane. In the case f = 0, unit normal vector of M and binormal

vector of the base curve are on the same direction and both the striction curve and the spacelike

base curve are geodesics of M .

ii) A cylindrical spacelike ruled surface is developable if and only if the base curve is a

planar spacelike curve.

The tangent vector field of the curve ϕv : I × {v} →M is

A = (1 − vǫκf)T + v {τ − ǫ(f ′g − fg′)} ξ (27)

on M for each v ∈ IR. Since the vector field A is normal to ξ, τ − ǫ(f ′g − fg′) = 0 is satisfied.

Thus, the following theorem is true.

Theorem 4.4 The tangent planes of a spacelike ruled surface are the same along a spacelike

generating lines if and only if

τ − ǫ(f ′g − fg′) = 0

is satisfied.

Theorem 4.5 i) Let κf 6= 0 and M be a closed spacelike ruled surface as given in the form (4).
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The distance between spacelike generating lines of M is minimum along the spacelike striction

curve.

ii) Let α(s) be a striction curve of M, then
ǫκf

f2κ2 − {τ − ǫ(f ′g − fg′)} 2
is a constant.

iii) Let M be a spacelike ruled surface as given in the form (4), then ϕ (s, vo) is a striction

point if and only if ∇TX is normal to the tangent plane at that point on M , where

vo =
ǫκf

f2κ2 − {τ − ǫ(f ′g − fg′)} 2
.

Proof i) Let Xα(s1) and Xα(s2) be spacelike generating lines which pass from the points

α(s1) and α(s2) of the base curve, respectively(s1, s2 ∈ IR, and s1 < s2). The distance between

these spacelike generating lines along the orthogonal orbits is

J(v) =

s2∫

s1

‖A‖ ds.

Then, we obtain

J(v) =

s2∫

s1

({

f2κ2 − {τ − ǫ(f ′g − fg′)}2
}

v2 − 2vǫfκ+ 1
) 1

2

ds.

If J(v) is minimum for v0, J
′(vo) = 0 and we get

vo =
ǫκf

f2κ2 − {τ − ǫ(f ′g − fg′)} 2
.

Thus, the orthogonal orbit is the spacelike striction curve of M for v = vo.

ii) Since the tangent vector field of the spacelike striction curve is normal toX,
〈
X, dα

ds

〉
= 0.

Thus, we get
d

ds

(
ǫκf

f2κ2 − {τ − ǫ(f ′g − fg′)} 2

)

= 0

and so
ǫκf

f2κ2 − {τ − ǫ(f ′g − fg′)} 2
= constant.

iii) We suppose that ϕ (s, vo) is a spacelike striction point on the spacelike base curve α (s)

of M, then we must show that 〈∇TX,X〉 = 0 and 〈∇TX,A〉 = 0. Since the vector field X is

an unit vector, T [〈X,X〉] = 0 and we get 〈∇TX,X〉 = 0. On the other hand, from (25) and

(27), we obtain

〈∇TX,A〉 = −ǫfκ (1 − ǫvoκf) − vo {τ − ǫ(f ′g − fg′)} .

By using

vo =
ǫκf

f2κ2 − {τ − ǫ(f ′g − fg′)} 2
,

we get 〈∇TX,A〉 = 0. This means that ∇TX is normal to the tangent plane at the spacelike
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striction point ϕ (s, vo) on M.

Conversely, since ∇TX is normal to the tangent plane at the point ϕ (s, vo) onM, 〈∇TX,A〉 =

0 and from (25) and (27), we obtain

−ǫfκ (1 − ǫvoκf) − vo {τ − ǫ(f ′g − fg′)} = 0.

So we get vo =
ǫκf

f2κ2 − {τ − ǫ(f ′g − fg′)} 2
and so ϕ (s, vo) is a striction point on M . 2

Theorem 4.6 Absolute value of the Gauss curvature of M is maximum at the striction points

on the spacelike generating line X and it is

|K|max =

{
f2κ2 − {τ − ǫ(f ′g − fg′)} 2

}2

{τ − ǫ(f ′g − fg′)} 2

Proof Let M be a spacelike ruled surface as given in the form (1) and Φ be base of the

tangent space which is spanned by the unit vectors Ao and X where Ao is the tangent vector

of the curve ϕ (s, v = const.) with the arc-length parameter s∗. Hence, we write Ao =
dϕ

ds∗
=

dϕ

ds

ds

ds∗
where

dϕ

ds
= A , Ao =

1

‖A‖A and
ds

ds∗
=

1

‖A‖ . Thus, we obtain the following equations

after the routine calculations,

∇Ao
T =

ǫκ

‖A‖ {fX − gξ} ,

∇Ao
ξ =

1

‖A‖ {−ǫκgT + {τ − ǫ(f ′g − fg′)}X} ,

∇Ao
A =

1

‖A‖







{
(1 − ǫvκf)

′ − ǫvκg (τ − ǫ(f ′g − fg′))
}
T

+
{
−ǫκf (1 − ǫvκf) + v {τ − ǫ(f ′g − fg′)} 2

}
X

+
{
−ǫκg (1 − ǫvκf) + {v {τ − ǫ(f ′g − fg′)}}′

}
ξ







.

We denote ξϕ(s,v) as the unit normal vector at the points ϕ (s, v =constant), then from

(2), (3) and (27) we get

ξϕ(s,v) =
1

‖A‖ {v {τ − ǫ(f ′g − fg′)}T + (1 − ǫvκf) ξ} . (28)

By differentiating both side of (28) with respect to the parameter s, we get

dξϕ(s,v)

ds
=













{
v {τ − ǫ(f ′g − fg′)}′ − ǫκg (1 − ǫvκf)

}
1

‖A‖

+v {τ − ǫ(f ′g − fg′)}
(

1
‖A‖

)′






T

+






(1 − ǫvκf)

(
1

‖A‖

)′
+




(1 − ǫvκf)′

−ǫvκg {τ − ǫ(f ′g − fg′)}



 1
‖A‖






ξ

+ {τ − ǫ(f ′g − fg′)} 1
‖A‖X







. (29)
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From (27) and (29), we obtain

S (Ao) =
1

‖A‖







{
v {τ − ǫ(f ′g − fg′)}′ − ǫκg (1 − ǫvκf)

}
1

‖A‖

+v {τ − ǫ(f ′g − fg′)}
(

1
‖A‖

)′






T

+
1

‖A‖






(1 − ǫvκf)

(
1

‖A‖

)′
+




(1 − ǫvκf)′

−ǫvκg {τ − ǫ(f ′g − fg′)}




1

‖A‖






ξ

+ {τ − ǫ(f ′g − fg′)} 1

‖A‖2X.

Hence, the Gauss curvature is

K(s, v) =
{τ − ǫ(f ′g − fg′)}2

‖A‖4 . (30)

We differentiate both side of (30) with respect to v for finding the maximum value of the

Gauss curvature along X on M . Thus, we obtain

∂K(s, v)

∂v
=

4 {τ − ǫ(f ′g − fg′)}2 {
v
{
f2κ2 − {τ − ǫ(f ′g − fg′)} 2

}
− ǫκf

}

{v2 {f2κ2 − {τ − ǫ(f ′g − fg′)} 2} − 2ǫvκf + 1}3 = 0

and v =
ǫκf

f2κ2 − {τ − ǫ(f ′g − fg′)} 2
. It is easy to see that ϕ (s, v) is the spacelike striction

point and we can say that the absolute value of the Gauss curvature of M is maximum at the

striction points on X . Finally, by using (30), we get

|K|max =

{
f2κ2 − {τ − ǫ(f ′g − fg′)} 2

}2

{τ − ǫ(f ′g − fg′)} 2
. (31)

This completes the proof. 2
We can write the relation between the Gauss curvature and the distribution parameter as

similar to (17) by using (26) and (31).Thus, we prove the following corollary, too.

Corollary 4.7 The distribution parameter of the spacelike ruled surface depends on the spacelike

generating lines.

Moreover, the Darboux frame of the surface along the spacelike base curve is







∇TT

∇TX

∇T ξ







=







0 ǫfκ −ǫgκ
−ǫfκ 0 {τ − ǫ(f ′g − fg′)}
−ǫgκ {τ − ǫ(f ′g − fg′)} 0













T

X

ξ







and the Darboux vector is

W = −ε2 {τ − ǫ(f ′g − fg′)}T − ε1ǫgκX − ε1ǫfκξ.
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Thus, we obtain the geodesic curvature, the geodesic torsion and the normal curvature of the

ruled surface along its spacelike generating lines as

κg = −ε1ǫgκ τg = −ε2 {τ − ǫ(f ′g − fg′)} κξ = −ε1ǫfκ ,

respectively. Note also that if the ruled surface is a constant curvature surface with a nonzero

geodesic curvature, PX is a constant and from (8) and (15), we obtain
τ2
g

κ2
g + τ2

g

= constant.

Hence, we have the following theorem.

Theorem 4.8 A spacelike ruled surface is a constant curvature surface with a nonzero geodesic

curvature if and only if
τ2
g

κ2
g + τ2

g

is a constant. In the case that the spacelike base curve is one

of the geodesics of the spacelike ruled surface, the spacelike ruled surface is developable.

On the other hand, the Steiner rotation vector is

D = −ε2






∮

(α)

{τ − ǫ(f ′g − fg′)} ds




T − ε1ǫ






∮

(α)

gκds




X − ε1ǫ






∮

(α)

fκds




 ξ.

The angle of pitch of M is

λX = −ε1ǫ
∮

(α)

gκds.

From (4), (5) and (17), we obtain that LN = λN = 0, LB = 0 and λB = −ε1ǫ
∮

(α)

κds for the

special cases, X = N and X = B.
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Abstract: In this paper, we introduce a new family of generalized colored Motzkin paths,

where horizontal steps are colored by means of Fk,l colors, where Fk,l is the l-th k-Fibonacci

number. We study the enumeration of this family according to the length. For this, we use

infinite weighted automata.
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§1. Introduction

A lattice path of length n is a sequence of points P1, P2, . . . , Pn with n > 1 such that each point

Pi belongs to the plane integer lattice and each two consecutive points Pi and Pi+1 connect

by a line segment. We will consider lattice paths in Z × Z using three step types: a rise step

U = (1, 1), a fall step D = (1,−1) and a Fk,l−colored length horizontal step Hl = (l, 0) for

every positive integer l, such that Hl is colored by means of Fk,l colors, where Fk,l is the l-th

k-Fibonacci number.

Many kinds of generalizations of the Fibonacci numbers have been presented in the litera-

ture [10,11] and the corresponding references. Such as those of k-Fibonacci numbers Fk,n and

the k-Smarandache-Fibonacci numbers Sk,n. For any positive integer number k, the k-Fibonacci

sequence, say {Fk,n}n∈N, is defined recurrently by

Fk,0 = 0, Fk,1 = 1, Fk,n+1 = kFk,n + Fk,n−1, for n > 1.

The generating function of the k-Fibonacci numbers is fk(x) =
x

1 − kx− x2
, [4,6]. This

sequence was studied by Horadam in [9]. Recently, Falcón and Plaza [6] found the k-Fibonacci

numbers by studying the recursive application of two geometrical transformations used in the

four-triangle longest-edge (4TLE) partition. The interested reader is also referred to [1, 3, 4, 5,

6, 12, 13, 16] for further information about this.

1Received November 14, 2013, Accepted May 20, 2014.
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A generalized Fk,l-colored Motzkin path or simply k-Fibonacci path is a sequence of rise,

fall and Fk,l−colored length horizontal steps (l = 1, 2, · · · ) running from (0, 0) to (n, 0) that

never pass below the x-axis. We denote by MFk,n
the set of all k-Fibonacci paths of length n

and Mk =
⋃∞

n=0 MFk,n
. In Figure 1 we show the set MF2,3 .

×2 ×2 ×5

Figure 1 k-Fibonacci Paths of length 3, |MF2,3 | = 13

A grand k-Fibonacci path is a k-Fibonacci path without the condition that never going

below the x-axis. We denote by M∗
Fk,n

the set of all grand k-Fibonacci paths of length n and

M∗
k =

⋃∞
n=0 M∗

Fk,n
. A prefix k-Fibonacci path is a k-Fibonacci path without the condition that

ending on the x-axis. We denote by PMFk,n
the set of all prefix k-Fibonacci paths of length

n and PMk =
⋃∞

n=0 PMFk,n
. Analogously, we have the family of prefix grand k-Fibonacci

paths. We denote by PM∗
Fk,n

the set of all prefix grand k-Fibonacci paths of length n and

PM∗
k =

⋃∞
n=0 PM∗

Fk,n
.

In this paper, we study the generating function for the k-Fibonacci paths, grand k-

Fibonacci paths, prefix k-Fibonacci paths, and prefix grand k-Fibonacci paths, according to the

length. We use Counting Automata Methodology (CAM) [2], which is a variation of the method-

ology developed by Rutten [14] called Coinductive Counting. Counting Automata Methodology

uses infinite weighted automata, weighted graphs and continued fractions. The main idea of

this methodology is find a counting automaton such that there exist a bijection between all

words recognized by an automaton M and the family of combinatorial objects. From the

counting automaton M is possible find the ordinary generating function (GF) of the family of

combinatorial objects [4].

§2. Counting Automata Methodology

The terminology and notation are mainly those of Sakarovitch [13]. An automaton M is a

5-tuple M = (Σ, Q, q0, F, E), where Σ is a nonempty input alphabet, Q is a nonempty set of

states of M, q0 ∈ Q is the initial state of M, ∅ 6= F ⊆ Q is the set of final states of M and

E ⊆ Q × Σ ×Q is the set of transitions of M. The language recognized by an automaton M
is denoted by L(M). If Q,Σ and E are finite sets, we say that M is a finite automaton [15].

Example 2.1 Consider the finite automaton M = (Σ, Q, q0, F, E) where Σ = {a, b}, Q =

{q0, q1}, F = {q0} and E = {(q0, a, q1), (q0, b, q0), (q1, a, q0)}. The transition diagram of M is

as shown in Figure 2. It is easy to verify that L(M) = (b ∪ aa)∗.
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q0 q1- -�? a

a

b

Figure 2 Transition diagram of M, Example 1

Example 2.2 Consider the infinite automaton MD = (Σ, Q, q0, F, E), where Σ = {a, b},
Q = {q0, q1, · · · }, F = {q0} and E = {(qi, a, qi+1), (qi+1, b, qi) : i ∈ N}. The transition diagram

of MD is as shown in Figure 3.

q0 q1 q2 q3- -� -� -�a a a

b b b

Figure 3 Transition diagram of MD

The language accepted by MD is

L(MD) = {w ∈ Σ∗ : |w|a = |w|b and for all prefix v of w, |v|b ≤ |v|a} .

An ordinary generating function F =
∑∞

n=0 fnz
n corresponds to a formal language L if

fn = |{w ∈ L : |w| = n}|, i.e., if the n-th coefficient fn gives the number of words in L with

length n.

Given an alphabet Σ and a semiring K. A formal power series or formal series S is a

function S : Σ∗ → K. The image of a word w under S is called the coefficient of w in S and

is denoted by sw. The series S is written as a formal sum S =
∑

w∈Σ∗ sww. The set of formal

power series over Σ with coefficients in K is denoted by K 〈〈Σ∗〉〉.
An automaton over Σ∗ with weights in K, or K-automaton over Σ∗ is a graph labelled with

elements of K 〈〈Σ∗〉〉, associated with two maps from the set of vertices to K 〈〈Σ∗〉〉. Specifically,

a weighted automaton M over Σ∗ with weights in K is a 4-tuple M = (Q, I,E, F ) where Q is

a nonempty set of states of M, E is an element of K 〈〈Σ∗〉〉Q×Q called transition matrix. I is

an element of K 〈〈Σ∗〉〉Q, i.e., I is a function from Q to K 〈〈Σ∗〉〉. I is the initial function of M
and can also be seen as a row vector of dimension Q, called initial vector of M and F is an

element of K 〈〈Σ∗〉〉Q. F is the final function of M and can also be seen as a column vector of

dimension Q, called final vector of M.

We say that M is a counting automaton if K = Z and Σ∗ = {z}∗. With each automaton, we

can associate a counting automaton. It can be obtained from a given automaton replacing every

transition labelled with a symbol a, a ∈ Σ, by a transition labelled with z. This transition is

called a counting transition and the graph is called a counting automaton of M. Each transition
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from p to q yields an equation

L(p)(z) = zL(q)(z) + [p ∈ F ] + · · · .

We use Lp to denote L(p)(z). We also use Iverson’s notation, [P ] = 1 if the proposition P is

true and [P ] = 0 if P is false.

2.1 Convergent Automata and Convergent Theorems

We denote by L(n)(M) the number of words of length n recognized by the automaton M,

including repetitions.

Definition 2.3 We say that an automaton M is convergent if for all integer n > 0, L(n)(M)

is finite.

The proof of following theorems and propositions can be found in [2].

Theorem 2.4(First Convergence Theorem) Let M be an automaton such that each vertex

(state) of the counting automaton of M has finite degree. Then M is convergent.

Example 2.5 The counting automaton of the automaton MD in Example 2 is convergent.

The following definition plays an important role in the development of applications because

it allows to simplify counting automata whose transitions are formal series.

Definition 2.6 Let M be an automaton, and let f(z) =
∑∞

n=0 fnz
n be a formal power series

with fn ∈ N for all n > 0 and f0 = 0. In a counting automaton of M the set of counting

transitions from state p to state q, without intermediate final states, see Figure 4 (left), is

represented by a graph with a single edge labeled by f(z), see Figure 4(right).

p * p q- -f(z)jR - -- -- - - - -- - -- - *...

...

......

- - -: - z* - j...

- -1 q* j
q

RRR
...

.......

︸ ︷︷ ︸

n− 1 states, n transitions

f1 times

f2 times

f3 times

fn times

Figure 4 Transitions from the state p to q and its transition in parallel
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This kind of transition is called a transition in parallel. The states p and q are called visible

states and the intermediate states are called hidden states.

Example 2.7 In Figure 5 (left) we display a counting automaton M1 without transitions in

parallel, i.e., every transition is label by z. The transitions from state q1 to q2 correspond to

the series
1 −

√
1 − 4z

2
= z+ z2 + 2z3 + 5z4 + 14z5 + · · · . However, this automaton can also be

represented using transitions in parallel. Figure 5 (right) displays two examples.

q0

q1

q2

??????????
- -66� R
?

R
?
?
?
??? ?
?
????

����

M1

q0

q2

q1

q0

q1

q2

3 ?Y
q3: �k -

??
M2 :

M3 :

...........

2z + z2

2z

1−
√

1−4z
2

2z

2z

z z−z
√

1−4z
2

Figure 5 Counting automata with transitions in parallel

Theorem 2.8(Second Convergence Theorem) Let M be an automaton, and let

f q
1 (z), f q

2 (z), · · · , be transitions in parallel from state q ∈ Q in a counting automaton of M.

Then M is convergent if the series

F q(z) =

∞∑

k=1

f q
k (z)

is a convergent series for each visible state q ∈ Q of the counting automaton.

Proposition 2.9 If f(z) is a polynomial transition in parallel from state p to q in a finite

counting automaton M, then this gives rise to an equation in the system of GFs equations of

M
Lp = f(z)Lq + [p ∈ F ] + · · · .

Proposition 2.10 Let M be a convergent automaton such that a counting automaton of M
has a finite number of visible states q0, q1, · · · , qr, in which the number of transitions in parallel

starting from each state is finite. Let f qt

1 (z), f qt

2 (z), · · · , f qt

s(t)(z) be the transitions in parallel

from the state qt ∈ Q. Then the GF for the language L(M) is Lq0(z). It is obtained by solving
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the system of r + 1 GFs equations

L(qt)(z) = f qt

1 (z)L(qt1)(z) + f qt

2 (z)L(qt2)(z) + · · · + f qt

s(t)(z)L(qts(t)
)(z) + [qt ∈ F ],

with 0 ≤ t ≤ r, where qtk
is the visible state joined with qt through the transition in parallel f qt

k ,

and L(qtk
) is the GF for the language accepted by M if qtk

is the initial state.

Example 2.11 The system of GFs equations associated with M2, see Example 2.7, is







L0 = (2z + z2)L1 + 1

L1 =
1 −

√
1 − 4z

2
L2

L2 = 2zL0.

Solving the system for L0, we find the GF for the language M2 and therefore of M1 and M3

L0 =
1

1 − (2z2 + z3)(1 −
√

1 − 4z)
= 1 + 4z3 + 6z4 + 10z5 + 40z6 + 114z7 + · · · .

2.2 An Example of the Counting Automata Methodology (CAM)

A counting automaton associated with an automaton M can be used to model combinatorial

objects if there is a bijection between all words recognized by the automaton M and the com-

binatorial objects. Such method, along with the previous theorems and propositions constitute

the Counting Automata Methodology (CAM), see [2].

We distinguish three phases in the CAM:

(1) Given a problem of enumerative combinatorics, we have to find a convergent automaton

M (see Theorems 2.4 and 2.8), whose GF is the solution of the problem.

(2) Find a general formula for the GF of M′, where M′ is an automaton obtained from M
truncating a set of states or edges see Propositions 2.9 and 2.10. Sometimes we find a relation

of iterative type, such as a continued fraction.

(3) Find the GF f(z) to which converge the GFs associated to each M′, which is guaranteed

by the convergences theorems.

Example 2.12 A Motzkin path of length n is a lattice path of Z × Z running from (0, 0) to

(n, 0) that never passes below the x-axis and whose permitted steps are the up diagonal step

U = (1, 1), the down diagonal step D = (1,−1) and the horizontal step H = (1, 0). The number

of Motzkin paths of length n is the n-th Motzkin number mn, sequence A0010061. The number

of words of length n recognized by the convergent automaton MMot, see Figure 6, is the nth

Motzkin number and its GF is

M (z) =

∞∑

i=0

miz
i =

1 − z −
√

1 − 2z − 3z2

2z2
.

1Many integer sequences and their properties are found electronically on the On-Line Encyclopedia of Se-
quences [17].
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q0 q1 q2 q3- .....
-� -� -�z z z

z z z

? ? ? ?z
MMot:

z z z

Figure 6 Convergent automaton associated with Motzkin paths

In this case the edge from state qi to state qi+1 represents a rise, the edge from the state

qi+1 to qi represents a fall and the loops represent the level steps, see Table 1.

(qi, z, qi+1) ∈ E ⇔ (qi+1, z, qi) ∈ E ⇔ (qi, z, qi) ∈ E ⇔

Table 1 Bijection between MMot and Motzkin paths

Moreover, it is clear that a word is recognized by MMot if and only if the number of steps

to the right and to the left coincide, which ensures that the path is well formed. Then

mn = |{w ∈ L(MMot) : |w| = n}| = L(n)(MMot).

Let MMots, s ≥ 1 be the automaton obtained from MMot, by deleting the states qs+1, qs+2, . . . .

Therefore the system of GFs equations of MMots is







L0 = zL0 + zL1 + 1,

Li = zLi−1 + zLi + zLi+1, 1 ≤ i ≤ s− 1,

Ls = zLs−1 + zLs.

Substituting repeatedly into each equation Li, we have

L0 =
H

1 −
F 2

1 −
F 2

...

1 − F 2







s times,

where F =
z

1 − z
and H =

1

1 − z
. Since MMot is convergent, then as s → ∞ we obtain a

convergent continued fraction M of the GF of MMot. Moreover,

M =
H

1 − F 2
(

M
H

).
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Hence z2M2 − (1 − z)M + 1 = 0 and

M(z) =
1 − z ±

√
1 − 2z − 3z2

2z2
.

Since ǫ ∈ L(MMot), M → 0 as z → 0. Hence, we take the negative sign for the radical in M(z).

§3. Generating Function for the k-Fibonacci Paths

In this section we find the generating function for k-Fibonacci paths, grand k-Fibonacci paths,

prefix k-Fibonacci paths and prefix grand k-Fibonacci paths, according to the length.

Lemma 3.1([2]) The GF of the automaton MLin, see Figure 7, is

E(z) =
1

1 − h0 (z) −
f0 (z) g0 (z)

1 − h1 (z) −
f1 (z) g1 (z)

. . .

,

where fi(z), gi(z) and hi(z) are transitions in parallel for all integer i > 0.

0 1 2 3- .....
-� -� -�h0 h1 h2 h3

f0

g0

? ? ? ?f1

g1

f2

g2

Figure 7 Linear infinite counting automaton MLin

The last lemma coincides with Theorem 1 in [7] and Theorem 9.1 in [14]. However, this

presentation extends their applications, taking into account that fi(z), gi(z) and hi(z) are GFs,

which can be GFs of several variables.

Corollary 3.2 If for all integers i ≥ 0, fi(z) = f(z), gi(z) = g(z) and hi(z) = h(z) in MLin,

then the GF is

B(z) =
1 − h(z) −

√

(1 − h(z))2 − 4f(z)g(z)

2f(z)g(z)
(1)

=
∞∑

n=0

∞∑

m=0

Cn

(
m+ 2n

m

)

(f (z) g (z))n (h(z))m (2)

=
1

1 − h (z) −
f (z) g (z)

1 − h (z) −
f (z) g (z)

1 − h (z) −
f (z) g (z)

. . .

, (3)
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where Cn is the nth Catalan number, sequence A000108.

Theorem 3.3 The generating function for the k-Fibonacci paths according to the their length

is

Tk(z) =

∞∑

i=0

|MFk,i
|zi (4)

=
1 − (k + 1)z − z2 −

√

(1 − (k + 1)z − z2)2 − 4z2(1 − kz − z2)2

2z2(1 − kz − z2)
(5)

=
1

1 − z
1−kz−z2 −

z2

1 − z
1−kz−z2 −

z2

1 − z
1−kz−z2 −

z2

. . .

(6)

and

[
zt
]
Tk(z) =

t∑

n=0

t−2n∑

m=0

(
m+ 2n

m

)

CnF
(m)
k,t−2n−m+1,

where Cn is the n-th Catalan number and F
(r)
k,j is a convolved k-Fibonacci number.

Convolved k-Fibonacci numbers F
(r)
k,j are defined by

f
(r)
k (x) = (1 − kx− x2)−r =

∞∑

j=0

F
(r)
k,j+1x

j , r ∈ Z
+.

Note that

F
(r)
k,m+1 =

∑

j1+j2+···+jr=m

Fk,j1+1Fk,j2+1 · · ·Fk,jr+1.

Moreover, using a result of Gould[8, p.699] on Humbert polynomials (with n = j,m = 2, x =

k/2, y = −1, p = −r and C = 1), we have

F
(r)
k,j+1 =

⌊j/2⌋
∑

l=0

(
j + r − l − 1

j − l

)(
j − l

l

)

kj−2l.

Ramı́rez [13] studied some properties of convolved k-Fibonacci numbers.

Proof Equations (5) and (6) are clear from Corollary 3.2 taking f(z) = z = g(z) and

h(z) =
z

1 − kz − z2
. Note that h(z) is the GF of k-Fibonacci numbers. In this case the edge

from state qi to state qi+1 represents a rise, the edge from the state qi+1 to qi represents a fall

and the loops represent the Fk,l−colored length horizontal steps (l = 1, 2, · · · ). Moreover, from
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Equation (2), we obtain

Tk(z) =

∞∑

n=0

∞∑

m=0

Cn

(
m+ 2n

m

)

z2n

(
z

1 − kz − z2

)m

=

∞∑

n=0

∞∑

m=0

Cn

(
m+ 2n

m

)

z2n+m

(
1

1 − kz − z2

)m

=

∞∑

n=0

∞∑

m=0

Cn

(
m+ 2n

m

)

z2n+m
∞∑

i=0

F
(m)
k,i+1z

i

=

∞∑

n=0

∞∑

m=0

∞∑

i=0

CnF
(m)
k,i+1

(
m+ 2n

m

)

z2n+m+i,

taking s = 2n+m+ i

Tk(z) =
∞∑

n=0

∞∑

m=0

∞∑

s=2n+m

CnF
(m)
k,s−2n−m+1

(
m+ 2n

m

)

zs.

Hence
[
zt
]
Tk(z) =

t∑

n=0

t−2m∑

m=0

CnF
(m)
k,t−2n−m+1

(
m+ 2n

m

)

. 2
In Table 2 we show the first terms of the sequence |MFk,i

| for k = 1, 2, 3, 4.

k Sequence

1 1, 1, 3, 8, 23, 67, 199, 600, 1834, 5674, 17743, . . .

2 1, 1, 4, 13, 47, 168, 610, 2226, 8185, 30283, 112736, · · ·
3 1, 1, 5, 20, 89, 391, 1735, 7712, 34402, 153898, 690499, · · ·
4 1, 1, 6, 29, 155, 820, 4366, 23262, 124153, 663523, 3551158, · · ·

Table 2 Sequences |MFk,i
| for k = 1, 2, 3, 4

Definition 3.4 For all integers i ≥ 0 we define the continued fraction Ei(z) by:

Ei(z) =
1

1 − hi (z) −
fi (z) gi (z)

1 − hi+1 (z) −
fi+1 (z) gi+1 (z)

. . .

,

where fi(z), gi(z), hi(z) are transitions in parallel for all integers positive i.



30 Rodrigo De Castro and José L. Ramı́rez

Lemma 3.5([2]) The GF of the automaton MBLin, see Figure 8, is

Eb(z) =
1

1 − h0(z) − f0(z)g0(z)E1(z) − f ′
0(z)g

′
0(z)E

′
1(z)

,

where fi(z), f
′
i(z), gi(z), g

′
i(z), hi(z) and h′i(z) are transitions in parallel for all i ∈ Z.

0 1 26 -� -�MBLin:

h0 h1 h2
f0

g0

? ? ? ?f1

g1

-1-2
-� -�? ?h′2 h′1 f ′

0

g′0

f ′
1

g′1

Figure 8 Linear infinite counting automaton MBLin

Corollary 3.6 If for all integers i, fi(z) = f(z) = f ′
i(z), gi(z) = g(z) = g′i(z) and hi(z) =

h(z) = h′i(z) in MBLin, then the GF

Bb(z) =
1

√

(1 − h(z))2 − 4f(z)g(z)
(7)

=
1

1 − h(z) −
2f(z)g(z)

1 − h(z) −
f(z)g(z)

1 − h(z) −
f(z)g(z)

. . .

, (8)

where f(z), g(z) and h(z) are transitions in parallel. Moreover, if f(z) = g(z), then the GF

Bb(z) =
1

1 − h(z)
+

∞∑

n=1

∞∑

k=0

∞∑

l=0

2n n

n+ 2k

(
n+ 2k

k

)(
l + 2n+ 2k

l

)

f(z)2n+2kh(z)l. (9)

Theorem 3.7 The generating function for the grand k-Fibonacci paths according to the their

length is

T ∗
k (z) =

∞∑

i=0

|M∗
Fk,i

|zi =
1 − kz − z2

√

(1 − (k + 1)z − z2)2 − 4z2(1 − kz − z2)2
(10)

=
1

1 − z
1−kz−z2 −

2z2

1 − z
1−kz−z2 −

z2

1 − z
1−kz−z2 −

z2

. . .

(11)
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and

[
zt
]
T ∗

k (z) = F
(1)
k+1,t +

t∑

n=1

t∑

m=0

t−2n−2m∑

l=0

2n n

n+ 2m

(
n+ 2m

m

)(
l + 2n+ 2m

l

)

F
(l)
k,t−2n−2m−l+1,

(12)

with t > 1.

Proof Equations (10) and (11) are clear from Corollary 3.6, taking f(z) = z = g(z) and

h(z) = z
1−kz−z2 . Moreover, from Equation (9), we obtain

T ∗
k (z) =

1

1 − z
1−kz−z2

+

∞∑

n=1

∞∑

m=0

∞∑

l=0

2n n

n+ 2m

(
n+ 2m

m

)(
l + 2n+ 2m

l

)

z2n+2m

(
z

1 − kz − z2

)l

= 1 +

∞∑

j=0

F
(1)
k+1,jz

j +

∞∑

n=1

∞∑

m=0

∞∑

l=0

∞∑

u=0

2n n

n+ 2m

(
n+ 2m

m

)(
l + 2n+ 2m

l

)

F
(l)
k,uz

2n+2m+u+1,

taking s = 2n+ 2m+ l + u

T ∗
k (z) = 1 +

∞∑

j=0

F
(1)
k+1,jz

j+

∞∑

n=1

∞∑

m=0

∞∑

l=0

∞∑

s=2n+2m+l

2n n

n+ 2m

(
n+ 2m

m

)(
l + 2n+ 2m

l

)

F
(l)
k,s−2n−2m−lz

s.

Therefore, Equation (12) is clear. 2
In Table 3 we show the first terms of the sequence |M∗

Fk,i
| for k = 1, 2, 3, 4.

k Sequence

1 1, 4, 11, 36, 115, 378, 1251, 4182, 14073, 47634, · · ·
2 1, 5, 16, 63, 237, 920, 3573, 14005, 55156, 218359, · · ·
3 1, 6, 23, 108, 487, 2248, 10371, 48122, 223977, 1046120, · · ·
4 1, 7, 32, 177, 949, 5172, 28173, 153963, 842940, 4624581, · · ·

Table 3 Sequences |M∗
Fk,i

| for k = 1, 2, 3, 4 and i > 1

In Figure 9 we show the set M∗
F2,3

.

×2 ×2 ×5

Figure 9 Grand k-Fibonacci Paths of length 3, |M∗
F2,3

| = 16
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Lemma 3.8([2]) The GF of the automaton FinN(MLin), see Figure 10, is

G(z) = E(z) +
∞∑

j=1

(
j−1
∏

i=0

(fi(z)Ei(z))Ej(z)

)

,

where E(z) is the GF in Lemma 3.1.

0 1 2 3- - - -��I? ? ? ?h0 h1 h2 h3f0 f1 f2

g0 g1 g2

Figure 10 Linear infinite counting automaton FinN(MLin)

Corollary 3.9 If for all integer i > 0, fi(z) = f(z), gi(z) = g(z) and hi(z) = h(z) in

FinN(MLin), then the GF is:

G(z) =
1 − 2f(z)− h(z) −

√

(1 − h(z))2 − 4f(z)g(z)

2f(z) (f(z) + g(z) + h(z) − 1)
(13)

=
1

1 − f(z) − h(z) −
f(z)g(z)

1 − h(z) −
f(z)g(z)

1 − h(z) −
f(z)g(z)

. . .

, (14)

where f(z), g(z) and h(z) are transitions in parallel and B(z) is the GF in Corollary 3.2.

Moreover, if f(z) = g(z) and h(z) 6= 0, then we obtain the GF

G(z) =

∞∑

n=0

∞∑

k=0

∞∑

l=0

n+ 1

n+ k + 1

(
n+ 2k + l

k, l, k + n

)

f2k+n(z)hl(z). (15)

Theorem 3.10 The generating function for the prefix k-Fibonacci paths according to the their

length is

PTk(z) =

∞∑

i=0

|PMFk,i
|zi

=
(1 − 2z)(1 − kz − z2) − z −

√

(1 − z(k + 1) − z2)2 + 4z2(1 − kz − z2)2

2z((1 − kz − z2)(2z − 1) + z)
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and

[
zt
]
PTk(z) =

t∑

n=0

t∑

m=0

t−2m−n∑

l=0

n+ 1

n+m+ 1

(
n+ 2m+ l

m, l,m+ n

)

F
(l)
k,t−2m−n−l+1, t > 0.

Proof The proof is analogous to the proof of Theorem 3.3 and 3.7. 2
In Table 4 we show the first terms of the sequence |PMFk,i

| for k = 1, 2, 3, 4.

k Sequence

1 1, 2, 6, 19, 62, 205, 684, 2298, 7764, 26355, 89820, · · ·
2 1, 2, 7, 26, 101, 396, 1564, 6203, 24693, 98605, 394853, · · ·
3 1, 2, 8, 35, 162, 757, 3558, 16766, 79176, 374579, 1775082, · · ·
4 1, 2, 9, 46, 251, 1384, 7668, 42555, 236463, 1315281, 7322967, · · ·

Table 4 Sequences |PMFk,i
| for k = 1, 2, 3, 4

In Figure 11 we show the set MPF2,3 .

×2 ×2 ×5 ×2

Figure 11 Prefix k-Fibonacci paths of length 3, |PMF2,3 | = 26

Lemma 3.11 The GF of the automaton FinZ(MBLin), see Figure 12, is

H(z) =
EE′

E + E′ − EE′(1 − h0)



1 +

∞∑

j=1

j−1
∏

k=1

fkEkf0Ej +

∞∑

j=1

j−1
∏

k=1

g′kE
′
kg

′
0E

′
j





=
E′(z)G(z) + E(z)G′(z) − E(z)E′(z)

E(z) + E′(z) − E(z)E′(z)(1 − h0(z))
,

where G(z) is the GF in Lemma 3.8 and G′(z), E′(z) are the GFs obtained from G(z) and E(z)

changing f(z) to g′(z) and g(z) to f ′(z).
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0 1 26 -� -�h0 h1 h2
f0

g0

? ? ?f1

g1

-1-2
-� -�? ?h′2 h′1 f ′

0

g′0

f ′
1

g′1

Figure 12 Linear infinite counting automaton FinZ(MBLin)

Moreover, if for all integer i > 0, fi(z) = f(z) = f ′
i(z), gi(z) = g(z) = g′i(z) and hi(z) =

h(z) = h′i(z) in FinZ(MBLin), then the GF is

H(z) =
1

1 − f(z) − g(z) − h(z)
. (16)

Theorem 3.12 The generating function for the prefix grand k-Fibonacci paths according to the

their length is

PT ∗
k (z) =

∞∑

i=0

|PMF∗

k,i
|zi =

1 − kz − z2

1 − (k + 3)z − (1 − 2k)z2 + 2z3
.

it Proof The proof is analogous to the proof of Theorem 3.3 and 3.7. 2
In Table 5 we show the first terms of the sequence |PM∗

Fk,i
| for k = 1, 2, 3, 4.

k Sequence

1 1, 3, 10, 35, 124, 441, 1570, 5591, 19912, 70917, 252574, . . .

2 1, 3, 11, 44, 181, 751, 3124, 13005, 54151, 225492, 938997, . . .

3 1, 3, 12, 55, 264, 1285, 6280, 30727, 150392, 736157, 3603528, . . .

4 1, 3, 13, 68, 379, 2151, 12268, 70061, 400249, 2286780, 13065595 . . .

Table 4 Sequences |PM∗
Fk,i

| for k = 1, 2, 3, 4
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Abstract: A function f is called a graceful labelling of a graph G with q edges if f is

an injection from the vertices of G to the set {0, 1, 2, . . . , q} such that, when each edge xy

is assigned the label |f(x) − f(y)| , the resulting edge labels are distinct. A graph G is

said to be one modulo N graceful (where N is a positive integer) if there is a function φ

from the vertex set of G to {0, 1, N, (N + 1), 2N, (2N + 1), . . . , N(q − 1), N(q − 1) + 1}in

such a way that (i) φ is 1 − 1 (ii) φ induces a bijection φ∗ from the edge set of G to

{1, N + 1, 2N + 1, . . . , N(q − 1) + 1}where φ∗(uv)=|φ(u) − φ(v)|. In this paper we prove

that the arbitrary supersubdivisions of paths, disconnected paths, cycles and stars are one

modulo N graceful for all positive integers N .

Key Words: Modulo graceful graph, Smarandache modulo graceful graph, supersubdivi-

sions of graphs, paths, disconnected paths, cycles and stars.

AMS(2010): 05C78

§1. Introduction

S.W.Golomb introduced graceful labelling ([1]). The odd gracefulness was introduced by

R.B.Gnanajothi in [2]. C.Sekar introduced one modulo three graceful labelling ([8]) recently.

V.Ramachandran and C.Sekar ([6]) introduced the concept of one modulo N graceful where N

is any positive integer.In the case N = 2, the labelling is odd graceful and in the case N = 1 the

labelling is graceful.We prove that the the arbitrary supersubdivisions of paths, disconnected

paths, cycles and stars are one modulo N graceful for all positive integers N .

§2. Main Results

Definition 2.1 A graph G is said to be one Smarandache modulo N graceful on subgraph

H < G with q edges (where N is a positive integer) if there is a function φ from the vertex set

1Received December 23, 2013, Accepted May 21, 2014.



One Modulo N Gracefullness of Arbitrary Supersubdivisions of Graphs 37

of G to {0, 1, N, (N + 1), 2N, (2N + 1), · · · , N(q − 1), N(q− 1) + 1} in such a way that (i) φ is

1−1 (ii) φ induces a bijection φ∗ from the edge set of H to {1, N+1, 2N+1, · · · , N(q−1)+1},
and E(G) \E(h) to {1, 2, · · · , |E(G)|− q}, where φ∗(uv)=|φ(u)−φ(v)|. Particularly, if H = G

such a graph is said to be one modulo N graceful graph.

Definition 2.2([9]) In the complete bipartite graph K2,m we call the part consisting of two

vertices, the 2-vertices part of K2,m and the part consisting of m vertices the m-vertices part of

K2,m.Let G be a graph with p vertices and q edges. A graph H is said to be a supersubdivision

of G if H is obtained by replacing every edge ei of G by the complete bipartite graph K2,m for

some positive integer m in such a way that the ends of ei are merged with the two vertices part

of K2,m after removing the edge ei from G.H is denoted by SS(G).

Definition 2.3([9]) A supersubdivision H of a graph G is said to be an arbitrary supersubdivi-

sion of the graph G if every edge of G is replaced by an arbitrary K2,m (m may vary for each

edge arbitrarily). H is denoted by ASS(G).

Definition 2.4 A graph G is said to be connected if any two vertices of G are joined by a path.

Otherwise it is called disconnected graph.

Definition 2.5 A star Sn with n spokes is given by (V,E) where V (Sn) = {v0, v1, . . . , vn} and

E(Sn) = {v0vi/i = 1, 2 . . . , n}. v0 is called the centre of the star.

Definition 2.6 A cycle Cn with n points is a graph given by (V,E) where V (Cn) = {v1, v2, . . . , vn}
and E(Cn) = {v1v2, v2v3, . . . , vn−1vn, vnv1}.

Theorem 2.7 Arbitrary supersubdivisions of paths are one modulo N graceful for every positive

integer N .

Proof Let Pn be a path with successive vertices u1, u2, u3, · · · , un and let ei (1 ≤ i ≤ n−1)

denote the edge uiui+1 of Pn. Let H be an arbitrary supersubdivision of the path Pn where

each edge ei of Pn is replaced by a complete bipartite graph K2,mi
where mi is any positive

integer,such as those shown in Fig.1 for P6. We observe thatH hasM = 2(m1+m2+· · ·+mn−1)

edges.

Define φ(ui) = N(i− 1), i = 1, 2, 3, · · · , n. For k = 1, 2, 3, · · · ,mi, let

φ(u
(k)
i,i+1) =







N(M − 2k + 1) + 1 if i = 1,

N(M − 2k + i) − 2N(m1 +m2 + · · · +mi−1) + 1 if i = 2, 3, · · ·n− 1.

It is clear from the above labelling that the mi+2 vertices of K2,mi
have distinct labels

and the 2mi edges of K2,mi
also have distinct labels for 1 ≤ i ≤ n− 1. Therefore, the vertices

of each K2,mi
, 1 ≤ i ≤ n− 1 in the arbitrary supersubdivision H of Pn have distinct labels and

also the edges of each K2,mi
, 1 ≤ i ≤ n − 1 in the arbitrary supersubdivision graph H of Pn

have distinct labels. Also the function φ from the vertex set of G to {0, 1, N, (N+1), 2N, (2N+

1), · · · , N(q−1), N(q−1)+1} is in such a way that (i) φ is 1−1, and (ii) φ induces a bijection

φ∗ from the edge set of G to {1, N+1, 2N+1, · · · , N(q−1)+1}, where φ∗(uv) = |φ(u)−φ(v)|.
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Hence H is one modulo N graceful.

u1 u2 u3 u4 u5 u6

e5e4e3e2e1

Path P6

u1 u3u2 u4 u5 u6

Fig.1 An arbitrary supersubdivision of P6

u
(1)
12

u
(2)
12

u
(3)
12

u
(4)
12

u
(5)
12 = u

(m1)
12

u
(1)
23

u
(2)
23

u
(3)
23 = u

(m2)
23 u

(1)
34 = u

(m3)
34

u
(1)
45

u
(2)
45 = u

(m4)
45

u
(1)
56

u
(2)
56

u
(3)
56

u
(4)
56

u
(5)
56 = u

(m5)
56

Clearly, φ defines a one modulo N graceful labelling of arbitrary supersubdivision of the

path Pn. 2
Example 2.8 An odd graceful labelling of ASS(P5) is shown in Fig.2.

0 2

41

4

23

6

9

8

47

55

45

39

35

31

27

21

17

1351

Fig.2

Example 2.9 A graceful labelling of ASS(P6) is shown in Fig.3.
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0 1

27

2

18

3

13 6

4 5

30

34

29

26

24

22

20

12

17 10

15 832

Fig.3

Example 2.10 A one modulo 7 graceful labelling of ASS(P6) is shown in Fig.4.

0 7

169

14

106

21

85 36

28 35

176

204

162

148

134

120

78

64

99 50190

Fig.4

Theorem 2.11 Arbitrary supersubdivision of disconnecte paths Pn ∪ Pr are one modulo N

graceful provided the arbitrary supersubdivision is obtained by replacing each edge of G by K2,m

with m > 2.

Proof Let Pn be a path with successive vertices v1, v2, · · · , vn and let ei (1 ≤ i ≤ n − 1)

denote the edge vivi+1 of Pn. Let Pr be a path with successive vertices vn+1, vn+2, · · · , vn+r

and let ei(n+ 1 ≤ i ≤ n+ r − 1) denote the edge vivi+1.

Let H be an arbitrary supersubdivision of the disconnected graph Pn ∪ Pr where each edge ei

of Pn ∪ Pr is replaced by a complete bipartite graph K2,mi
with mi > 2 for 1 ≤ i ≤ n− 1 and

n+1 ≤ i ≤ n+r−1. We observe thatH hasM = 2(m1+m2+· · ·+mn−1+mn+1+· · ·+mn+r−1)

edges.
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e1 e2 e3 e4 e6 e7 e8

v1 v2 v3 v4 v5 v6 v7 v8 v9

Path P5 Path P4

v1 v2 v4 v5 v6 v7

v
(3)
67 = v

(m6)
67

v
(2)
67

v
(1)
67

v
(4)
56 = v

(m5)
56

v
(3)
56

v
(2)
56

v
(5)
45 = v

(m4)
45

v
(4)
45

v
(3)
45

v
(2)
45

v
(4)
23 = v

(m2)
23

v
(3)
23

v
(3)
12 = v

(m1)
12

v
(2)
12

v
(1)
12

v
(2)
23

v
(1)
23

v3

v
(1)
45

v
(1)
56

Fig.5 An arbitrary supersubdivision of P3 ∪ P4

Define φ(vi) = N(i− 1), i = 1, 2, 3, · · · , n, φ(vi) = N(i), i = n+ 1, n+ 2, n+ 3, · · · , n+ r.

For k = 1, 2, 3, . . . ,mi, let

φ(v
(k)
i,i+1) =







N(M − 2k + 1) + 1 if i = 1,

N(M − 2 + i) + 1 − 2N(m1 +m2 + · · · +mi−1 + k − 1) if i = 2, 3, · · ·n− 1,

N(M − 1 + i) + 1 − 2N(m1 +m2 + · · · +mn−1 + k − 1) if i = n+ 1,

N(M − 1 + i) + 1 − 2N [(m1 +m2 + · · · +mn−1)+

(mn+1 + · · · +mi−1) + k − 1] if i = n+ 2, n+ 3, · · ·n+ r − 1.

It is clear from the above labelling that the mi+2 vertices of K2,mi
have distinct labels

and the 2mi edges of K2,mi
also have distinct labels for 1 ≤ i ≤ n − 1 and n + 1 ≤ i ≤

n + r − 1.Therefore the vertices of each K2,mi
, 1 ≤ i ≤ n − 1 and n + 1 ≤ i ≤ n + r − 1

in the arbitrary supersubdivision H of Pn ∪ Pr have distinct labels and also the edges of

each K2,mi
, 1 ≤ i ≤ n − 1 and n + 1 ≤ i ≤ n + r − 1 in the arbitrary supersubdivision

graph H of Pn ∪ Pr have distinct labels. Also the function φ from the vertex set of G to

{0, 1, N, (N + 1), 2N, (2N + 1), . . . , N(q − 1), N(q − 1) + 1} is in such a way that (i) φ is 1− 1,

and (ii) φ induces a bijection φ∗ from the edge set of G to {1, N +1, 2N +1, · · · , N(q−1)+1},
where φ∗(uv)=|φ(u) − φ(v)|. Hence H is one modulo N graceful.

Clearly, φ defines a one modulo N graceful labelling of arbitrary supersubdivisions of

disconnected paths Pn ∪ Pr. 2
Example 2.12 An odd graceful labelling of ASS(P6 ∪ P3) is shown in Fig.6.



One Modulo N Gracefullness of Arbitrary Supersubdivisions of Graphs 41

0 2 4 6 8 10 14 16 18
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23
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33

37

41

39

43

47

51

53

57

61

63

67

71

75

77

81

83

87

91

95

99

Fig.6

Example 2.13 A graceful labelling of ASS(P3 ∪ P4) is shown in Fig.7.

0 1 4 5 6 7

8

10

12

13

15

17

20

22

24

26

27

29

34

36

38 31

33

2

28

19

Fig.7

Example 2.14 A one modulo 4 graceful labelling of ASS(P4 ∪ P3) is shown in Fig.8.

0 4 20

105 49

8 24

69 29

12 28

117

133

113 57

101

93 73

85 4565

77 37125

Fig.8

Theorem 2.15 For any any n ≥ 3, there exists an arbitrary supersubdivision of Cn which is
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one modulo N graceful for every positive integer N .

Proof Let Cn be a cycle with consecutive vertices v1, v2, v3, · · · , vn. Let G be a super-

subdivision of a cycle Cn where each edge ei of Cn is replaced by a complete bipartite graph

K2,mi
where mi is any positive integer for 1 ≤ i ≤ n− 1 and mn = (n− 1). It is clear that G

has M = 2(m1 + m2 + · · · + mn) edges. Here the edge vn−1v1 is replaced by K2,n−1 for the

construction of arbitrary supersubdivision of Cn.

v5

v1

v2

v3

v4

Fig.9 Cycle Cn

3N

4N

0

N

2N

Fig.10 An arbitrary Supersubdivision of C5

v1
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v3

v4

v5

v
(1)
12v

(2)
12v

(3)
12 = v

(m1)
12

v
(1)
23

v
(2)
23 = v

(m2)
23v

(1)
34

v
(2)
34 = v

(m3)
34

v
(1)
45 = v

(m4)
45

v
(1)
51

v
(2)
51

v
(3)
51

v
(4)
51 = v

(m5)
51

Define φ(vi) = N(i− 1), i = 1, 2, 3, · · · , n. For k = 1, 2, 3, . . . ,mi, let

φ(v
(k)
i,i+1) =







N(M − 2k + 1) + 1 if i = 1,

N(M − 2k + i) + 1 − 2N(m1 +m2 + · · · +mi−1) if i = 2, 3, · · ·n− 1.
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and φ(v
(k)
n,1) = N(n− k +mn − 1) + 1.

It is clear from the above labelling that the function φ from the vertex set of G to

{0, 1, N, (N + 1), 2N, (2N + 1), · · · , N(q − 1), N(q − 1) + 1} is in such a way that (i) φ is 1 − 1

(ii) φ induces a bijection φ∗ from the edge set of G to {1, N+1, 2N+1, · · · , N(q−1)+1}where

φ∗(uv)=|φ(u) − φ(v)|. Hence, H is one modulo N graceful. Clearly, φ defines a modulo N

graceful labelling of arbitrary supersubdivision of cycle Cn. 2
Example 2.16 An odd graceful labelling of ASS(C5) is shown in Fig.11.

8

0

2

4

6

31

35

37 41 45

47

51

55

59

9
11

13

15

25
29

Fig.11

Example 2.17 A graceful labelling of ASS(C5) is shown in Fig.12.
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0

1

2

3

16

17 19 21

22

24

5
6

7

8

13
15

Fig.12

Example 2.18 A one modulo 3 graceful labelling of ASS(C4) is shown in Fig.13.
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6

19

25

31

37

43

0

3
46

52

58

64

7
10

Fig.13

Theorem 2.19 Arbitrary supersubdivision of any star is one modulo N graceful for every

positive integer N .

Proof The proof is divided into 2 cases.

Case 1 N = 1

It has been proved in [4] that arbitrary supersubdivision of any star is graceful.

v2 v
(2)
02

v
(1)
03 v

(2)
03 v

(3)
03

v
(1)
04

v
(2)
04

v
(1)
05

v5

v0

v
(1)
06

v
(2)
06

v
(3)
06

v
(1)
01

v
(2)
01

v
(3)
01

v
(4)
01

v
(1)
02

v3

v4

v6

v1

Fig.14 An arbitrary supersubdivision of S6

Case 2 N > 1.

Let Sn be a star with vertices v0, v1, v2, · · · , vn and let ei denote the edge v0vi of Sn for 1 ≤
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i ≤ n. Let H be an arbitrary supersubdivision of Sn. That is for 1 ≤ i ≤ n each edge ei of Sn is

replaced by a complete bipartite graphK2,mi
withmi is any positive integer for 1 ≤ i ≤ n−1 and

mn = (n−1) . It is clear that H has M = 2(m1+m2+ · · ·+mn) edges. The vertex set and edge

set ofH are given by V (H) = {v0, v1, v2 · · · , vn, v
(1)
01 , v

(2)
01 · · · , v(m1)

01 , v
(1)
02 , v

(2)
02 , · · · , v

(m2)
02 , · · · , v(1)

0n ,

v
(2)
0n , · · · , v

(mn)
0n }.

Define φ : V (H) → {0, 1, 2, · · ·2∑n
i=1mi} as follows:

let φ(v0) = 0. For k = 1, 2, 3, . . . ,mi, let

φ(v
(k)
0i ) =







N(M − k) + 1 if i = 1,

N(M − k) + 1 −N(m1 +m2 + · · · +mi−1) ifi = 2, 3, · · ·n.

φ(vi) =







N(M −m1) if i = 1,

NM −N(2m1 + 2m2 + · · · + 2mi−1 +mi) if i = 2, 3, · · ·n.

It is clear from the above labelling that the function φ from the vertex set of G to

{0, 1, N, (N + 1), 2N, (2N + 1), · · · , N(q − 1), N(q − 1) + 1} is in such a way that (i) φ is 1 − 1

(ii) φ induces a bijection φ∗ from the edge set of G to {1, N+1, 2N+1, . . . , N(q−1)+1}where

φ∗(uv)=|φ(u) − φ(v)|. Hence H is one modulo N graceful.

Clearly, φ defines a one modulo N graceful labelling of arbitrary supersubdivision of star

Sn. 2
Example 2.20 A one modulo 5 graceful labelling of ASS(S4) is shown in Fig.14.

71 66 61 56

51

5

0

969186

81

76

30

90

65

Fig.14
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Example 2.21 An odd graceful labelling of ASS(S6) is shown in Fig.15.

46 53
51 49 47

45

43

41

39

14

0

37353363

61

59

55

57

34

22

6

58

Fig.15
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Abstract: In this paper, when (α, α∗) spacelike-timelike Bertrand curve pair is given, the

geodesic curves and the arc-lenghts of the curvatures (T ∗) , (N∗) , (B∗) and the fixed pole

curve (C∗) which are generated over the S2
1 Lorentz sphere or the H2

0 hyperbolic sphere by

the Frenet vectors {T ∗, N∗, B∗} and the unit Darboux vector C∗ have been obtained. The

condition being the naturel lifts of the spherical indicatrix of the α∗ is an integral curve of

the geodesic spray has expressed.

Key Words: Lorentz space, spacelike-timelike Bertrand curve pair, naturel lift, geodesic

spray.
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§1. Introduction

It is well known that many studies related to the differential geometry of curves have been

made. Especially, by establishing relations between the Frenet Frames in mutual points of two

curves several theories have been obtained. The best known of these: Firstly, Bertrand Curves

discovered by J. Bertrand in 1850 are one of the important and interesting topics of classical

special curve theory. A Bertrand curve is defined as a special curve which shares its principal

normals with another special curve, called Bertrand mate or Bertrand curve Partner. Secondly,

involute–evolute curves discovered by C. Huygens in 1658, who is also known for his work in

topics, discovered involutes while trying to build a more accurate clock. The curve α is called

evolute of α∗ if the tangent vectors are orthogonal at the corresponding points for each s ∈ I: In

this case, α∗ is called involute of the curve α and the pair of (α, α∗) is called a involute-evolute

curve pair. Thirdly, Mannheim curve discovered by A. Mannheim in 1878. Liu and Wang have

given a new definition of the curves as known Mannheim curves [8] and [15]. According to the

definition given by Liu and Wang, the principal normal vector field of α is linearly dependent

on the binormal vector field of α∗. Then α is called a Mannheim curve and α∗ a Mannheim

1Received November 01, 2013, Accepted May 24, 2014.
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Partner Curve of α. The pair (α, α∗) is said to be a Mannheim pair. Furthermore, they showed

that the curve is a Mannheim Curve α if and only if its curvature and torsion satisfy the formula

κ = λ
(
κ2 + τ2

)
, where λis a nonzero contant [8], [9] and [15].

In three dimensional Euclidean space E3 and three dimensional Minkowski space IR3
1 the

spherical indicatrices of any space curve with the natural lifts and the geodesic sprays of fixed

pole curve of any space curve have computed and accordingly, some results related to the curve

α for the geodesic spray on the tangent bundle of the natural lifts to be an integral curve have

been obtained [5], [11]. On the other hand, the natural lifts and the curvatures of the spherical

indicatrices of the Mannheim Pair and the Involute-Evolute curves have been investigated and

accordingly, some results related to the curve α for the geodesic spray on the tangent bundle

of the natural lifts to be an integral curve have been obtained [2], [4], [5], [7] and [12].

In this paper, arc-lengths and geodesic curvatures of the spherical indicatrix curves with

the fixed pole curve of the (α, α∗) spacelike-timelike Bertrand curve pair have been obtained

with respect to IR3
1 Lorent space and S2

1 Lorentz sphere or H2
0 Hyperbolic sphere. In addition,

the relations among the geodesic curvatures and arc-lengths are given. Finally, the condition

being the natural lifts of the spherical indicatrix curves of the α∗ timelike curve are an integral

curve of the geodesic spray has expressed depending on α spacelike curve.

§2. Preliminaries

Let Minkowski 3-space R
3
1 be the vector space R

3 equipped with the Lorentzian inner product

g given by

g (X,X) = x2
1 + x2

2 − x2
3

where X = (x1, x2, x3) ∈ R
3. A vector X = (x1, x2, x3) ∈ R

3 is said to be timelike if g (X,X) <

0, spacelike if g (X,X) > 0 and lightlike (or null) if g (X,X) = 0. Similarly, an arbitrary curve

α = α (s) in R
3
1 where s is an arc-length parameter, can locally be timelike, spacelike or null

(lightlike), if all of its velocity vectors, α′ (s) are respectively timelike, spacelike or null (lightlike)

for every s ∈ R. The norm of a vector X ∈ R
3
1 is defined by [10]

‖X‖ =
√

|g (X,X)|.

We denote by {T (s) , N (s) , B (s)} the moving Frenet frame along the curve α. Let α be a

timelike curve with curvature κ and torsion τ . Let frenet vector fields of α be {T, N, B}. In

this trihedron, T is a timelike vector field, N and B are spacelike vector fields. Then Frenet

formulas are given by ([16])






T ′ = κN

N ′ = κT − τB

B′ = τN.

(2.1)

Let α be a timelike vector, the frenet vectors T timelike, N and B are spacelike vector, respec-

tively, such that

T ×N = −B, N ×B = T, B × T = −N
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and the frenet instantaneous rotation vector is given by ([14])

W = τT − κB, ‖W‖ =
√

|κ2 − τ2|.

Let ϕ be the angle between W and -B vectors and if W is a spacelike vector, then we can write







κ = ‖W‖ coshϕ, τ = ‖W‖ sinhϕ,

C = sinhϕT − coshϕB
(2.2)

and if W is a timelike vector, then we can write







κ = ‖W‖ sinhϕ, τ = ‖W‖ coshϕ,

C = coshϕT − sinhϕB.
(2.3)

The frenet formulas of spacelike with timelike binormal curve, α : I → R
3
1 are as followings:







T ′ = κN

N ′ = κT − τB

B′ = τN.

(2.4)

(see [5] for details), and the frenet instantaneous rotation vector is defined by ([10])

W = τT − κB, ‖W‖ =
√

|τ2 − κ2|.

Here, T ×N = B , N ×B = −T , B×T = −N . Let ϕ be the angle between W and −B vectors

and if W is taken as spacelike, then the unit Darboux vector can be stated by







κ = ‖W‖ sinhϕ, τ = ‖W‖ coshϕ,

C = coshϕT − sinhϕB.
(2.5)

and if W is taken as timelike, then it is described by







κ = ‖W‖ coshϕ, τ = ‖W‖ sinhϕ,

C = sinhϕT − coshϕB
(2.6)

Let X = (x1, x2, x3) and Y = (y1, y2, y3) be the vectors in R
3
1. The cross product of X and

Y is defined by ([1])

X ∧ Y = (x3y2 − x2y3, x1y3 − x3y1, x1y2 − x2y1) .

The Lorentzian sphere and hyperbolic sphere of radius r and center 0 in R
3
1 are given by

S2
1 =

{
X = (x1, x2, x3) ∈ R

3
1

∣
∣ g (X,X) = r2, r ∈ R

}
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and

H2
0 =

{
X = (x1, x2, x3) ∈ R

3
1

∣
∣ g (X,X) = −r2, r ∈ R

}

respectively. Let M be a hypersurface in R
3
1. A curve α : I → M is an integral curve of

X ∈ χ (M) provided α′ = Xα; that is

d

ds
(α (s)) = X (α (s)) for all s ∈ I ([10]).

For any parameterized curve α : I → M , the parameterized curve, α : I → TM given by

α (s) = (α (s) , α′ (s)) = α′ (s)
∣
∣
α(s) is called the natural lift of α on TM ([13]). Thus we can

write
dα

ds
=

d

ds
(α′ (s))

∣
∣
α(s) = Dα′(s)α

′ (s)

where D is standard connection on R
3
1. For v ∈ TM the smooth vector field X ∈ χ (M) defined

by

X (v) = εg (v, S (v))
∣
∣
α(s) , ε = g (ξ, ξ) [?]

is called the geodesic spray on the manifold TM , where ξ is the unit normal vector field of M

and S is shape operator of M .

Let α : I → R
3
1 be a spacelike with timelike binormal curve. Let us consider the Frenet

frame {T, N, B} and the vector C. Accordingly, arc-lengths and the geodesic curvatures of

the spherical indicatrix curves (T ) , (N) and (B) with the fixed pole curve (C) with respect to

R
3
1, respectively generated by the vectors T, N and B with the unit Darboux vector C are as

follows: 





sT =

∫ s

0

|κ|ds, sN =

∫ s

0

‖W‖ds,

sB =

∫ s

0

|τ |ds, sC =

∫ s

0

|ϕ′|ds.
(2.7)

if W is a spacelike vector, then we can write







kT =
1

sinhϕ
, kN =

√
∣
∣
∣1 + (

ϕ′

‖W‖)2
∣
∣
∣,

kB =
1

coshϕ
, kC =

√
∣
∣
∣1 + (

‖W‖
ϕ′ )2

∣
∣
∣.

(2.8)

if W is a timelike vector, then we have







kT =
1

coshϕ
, kN =

√
∣
∣
∣1 − (

ϕ′

‖W‖)2
∣
∣
∣,

kB =
1

sinhϕ
, kC =

√
∣
∣
∣− 1 + (

‖W‖
ϕ′ )2

∣
∣
∣

(2.9)

(see [3] for details).

Definition 2.1([6]) Let αbe spacelike with timelike binormal curve and α∗ be timelike curve
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in R
3
1. {T, N, B} and {T ∗, N∗, B∗} are Frenet frames, respectively, on these curves. α (s)

and α∗ (s) are called Bertrand curves if the principal normal vectors N and N∗ are linearly

dependent, and the pair (α, α∗) is said to be spacelike-timelike Bertrand curve pair.

Theorem 2.1([6]) Let (α, α∗) be spacelike-timelike Bertrand curve pair. For corresponding

α (s) and α∗ (s) points

d (α (s) , α∗ (s)) = constant, ∀s ∈ I .

Theorem 2.2([6]) Let (α.α∗) be spacelike-timelike Bertrand curve pair.. The measure of the

angle between the vector fields of Bertrand curve pair is constant.

§3. The Natural Lift Curves And Geodesic Curvatures Of The Spherical

Indicatrices Of The Spacelike-Timelike Bertrand Curve Pair

Theorem 3.1 Let (α, α∗) be spacelike-timelike Bertrand curve pair. The relations between the

Frenet vectors of the curve pair are as follows







T ∗ = sinhθT − cosh θB

N∗ = N

B∗ = cosh θT − sinh θB

Here, the angle θ is the angle between T and T ∗.

Proof By taking the derivative of α∗ (s) = α (s) +λN (s) with respect to arc-lenght s and

using the equation (2.4), we get

T ∗ ds
∗

ds
= T (1 − λκ) − λτB. (3.1)

The inner products of the above equation with respect to T and B are respectively defined

as 





sinh θ
ds∗

ds
= 1 − λκ,

cosh θ
ds∗

ds
= −λτ.

(3.2)

and substituting these present equations in (3.1) we obtain

T ∗ = sinh θT − cosh θB. (3.3)

Here, by taking derivative and using the equation (2.4) we get

N∗ = N. (3.4)

We can write

B∗ = cosh θT − sinh θB (3.5)
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by availing the equation B∗ = − (T ∗ ×N∗). 2
Corollary 3.1 Let (α, α∗) be a spacelike-timelike Bertrand curve pair. Between the curvature

κ and the torsion τ of the α, there is relationship

µτ + λκ = 1 and µ = −λ tanh θ, (3.6)

where λ and µ are nonzero real numbers.

Proof From equation (3.2), we obtain

sinh θ

1 − λκ
=

cosh θ

−λτ ,

And by arranging this equation, we get

tanh θ =
1 − λκ

−λτ

and if we choose µ = −λ tanh θ for brevity, then we obtain

µτ + λκ = 1. 2
Theorem 3.2 There are connections between the curvatures κ and κ∗ and the torsions τ and

τ∗ of the spacelike-timelike Bertrand curve pair (α, α∗), which are shown as follows







κ∗ =
cosh2 θ − λκ

λ(1 − λκ)
,

τ∗ = −cosh2 θ

λ2τ
.

(3.7)

Proof If (α, α∗) be a spacelike-timelike Bertrand curve pair, we can write α (s) = α∗ (s)−
λN∗ (s). By taking the derivative of this equation with respect to s∗ and using equation (2.1)

we obtain

T = T ∗ ds
∗

ds
(1 − λκ∗) + λτ∗B∗ ds

∗

ds
.

The inner products of the above equation with respect to T ∗ and B∗ are as following







sinh θ = − (1 − λκ∗)
ds∗

ds
,

cosh θ = λτ∗
ds∗

ds
.

(3.8)

respectively. The proof can easily be completed by using and rearranging the equations (3.2)

and (3.8). 2
Corollary 3.2 Let (α, α∗) be a spacelike-timelike Bertrand curve pair.

κ∗ =
λκ− cosh2 θ

λ2τ tanh θ
. (3.9)
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Proof By using the equations (3.6) and with substitution of them in 3.7 we get the desired

result. 2
Theorem 3.3 Let (α, α∗) be a spacelike-timelike Bertrand curve pair. There are following

relations between Darboux vector W of curve α and Darboux vector W ∗of curve α∗

W ∗ = −cosh θ

λτ
W. (3.10)

Proof For the Darboux vector W ∗ of timelike curve α∗, we can write

W ∗ = τ∗T ∗ − κ∗B∗.

By substituting (3.3), (3.5), (3.7) and (3.9) into the last equation, we obtain

W ∗ =
cosh θ

λτ

[
1

λ
coth θ (1 − λκ)T + κB

]

.

By substituting (3.6) into above equation, we get

W ∗ = −cosh θ

λτ
W.

This completes the proof. 2
Now, let compute arc-lengths with the geodesic curvatures of spherical indicatrix curves

with the (T ∗) , (N∗) and (B∗) with the fixed pole curve (C∗) with respect to R
3
1 and H2

0 or

S2
1 .

Firstly, for the arc-length sT∗ of tangents indicatrix (T ∗) of the curve α∗, we can write

sT∗ =

∫ s

0

∥
∥
∥
∥

dT ∗

ds

∥
∥
∥
∥
ds.

By taking the derivative of equation (3.3), we have

sT∗ 6 |sinh θ|
∫ s

0

|κ| ds+ |cosh θ|
∫ s

0

|τ | ds.

By using equation (2.7) we obtain

sT∗ 6 |sinh θ| sT + |cosh θ| sB.

For the arc-length sN∗ of principal normals indicatrix (N∗) of the curve α∗, we can write

sN∗ =

∫ s

0

∥
∥
∥
∥

dN∗

ds

∥
∥
∥
∥
ds.
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By substituting (3.4) into above equation, we get

sN∗ = sN .

Similarly, for the arc-length sB∗ of binormals indicatrix (B∗) of the curve α∗, we can write

sB∗ =

∫ s

0

∥
∥
∥
∥

dB∗

ds

∥
∥
∥
∥
ds.

By taking the derivative of equation (3.5), we have

sB∗ 6 |cosh θ|
∫ s

0

|κ| ds+ |sinh θ|
∫ s

0

|τ | ds.

By using equation (2.7), we obtain

sB∗ 6 |cosh θ| sT + |sinh θ| sB.

Finally, for the arc-length sC∗ of the fixed pole curve (C∗), we can write

sC∗ =

∫ s

0

∥
∥
∥
∥

dC∗

ds

∥
∥
∥
∥
ds.

If W ∗ is a spacelike vector, we can write

C∗ = sinhϕ∗T ∗ − coshϕ∗B∗

from the equation (2.2). By taking the derivative of this equation, we obtain

sC∗ =

∫ s

0

∣
∣
∣(ϕ∗)

′
∣
∣
∣ ds. (3.11)

On the other hand, from equation (2.2) and by using

coshϕ∗ =
κ∗

‖W ∗‖ ve sinhϕ∗ =
τ∗

‖W ∗‖

we can set

tanhϕ∗ =
τ∗

κ∗
.

By substituting (3.7) and (3.9) into the last equation and differentiating, we obtain

(ϕ∗)
′

=
λκ′ sinh θ cosh θ

λ2κ2 + (1 − 2λκ) cosh2 θ
. (3.12)

By substituting (3.12) into (3.11), we have

sC∗ =

∫ s

0

∣
∣
∣
∣

λκ′ sinh θ cosh θ

λ2κ2 + (1 − 2λκ) cosh2 θ

∣
∣
∣
∣
ds.
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If W ∗ is a timelike vector, we have the same result. Thus the following corollary can be drawn.

Corollary 3.3 Let (α, α∗) be a spacelike-timelike Bertrand curve pair and {T ∗, N∗, B∗} be the

Frenet frame of the curve α∗. For the arc-lengths of the spherical indicatrix curves (T ∗) , (N∗)

and (B∗) with the fixed pole curve (C∗) with respect to R
3
1, we have

(1) sT∗ | sinh θ|sT + | cosh θ|sB;

(2) sN∗ = sN ;

(3) sB∗ 6 |cosh θ| sT + |sinh θ| sB ;

(4) sC∗ =

∫ s

0

∣
∣
∣
∣

λκ′ sinh θ cosh θ

λ2κ2 + (1 − 2λκ) cosh2 θ

∣
∣
∣
∣
ds.

Now, let us compute the geodesic curvatures of the spherical indicatrix curves (T ∗) , (N∗)

and (B∗) with the fixed pole curve (C∗) with respect to R
3
1. For the geodesic curvature kT∗ of

the tangents indicatrix (T ∗) of the curve α∗, we can write

kT∗ = ‖DTT∗
TT∗‖ . (3.13)

By differentiating the curve αT∗ (sT∗) = T ∗ (s) with the respect to sT∗ and normalizing,

we obtain

TT∗ = N.

By taking derivative of the last equation we get

DTT∗
TT∗ =

−κT + τB

|κsinhθ− τ cosh θ| . (3.14)

By substituting (3.14) into (3.13) we have

kT∗ =
‖W‖

|κ sinh θ − τ cosh θ| .

Here, if W is a spacelike vector, by substituting 2.5 and 2.8 into the last equation we have

kT∗ =

∣
∣
∣
∣

kT · kB

kB · sinh θ − kT · cosh θ

∣
∣
∣
∣
,

if W is a timelike vector, then by substituting 2.6 and 2.9 we have the same result.

Similarly, by differentiating the curve αN∗ (sN∗) = N∗ (s) with the respect to sN∗and by

normalizing we obtain

TN∗ = − κ

‖W‖T +
τ

‖W‖B.

If W is a spacelike vector, then by using equation (2.5) and (2.8) we have

TN∗ = − sinhϕT + coshϕB,

DTN∗
TN∗ =

ϕ′

‖W‖ (− coshϕT + sinhϕB) +N, (3.15)
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kN∗ = kN =

√
√
√
√

∣
∣
∣
∣
∣

(
ϕ′

‖W‖

)2

+ 1

∣
∣
∣
∣
∣
.

If W is a timelike vector, then by using of the equations (2.5) and (2.9) we have

DTN∗
TN∗ =

ϕ′

‖W‖ (coshϕT − sinhϕB)−N, (3.16)

kN∗ = kN =

√
√
√
√

∣
∣
∣
∣
∣
1 −

(
ϕ′

‖W‖

)2
∣
∣
∣
∣
∣
.

By differentiating the curve αB∗ (sB∗) = B∗ (s) with the respect to sB∗ and by normalizing,

we obtain

TB∗ = N.

By taking the derivative of the last equation we get

DTB∗
TB∗ =

−κT + τB

|κ cosh θ − τ sinh θ| (3.17)

or by taking the norm of equation (3.17), we obtain

kB∗ =
‖W‖

|κ cosh θ − τ sinh θ| .

If W is a spacelike vector, then by substituting (2.5) and (2.8) we have

kB∗ =

∣
∣
∣
∣

kT · kB

kB · cosh θ − kT · sinh θ

∣
∣
∣
∣
,

if W is a timelike vector, then by substituting (2.6) and (2.9) we have the same result. By

differentiating the curve αC∗ (sC∗) = C∗ (s) with the respect to sC∗ and normalizing, if W ∗ is

a spacelike vector, then by substituting (2.2) we obtain

TC∗ = coshϕ∗T ∗ − sinhϕ∗B∗,

DTC∗
TC∗ = (sinhϕ∗T ∗ − coshϕ∗B∗) +

‖W ∗‖
(ϕ∗)

′
N∗, (3.18)

kC∗ =

√
√
√
√ 1 +

(

‖W ∗‖
(ϕ∗)

′

)2

. (3.19)

By substituting (3.10) and (3.12) into (3.19) and rearranging we have

kC∗ =

√
√
√
√

∣
∣
∣
∣
∣

(τ2 − κ2)
[
λ2κ2 + (1 − 2λκ) cosh2 θ

]2

(λ2τκ′)2 sinh2 θ
+ 1

∣
∣
∣
∣
∣
.
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If W ∗ is a timelike vector, then by substituting (2.1) and (2.3) we get

TC∗ = sinhϕ∗T ∗ − coshϕ∗B∗,

DTC∗
TC∗ = (coshϕ∗T ∗ − sinhϕ∗B∗) − ‖W ∗‖

(ϕ∗)
′
N∗, (3.20)

kC∗ =

√
√
√
√
√

∣
∣
∣
∣
∣
∣

−1 +

(

‖W ∗‖
(ϕ∗)

′

)2
∣
∣
∣
∣
∣
∣

. (3.21)

By substituting (3.10) and (3.12) into (3.21) we have

kC∗ =

√
√
√
√

∣
∣
∣
∣
∣

(κ2 − τ2)
[
λ2κ2 + (1 − 2λκ) cosh2 θ

]2

(λ2τκ′)2 sinh2 θ
− 1

∣
∣
∣
∣
∣
.

Then the following corollary can be given.

Corollary 3.4 Let (α, α∗) be a spacelike-timelike Bertrand curve cuople and {T ∗, N∗, B∗}
be Frenet frame of the curve α∗. For the geodesic curvatures of the spherical indicatrix curves

(T ∗) , (N∗) and (B∗) with the fixed pole curve (C∗) with the respect to R
3
1 we have

(1)

kT∗ =

∣
∣
∣
∣

kT · kB

kB · sinh θ − kT · cosh θ

∣
∣
∣
∣
;

(2)






kN∗ = kN =

√ ∣
∣
∣
∣

(
ϕ′

‖W‖

)2

+ 1

∣
∣
∣
∣
, W spacelike ise

kN∗ = kN =

√ ∣
∣
∣
∣
1 −

(
ϕ′

‖W‖

)2
∣
∣
∣
∣
, W timelike ise

(3)

kB∗ =

∣
∣
∣
∣

kT · kB

kB · cosh θ − kT · sinh θ

∣
∣
∣
∣
.

(4)






kC∗ =

√ ∣
∣
∣
(τ2−κ2)[λ2κ2+(1−2λκ) cosh2 θ]2

(λ2τκ′)2 sinh2 θ
+ 1
∣
∣
∣, W ∗ spacelike ise

kC∗ =

√ ∣
∣
∣
(κ2−τ2)[λ2κ2+(1−2λκ) cosh2 θ]2

(λ2τκ′)2 sinh2 θ
− 1
∣
∣
∣ , W ∗ timelike

.

Now let us compute the geodesic curvatures (T ∗) , (N∗) and (B∗) with the fixed pole curve

(C∗) with respect to H2
0 or S2

1 .

For the geodesic curvature γT∗ of the tangents indicatrix curve (T ∗) of the curve α∗ with

respect to H2
0 , we can write

γT∗ =
∥
∥
∥DTT∗

TT∗

∥
∥
∥ . (3.22)
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Here, D become a covariant derivative operator. By (3.3) and (3.14) we obtain

DTT∗
TT∗ = DTT∗

TT∗ + εg (S (TT∗) , TT∗)T ∗,

DTT∗
TT∗ =

( −κ
|κ sinh θ − τ cosh θ| − sinh θ

)

· T +

(
τ

|κ sinh θ − τ cosh θ| + cosh θ

)

· B. (3.23)

By substituting (3.23) into (3.22) we get

γT∗ =

√
√
√
√

∣
∣
∣
∣
∣

τ2 − κ2

(κ sinh θ − τ cosh θ)
2 − 1

∣
∣
∣
∣
∣
.

If W is a spacelike vector, then by using of the equations (2.5) and (2.8) we have

γT∗ =

√
√
√
√

∣
∣
∣
∣
∣

(
kTkB

kB sinh θ − kT cosh θ

)2

− 1

∣
∣
∣
∣
∣
,

if W is a timelike vector, then by using of the equations (2.6) and (2.9) we have

γT∗ =

√
√
√
√

∣
∣
∣
∣
∣
−
(

kT kB

kB sinh θ − kT cosh θ

)2

− 1

∣
∣
∣
∣
∣
.

If the curve
(
T ∗) is an integral curve of the geodesic spray, then DTT∗

TT∗ = 0. Thus, by

(3.23) we can write






−κ
|κ sinh θ−τ cosh θ| − sinh θ = 0

τ
|κ sinh θ−τ cosh θ| + cosh θ = 0

and here, we obtain κ = 0, τ 6= 0 and θ = 0. So, we can give following corollary.

Corollary 3.5 Let (α, α∗) be a spacelike-timelike Bertrand curve pair. The natural lift
(
T ∗)

of the tangent indicatrix (T ∗) is never an integral curve of the geodesic spray.

For the geodesic curvature γN∗ of the principal normals indicatrix curve (N∗) of the curve

α∗ with respect to S2
1 we can write

γN∗ =
∥
∥DTN∗

TN∗

∥
∥ . (3.24)

Here, D become a covariant derivative operator. If W is a spacelike vector, by using of the

equation (3.15) we obtain

DTN∗
TN∗ =

ϕ′

‖W‖ (− coshϕT + sinhϕB) . (3.25)
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By substituting (3.25) into (3.24) we get

γN∗ =
ϕ′

‖W‖ . (3.26)

On the other hand, from the equation (2.5) by using

sinhϕ =
κ

‖W‖ ve coshϕ =
τ

‖W‖

we can set

tanhϕ =
κ

τ
.

By taking the derivative of the last equation we get

ϕ′ =
κ′τ − τ ′κ

‖W‖2 .

By substituting above the equation into (3.26) we have

γN∗ = γN =
κ′τ − τ ′κ

‖W‖3 .

If W is a timelike vector, by using of the equation (3.16) we obtain

DTN∗
TN∗ =

ϕ′

‖W‖ (− sinhϕT + coshϕB) γN∗ =
ϕ′

‖W‖ . (3.27)

On the other hand, from equation (2.6) by using

coshϕ =
κ

‖W‖ and sinhϕ =
τ

‖W‖

we can set

tanhϕ =
κ

τ
.

By taking the derivative of the last equation we get

ϕ′ =
τ ′κ− κ′τ

‖W‖2

or

γN∗ = γN =
τ ′κ− κ′τ

‖W‖3 .

If the curve
(
N∗) is an integral curve of the geodesic spray, then DTN∗

TN∗ = 0. Thus,

by (3.25) and (3.27) we can write ϕ′ = 0 and here, we obtain
κ

τ
=constant. So, we can give

following corollary.

Corollary 3.6 Let (α, α∗) be a spacelike-timelike Bertrand curve pair. If the curve α is a helix

curve, the natural lift
(
N∗) of the pirincipal normals indicatrix (N∗) is an integral curve of the
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geodesic spray.

For the geodesic curvature γB∗ of the binormals indicatrix curve (B∗) of the curve α∗with

respect to S2
1 and substituting (3.5) and (3.17) we obtain

DTB∗
TB∗ = DTB∗

TB∗ + εg (S (TB∗) , TB∗)B∗,

DTB∗
TB∗ =

( −κ
|κ cosh θ − τ sinh θ| + cosh θ

)

T +

(
τ

|κ cosh θ − τ sinh θ| − sinh θ

)

B, (3.28)

γB∗ =

√
√
√
√

∣
∣
∣
∣
∣
−1 +

τ2 − κ2

(−κ sinh θ + τ cosh θ)
2

∣
∣
∣
∣
∣
.

If W is a spacelike vector, then by using of the equations (2.5) and (2.8) we have

γB∗ =

√
√
√
√

∣
∣
∣
∣
∣
−1 −

(
kT kB

kB. cosh θ − kT . sinh θ

)2
∣
∣
∣
∣
∣
,

if W is a timelike vector, then by using of the equations (2.6) and (2.9) we get

γB∗ =

√
√
√
√

∣
∣
∣
∣
∣
−1 +

(
kT kB

kB. cosh θ − kT . sinh θ

)2
∣
∣
∣
∣
∣
.

If the curve
(
B∗) is an integral curve of the geodesic spray, then DTB∗

TB∗ = 0. Thus, by

(3.28) we can write






−κ
|κ cosh θ − τ sinh θ| + cosh θ = 0

τ

|κ cosh θ − τ sinh θ| − sinh θ = 0

and here, we obtain κ > 0, τ = 0 and θ = 0. So, we can give following corollary.

Corollary 3.7 Let (α, α∗) be a spacelike-timelike Bertrand curve pair. If the curve αis a

planary curve and frames are equivalent, the natural lift
(
B∗
)

of the binormals indicatrix (B∗)

is an integral curve of the geodesic spray.

If W ∗ is a spacelike vector, for the geodesic curvature γC∗ of the fixed pole curve (C∗) of

the curve α∗ with respect to S2
1 and by using of the equations (2.2) and (3.18) we obtain

DTC∗
TC∗ = DTC∗

TC∗ + εg (S (TC∗) , TC∗)C∗,

DTC∗
TC∗ =

‖W ∗‖
(ϕ∗)

′
N∗, (3.29)

γC∗ =

∥
∥
∥
∥
∥

‖W ∗‖
(ϕ∗)

′

∥
∥
∥
∥
∥
.
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By substituting (3.10) and (3.12) into the last equation we have

γc∗ =
‖W‖

[
λ2κ2 + (1 − 2λκ) cosh2 θ

]

λ2τκ′ sinh θ
.

If W ∗ is a timelike vector, for the geodesic curvature γC∗ of the fixed pole curve (C∗) with

respect to H2
0 and by using of the equations (2.3) and (3.20) we have the same result. If the

curve
(
C∗) is an integral curve of the geodesic spray, then DTC∗

TC∗ = 0. Thus by (3.29) we

can write ‖W ∗‖ = 0 and here, we get κ∗ = τ∗ = 0 or κ∗ = τ∗. Thus, by using of the equation

(3.7) and (3.9) we obtain

κ =
cosh2 θ − sinh θ cosh θ

λ
.

So, we can give following corollary.

Corollary 3.8 Let (α, α∗) be a spacelike-timelike Bertrand curve pair. If the curve α is a curve

that provides the requirement κ =
cosh2 θ − sinh θ cosh θ

λ
, the natural lift

(
C∗) of the fixed pole

curve (C∗) is an integral curve of the geodesic spray.

Corollary 3.9 Let (α, α∗) be a spacelike-timelike Bertrand curve pair and {T ∗, N∗, B∗} be

Frenet frame of the curve α∗. For the geodesic curvatures of the spherical indicatrix curves

(T ∗) , (N∗) and (B∗) with the fixed pole curve (C∗) with respect to H2
0 or S2

1 , we have

(1)






γT∗ =

√
√
√
√

∣
∣
∣
∣
∣

(
kTkB

kB sinh θ − kT cosh θ

)2

− 1

∣
∣
∣
∣
∣
, W spacelike

γT∗ =

√
√
√
√

∣
∣
∣
∣
∣
−1 −

(
kTkB

kB sinh θ − kT cosh θ

)2
∣
∣
∣
∣
∣
, W timelike

(2)






γN∗ = γN =
κ′τ − τ ′κ

‖W‖3 , W spacelike

γN∗ = γN =
τ ′κ− κ′τ

‖W‖3 , W timelike

(3)






γB∗ =

√
√
√
√

∣
∣
∣
∣
∣
−1 −

(
kTkB

kB cosh θ − kT sinh θ

)2
∣
∣
∣
∣
∣
, W spacelike

γB∗ =

√
√
√
√

∣
∣
∣
∣
∣
−1 +

(
kTkB

kB cosh θ − kT sinh θ

)2
∣
∣
∣
∣
∣
, W timelike

(4)

γc∗ =
‖W‖

[
λ2κ2 + (1 − 2λκ) cosh2 θ

]

λ2τκ′ sinh θ
.
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Abstract: In this paper we have studied an anisotropic model of space time with Finslerian

spaces with (γ, β)-metrics as suggested by one of the co-author in his paper [21] with an extra

requirement of γ3 = aijk(x)yiyjyk . Here γ, is a cubic metric and β = bi(x)yi, is a one form
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the Finslerian metric of space time.
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§1. Introduction

The concept of cubic metric on a differentiable manifold with the local co-ordinate xi, defined

by

L(x, y) = {aijk(x)yiyjyk}
1
3

was introduced by M. Matsumoto in the year 1979 ([1]), where,aijk(x) are components of a

symmetric tensor field of (0, 3)-type, depending on the position x alone, and a Finsler space with

a cubic metric (called the cubic Finsler space). During investigation of some interesting results

we have gone through papers/research outcomes regarding cubic Finsler spaces as referred in

the papers [3, 4, 5, 6, 7, 8]. It has been observed that there are various interesting results on

geometry of spaces with a cubic metric as a generalization of Euclidean or Riemannian geometry

have been published in recent years. It is further noticed that one of the paper published by

one of the coauthor of this paper [21] in the year 2011, define the concept of (γ, β)-metric

considering γ is a cubic metric and β is a one-form and discussed various important results in

stand-point of the Finsler Geometry in this paper. Here we wish to mention that in paper [2]

concerned with the unified field theory of gravitation and electromagnetism Randers wrote that

1Received February 8, 2013, Accepted May 28, 2014.
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Perhaps the most characteristic property of the physical world is the uni direction of time-

like intervals. Since there is no obvious reason why this asymmetry should disappear in the

mathematical description it is of interest to consider the possibility of a metric with asymmetrical

property.

It is also noticed that many researchers are interested to investigate something new result

in physics and those possible application in modern cosmology and other reference of the same

kind [9, 10, 11].We are fully agreed with the theory expressed in the above referred publication

regarding, as it is based on tangent bundle on space time manifold are positively with local

Lorentz violations which may be related with dark energy and dark matter models with variable

in cosmology. Certainly this may also be one of the most recent hidden connections between

Finsler geometry and cosmology. Recently many researchers are constructing suitable cosmo-

logical models with variable Lambda term including our own research group [12, 13, 14, 15, 16].

So in extension of our research work, we have decided to study Cosmological model of General

Theory of Relativity based on the frame work of Finsler geometry in this communication.

§2. Results

In the present paper we try to generalize the above changes by defining a Lagrangian which

expresses this anisotropy as such

L = L(γ, β), (2.1)

where γ = {aijk(x)yiyjyk} 1
3 is a cubic metric and β = φ(x)b̂iy

iis a one-form and for this

metric. The purpose of the present study is to obtain the relationship between the anisotropic

cosmological models of space time with above generalized Finslerian metric motivated by the

work of Stavrions and Diakogiannis [16].

Let us consider an n- dimensional Finsler space (Mn, L) and an adaptable 1-form on Mn

we shall use a Lagrangian function on Mn , given by the equation:

L = L{(aijk(x)yiyjyk)
1
3 , ϕ(x)b̂iy

i}, (2.2)

where bi(x) = φ(x)b̂i, the vector b̂i represents the observed an isotropic of the microwave

background radiation. A coordinate transformation on the total space TM may be expressed

as

x̄i = x̄i(x0, x1, x2, x3), (2.3)

A fundamental function or a Finsler metric is a scalar field L(x, y) which satisfies the

following three conditions:

(1) It is defined and differentiable for any point of TMn − (0);

(2) It is positively homogeneous of first degree in yi, that is, L(x, py) = pL(x, y) for any

positive number p;

(3) It is regular, that is, gij(x)
∂2

∂yi∂yj

(
L2

2

)

constitute the regular matrix (gij).The inverse

matrix of gij is indicated by (gij). The homogeneity condition (2) enables us to consider the
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integral s =

∫ a

b

L(
dx

dt
)dt along an arc , independently of the choice of parameter t except the

orientation. The manifold Mn equipped with a fundamental function L(x, y) is called a Finsler

space Fn = (Mn, L) and the s is called the length of the arc. Thus the following two conditions

are desirable for L(x, y) from the geometrical point of view.

(4) It is positive-valued for any point TMn − (0);

(5) gij(x, y) define a positive-definite quadratic form.

Here we have to remark that there are some cases where the conditions (1), (4) and (5)

should be restricted to some domain of TMn − (0).The value L(x, y) is called the length of the

tangent vector y at a point x. We get L2 = gij(x, y)y
iyj. The set

(
y

L(x, y)
= 1

)

in the tangent

space at x or geometric-cally the set of all the end points of such y is called the indicatrix at

x. If we have an equation f(x, y) =0 of the indicatrix at x,then the fundamental function L is

defined by
(f(x, y))

L
= 0. The tensor gij is called the fundamental tensor. From L we get two

other important tensors

li = ∂̇iLhij = L ˙̇∂i
˙̇∂j .

The former is called the normalized supporting element, because li = girlr is written as
yi

L(x, y)
and satisfies L(x, y) = 1. The latter is called angular metric tensor. It satisfies hijy

j = 0

and the rank of hij is equal to (n− 1).

The Cartan torsion coefficients Cijk are given by

Cijk =
1

2
∂̇kgij . (2.4)

The torsions and curvatures which we use are given by [17, 18, 19, 20]

Pijk = Cijk|ly
l, (2.5)

Sjikh = CiksC
s
jh − CihsC

s
jk, (2.6)

Pihkj = Cijk|h − Chjk|i + Cr
hjCrik|ly

l − Cr
ijCrkh|ly

l, (2.7)

Sl
ikh = gljSjikh, (2.8)

P l
ikh = gljPjikh , (2.9)

Differentiating equation (2.1) with respect to yi, the normalized supporting elements li =

∂̇iLis given by

li = ∂̇iL =
∂L

∂yi
, (2.10)

li = ∂̇iL =
∂L

∂y

(
aijky

jyk

γ2

)

+
∂L

∂y
φ(x)b̂i,

li = ∂̇iL = Lγ

(
ai(x, y)

γ2

)

+ Lβφ(x)b̂i, (2.11)
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where

(aijky
jyk) = ai(x, y). (2.12)

Again differentiating equation (2.11) with respect to yj , we have

∂̇i∂̇jL = ∂̇j ∂̇iL = ∂̇j

{
Lγ

γ2
ai(x, y)

}

+ ∂̇j{Lβφ(x)β̂i},

∂̇i∂̇jL =

[
Lγ

γ2
aij + Lββφ

2b̂ib̂j +
Lγβ

γ2
φ(ai b̂jaj b̂i + aiaj)

]

, (2.13)

∂̇jφ(x)b̂i = 0,

where

2aijky
k = aij(x, y). (2.14)

The angular metric tensor hij = L∂̇i∂̇jL as

hij = L∂̇i∂̇jL = L

[

Lγ

γ2
aij + Lββφ

2b̂ib̂j +
Lγβ

γ2
φ(ai b̂j + aj b̂i) +

(Lγγ − 2Lγ

γ )

γ4
aiaj

]

, (2.15)

hij = L∂̇i∂̇iL =
[

u−1aij + u0φ
2b̂ib̂j + u−2φ(aib̂j + aj b̂i) + u−4aiaj

]

, (2.16)

where

u−1 =
LLγ

L2
, u0 = LLββ, u−2 =

LLγβ

L2
, u−4 =

L(Lγγ − 2Lγ

γ )

γ
. (2.17)

§3. Anisotropic Cosmological Model with Finsler Space of (γβ) Metric

The Lagrangian function on Mn, given by the equation L = L(γ, φ(x)b̂iy
i), where γ =

(aijky
iyjyk)

1
3 . For the anisotropy, we must insert an additional term to the cubic metric

line element. This additional term fulfills the following requirements:

(1) It must give absolute maximum contribution for the direction of movement parallel to

the anisotropy axis;

(2) The new line element must coincide with the cubic metric one for the direction vertical

to the anisotropy axis;

(3) It must not symmetric with respect to replacement yi = −yi;

(4) We see that a term which satisfies the above conditions is β = φ(x)bi, where bi(x)

reveals this anisotropic axis.

Now let bi(x) = φ(x)b̂i where b̂i the unit vector in the direction is bi(x). Then φ(x) plays

the role of length of the vector bi(x), φ(x) ∈ R. β is the Finslerian line element and γ is cubic

one.

We have

γ = cdτ = µd(ct) = µdx0, (3.1)
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where µ

√

1 − v2

c2
and v is the 3- velocity in cubic space-time. One possible explanation of

the anisotropy axis could be that it represents the resultant of spin densities of the angular

momenta of galaxies in a restricted area of space ( bi(x) space like).

The Finsler metric tensor gij is

gij = ∂̇i∂̇j
L2

2
= hij + lilj , (3.2)

Thus,

gij = hij + lilj

= L

[

Lγ

γ2
aij + Lββφ

2b̂ib̂j +
Lγβ

γ2
φ(aib̂j + aj b̂i) +

(Lγγ − 2Lγ

γ )

γ4
aiaj

]

+

(
Lγ

γ2
ai + Lβφb

i

)(
Lγ

γ2
)aj + Lβφb̂j

)

gij = hij + lilj = [u−1aij +m0φ
2b̂ib̂j +m−2φ(aib̂j + aj b̂i) +m−4aiaj, (3.3)

where

m0 = LLββ + (L2
β),m( − 2) =

(
LLγβ

γ2

)

+
LγLβ

γ2
,m−4 =

L

γ4

(

Lγγ − (2Lγ)

γ

)

+
L2

γ

γ4
, (3.4)

where, we put yi =aijy
j and aij is the fundamental tensor for the Finsler space Fn. It will

be easy to see that the determinant ‖ gij ‖ does not vanish, and the reciprocal tensor with

components gij is given by

gij =

[
1

(u−1
aij − z2φ

2B̂iB̂j − z0φ(aib̂j + aj b̂i) − z−2a
iaj

]

, (3.5)

where

z2 =
φ0u

2
−1φ

2(η−2 + φ2m−4ā
2 − 2m−2ā)

η−2u−1(u−1 + c2)

z0 =
m−2u−1 − φ2m−4ā

η−2u−1
, (3.6)

z−2 =
m−4u−1 − c2m−4

η−2u−1
.

As

c2 = φ2b2, ā = aiB
j = aimaibm = aibj ,

b2 = Bibi = aimbmbi, (3.7)

φB̂i = aijφb̂j , φâi = âijφâj ,

where gij is the reciprocal tensor of gij and aij is the inverse matrix of aij as it may be verified
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by direct calculation, where b2 =
ˆ
bib̂

i = 0,±1 according whether b̂i is null, space like or time

like. It is interesting to observe that, that if yi represents the velocity of a particle (time like)

then b̂i is bound to be space like. This follows from the fact that one possible value of b̂iyi is

zero. Therefore we have decided to calculate Cartan covariant tensor C.

§4. The Cartan Covariant Tensor C

The Cartan covariant tensor C with the components Cijk is obtained by Differentiating equation

(3.3) with respect to yk. We get

Cijk =
1

2
∂̇kgij ,

Cijk =
1

2



2u−1aijk + moβφ
3
bibjbk +

∏

(ijk)

(

Kiajk + m−2φ
2
aib̂j b̂k +

m−2γ

γ2
φaiaj b̂k

)

+
m−4γ

γ2
aiajak



 ,

(4.1)

where
∏

(ijk) represent the sum of cyclic permutation of i, j, k.

Ki = m−4ai +m−2φb̂i. (4.2)

If φ = 0, i.e., absence of anisotrophy, then Ki = m−4ai.

From equations (4.1)and (4.2), we have

Cijk =
1

2u−1
[2u2

−1aijk + d−2φ
3bibjbk +

∏

(ijk)

(Kihjk + d−4φ
2aibjbk

+d−6φaiajak) + d−8aiajak], (4.3)

where

d−2 = u−1m0β − 3m−2u0, d−4 = u−1m−2β − u0m−4 − 2m−2u−2

d−6 = u−1m−4β − 2m−4u−2 −m−2u−4, d−8 = u−1
m−4γ

γ2
− 3m−4u−4. (4.4)

After simplification, we have

Cijk =
1

2u( − 1)



22
u−1

aijk +
∏

(ijk)

(HjkKi)



 , (4.5)

where

Hij = hij +
d−2

3(m−2)3
KiKj . (4.6)

In equation (4.6), we replace the covariant indices j by k and k by s, we have

Ciks =
1

2u2
−1



aiks +
∏

(iks)

(HksKi)



 . (4.7)
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Now Cijkg
jh = Ch

ik Multiplying equation (3.5) and equation (4.1) and after simplification,

we have

Ch
ik =

1

2u2
−1

[2u( − 12ah
ik + (δh

i Kk − lhliKk) + (δh
kKi − lhlkKi) +

d(−2)

(m−2)3
KhKiKk + hikK

h], (4.8)

where Ki = Khg
hk , lh = ghili, a

h
ik = ajikg

jh.

Now in equation (4.8) interchange the covariant indices h by s, i by j and k by h, we have

Cs
jh =

1

2u−1

[

2u2
−1a

s
jh + (δs

jKh − lsljKh) + (δs
hKj − lslhKj) +

d−2

(m( − 2)3
KsKjKh + hjhK

s

]

.

(4.9)

Therefore, Sjikh = CiksC
s
jh − CihsC

s
jk yields

Sjikh =
1

4(u−1)2
θ(kh)[(4(u−1)

4as
jhasik + 2(u−1)

2(as
ikKsHjh

+as
jhKsHik) − (ljKh + lhKj)Aik − (liKk + lkKi)Ajh

+H
′

ikKjKh +H
′

jhKiKk)], (4.10)

where Aik = 2(u−1)
2aik − K̄

L2hik, H
′

ik = 2(u−1)
2 2d−2

3(m3
−2
asikKs + (1 + K2

L4 )hik and

K2

L4
= KsKs,

K̄

L2
= Ksls, Ksgis = Ki, aiskl

s =
aik

L
.

Thus S-curvature as defined in the equation (2.6) above represents the anisotropy of matter.

If bi|h = 0 then for L(γ, β)- metric, we have ai|j = 0, aij|k = 0. Because of li|j = 0hij|k = 0,

differentiating covariant derivative of equation (4.6) with respect to h, we get Cijk|h = u−1aijk|h.

Therefore the v torsion tensor Pijk is written as

Pijk = Cijk| hyh = Cijk|0 = u−1aijk|0. (4.11)

Therefore Sjikh = CiksC
s
jh − CihsC

s
jk yields

Sjikh =
1

4(u−1)2
θ(kh)[4(u−1)

4as
jhasik + 2(u−1)

2(as
ikKsHjh

+as
jhKsHik − (ljKh + lhKj)Aik − (liKk + lkKi)Ajh

+H
′

ikKjKh +H
′

jhKiKk)], (4.12)

where Aik = 2(u−1)
2aik − K̄

L2hik and

H
′

ik = 2(u−1)
2 2d−2

3m3
−2

asikKs +

(

1 +
K2

L4

)

hik,

K2

L4
= KsKs,

K̄

L2
= Ksls, Ksgis = Ki, aiskl

s =
aik

L
.
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Thus S-curvature as defined in the equation (2.6) above represents the anisotropy of matter.

If bi|h = 0 then for L(γ, β)- metric we have

ai|j = 0, aij|k = 0. (4.13)

Because of li|j = 0hij|k = 0, differentiating covariant derivative of equation (4.6) with respect

to h we get

Cijk|h = u−1aijk|h. (4.14)

Therefore, the v torsion tensor Pijk is written as

Pijk = Cijk|hy
h = Cijk|0 = u−1aijk|0. (4.15)

Now the v curvature tensor Phijk ([19, 20]) is written as

Phijk = θ(hi)(Cijk|h + Cr
hjCrik|0),

Cr
hjCrik|0 = (u−1)

2ar
hjarik|0 +

1

2
ahik|0Kj −

1

2
Laik|0(lhKj

+ljKh) +
1

2
ajik|0Kh +

d−2

2(m−2)3
arik|0K

rKjKh +
1

2
hjhK

rarik. (4.16)

Thus

Phijk = θ(hi)[aijk|h +
1

2
aijk|0Kh

− 1

2L
aik|0(lhKj + ljKh) + arik|0K

rHjh + arik|0A
r
hj ], (4.17)

where Ar
hj = (u−1)

2ar
hj + d−2

b(m−2)3
arik|0K

rKjKh

Sjikh =
1

4(u−1)2
θ(kh)[4(u−1)

4as
jhasik + 2(u−1)

2(asikKsHjh

+as
jhKsHik − (ljKh + lhKj)Aik − (liKk + lkKi)Ajh

+H
′

ikKjKh +H
′

jhKiKk)]. (4.18)

From equation (3.5) and equation (4.12), we have

Sh
ijk = Ssijkg

sh =
1

4u3
−1

θ(jk){4u4
−1a

r
hkarij + 2u2

−1(H
h
k arijK

r + arh
k KrHij)

−(lhKk + lkK
h)Aij − (liKj + ljKi)A

h
k +H

′

ijKkK
h +H

′h
k KiKj}

−[
1

4u2
−1{z2φ2

B̂sB̂h + z0φ(B̂sah + B̂has)

+z2a
sah}θ(jk)[4u

4
−1a

r
skarij + 2u2

−1(arijKrHsk + ar
skKrHij)

−(lsKk + lkKs)Aij − (liKj + ljKi)Ask

+H
′

skKsKk +H
′

hkKiKj]}], (4.19)
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Sh
ijk =

1

(4(u−1)3)
θ(jk)4(u−1)

4ar
hkarij + 2(u−1)

2(Hh
k arijK

r

+arh
k KrHij) − (lhKk + lkK

h)Aij − (liKj + ljKiA
h
k +H

′

ijKkK
h

+H
′h
k KiKj −

1

(4(u( − 1)2)
Mh

ijk, (4.20)

where

Mh
ijk = [θ(jk){z2φ2B̂sB̂h + z0φ(B̂sah + B̂has)

+z2a
sah}{4(u−1)

4ar
skarij + 2(u−1)

2(arijKrHsk

+ar
skKrHij) − (lsKk + lkKs)Aij − (liKj + ljKi)Ask

+H
′

skKsKk +H
′

hkKiKj}], (4.21)

Ksa
sh = Kh, lsa

sh = lh, Hska
sh = Hh

k , Aska
hs = Ah

k . (4.22)

From equation (4.17) and equation (3.5), we have

P h
ijk = Psijkg

sh =
1

u(−1)
θ(hi)[aijk|sa

sh +
1

2
aijk|0K

h − 1

2
Laik|0(l

hKj

+KjK
h) + arik|0K

rHh
j + arik|0A

rh
j ] − [θ(hi){z2φ2B̂sB̂h + z0φ(B̂sah

+B̂has) + z2a
sah}{aijk|s +

1

2
aijk|0Ks −

1

2
Laik|0(lsKj + ljKs

+aris|0K
rHjs + arik|0A

r
hj}], (4.23)

P h
ijk =

1

u−1
θ(hi)[aijk|sa

sh +
1

2
aijk|0K

h − 1

2L
aik|0(l

hKj +KjK
h)

+arik|0K
rHh

j + arik|0A
rh
j ] −Nh

ijk, (4.24)

where,

Nh
ijk = [θ(hi)z2φ

2B̂sB̂h + z0φ(B̂sah + B̂has) + z2a
sahaijk|s

+
1

2
aijk|0Ks −

1

2L
aik|0(lsKj + ljKs) + aris|0K

rHjs + arik|0A
r
hj ]. (4.25)

§5. Concluding Remarks

The above discussed applications may be considered as Finslerian extension of the Cubic root

structure of space-time. The important results and properties associated with Cartan’s tensor

have been presented in section 4. Here we may observe that when Cijk is equal to zero then the

metric tensor gij is reduced to the Reimannian one. Historically we may say that y-dependent

as discussed in the above sections has been combined with the concept of anisotropy. As we

know that the cosmological constant problem of general relativity can be extended to locally

anisotropic spaces with Finslerian structure. According to S. Weinberg [22] everything that
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contributes to the energy density at the vacuum acts just like a cosmological constant. In the

Finslerian framework of space-time the anisotropic form of the microwave background radiation

may contribute to that content, if we consider a metric of the form of Eq. (2.1).

The field equations in a Finslerian space-time are to be obtained from a variational princi-

ple. We observed that for the similar metric Stavrions and Diakogiannis [16] have also obtained

the relationship between the anisotropic cosmological models of space time and Randers Finsle-

rian metric. Here it is further mentioned that the Finslerian geodesics satisfy the Euler-Lagrange

equations of geodesics

d2xb

ds2
+ Γb

ijy
iyj + σ(x)rae(∂j b̂e − ∂eb̂j)y

j = 0.

In this equation we observe the additional term rae(∂j b̂e − ∂eb̂j)y
j = 0.

where σ =
√

rifyiyj and Γb
ij are the cubic Christoffel symbols. This term expresses a rotation

of the anisotropy. We may say that the equations of geodesics of the cubic space-time may be

generalized as shown in the above calculations. It is also mentioned that if yi represents the

velocity of a particle (time like) then b̂i is bound to be space like. This follows from the fact

that one possible value of b̂iyiis zero. All the above connections, in which the matter density is

hidden, can be considered as a property of the field itself. A weak Fn space-time is proposed

for the study and detection of gravitational waves, in virtue of the equation of deviation of

geodesics. We have already considered an interesting class of Fn.
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§1. Introduction

It is well-known that a curve of constant slope or general helix is defined by the property

that the tangent of the curve makes a constant angle with a fixed straight line which is called

the axis of the general helix. A necessary and sufficient condition for a curve to be a general

helix is that the ratio of curvature to torsion be constant ([10]). The study of these curves in

has been given by many mathematicians. Moreover, İlarslan studied the characterizations of

helices in Minkowski 3-space E3
1 and found differential equations according to Frenet vectors

characterizing the helices in E3
1 ([15]). Then, Kocayiğit obtained general differential equations

which characterize the Frenet curves in Euclidean 3-space E3 and Minkowski 3-space E3
1 ([11]).

Analogue to the helix curve, Izumiya and Takeuchi have defined a new special curve called

the slant helix in Euclidean 3-space E3 by the property that the principal normal of a space

curve γ makes a constant angle with a fixed direction ([19]). The spherical images of tangent

indicatrix and binormal indicatrix of a slant helix have been studied by Kula and Yaylı ([16]).

They obtained that the spherical images of a slant helix are spherical helices. Moreover, Kula

et al. studied the relations between a general helix and a slant helix ([17]). They have found

some differential equations which characterize the slant helix.

Position vectors of slant helices have been studied by Ali and Turgut ([3]). Also, they have

given the generalization of the concept of a slant helix in the Euclidean n-space En ([4]).

1Received November 15, 2013, Accepted May 30, 2014.
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Furthermore, Chen and Ishikawa classified biharmonic curves, the curves for which ∆H = 0

holds in semi-Euclidean space En
v where ∆ is Laplacian operator andH is mean curvature vector

field of a Frenet curve ([9]). Later, Kocayiğit and Hacısalihoğlu studied biharmonic curves and

1-type curves i.e., the curves for which ∆H = λH holds, where λ is constant, in Euclidean

3-space E3 ([12]) and Minkowski 3-space E3
1 ([13]). They showed the relations between 1-type

curves and circular helix and the relations between biharmonic curves and geodesics. Moreover,

slant helices have been studied by Bükçü and Karacan according to Bishop frame in Euclidean

3-space ([5]) and Minkowski space ([6,7]). Characterizations of space curves according to Bishop

frame in Euclidean 3-space E3 have been given in [14].

In this paper, we gave some characterizations of space curves according to Bishop Frame

in Euclidean 3-space E3 by using Laplacian operator. We found the differential equations

characterizing space curves according to the Bishop Darboux vector and the normal Bishop

Darboux vector.

§2. Preliminaries

Let α : I ⊂ R be an arbitrary curve in Euclidean 3-space E3. Recall that the curve α is said

to be of unit speed (or parameterized by arc length function s) if
〈−→
α′ ,

−→
α′
〉

= 1, where 〈, 〉
is the standard scalar (inner) product of E3 given by 〈−→x ,−→y 〉 = x1y1 + x2y2 + x3y3 for each
−→x = (x1, x2, x3),

−→y = (y1, y2, y3) ∈ E3. In particular, the norm of a vector −→x ∈ E3 is given

by ‖−→x ‖ =
√

〈−→x ,−→x 〉. Denote by
{−→
T (s),

−→
N (s),

−→
B (s)

}

the moving Frenet frame along the unit

speed curve α. Then the Frenet formulas are given by







−→
T ′

−→
N ′

−→
B ′







=







0 κ 0

−κ 0 τ

0 −τ 0













−→
T
−→
N
−→
B






,

where
−→
T ,

−→
N and

−→
B are called tangent, principal normal and binormal vector fields of the curve,

respectively. κ(s) and τ(s) are called curvature and torsion of the curve α, respectively ([20]).

The Bishop frame or parallel transport frame is an alternative approach to defining a

moving frame that is well defined even when the curve has vanishing second derivative. We

can parallel transport an orthonormal frame along a curve simply by parallel transporting

each component of the frame. The parallel transport frame is based on the observation that,

while
−→
T (s) for a given curve model is unique, we may choose any convenient arbitrary basis

(−→
N1(s),

−→
N2(s)

)

for the remainder of the frame, so long as it is in the normal plane perpendicular

to
−→
T (s) at each point. If the derivatives of

(−→
N1(s),

−→
N2(s)

)

depend only on
−→
T (s) and not each

other we can make
−→
N1(s) and

−→
N2(s) vary smoothly throughout the path regardless of the

curvature ([18,1,2]).

In addition, suppose the curve α is an arclength-parameterized C2 curve. Suppose we have
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C1 unit vector fields
−→
N1 and

−→
N2 =

−→
T ∧ −→

N1 along the curve α so that

〈−→
T ,

−→
N1

〉

=
〈−→
T ,

−→
N2

〉

=
〈−→
N1,

−→
N2

〉

= 0

i.e.,
−→
T ,

−→
N1,

−→
N2 will be a smoothly varying right-handed orthonormal frame as we move along

the curve. (To this point, the Frenet frame would work just fine if the curve were C3 with

κ 6= 0) But now we want to impose the extra condition that
〈−→
N ′

1,
−→
N2

〉

= 0. We say the unit

first normal vector field
−→
N1 is parallel along the curve α. This means that the only change of−→

N1 is in the direction of
−→
T . A Bishop frame can be defined even when a Frenet frame cannot

(e.g., when there are points with κ = 0). Therefore, we have the alternative frame equations







−→
T ′

−→
N ′

1−→
N ′

2







=







0 k1 k2

−k1 0 0

−k2 0 0













−→
T
−→
N1

−→
N2







.

One can show that

κ(s) =
√

k2
1 + k2

2 , θ(s) = arctan

(
k2

k1

)

, k1 6= 0, τ(s) = −dθ(s)
ds

so that k1 and k2 effectively correspond to a Cartesian coordinate system for the polar coor-

dinates κ, θ with θ = −
∫
τ(s)ds. The orientation of the parallel transport frame includes the

arbitrary choice of integration constant θ0, which disappears from τ (and hence from the Frenet

frame) due to the differentiation ([18,1,2]).

Let α : I → E3 be a unit speed space curve with nonzero nature curvatures k1, k2. Then

α is a slant helix if and only if k1

k2
is constant ([5]).

Let ▽ denotes the Levi-Civita connection given by ▽α′ = d
ds where s is the arclenght

parameter of the space curve α. The Laplacian operator of α is defined by ([13])

△ = −▽2
α′ = −▽α′ ▽α′ .

§3. Characterizations of Space Curves

In this section we gave the characterizations of the space curves according to Bishop frame

in Euclidean 3-space E3. Furthermore, we obtained the general differential equations which

characterize the space curves according to the Bishop Darboux vector
−→
W and the normal Bishop

Darboux vector
−→
W⊥ in E3.

Theorem 3.1([8]) Let α(s) be a unit speed space curve in Euclidean 3-space E3 with Bishop

frame
{−→
T ,

−→
N1,

−→
N2

}

, curvature k1 and torsion k2. The Bishop Darboux vector
−→
W of the curve

α is given by −→
W = −k2

−→
N1 + k1

−→
N2. (3.1)
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Definition 3.1 A regular space curve α in E3 said to has harmonic Darboux vector
−→
W if

∆
−→
W = 0.

Definition 3.2 A regular space curve α in E3 said to has harmonic 1-type Darboux vector
−→
W

if

∆
−→
W = λ

−→
W, λ ∈ R. (3.2)

Theorem 3.2 Let α(s) be a unit speed space curve in Euclidean 3-space E3 with Bishop frame
{−→
T ,

−→
N1,

−→
N2

}

, curvature k1 and torsion k2. The differential equation characterizing α according

to the Bishop Darboux vector
−→
W is given by

λ4∇3
α′

−→
W + λ3∇2

α′

−→
W + λ2∇α′

−→
W + λ1

−→
W = 0, (3.3)

where

λ4 = f2

λ3 = −f (f ′ + g)

λ2 = − [(f ′ + g) g − k1 (k′′′2 + k1f) f + k2 (k′′′1 − k2f) f ]

λ1 = −
[

(f ′ + g)

(
k′1
k′2

)

(k′2)
2

+ k′1 (k′′′2 + k1f) f − k′2 (k′′′1 − k2f) f

]

and

f =

(
k1

k2

)′
(k2)

2 , g = k1k
′′
2 − k′′1k2.

Proof Let α(s) be a unit speed space curve in Euclidean 3-space E3 with Bishop frame
{−→
T ,

−→
N1,

−→
N2

}

, curvature k1 and torsion k2. By differentiating
−→
W three times with respect to

s, we obtain the followings.

∇α′

−→
W = −k′2

−→
N1 + k′1

−→
N 2, (3.4)

∇2
α′

−→
W = − (k′1k2 − k1k

′
2)

−→
T − k′′2

−→
N1 + k′′1

−→
N2, (3.5)

∇3
α′

−→
W = −

[

(k′1k2 − k1k
′
2)

′
+ k1k

′′
2 − k′′1k2

]−→
T (3.6)

− [k′′′2 + k1 (k′1k2 − k1k
′
2)]

−→
N1

+ [k′′′1 − k2 (k′1k2 − k1k
′
2)]

−→
N2

From (3.1) and (3.4) we get

−→
N1 =

k1

k′1k2 − k1k′2
∇α′

−→
W − k′1

k′1k2 − k1k′2

−→
W (3.7)
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and −→
N2 =

k2

k′1k2 − k1k′2
∇α′

−→
W − k′2

k′1k2 − k1k′2

−→
W. (3.8)

By substituting (3.7) and (3.8) in (3.5) we have

−→
T = − 1

k′1k2 − k1k′2
∇2

α′

−→
W − k1k

′′
2 − k′′1k2

(k′1k2 − k1k′2)
2∇α′

−→
W − k′′1k

′
2 − k′1k

′′
2

(k′1k2 − k1k′2)
2

−→
W. (3.9)

By substituting (3.7), (3.8) and (3.9) in (3.6) we obtain

λ4∇3
α′

−→
W + λ3∇2

α′

−→
W + λ2∇α′

−→
W + λ1

−→
W = 0,

where

λ4 = f2

λ3 = −f (f ′ + g)

λ2 = − [(f ′ + g) g − k1 (k′′′2 + k1f) f + k2 (k′′′1 − k2f) f ]

λ1 = −
[

(f ′ + g)

(
k′1
k′2

)

(k′2)
2

+ k′1 (k′′′2 + k1f) f − k′2 (k′′′1 − k2f) f

]

and

f =

(
k1

k2

)′
(k2)

2
, g = k1k

′′
2 − k′′1k2. 2

Corollary 3.1 Let α(s) be a general helix in E3 with Bishop frame
{−→
T ,

−→
N1,

−→
N2

}

, curvature

k1 and torsion k2. The differential equation characterizing α according to the Bishop Darboux

vector
−→
W is given by

g∇α′

−→
W −

(
k′1
k′2

)′
(k′2)

2 −→
W = 0.

Theorem 3.3 Let α(s) be a unit speed space curve in Euclidean 3-space E3 with Bishop frame{−→
T ,

−→
N1,

−→
N2

}

, curvature k1 and torsion k2. The differential equation characterizing α according

to the normal Bishop Darboux vector
−−→
W⊥ is given by

λ3∇2
α′

−−→
W⊥ + λ2∇α′

−−→
W⊥ + λ1

−−→
W⊥ = 0, (3.10)

where

λ3 = f

λ2 = g

λ1 =

(
k′1
k′2

)

(k′2)
2

and

f =

(
k1

k2

)′
(k2)

2
, g = k1k

′′
2 − k′′1k2.
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Proof Let α(s) be a unit speed space curve in Euclidean 3-space E3 with Bishop frame
{−→
T ,

−→
N1,

−→
N2

}

, curvature k1 and torsion k2. By differentiating
−−→
W⊥ two times with respect to s,

we obtain the followings. −−→
W⊥ = −k2

−→
N1 + k1

−→
N2, (3.11)

∇α′

−−→
W⊥ = −k′2

−→
N1 + k′1

−→
N 2, (3.12)

∇2
α′

−−→
W⊥ = −k′′2

−→
N1 + k′′1

−→
N2. (3.13)

From (3.11) and (3.12) we get

−→
N1 =

k1

k′1k2 − k1k′2
∇α′

−−→
W⊥ − k′1

k′1k2 − k1k′2

−−→
W⊥ (3.14)

and −→
N2 =

k2

k′1k2 − k1k′2
∇α′

−−→
W⊥ − k′2

k′1k2 − k1k′2

−−→
W⊥. (3.15)

By substituting (3.14) and (3.15) in (3.13) we obtain

f∇2
α′

−−→
W⊥ + g∇α′

−−→
W⊥ +

(
k′1
k′2

)′
(k′2)

2 −−→
W⊥ = 0. (3.16)

This completes the proof. 2
Corollary 3.2 Let α(s) be a slant helix in E3 with Bishop frame

{−→
T ,

−→
N1,

−→
N2

}

, curvature k1

and torsion k2. The differential equation characterizing α according to the normal Bishop

Darboux vector
−−→
W⊥ is given by

g∇α′

−−→
W⊥ +

(
k′1
k′2

)′
(k′2)

2 −−→
W⊥ = 0.

Theorem 3.4 Let α be a unit speed space curve in E3 with Bishop frame
{−→
T ,

−→
N1,

−→
N2

}

. Then,

α is of harmonic 1-type Darboux vector if and only if the curvature k1 and the torsion k2 of

the curve α satisfy the followings.

−k′′1 = λk1, k′1k2 − k1k
′
2 = 0, − k′′2 = λk2. (3.17)

Proof Let α be a unit speed space curve and let ∆ be the Laplacian associated with ∇.

From (3.4) and (3.5) we can obtain following.

∆
−→
W = (k′1k2 − k1k

′
2)

−→
T + k′′2

−→
N1 − k′′1

−→
N2. (3.18)

We assume that the space curve α is of harmonic 1-type Darboux vector
−→
W . Substituting

(3.18) in (3.2) we get (3.17). 2
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Abstract: In this paper, we consider special class of trees called uniform k-distant trees,

which have many interesting properties. We show that they have an edge-magic total label-

ing, a super edge-magic total labeling, a (a, d)-edge-antimagic vertex labeling, an (a, d)-edge-

antimagic total labeling, a super (a, d)- edge-antimagic total labeling. Also we introduce a

new labeling called edge bi-magic vertex labeling and prove that every uniform k-distant

tree has edge bi-magic vertex labeling.
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§1. Introduction

For graph theory terminology and notation, we follow either Bondy and Murty [3] or Murugan

[8]. In this paper, we consider a graph to be finite and without loops or multiple edges. The

vertex set of a graph G is denoted by V (G), whereas the edge set of G is denoted by E(G).

A labeling of a graph is a function that sends some set of graph element to a set of positive

integers. If the domain is V (G) or E(G) or V (G) ∪ E(G), then the labeling is called vertex

labeling or edge labeling or total labeling respectively. The edge-weight of an edge uv under a

vertex labeling is the sum of the vertex labels at its ends; under a total labeling, we also add

the label of uv.

Trees are important family of graphs and posses many interesting properties. The famous

Graceful Tree Conjecture, also known as Ringel-Kotzig or Rosa’s or even Ringel-Kotzig-Rosa

Conjecture, says that all trees have a graceful labeling was mentioned in [11]. Yao et al. [5] have

conjectured that every tree is (k, d)-graceful for k > 1 and d > 1. Hedge [6] has conjectured

that all trees are (k, d)-balanced for some values of k and d. A caterpillar is a tree with the

property that the removal of its endpoints leaves a path. A lobster is a tree with the property

that the removal of the endpoints leaves a caterpillar. Bermond [2] conjectured that lobsters

are graceful and this is still open.

The conjecture, All Trees are Harmonious is still open and is unsettled for many years.

Gallian in his survey [5] of graph labeling, has mentioned that no attention has been given to

1Received October 8, 2013, Accepted May 31, 2014.
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analyze the harmonious property of lobsters. It is clear that uniform 2-distant trees are special

lobsters. Also, Atif Abueida and Dan Roberts [1] have proved that uniform k-distant trees

admit a harmonious labeling, when they have even number of vertices. Murugan [9] has proved

that all uniform k-distant trees are harmonious. In this paper, we analyze some interesting

properties of uniform k-distant trees.

§2. k-Distant Trees

A k-distant tree consists of a main path called the spine, such that each vertex on the spine is

joined by an edge to at most one path on k-vertices. Those paths are called tails (i.e. each tail

must be incident with a vertex on the spine). When every vertex on the spine has exactly one

incident tail of length k, we call the tree a uniform k-distant tree.

A uniform k-distant tree with odd number of vertices is called a uniform k-distant odd

tree. A uniform k-distant tree with even number of vertices is called a uniform k-distant even

tree. - -
- -6

6 ?
? 6

6 ?
? 6

6
Figure 1 Order to name the vertices

To prove our results, we name the vertices and edges of any uniform k-distant tree as in

Figure 2 with the help of Figure 1. The arrows on the Figure 1 show the order of naming the

vertices and edges.

. . .

vn vn+1 v3n v3n+1 vmnen e2n e3n

en−1 en+1 e3n+1

v3
e2 e2n−2 e2n+2

vn−1 vn+2 vmn−1

v2 v2n−1 v2n+2

e1 e2n−1 e2n+1

v1 v2n v2n+1

Figure 2 Uniform k-distant tree
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§3. Variations of Magic Labelings

In this section, we list a few existing labelings which are useful for the development of this

paper and we introduce a new labeling called edge bi-magic vertex labeling. Let G be a graph

with vertex set V and edge set E.

Definition 3.1 (Edge-Magic Total Labeling) An edge-magic total labeling of a graph G(V,E)

is a bijection f from V ∪E to {1, 2, . . . , |V ∪E|} such that for all edges xy, f(x)+ f(y)+ f(xy)

is constant.

This was introduced by Kotzig and Rosa [7] and rediscovered by Ringel and Llado [10].

Definition 3.2(Super Edge-Magic Total Labeling) A super edge-magic total labeling of a graph

G(V,E) is an edge-magic total labeling with the additional property that the vertex labels are 1

to |V |.

This was introduced by Enomoto et al. [4].

Definition 3.3((a, d)-Edge Antimagic Vertex Labeling) An (a, d)-edge antimagic vertex labeling

is a bijection from V (G) onto {1, 2, . . . , |V (G)|} such that the set of edge-weights of all edges in

G is

{a, a+ d, . . . , a+ (|E(G)| − 1)d}

where a > 0 and d > 0 are two fixed integers.

This was introduced by Simanjuntak et al. [12].

Definition 3.4((a, d)-Edge Antimagic Total Labeling) An (a, d)-edge antimagic total labeling

is a bijection from V (G)∪E(G) onto the set {1, 2, . . . , |V (G)|+ |E(G)|} so that the set of edge-

weights of all edges in G is equal to {a, a + d, . . . , a + (|E(G)| − 1)d}, for two integers a > 0

and d > 0.

This was introduced by Simanjuntak et al. [12].

Definition 3.5(Super (a, d)-Edge-Antimagic Total Labeling) An (a, d)-edge-antimagic to-

tal labeling will be called super if it has the property that the vertex-labels are the integers

1, 2, · · · , |V (G)|.

Definition 3.6(Edge Bi-Magic Total Labeling) An edge bi-magic total labeling of a graph

G(V,E) is a bijection f from V ∪ E to {1, 2, . . . , |V ∪ E|} such that for all edges xy, f(x) +

f(y) + f(xy) is k1 or k2 where k1 and k2 are constants.

This was introduced by Vishnupriya et al. [13]. Now we introduce edge bi- magic vertex

labeling.

Definition 3.7(Edge Bi-Magic Vertex Labeling) An edge bi-magic vertex labeling of a graph

G(V,E) is a bijection f from V to {1, 2, . . . , |V (G)|} such that for all edges xy, f(x) + f(y) is
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k1 or k2 where k1 and k2 are constants.

Definition 3.8(Smarandache anti-Magic Labeling) Let G be a graph and H < G. A Smaran-

dache antimagic labeling on H is a bijection from V (H)∪E(H) onto the set {1, 2, . . . , |V (H)|+
|E(H)|} so that the set of edge-weights of all edges in H is equal to {a, a+d, · · · , a+(|E(H)|−
1)d} for two given integers a > 0 and d > 0, and f(x) + f(y) + f(xy) is constant for all edges

xy in E(G) \ E(H). Clearly, a Smarandache antimagic labeling on G is nothing else but an

(a, d)-edge antimagic total labeling.

§4. Results

Theorem 4.1 Every uniform k-distant tree has an edge-magic total labeling.

Proof Consider a uniform k-distant tree T with q edges. Since it is a tree, q = p−1, where

p is the number of vertices of T .

Define a labeling f from V (T ) ∪ E(T ) into {1, 2, . . . , p+ q} such that

f(vi) =







i+ 1

2
if i is odd

⌈p

2

⌉

+
i

2
if i is even

f(ei) = 2p− i

We note that the sum of the labels of two consecutive vertices on the spine (that is, labels on

the edges of the spine) is equal to the sum of the labels at the end vertices of the corresponding

tail (for example, sum of the labels of vn and vn+1 is equal to sum of the labels of v1 and v2n),

by construction and labeling.

Case 1 i is odd.

Consider

f(vi) + f(vi+1) + f(ei) =
i+ 1

2
+
⌈p

2

⌉

+
i+ 1

2
+ 2p− i

=
⌈p

2

⌉

+ 2p+ i+ 1 − i

= 2p+
⌈p

2

⌉

+ 1

Case 2 i is even.

Consider

f(vi) + f(vi+1) + f(ei) =
⌈p

2

⌉

+
i

2
+
i+ 2

2
+ 2p− i

=
⌈p

2

⌉

+ 2p+ i+ 1 − i

= 2p+
⌈p

2

⌉

+ 1
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Since f(vi) + f(vi+1) + f(ei) = 2p+
⌈p

2

⌉

+ 1, T has an edge-magic total labeling. 2
Theorem 4.2 Every uniform k-distant tree has a super edge-magic total labeling.

Proof Consider the edge-magic total labeling of an uniform k-distant tree as in Theorem

4.1. Since the vertex labels are 1 to |V |, T has a super edge-magic total labeling. 2
Theorem 4.3 Every uniform k-distant tree has a (a, d)-edge-antimagic vertex labeling.

Proof Consider a uniform k-distant tree T with q edges. Since it is a tree, q = p−1, where

p is the number of vertices of T . Define a labeling f from V (T ) into {1, 2, . . . , p} such that

f(vi) =







i+ 1

2
if i is odd

⌈p

2

⌉

+
i

2
if i is even

We note that the sum of the labels of two consecutive vertices on the spine (that is, labels on

the edges of the spine) is equal to the sum of the labels at the end vertices of the corresponding

tail (for example, sum of the labels of vn and vn+1 is equal to sum of the labels of v1 and v2n),

by construction and labeling.

Case 1 i is odd.

Consider

f(vi) + f(vi+1) =
i+ 1

2
+
⌈p

2

⌉

+
i+ 1

2
=
⌈p

2

⌉

+ i+ 1

Now

f(vi+1) + f(vi+2) =
⌈p

2

⌉

+
i+ 1

2
+
i+ 3

2
=
⌈p

2

⌉

+ i+ 2.

Therefore, each f(vi) + f(vi+1) is distinct and differ by 1.

Case 2 i is even.

Consider

f(vi) + f(vi+1) =
⌈p

2

⌉

+
i

2
+
i+ 2

2
=
⌈p

2

⌉

+ i+ 1

Now

f(vi+1) + f(vi+2) =
i+ 2

2
+
⌈p

2

⌉

+
i+ 2

2
=
⌈p

2

⌉

+ i+ 2.

Therefore, each f(vi)+f(vi+1) is distinct and differ by 1. Hence, T is (a, d)-edge antimagic

vertex labeling, where a = f(v1) + f(v2) = 1 +
⌈p

2

⌉

+ 1 =
⌈p

2

⌉

+ 2 and d = 1. Hence, every

uniform k-distant tree has a (a, d) edge-antimagic vertex labeling. 2
Theorem 4.4 Every uniform k-distant tree has a (a, d)-edge-antimagic total labeling.

Proof Consider a uniform k-distant tree T with q edges. Since it is a tree, q = p−1, where

p is the number of vertices of T .
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Define a labeling f from V (T ) ∪ E(T ) into {1, 2, . . . , p+ q} such that

f(vi) =







i+ 1

2
if i is odd

⌈p

2

⌉

+
i

2
if i is even

f(ei) = p+ i

We note that the sum of the labels of two consecutive vertices on the spine (that is, labels on

the edges of the spine) is equal to the sum of the labels at the end vertices of the corresponding

tail (for example, sum of the labels of vn and vn+1 is equal to sum of the labels of v1 and v2n),

by construction and labeling.

Case 1 i is odd.

Consider

f(vi) + f(vi+1) + f(ei) =
i+ 1

2
+
⌈p

2

⌉

+
i+ 1

2
+ p+ i

=
⌈p

2

⌉

+ p+ i+ 1 + i

= p+
⌈p

2

⌉

+ 2i+ 1.

Now

f(vi+1) + f(vi+2) + f(ei+1) =
⌈p

2

⌉

+
i+ 1

2
+
i+ 3

2
+ p+ i+ 1

=
⌈p

2

⌉

+ p+ i+ 2 + i+ 1

= p+
⌈p

2

⌉

+ 2i+ 3.

Case 2 i is even.

Consider

f(vi) + f(vi+1) + f(ei) =
⌈p

2

⌉

+
i

2
+
i+ 2

2
+ p+ i

=
⌈p

2

⌉

+ p+ i+ 1 + i

= p+
⌈p

2

⌉

+ 2i+ 1

Now

f(vi+1) + f(vi+2) + f(ei+1) =
i+ 2

2
+
⌈p

2

⌉

+
i+ 2

2
+ p+ i+ 1

=
⌈p

2

⌉

+ p+ i+ 2 + i+ 1

= p+
⌈p

2

⌉

+ 2i+ 3.

Therefore, each f(vi)+f(vi+1)+f(ei) is distinct and the edge labels increase by 2. Hence,
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T is (a, d)-edge antimagic total labeling, where a = f(v1)+f(v2)+f(e1) = 1+
⌈p

2

⌉

+1+p+1 =

p +
⌈p

2

⌉

+ 3 and d = 2. Hence, every uniform k-distant tree has a (a, d) edge-antimagic total

labeling. 2
Theorem 4.5 Every uniform k-distant tree has a super (a, d)-edge-antimagic total labeling.

Proof Consider the edge-magic total labeling of an uniform k-distant tree as in Theorem

4.3. Since the vertex labels are 1 to |V |, T has a super (a, d)-edge-antimagic total labeling. 2
Theorem 4.6 Every uniform k-distant tree has a edge bi-magic vertex labeling.

Proof Consider a uniform k-distant tree T with q edges. Since it is a tree, q = p−1, where

p is the number of vertices of T . Define a labeling f from V (T ) into {1, 2, . . . , p} such that

f(vi) =







i+ 1

2
if i is odd

p− i− 2

2
if i is even

We note that the sum of the labels of two consecutive vertices on the spine (that is, labels on

the edges of the spine) is equal to the sum of the labels at the end vertices of the corresponding

tail (for example, sum of the labels of vn and vn+1 is equal to sum of the labels of v1 and v2n),

by construction and labeling.

Case 1 i is odd.

Consider

f(vi) + f(vi+1) =
i+ 1

2
+ p− i− 1

2
= p+ 1

Now

f(vi+1) + f(vi+2) = p− i− 1

2
+
i+ 3

2
= p+ 2

Case 2 i is even.

Consider

f(vi) + f(vi+1) = p− i− 2

2
+
i+ 2

2
= p+ 2

Now

f(vi+1) + f(vi+2) =
i+ 2

2
+ p− i

2
= p+ 1

Therefore, each edge has either p+1 or p+2 as edge weight. Hence every uniform k-distant

tree has a edge bi-magic vertex labeling. 2
§5. Conclusion

Uniform k-distant trees are special class of trees which have many interesting properties. In

this paper we have proved that every uniform k-distant tree has an edge-magic total labeling, a

super edge-magic total labeling, a (a, d)-edge-antimagic vertex labeling, a (a, d)-edge-antimagic
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total labeling, a super (a, d)- edge-antimagic total labeling and a edge bi-magic vertex labeling.
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Abstract: In this paper the concept of pathos adjacency cut vertex jump graph PJC(T ) of

a tree T is introduced. We also present a characterization of graphs whose pathos adjacency

cut vertex jump graphs are planar, outerplanar, minimally non-outerplanar, Eulerian and

Hamiltonian.
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§1. Introduction

For standard terminology and notation in graph theory, not specifically defined in this paper,

the reader is referred to Harary [2]. The concept of pathos of a graph G was introduced by

Harary [3], as a collection of minimum number of edge disjoint open paths whose union is G.

The path number of a graph G is the number of paths in any pathos. The path number of a

tree T is equal to k, where 2k is the number of odd degree vertices of T . A pathos vertex is a

vertex corresponding to a path P in any pathos of T .

The line graph of a graph G, written L(G), is the graph whose vertices are the edges of G,

with two vertices of L(G) adjacent whenever the corresponding edges of G are adjacent.

The jump graph of a graph G ([1]), written J(G), is the graph whose vertices are the

edges of G, with two vertices of J(G) adjacent whenever the corresponding edges of G are not

adjacent. Clearly, the jump graph J(G) is the complement of the line graph L(G) of G.

The pathos jump graph of a tree T [5], written JP (T ), is the graph whose vertices are the

edges and paths of pathos of T , with two vertices of JP (T ) adjacent whenever the corresponding

edges of T are not adjacent and the edges that lie on the corresponding path Pi of pathos of T .

The cut vertex jump graph of a graphG ([6]), written JC(G), is the graph whose vertices are

the edges and cut vertices ofG, with two vertices of JC(G) adjacent whenever the corresponding

edges of G are not adjacent and the edges incident to the cut vertex of G.

1Received December 11, 2013, Accepted June 5, 2014.
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The edge degree of an edge pq of a tree T is the sum of the degrees of p and q. A graph G

is planar if it can be drawn on the plane in such a way that no two of its edges intersect. If all

the vertices of a planar graph G lie in the exterior region, then G is said to be an outerplanar.

An outerplanar graph G is maximal outerplanar if no edge can be added without losing its

outer planarity. For a planar graph G, the inner vertex number i(G) is the minimum number

of vertices not belonging to the boundary of the exterior region in any embedding of G in the

plane. A graph G is said to be minimally non-outerplanar if the inner vertex number i(G) =1

([4]).

The least number of edge-crossings of a graph G, among all planar embeddings of G, is

called the crossing number of G and is denoted by cr(G).

A wheel graph Wn is a graph obtained by taking the join of a cycle and a single vertex. The

Dutch windmill graph D
(m)
3 , also called a friendship graph, is the graph obtained by taking m

copies of the cycle graph C3 with a vertex in common, and therefore corresponds to the usual

windmill graph W
(m)
n . It is therefore natural to extend the definition to D

(m)
n , consisting of m

copies of Cn.

A Smarandache pathos-cut jump graph of a tree T on subtree T1 < T , written SPJC(T1),

is the graph whose vertices are the edges, paths of pathos and cut vertices of T1 and vertices

V (T )−V (T1), with two vertices of SPJC(T1) adjacent whenever the corresponding edges of T1

are not adjacent, edges that lie on the corresponding path Pi of pathos, the edges incident to

the cut vertex of T1 and edges in E(T ) \ E(T1). Particularly, if T1 = T , such a graph is called

pathos adjacency cut vertex jump graph and denoted by PJC(T ). Two distinct pathos vertices

Pm and Pn are adjacent in PJC(T ) whenever the corresponding paths of pathos Pm(vi, vj) and

Pn(vk, vl) have a common vertex, say vc in T .

Since the pattern of pathos for a tree is not unique, the corresponding pathos adjacency

cut vertex jump graph is also not unique.

In the following, Fig.1 shows a tree T and Fig.2 is its corresponding PJC(T ).

a

b

P1 C1 c

P2

Fig.1 Tree T

.........................................

.....................................

a

b

cC1
P1

P2

Fig.2 PJC(T )
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The following existing result is required to prove further results.

Theorem A([2]) A connected graph G is Eulerian if and only if each vertex in G has even

degree.

Some preliminary results which satisfies for any PJC(T ) are listed following.

Remark 1 For any tree T with n ≥ 3 vertices, J(T ) ⊆ JP (T ) and

J(T ) ⊆ JC(T ) ⊆ PJC(T ). Here ⊆ is the subgraph notation.

Remark 2 If the edge degree of an edge pq in a tree T is even(odd) and p and q are the cut

vertices, then the degree of the corresponding vertex pq in PJC(T ) is even.

Remark 3 If the edge degree of a pendant edge pq in T is even(odd), then the degree of the

corresponding vertex pq in PJC(T ) is even.

Remark 4 If T is a tree with p vertices and q edges, then the number of edges in J(T ) is

q(q + 1) −
p
∑

i=1

d2
i

2
,

where di is the degree of vertices of T .

Remark 5 Let T be a tree(except star graph). Then the number of edges whose end vertices

are the pathos vertices in PJC(T ) is (k − 1), where k is the path number of T .

Remark 6 If T is a star graph K1,n on n ≥ 3 vertices, then the number of edges whose end

vertices are the pathos vertices in PJC(T ) is
k(k − 1)

2
, where k is the path number of T . For

example, the edge P1P2 in Fig.2.

§2. Calculations

In this section, we determine the number of vertices and edges in PJC(T ).

Lemma 2.1 Let T be a tree(except star graph) on p vertices and q edges such that di and Cj

are the degrees of vertices and cut vertices C of T , respectively. Then PJC(T ) has (q+ k+C)

vertices and

q(q + 1) −
p
∑

i=1

d2
i

2
+

C∑

j=1

Cj + q + (k − 1)

edges, where k is the path number of T .

Proof Let T be a tree(except star graph) on p vertices and q edges. The number vertices of

PJC(T ) equals the sum of edges, paths of pathos and cut vertices C of T . Hence PJC(T ) has

(q + k +C) vertices. The number of edges of PJC(T ) equals the sum of edges in J(T ), degree
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of cut vertices, edges that lie on the corresponding path Pi of pathos of T and the number of

edges whose end vertices are the pathos vertices. By Remark 4 and 5, the number of edges in

PJC(T ) is given by

q(q + 1) −
p
∑

i=1

d2
i

2
+

C∑

j=1

Cj + q + (k − 1). 2
Lemma 2.2 If T is a star graph K1,n on n ≥ 3 vertices and m edges, then PJC(T ) has

(m+ k + 1) vertices and
4m+ k(k − 1)

2
edges, where k is the path number of T .

Proof Let T be a star graph K1,n on n ≥ 3 vertices and m edges. By definition, PJC(T )

has (m+k+1) vertices. Also, for a star graph, the number of edges of PJC(T ) equals the sum

of edges in J(T ), i.e., zero, twice the number of edges of T and the number of edges whose end

vertices are the pathos vertices. By Remark 6, the number of edges in PJC(T ) is given by

2m+
k(k − 1)

2
⇒ 4m+ k(k − 1)

2
. 2

§3. Main Results

Theorem 3.1 The pathos adjacency cut vertex jump graph PJC(T ) of a tree T is planar if

and only if the following conditions hold:

(i) T is a path Pn on n=3 and 4 vertices;

(ii) T is a star graph K1,n, on n =3,4,5 and 6 vertices.

Proof (i) Suppose PJC(T ) is planar. Assume that T is a path Pn on n ≥ 5 vertices. Let

T be a path P5 and let the edge set E(P5) = {e1, e2, e3, e4}. Then the jump graph J(T ) is

the path P4 = {e3, e1, e4, e2}. Since the path number of T is exactly one, JP (T ) is Wn − e,

where Wn is the join of a cycle with the vertices corresponding to edges of T and a single vertex

corresponding to pathos vertex P , and e is an edge between any two vertices corresponding to

arcs of T in Wn. Let {C1, C2, C3} be the cut vertex set of T . Then the edges joining to J(T )

from the corresponding cut vertices gives PJC(T ) such that the crossing number of PJC(T )

is one, i.e., cr(PJC(T )) = 1, a contradiction.

For sufficiency, we consider the following two cases.

Case 1 If T is a path P3, then PJC(T ) is cycle C4, which is planar.

Case 2 Let T be a path P4 and let E(P4) = {e1, e2, e3}. Also, the path number of T is

exactly one, i.e., P . Then JP (T ) is K1,3 + e, where P is the vertex of degree three, and e is

an edge between any two vertices corresponding to edges of T in K1,3. Let {C1, C2} be the

cut vertex set of T . Then the edges joining to J(T ) from the corresponding cut vertices gives

PJC(T ) = Wn − {a, b}, where Wn is join of a cycle with the vertices corresponding to edges

and cut vertices of T and a single vertex corresponding to pathos vertex P , and {a, b} are the

edges between pathos vertex P and cut vertices C1 and C2 of Wn. Clearly, cr(PJC(T )) = 0.

Hence PJC(T ) is planar.
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(ii) Suppose that PJC(T ) is planar. Let T be a star graph K1,n on n ≥ 7 vertices. If

T is K1,7, then J(T ) is a null graph of order seven. Since each edge in T lies on exactly one

cut vertex C, JC(T ) is a star graph K1,7. Furthermore, the path number of T is exactly four.

Hence PJC(T ) is D
(4)
4 −v, where v is a vertex at distance one from the common vertex in D

(4)
4 .

Finally, on embedding PJC(T ) in any plane for the adjacency of pathos vertices corresponding

to paths of pathos in T , by Remark 6, cr(PJC(T )) = 1, a contradiction.

Conversely, suppose that T is a star graph K1,n on n=3,4,5 and 6 vertices. For n=3,4,5

and 6 vertices, J(T ) is a null graph of order n. Since each edge in T lies on exactly one cut

vertex C, JC(T ) is a star graph of order n + 1. The path number of T is at most 3. Now,

for n=4, PJC(T ) is the join of two copies of cycle C4 with a common vertex and for n=6,

PJC(T ) is the join of three copies of cycle C4 with a common vertex. Next, for n=3, PJC(T )

is D
(2)
4 − v, and n=5, PJC(T ) is D

(3)
4 , respectively, where v is the vertex at distance one from

the common vertex. Finally, on embedding PJC(T ) in any plane for the adjacency of pathos

vertices corresponding to paths of pathos in T , by Remark 6, cr(PJC(T )) = 0. Hence PJC(T )

is planar. 2
Theorem 3.2 The pathos adjacency cut vertex jump graph PJC(T ) of a tree T is an outer-

planar if and only if T is a path P3.

Proof Suppose that PJC(T ) is an outerplanar. By Theorem 3.1, PJC(T ) is planar if and

only if T is a path P3 and P4. Hence it is enough to verify the necessary part of the Theorem for

a path P4. Assume that T is a path P4 and the edge set E(P4)= ei, where ei=(vi, vi+1), for all

i = 1, 2, 3. Then the jump graph J(T ) is a disconnected graph with two connected components,

namely K1 and K2, where K1 = e2 and K2 = (e1, e3). Let {C1, C2} be the cut vertex set of

T . Hence JC(T ) is the cycle C5 = {C1, e1, e3, C2, e2, C1}. Furthermore, the path number of

T is exactly one. Then the edges joining to J(T ) from the corresponding pathos vertex gives

PJC(T ) such that the inner vertex number of PJC(T ) is non-zero, i.e., i(PJC(T )) 6= 0, a

contradiction.

Conversely, if T is a path P3, then PJC(T ) is a cycle C4, which is an outerplanar. 2
Theorem 3.3 For any tree T , PJC(T ) is not maximal outerplanar.

Proof By Theorem 3.2, PJC(T ) is an outerplanar if and only if T is a path P3. Moreover,

for a path P3, PJC(T ) is a cycle C4, which is not maximal outerplanar, since the addition of

an edge between any two vertices of cycle C4 does not affect the outerplanarity of C4. Hence

for any tree T , PJC(T ) is not maximal outerplanar. 2
Theorem 3.4 The pathos adjacency cut vertex jump graph PJC(T ) of a tree T is minimally

non-outerplanar if and only if T is (i) a star graph K1,3, and (ii) a path P4.

Proof (i) Suppose that PJC(T ) is minimally non-outerplanar. If T is a star graph K1,n

on n ≥ 7 vertices, by Theorem 3.1, PJC(T ) is nonplanar, a contadiction. Let T be a star graph

K1,n on n=4,5 and 6 vertices. Now, for n=4, PJC(T ) is the join of two copies of cycle C4 with

a common vertex and for n=6, PJC(T ) is the join of three copies of cycle C4 with a common
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vertex. For n=5, PJC(T ) is D
(3)
4 − v. Finally, on embedding PJC(T ) in any plane for the

adjacency of pathos vertices corresponding to paths of pathos in T , the inner vertex number of

PJC(T ) is more than one, i.e., i(PJC(T )) > 1, a contradiction.

Conversely, suppose that T is a star graph K1,3. Then J(T ) is a null graph of order three.

Since edge in T lies on exactly one cut vertex C, JC(T ) is a star graph K1,3. The path number

of T is exactly two. By definition, PJC(T ) is D
(2)
4 − v. Finally, on embedding PJC(T ) in

any plane for the adjacency of pathos vertices corresponding to paths of pathos in T , the inner

vertex number of PJC(T ) is exactly one, i.e., i(PJC(T )) = 1. Hence PJC(T ) is minimally

non-outerplanar.

(ii) Suppose PJC(T ) is minimally non-outerplanar. Assume that T is a path on n ≥ 5

vertices. If T is a path P5, by Theorem 3.1, PJC(T ) is nonplanar, a contradiction.

Conversely, if T is a path P4, by Case 2 of sufficiency part of Theorem 3.1, PJC(T ) is

Wn − {a, b}. Clearly, i(PJC(T )) = 1. Hence PJC(T ) is minimally non-outerplanar. 2
Theorem 3.5 The pathos adjacency cut vertex jump graph PJC(T ) of a tree T is Eulerian if

and only if the following conditions hold:

(i) T is a path Pn on n = 2i+ 1 vertices, for all i = 1, 2, · · · ;
(ii) T is a star graph K1,n on n = 4j + 2 vertices, for all j = 0, 1, 2, · · · .

Proof (i) Suppose that PJC(T ) is Eulerian. If T is a path Pn on n = 2(i+ 1) vertices, for

all i = 1, 2, · · · , then the number of vertices in J(T ) is (2i+ 1), which is always odd. Since the

path number of T is exactly one, by definition, the degree of the corresponding pathos vertex

in PJC(T ) is odd. By Theorem [A], PJC(T ) is non-Eulerian, a contradiction.

For sufficiency, we consider the following two cases.

Case 1 If T is a path P3, then PJC(T ) is a cycle C4, which is Eulerian.

Case 2 Suppose that T is a path Pn on n = 2i + 1 vertices, for all i = 2, 3, · · · . Let

{e1, e2, · · · en−1} be the edge set of T . Then d(e1) and d(en−1) in J(T ) is even and degree of

the remaining vertices e2, e3, · · · , en−2 is odd. The number of cut vertices in T is (n − 2). By

definition, in JC(T ) the degree of even and odd degree vertices of J(T ) will be incremented

by one and two, respectively. Hence the degree of every vertex of JC(T ) except cut vertices is

odd. Furthermore, the path number of T is exactly one and the corresponding pathos vertex

is adjacent to every vertex of J(T ). Clearly, every vertex of PJC(T ) has an even degree. By

Theorem A, PJC(T ) is Eulerian.

(ii) Suppose that PJC(T ) is Eulerian. We consider the following two cases.

Case 1 Suppose that T is a star graph K1,n on n = 2j + 1 vertices, for all j = 1, 2, · · · . Then

J(T ) is a null graph of order n. Since each edge in T lies on exactly one cut vertex C, JC(T )

is a star graph K1,n in which d(C) is odd. Moreover, since the degree of a cut vertex C does

not change in PJC(T ), it is easy to observe that the vertex C remains as an odd degree vertex

in PJC(T ). By Theorem A, PJC(T ) is non-Eulerian, a contradiction.

Case 2 Suppose that T is a star graph K1,n on n = 4j vertices, for all j = 1, 2, · · · . Then

J(T ) is a null graph of order n. Since each edge in T lies on exactly one cut vertex C, JC(T )
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is a star graph K1,n in which d(C) is even. Since the path number of T is [n
2 ], by definition,

PJC(T ) is the join of at least two copies of cycle C4 with a common vertex. Hence for every

v ∈ PJC(T ), d(v) is even. Finally, on embedding PJC(T ) in any plane for the adjacency of

pathos vertices corresponding to paths of pathos in T , there exists at least one pathos vertex,

say Pm of odd degree in PJC(T ). By Theorem [A], PJC(T ) is non-Eulerian, a contradiction.

For sufficiency, we consider the following two cases.

Case 1 For a star graph K1,2, T is a path P3. Then PJC(T ) is a cycle C4, which is Eulerian.

Case 2 Suppose that T is a star graph K1,n on n = 4j + 2 vertices, for all j = 1, 2, · · · . Then

the jump graph J(T ) is a null graph of order n. Since each edge in T lies on exactly one cut

vertex C, JC(T ) is a star graph K1,n in which d(C) is even. The path number of T is [n
2 ]. By

definition, PJC(T ) is the join of at least three copies of cycle C4 with a common vertex. Hence

for every v ∈ PJC(T ), d(v) is even. Finally, on embedding PJC(T ) in any plane for the the

adjacency of pathos vertices corresponding to paths of pathos in T , degree of every vertex of

PJC(T ) is also even. By Theorem A, PJC(T ) is Eulerian. 2
Theorem 3.6 For any path Pn on n ≥ 3 vertices, PJC(T ) is Hamiltonian.

Proof Suppose that T is a path Pn on n ≥ 3 vertices with {v1, v2, · · · vn} ∈ V (T ) and

{e1, e2, · · · en−1} ∈ E(T ). Let {C1, C2, · · ·Cn−2} be the cut vertex set of T . Also, the path

number of T is exactly one and let it be P .

By definition {e1, e2, · · · en−1} ∪ {C1, C2, · · ·Cn−2} ∪ P form the vertex set in PJC(T ). In

forming PJC(T ), the pathos P becomes a vertex adjacent to every vertex of {e1, e2, · · · , en−1}
in J(T ). Also, the cut vertices Cj , for all j = 1, 2, · · · , (n−2) are adjacent to (ei, ei+1) for all i =

1, 2, · · · , (n− 1) of JP (T ). Clearly, there exist a cycle (P, e1, C1, e2, C2, · · · en−1, Cn−2, en−1, P )

containing all the vertices of PJC(T ). Hence PJC(T ) is Hamiltonian. 2
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Abstract: Given an k-tuple of vectors, S = (v1, v2, · · · , vk), the neighborhood adjacency

code of a vertex v with respect to S, denoted by ncS(v) and defined by (a1, a2, · · · , ak) where

ai is 1 if v and vi are adjacent and 0 otherwise. S is called a Smarandachely neighborhood

resolving set on subset V ′ ⊂ V (G) if ncS(u) 6= ncS(v) for any u, v ∈ V ′. Particularly,

if V ′ = V (G), such a S is called a neighborhood resolving set or a neighborhood r-set.

The least(maximum) cardinality of a minimal neighborhood resloving set of G is called

the neighborhood(upper neighborhood) resolving number of G and is denoted by nr(G)

(NR(G)). A study of this new concept has been elaborately studied by S. Suganthi and

V. Swaminathan. Fircke et al, in 2002 made a beginning of the study of graphs which are

excellent with respect to a graph parameters. For example, a graph is domination excellent

if every vertex is contained in a minimum dominating set. A graph G is said to be just

nr-excellent if for each u ∈ V , there exists a unique nr-set of G containing u. In this paper,

the study of just nr-excellent graphs is initiated.

Key Words: Locating sets, locating number, Smarandachely neighborhood resolving set,

neighborhood resolving set, neighborhood resolving number, just nr-excellent.

AMS(2010): 05C69

§1. Introduction

In the case of finite dimensional vector spaces, every ordered basis induces a scalar coding of the

vectors where the scalars are from the base field. While finite dimensional vector spaces have

rich structures, graphs have only one structure namely adjacency. If a graph is connected, the

adjacency gives rise to a metric. This metric can be used to define a code for the vertices. P. J.

Slater [20] defined the code of a vertex v with respect to a k-tuple of vertices S = (v1, v2, · · · , vk)

as (d(v, v1), d(v, v2), · · · , d(v, vk)) where d(v, vj) denotes the distance of the vertex v from the

vertex vj . Thus, entries in the code of a vertex may vary from 0 to diameter of G. If the

codes of the vertices are to be distinct, then the number of vertices in G is less than or equal to

1Received November 12, 2013, Accepted June 10, 2014.
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(diam(G)+1)k. If it is required to extend this concept to disconnected graphs, it is not possible

to use the distance property. One can use adjacency to define binary codes, the motivation for

this having come from finite dimensional vector spaces over Z2. There is an advantage as well

as demerit in this type of codes. The advantage is that the codes of the vertices can be defined

even in disconnected graphs. The drawback is that not all graphs will allow resolution using

this type of codes.

Given an k-tuple of vectors, S = (v1, v2, · · · , vk), the neighborhood adjacency code of a

vertex v with respect to S is defined as (a1, a2, · · · , ak) where ai is 1 if v and vi are adjacent

and 0 otherwise. Whereas in a connected graph G = (V,E), V is always a resolving set, the

same is not true if we consider neighborhood resolvability. If u and v are two vertices which are

non-adjacent and N(u) = N(v), u and v will have the same binary code with respect to any

subset of V , including V . The least(maximum) cardinality of a minimal neighborhood resloving

set of G is called the neighborhood(upper neighborhood) resolving number of G and is denoted

by nr(G) (NR(G)). This concept has been done in [31], [32], [33], [34], [35], [36] and [37].

Suk J. Seo and P. Slater [27] defined the same type of problem as an open neighborhood

locating dominating set (OLD-set), is a minimum cardinality vertex set S with the property

that for each vertex v its open neighborhood N(v) has a unique non-empty intersection with

S. But in Neighborhood resolving sets N(v) may have the empty intersection with S. Clearly

every OLD-set of a graph G is a neighborhood resolving set of G, but the converse need not be

true.

M.G. Karpovsky, K. Chakrabarty, L.B. Levitin [15] introduced the concept of identifying

sets using closed neighborhoods to resolve vertices of G. This concept was elaborately studied

by A. Lobestein [16].

Let µ be a parameter of a graph. A vertex v ∈ V (G) is said to be µ-good if v belongs to a

µ-minimum (µ-maximum) set of G according as µ is a super hereditary (hereditary) parameter.

v is said to be µ-bad if it is not µ-good. A graph G is said to be µ-excellent if every vertex of

G is µ-good. Excellence with respect to domination and total domination were studied in [8],

[12], [23],[24], [25], [26]. N. Sridharan and Yamuna [24], [25], [26], have defined various types of

excellence.

A simple graph G = (V,E) is nr- excellent if every vertex is contained in a nr-set of G.

A graph G is said to be just nr-excellent if for each u ∈ V , there exists a unique nr-set of G

containing u. This paper is devoted to this concept. In this paper, definition, examples and

properties of just nr-excellent graphs is discussed.

§2. Neighborhood Resolving Sets in Graphs

Definition 2.1 Let G be any graph. Let S ⊂ V (G). Consider the k-tuple (u1, u2, · · · , uk)

where S = {u1, u2, · · · , uk}, k ≥ 1. Let v ∈ V (G). Define a binary neighborhood code of v with
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respect to the k-tuple (u1, u2, · · · , uk), denoted by ncS(v) as a k-tuple (r1, r2, · · · , rk), where

ri =







1, if v ∈ N(ui), 1 ≤ i ≤ k

0, otherwise.

Then, S is called a neighborhood resolving set or a neighborhood r-set if ncS(u) 6= ncS(v) for

any u, v ∈ V (G).

The least cardinality of a minimal neighborhood resloving set of G is called the neighbor-

hood resolving number of G and is denoted by nr(G). The maximum cardinality of a minimal

neighborhood resolving set of G is called the upper neighborhood resolving number of G and is

denoted by NR(G).

Clearly nr(G) ≤ NR(G). A neighborhood resolving set S of G is called a minimum

neighborhood resolving set or nr-set if S is a neighborhood resolving set with cardinality nr(G).

Example 2.2 Let G be a graph shown in Fig.1.

u1

u2

u3u4

u5

G :

Fig.1

Then, S1 = {u1, u2, u5} is a neighborhood resolving set of G since ncS(u1) = (0, 1, 1), ncS(u2) =

(1, 0, 1), ncS(u3) = (0, 1, 0), ncS(u4) = (0, 0, 1) and ncS(u5) = (1, 1, 0). Also S2 = {u1, u3, u4},
S3 = {u1, u2, u4}, S4= {u1, u3, u5} are neighborhood resolving sets of G. For this graph,

nr(G) = NR(G) = 3.

Observation 2.3 The above definition holds good even if G is disconnected.

Theorem 2.4([31]) Let G be a connected graph of order n ≥ 3. Then G does not have any

neighborhood resolving set if and only if there exist two non adjacent vertices u and v in V (G)

such that N(u) = N(v).

Definition 2.5([33]) A subset S of V (G) is called an nr-irredundant set of G if for every

u ∈ S, there exist x, y ∈ V which are privately resolved by u.

Theorem 2.6([33]) Every minimal neighborhood resolving set of G is a maximal neighborhood

resolving irredundant set of G.

Definition 2.7([33]) The minimum cardinality of a maximal neighborhood resolving irredundant

set of G is called the neighborhood resolving irredundance number of G and is denoted by irnr(G).
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The maximum cardinality is called the upper neighborhood resolving irrundance number of G

and is denoted by IRnr(G).

Observation 2.8([33]) For any graph G, irnr(G) ≤ nr(G) ≤ NR(G) ≤ IRnr(G).

Theorem 2.9([34]) For any graph G, nr(G) ≤ n1.

Theorem 2.10([32]) Let G be a connected graph of order n such that nr(G) = k. Then

log2n ≤ k.

Observation 2.11([32]) There exists a graph G in which n = 2k and there exists a neighbor-

hood resolving set of cardinality k such that nr(G) = k. Hence all the distinct binary k-vectors

appear as codes for the n vertices.

Theorem 2.12([34]) Let G be a connected graph of order n admitting neighborhood resolving

sets of G and let nr(G) = k. Then k = 1 if and only if G is either K2 or K1.

Theorem 2.13([34]) Let G be a connected graph of order n admitting neighborhood resolving

sets of G. Then nr(G) = 2 if and only if G is either K3 or K3 + a pendant edge or K3 ∪K1

or K2 ∪K1.

Definition 2.14([36]) Let G = (V,E) be a simple graph. Let u ∈ V (G). Then u is said to be

nr-good if u is contained in a minimum neighborhood resolving set of G. A vertex u is said to

be nr-bad if there exists no minimum neighborhood resolving set of G containing u.

Definition 2.15([36]) A graph G is said to be nr-excellent if every vertex of G is nr-good.

Theorem 2.16([36]) Let G be a non nr-excellent graph. Then G can be embedded in a nr-

excellent graph (say) H such that nr(H) = nr(G) + number of nr-bad vertices of G.

Theorem 2.17([36]) Let G be a connected non-nr-excellent graph. Let {u1, u2, · · · , uk} be the

set of all nr-bad vertices of G. Add vertices v1, v2, v3, v4 with V (G). Join vi with vj, 1 ≤ i, j ≤ 4,

i 6= j. Join ui with v1, 1 ≤ i ≤ k. Let H be the resulting graph. Suppose there exists no nr-set

T of H such that v1 privately resolves nr-good vertices and nr-bad vertices of G. Then H is

nr-excellent, G is an induced subgraph of H and nr(H) = nr(G) + 3.

§3. Just nr-Excellent Graphs

Definition 3.1 Let G = (V,E) be a simple graph. Let u ∈ V (G). Then u is said to be nr-good

if u is contained in a minimum neighborhood resolving set of G. A vertex u is said to be nr-bad

if there exists no minimum neighborhood resolving set of G containing u.

Definition 3.2 A graph G is said to be nr-excellent if every vertex of G is nr-good.

Definition 3.3 A graph G is said to be just nr-excellent graph if for each u ∈ V , there exists

a unique nr-set of G containing u.



100 S.Suganthi, V.Swaminathan, S.Suganthi and V.Swaminathan

Example 3.4 Let G = C52K2.

1
2 4 5

106
8 9

3

7

G :

Fig.2

The only nr-sets of C52K2 are {1, 2, 3, 4, 5} and {6, 7, 8, 9, 10}. Therefore, C52K2 is just

nr-excellent.

Theorem 3.5 Let G be a just nr-excellent graph. Then deg(u) ≥ n

nr(G)
− 1 for every u which

does not have 0-code with respect to more than one nr-set Si of G.

Proof Let V = S1 ∪S2 ∪ · · · ∪Sm be a partition of V (G) into nr-sets of G. Let x ∈ V (G).

Suppose x does not have 0-code with respect to any Si. Then x is adjacent to at least one

vertex in each Si. Therefore deg(u) ≥ m =
n

nr(G)
.

Suppose x has 0-code with respect to exactly one nr-set (say) Si. Then x is adjacent to

at least one vertex in each Sj , j 6= i. deg(u) ≥ m− 1 =
n

nr(G)
− 1. 2

Note 3.6 These graphs G1 to G72 referred to the appendix of this paper.

Theorem 3.7 If G is just nr-excellent, then nr(G) ≥ 4.

Proof Let G be just nr-excellent. If nr(G) = 2, then G is K3 or K3 + a pendant edge or

K3 ∪K1 or K2 ∪K1. None of them is just nr-excellent.

Let nr(G) = 3. Let Π = {S1, S2, · · · , Sk} be a nr-partition of G. Suppose k ≥ 3. Then

|V (G)| ≥ 9. But |V (G)| ≤ 2nr(G) = 23 = 8, a contradiction. Therefore k ≤ 2. Suppose k = 1.

Then |V (G)| = 3 = nr(G), a contradiction since nr(G) ≤ |V (G)| − 1. Therefore k = 2. Then

|V (G)| = 6.

Now 〈S1〉, 〈S2〉 are one of graphs P3 or K3 ∪K1 or K3. Clearly 〈S1〉, 〈S2〉 cannot be P3.

Case 1 〈S1〉 = K3 = 〈S2〉.

Let V (S1) = {u1, u2, u3} and V (S2) = {v1, v2, v3}. Since vi has 0-code with respect to S1,

if there exists no edge between S1 and S2, there should be at least one edge between S1 and

S2.

Subcase 1.1 Suppose ui is adjacent with vi, 1 ≤ i ≤ 3. From G1, it is clear that

S = {u1, u2, v3} is an nr-set of G, a contradiction since G is a just nr-excellent graph.
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Subcase 1.2 Suppose ui is adjacent with vi for exactly two of the values from i = 1, 2, 3.

Without loss of generality, let u2 be adjacent with v2 and u3 be adjacent with v3. Then in G2,

it is clear that S = {u1, u2, v3} is an nr-set of G, a contradiction since G is a just nr-excellent

graph. The other cases can be proved by similar reasoning.

Subcase 1.3 Suppose ui is adjacent with vi, 1 ≤ i ≤ 3 and one or more ui, 1 ≤ i ≤ 3 are

adjacent with every vj , 1 ≤ j ≤ 3. Let ui be adjacent with vi, 1 ≤ i ≤ 3. If every ui is adjacent

with every vj , 1 ≤ i, j ≤ 3, then each vi has the same code with respect to S1, a contradiction.

Suppose exactly one ui is adjacent with every vj , 1 ≤ i, j ≤ 3. Without loss of generality,

let u1 is adjacent with every vj , 1 ≤ j ≤ 3. Then v2 and u3 have the same code with respect to

S1, a contradiction. Suppose ui1 and ui2 are adjacent with every vj , 1 ≤ i1, i2, j ≤ 3, i1, 6= i2.

Without loss of generality, let u1 and u2 are adjacent with every vj , 1 ≤ j ≤ 3, then v1 and v2

have the same code with respect to S1, a contradiction in G3.

Subcase 1.4 Suppose ui is adjacent with vi for exactly two of the values of i, 1 ≤ i ≤ 3

and for exactly one i, ui is adjacent with every vj , 1 ≤ j ≤ 3. Without loss of generality

let u1 and u2 be adjacent with v1 and v2 respectively. If u1 is adjacent with v1, v2, v3, then

ncS1(v2) = ncS1(u3), a contradiction. If u2 is adjacent with v1, v2, v3, then ncS1(v1) = ncS1(u3),

a contradiction. If u3 is adjacent with v1, v2, v3, then ncS1(v1) = ncS1(u2), a contradiction in

G4.

Subcase 1.5 Suppose ui is adjacent with vi, for every i, 1 ≤ i ≤ 3 and one or more ui

are adjacent with exactly two of the vertices {v1, v2, v3}. Suppose u1 is adjacent with v1, v2 (u2

may be adjacent with v1, v3 or u3 may be adjacent with v1, v2). Then ncS1(v2) = ncS1(u3), a

contradiction in G5. The other cases can be proved similarly.

Subcase 1.6 Suppose ui is adjacent with vi for exactly two of the values of i, 1 ≤ i ≤ 3,

and one of the vertices which is adjacent with some vi is also adjacent with exactly one vj ,

j 6= i. If u1 is adjacent with v1, v2; u2 is adjacent with v2, but u3 is not adjacent with v1, v2, v3,

then ncS1(v2) = ncS1(u3), a contradiction in G6. The other cases also lead to contradiction.

Subcase 1.7 Suppose exactly one ui is adjacent with vi, 1 ≤ i ≤ 3 (say) u1 is adjacent

with v1. If u1 is not adjacent with v2, v3, then v2 and v3 receive 0-code with respect to S1,

a contradiction. If u1 is adjacent with v2 and not with v3, then v1 and v2 receive the same

code with respect to S1, a contradiction. If u1 is adjacent with v1, v2 and v3 then v1, v2 and

v3 receive the same code with respect to S1, a contradiction in G7. The other cases can be

similarly proved. Since {u1, u2, u3} and {v1, v2, v3} form cycles, any other case of adjacency

between S1 and S2 will fall in one of the seven cases discussed above. Hence when k = 2 and

〈S1〉 = 〈S2〉 = K3, then G is not just nr-excellent.

Case 2 〈S1〉 = K3 and 〈S2〉 = K2 ∪K1.

Let V (S1) = {u1, u2, u3} and V (S2) = {v1, v2, v3}. Let v1 and v2 be adjacent. Since G is

connected, v3 is adjacent with some ui. Since the argument in Case 1 does not depend on the

nature of 〈S2〉, we get that G is not just nr-excellent.

Case 3 〈S1〉 = 〈S2〉 = K2 ∪K1.
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Let V (S1) = {u1, u2, u3} and V (S2) = {v1, v2, v3}. Without loss of generality, let u1 be

adjacent with u2 and v1 be adjacent with v2.

Subcase 3.1 Suppose ui is adjacent with vi, 1 ≤ i ≤ 3. Then G is disconnected, a

contradiction, since G is just nr-excellent.

Subcase 3.2 Suppose ui is adjacent with vi for exactly two of the values from i = 1, 2, 3.

Then G is disconnected, a contradiction since G is just nr-excellent.

Subcase 3.3 Suppose ui is adjacent with vi, 1 ≤ i ≤ 3 and one or more ui, 1 ≤ i ≤ 3 are

adjacent with every vj , 1 ≤ j ≤ 3. If every ui is adjacent with every vj , 1 ≤ i, j ≤ 3, then each

vj has the same code with respect to S1, a contradiction, since S1 is an nr-set of G in G8.

If u1 and u2 are adjacent with every vj , 1 ≤ j ≤ 3, v1 and v2 have the same code with

respect to S1, a contradiction, since S1 is an nr-set of G (G9).

If ui(i = 1, 2) and u3 are adjacent with every vj , 1 ≤ j ≤ 3, then vi and v3 have the same

code with respect to S1, a contradiction, since S1 is an nr-set of G (G10).

Subcase 3.4 Suppose ui is adjacent with vi for exactly two of the values i, 1 ≤ i ≤ 3 and

for exactly one i, ui, 1 ≤ i ≤ 3 are adjacent with every vj , 1 ≤ j ≤ 3.

Subcase 3.4.1 Suppose u1 is adjacent with v1 and u2 is adjacent with v2. If u1 or u2 is

adjacent with every vj , 1 ≤ j ≤ 3, then G is disconnected, a contradiction, since G is just nr-

excellent. If u3 is adjacent with every vj , 1 ≤ j ≤ 3, then ncS2(v1) = ncS2(u2), a contradiction

since S2 is an nr-set of G in G11.

Subcase 3.4.2 Suppose u1 is adjacent with v1 and u3 is adjacent with v3. If u1 or u3 is

adjacent with every vj , 1 ≤ j ≤ 3, then ncS1(v1) = ncS1(u2), a contradiction, S1 is an nr-set

of G (G1).

If u2 is adjacent with every vj , 1 ≤ j ≤ 3, then ncS1(v2) = ncS1(u1), a contradiction, S1 is

an nr-set of G (G13). The other cases can be similarly proved.

Subcase 3.5 Suppose ui is adjacent with vi, for every i, 1 ≤ i ≤ 3 and one or more ui

are adjacent with exactly two of the vertices {v1, v2, v3}. Let ui is adjacent with vi, for every

i, 1 ≤ i ≤ 3.

Subcase 3.5.1 Suppose u1 is adjacent with v1 and v2 or u1 and u2 are adjacent with v1

and v2. Then G is disconnected, a contradiction, G is just nr-excellent.

Subcase 3.5.2 Suppose u1 is adjacent with v1 and v2, ui, i = 2, 3 are adjacent with v2

and v3 (G14), or u1 is adjacent with v1 and v2, u2, u3 are adjacent with v2 and v3 (G15), or

u1 is adjacent with v2 and v3, u2 is adjacent with v2 and v3 (G16), or u1 is adjacent with v2

and v3, u2, u3 are adjacent with v2 and v3 (G17), or u1 is adjacent with v1, v3, u2 is adjacent

with v2, v3 (G18), or u1 is adjacent with v1, v3, u2, u3 are adjacent with v2, v3 (G19). Then

ncS1(v1) = ncS1(u2), a contradiction since S1 is an nr-set of G.

Subcase 3.5.3 Suppose u1 is adjacent with v1, v2, u2 is adjacent with v1, v3 (G20), or

u1, u2, u3 are adjacent with v1, v2 (G21), or u1 is adjacent with v2, v3, u2 is adjacent with v1, v2

(G22), or u1 is adjacent with v2, v3, u2 is adjacent with v1, v3 (G23), or u1 is adjacent with
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v2, v3, u2, u3 are adjacent with v1, v2 (G24). Then ncS1(v1) = ncS1(v2), a contradiction since

S1 is an nr-set of G.

Subcase 3.5.4 Suppose u1 is adjacent with vi, v3, i = 1, 2, u2 is adjacent with v1, v3, u3

is adjacent with v1, v2 (G25). Then ncS1(v1) = ncS1(v3), a contradiction since S1 is an nr-set

of G.

Subcase 3.5.5 Suppose u1, u2 is adjacent with v1, v2, u3 is adjacent with vi, v3, i = 1, 2

(G26), or u1 is adjacent with v2, v3, u2 is adjacent with v1, v3, u3 is adjacent with vi, v3, i = 1, 2

(G27). Then ncS2(u1) = ncS2(u2), a contradiction since S2 is an nr-set of G.

Subcase 3.5.6 Suppose u1, u2 is adjacent with v2, v3; u3 is adjacent with v1, v2 (G28).

Then ncS1(v2) = ncS1(v3), a contradiction since S1 is an nr-set of G.

Subcase 3.5.7 Suppose u1 is adjacent with v1, v3; u2 is adjacent with v1, v2 (G29), or

u1, u2 are adjacent with v1, v3 (G30), or u1, u3 are adjacent with v1, v3, u2 is adjacent with

vi, vj , 1 ≤ i, j ≤ 3,i 6= j (G31). Then ncS1(v2) = ncS1(u1), a contradiction since S1 is an

nr-set of G.

Subcase 3.5.8 Suppose u1 is adjacent with only v1 and not with v2 and v3 (G32). Then

ncS2(v2) = ncS2(u1), a contradiction since S2 is an nr-set of G.

Subcase 3.5.9 Suppose u2 is adjacent with only v2 and not with v1 and v2 (G33). Then

ncS2(u2) = ncS2(v1), a contradiction since S2 is an nr-set of G.

Subcase 3.5.10 Suppose u1 is adjacent with only v1, v2, u2 is adjacent with only v2, v3,

u3 is adjacent with only v1, vi, i = 2, 3 (G34), or u1 is adjacent with only v1, v2, u2 is adjacent

with only v1, v3, u3 is adjacent with only vi, vj , 1 ≤ i, j ≤ 3, i 6= j (G35). Then S= {u1, v1, v3}
is an nr-set of G, a contradiction since G is just nr-excellent.

Subcase 3.5.11 Suppose u1 is adjacent with only v2, v3, u2 is adjacent with only v1, v2,

u3 is adjacent with only v2, v3 (G36). Then S= {u1, u3, v1} is an nr-set of G, a contradiction

since G is just nr-excellent.

Subcase 3.5.12 Suppose u1 is adjacent with only v2, v3, u3 is adjacent with only v1, v3,

u2 is adjacent with only v2, vi,i = 1, 3 (G37). Then S= {u1, u3, v2} is an nr-set of G, a

contradiction since G is just nr-excellent.

Subcase 3.5.13 Suppose u1 is adjacent with only v1, v3, u2 is adjacent with only v1, v2,

u3 is adjacent with only v2, vi, i = 1, 3 (G38). Then S= {u2, v1, v3} is an nr-set of G, a

contradiction since G is just nr-excellent.

Subcase 3.5.14 Suppose u1 is adjacent with only v1, v3, u2 is adjacent with only v2, v3, u3

is adjacent with only v1, v2 (for fig.39). Then S = {u3, v1, v2} is an nr-set of G, a contradiction

since G is just nr-excellent.

Subcase 3.5.15 Suppose u1, u2 are adjacent with only v1, v3; u3 is adjacent with only v2, v3

(G40). Then S= {u2, u3, v1} is an nr-set of G, a contradiction since G is just nr-excellent.

Subcase 3.6 Suppose ui is adjacent with vi for exactly two of the values of i, 1 ≤ i ≤ 3.
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Subcase 3.6.1 Let u1 be adjacent with v1 and u3 be adjacent with v3 (G41 −G56).

Subcase 3.6.1.1 Suppose u1, u3 are adjacent with v1, v2 (G41). Then ncS1(v1) = ncS1(v2),

a contradiction since S1 is an nr-set of G.

Subcase 3.6.1.2 Suppose u1, u2 are adjacent with v1, v3, u3 is adjacent with v2, v3 (G42),

or u1, u2 are adjacent with v1, v3 (G43). Then ncS2(u1) = ncS2(u2), a contradiction since S2 is

an nr-set of G.

Subcase 3.6.1.3 Suppose u1 is adjacent with v1, v2, u3 is adjacent with v2, v3 (G44), or

u1 is adjacent with vi, v3 (i = 1, 2) (45), or u1 is adjacent with vi, v3 (i = 1, 2), u3 is adjacent

with v2, v3 (G46). Then ncS1(u2) = ncS1(v1), a contradiction since S1 is an nr-set of G.

Subcase 3.6.1.4 Suppose u1 is adjacent with only v1, v2, u2 is adjacent with only v1, v3,

u3 is adjacent with only vi, v2, i = 1, 3 (G47), or u1 is adjacent with only v2, v3, u2 is adjacent

with only v1, v3, u3 is adjacent with only v2, v3 (G48). Then S= {u1, v1, v3} is an nr-set of G,

a contradiction since G is just nr-excellent.

Subcase 3.6.1.5 Suppose u1 is adjacent with v1, v2, u2 is adjacent with v1, v3 (G49), or

u1 is adjacent with v1, v2, u2, u3 are adjacent with v1, v3 (G50), or u1 is adjacent with v2, v3,

u2 is adjacent with v1, v3 (G51), or u1 is adjacent with v2, v3, u3 is adjacent with v1, v3 (G52).

Then ncS1(v2) = ncS1(u2), a contradiction since S1 is an nr-set of G.

Subcase 3.6.1.6 Suppose u1 is adjacent with v2, v3, u3 is adjacent with v1, v2 (G53), or

u1 is adjacent with v2, v3, u2 is adjacent with v1, v3, u3 is adjacent with v1, vi (i = 2, 3) (G54),

or u1 is adjacent with v1, v3, u3 is adjacent with v1, vi i = 2, 3 (G55), or u1, u2 is adjacent with

v1, v3, u3 is adjacent with v1, vi i = 2, 3 (G56). Then ncS1(v1) = ncS1(v3), a contradiction since

S1 is an nr-set of G.

Subcase 3.6.2 Let u1 be adjacent with v1 and u2 be adjacent with v2 (G57 −G64).

Subcase 3.6.2.1 Suppose u1, u3 are adjacent with v1, v2, u2 is adjacent with v2, v3 (G57).

Then ncS2(u1) = ncS2(u3), a contradiction since S2 is an nr-set of G.

Subcase 3.6.2.2 Suppose u1 is adjacent with v1, v3; u2, u3 are adjacent with v1, v2 (G58).

Then ncS2(u2) = ncS2(u3), a contradiction since S2 is an nr-set of G.

Subcase 3.6.2.3 Suppose u1 is adjacent with only vi, v3, i = 1, 2, u2 is adjacent with

only v2, v3, u3 is adjacent with only v1, v2 (G59). Then S= {u2, u3, v1} is an nr-set of G, a

contradiction, since G is just nr-excellent.

Subcase 3.6.2.4 Suppose u1, u2 are adjacent with only v1, v3, u3 is adjacent with only

v1, v2 (G60). Then S= {u1, v2, v3} is an nr-set of G, a contradiction, since G is just nr-excellent.

Subcase 3.6.2.5 Suppose u1, u3 are adjacent with v1, v2, u2 is adjacent with v1, v3 (G61),

or u1 is adjacent with v2, v3, u2 is adjacent with v1, vi (i = 2, 3), u3 is adjacent with v1, v2

(G62). Then ncS1(v1) = ncS1(v2), a contradiction since S1 is an nr-set of G.

Subcase 3.6.2.6 Suppose u1 is adjacent with v1, v2, u3 is adjacent with v1, v3 (G63), or

u1 is adjacent with vi, v3, i = 1, 2, u3 is adjacent with v1, v2 (G64). Then ncS2(u2) = ncS2(v1),
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a contradiction since S2 is an nr-set of G. The other instances can be similarly argued.

Subcase 3.6.3 Suppose exactly one ui is adjacent with vi, 1 ≤ i ≤ 3.

Subcase 3.6.3.1 If u1 is adjacent with v1, u2 is adjacent with v3, u3 is adjacent with vi,

i = 1, 2, or u3 is adjacent with v1, v2, or u1 is adjacent with v1, u2 is adjacent with v1, v3, u3

is adjacent with vi, i = 1, 2, or u3 is adjacent with v1, v2, or u1 is adjacent with v1, v2, u2 is

adjacent with v3, u3 is adjacent with vi, i = 1, 2, or u3 is adjacent with v1, v2, or u1 is adjacent

with v1, v2, u2 is adjacent with v1, v3, u3 is adjacent with vi, i = 1, 2, or u3 is adjacent with

v1, v2 (G65). Then ncS1(v3) = ncS1(u1), a contradiction since S1 is an nr-set of G.

Subcase 3.6.3.2 If u1 is adjacent with v1, v3, u2 is adjacent with v3, or u2 is adjacent with

v1, v3, u3 is adjacent with v2, or If u1 is adjacent with v2, v3, u2 is adjacent with v3, or u2 is

adjacent with v1, v3), u3 is adjacent with v2 (G66). Then ncS2(u3) = ncS2(v1), a contradiction

since S2 is an nr-set of G.

Subcase 3.6.3.3 If u1 is adjacent with v1, v3, u3 is adjacent with vi, i = 1, 2, or u1 is

adjacent with v1, v3, u2 is adjacent with v1, u3 is adjacent with vi, i = 1, 2, or u1 is adjacent

with v1, v3, u3 is adjacent with v1, v2, or u1 is adjacent with v1, v3, u2 is adjacent with v1, u3

is adjacent with v1, v2, or u1 is adjacent with v2, v3, u3 is adjacent with vi, i = 1, 2, or u1 is

adjacent with v2, v3, u2 is adjacent with v1 u3 is adjacent with vi, i = 1, 2, or u1 is adjacent

with v2, v3, u3 is adjacent with v1, v2, or u1 is adjacent with v2, v3, u2 is adjacent with v1, u3

is adjacent with v1, v2 (G67). Then ncS1(v3) = ncS1(u2), a contradiction, since S1 is an nr-set

of G.

Subcase 3.6.3.4 If u1 is adjacent with v1, v3, u2 is adjacent with v3, or u2 is adjacent with

v1, v3, u3 is adjacent with v1, or if u1 is adjacent with v2, v3, u2 is adjacent with v3, or)u2 is

adjacent with v1, v3), u3 is adjacent with v1 (G68). Then ncS2(u3) = ncS2(v2), a contradiction

since S2 is an nr-set of G.

Subcase 3.6.3.5 If u1, u2 are adjacent with v1, v3, u3 is adjacent with v1, v2 (G69). Then

ncS2(u1) = ncS2(u2), a contradiction since S2 is an nr-set of G.

Subcase 3.6.3.6 If u1 is adjacent with v2, v3, u2 is adjacent with v3, u3 is adjacent with

v1, v2 (G70). Then ncS1(v1) = ncS1(v2), a contradiction since S1 is an nr-set of G.

Subcase 3.6.3.7 If u1 is adjacent with v1, v3, u2 is adjacent with v3, u3 is adjacent with

v1, v2 (G71). Then S = {u1, u2, v2} is an nr-set of G, a contradiction since G is just nr-excellent.

Subcase 3.6.3.8 If u1 is adjacent with v2, v3, u2 is adjacent with v1, v3, u3 is adjacent

with v1, v2 (G72). Then S = {u2, u3, v2} is an nr-set of G, a contradiction since G is just

nr-excellent. The other instances can be similarly argued. Hence, if G is just nr-excellent, then

nr(G) ≥ 4. 2
Theorem 3.8 Every just nr-excellent graph G is connected.

Proof If G is not connected, all the connected components of G contains more than one

vertex (since G∪K1 is not a nr-excellent graph). Let G1 be one of the component of G. As G1

is also just nr-excellent, and nr(G1) ≤
|G1|
2

, G1 has more than one nr-set. Select two nr-sets

say S1 and S2 of G1. Fix one nr-set D for G−G1. Then both D ∪ S1 and D ∪ S2 are nr-sets



106 S.Suganthi, V.Swaminathan, S.Suganthi and V.Swaminathan

of G, which is a contradiction, since G is just nr-excellent. Hence every just nr-excellent graph

is connected. 2
Theorem 3.9 The graph G of order n is just nr-excellent if and only if

(1) nr(G) divides n;

(2) dnr(G) =
n

nr(G)
;

(3) G has exactly
n

nr(G)
distinct nr-sets.

Proof Let G be just nr-excellent. Let S1, S2, · · · , Sm be the collection of distinct nr-sets

of G. Since G is just nr-excellent these sets are pairwise disjoint and their union is V (G).

Therefore V = S1 ∪ S2 ∪ · · · ∪ Sm is a partition of V into nr-sets of G.

Since |Si| = nr(G), for every i = 1, 2, · · · ,m we have neighborhood resolving partition

number of G = dnr(G) = m and nr(G)m = n.

Therefore both nr(G) and dnr(G) are divisors of n and dnr(G) = n
nr(G) . Also G has exactly

m =
n

nr(G)
distinct nr-sets.

Conversely, assume G to be a graph satisfying the hypothesis of the theorem. Let m =
n

nr(G)
. Let V = S1 ∪ S2 ∪ · · · ∪ Sm be a decomposition of neighborhood resolving sets of G.

Now as nr(G)m = n =
m∑

i=1

|Si| ≥ m.nr(G), for each i, Si is an nr-set of G. Since it is given

that G has exactly m distinct nr-sets, S1, S2, · · · , Sm are the distinct nr-sets of G.

V = S1 ∪ S2 ∪ · · · ∪ Sm is a partition and hence each vertex of V belongs to exactly one

Si. Hence G is just nr-excellent. 2
Theorem 3.10 Let G be a just nr-excellent graph. Then δ(G) ≥ 2.

Proof Suppose there exists a vertex u ∈ V (G) such that deg(u) = 1. Let v be the support

vertex of u. Let S1, S2, · · · , Sm be the nr-partition of G.

Case 1 Let u ∈ S1 and v /∈ S1. Suppose u resolves u and v only. Then (S1 − {u}) ∪ {v} is

an nr-set of G, a contradiction. Suppose u resolves privately and uniquely v and y for some

y ∈ V (G).

Subcase 1.1 v and y are non-adjacent.

Since v ∈ Si, i 6= 1 and Si is an nr-set of G, there exists some z ∈ Si such that z resolves

v and y. Further x1, x2 ∈ V (G) where x1, x2 6= u, are resolved by the vertices of S1 − {u}.
Therefore (S1−{u})∪{z} is a neighborhood resolving set of G. Since |(S1−{u})∪{z}| = |S1|,
(S1 − {u}) ∪ {z} is an nr-set of G, a contradiction to G is just nr-excellent.

Subcase 1.2 v and y are adjacent.

Then (S1 − {u}) ∪ {v} is an nr-set of G, a contradiction.

Case 2 Suppose u, v ∈ Si for some Si, 1 ≤ i ≤ m. Without loss of generality, let u, v ∈ S1.

Subcase 2.1 Suppose u resolves u and v only. Let S1
1 = S1 −{u}. Suppose there exists a

vertex w in S1 such that w and v have 0-code with respect to S1 − {u}. Then u resolves v and
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w in S1, a contradiction, since u resolves u and v only. So v does not have 0-code with respect

to S1
1 . Therefore S1

1 is a neighborhood resolving set, a contradiction.

Subcase 2.2 Suppose u resolves privately and uniquely v and y for some y ∈ V (G). If v

and y are adjacent, then v resolves v and y, a contradiction, since u resolves privately v and y.

Therefore v and y are non-adjacent.

Since Si, i 6= 1, is an nr-set of G, there exists a vertex z ∈ Si, such that z resolves v and y.

Consider S11
1 = (S1 −{u})∪{z}. Suppose there exists a vertex w in S1 whose code is zero with

respect to S1 − {u} and v also has 0-code with respect to S1 − {u}. If y 6= w, then u resolves

v and w in S1, a contradiction, since u resolves v and y uniquely. Therefore y = w. That is y

receives 0-code with respect to S1 − {u}.
Since z resolves v and y with respect to S1, z is either adjacent to v or adjacent to y. If

z is adjacent to y, then v receives 0-code with respect to S11
1 . x, y ∈ V (G) where x, y 6= u, are

resolved by the vertices of S1 −{u}. Therefore, S11
1 is a neighborhood resolving set of G. Since

|S11
1 | = |S1|, S11

1 is an nr-set of G, a contradiction, since G is just nr-excellent. If z is adjacent

to v, then z is not adjacent to y. Then y receives 0-code with respect to S11
1 . Arguing as before

we get a contradiction. Consequently, δ(G) ≥ 2. 2
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Abstract: Let G be a graph without isolated vertices. A total dominator coloring of a graph

G is a proper coloring of G with the extra property that every vertex in G properly dominates

a color class. The smallest number of colors for which there exists a total dominator coloring

of G is called the total dominator chromatic number of G and is denoted by χtd(G). In this

paper we determine the total dominator chromatic number in caterpillars.
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§1. Introduction

All graphs considered in this paper are finite, undirected graphs and we follow standard defini-

tions of graph theory as found in [4].

Let G = (V,E) be a graph of order n with minimum degree at least one. The open

neighborhood N(v) of a vertex v ∈ V (G) consists of the set of all vertices adjacent to v. The

closed neighborhood of v is N [v] = N(v)∪ {v}. For a set S ⊆ V , the open neighborhood N(S)

is defined to be
⋃

v∈S

N(v), and the closed neighborhood of S is N [S] = N(S) ∪ S.

A subset S of V is called a total dominating set if every vertex in V is adjacent to some

vertex in S. A total dominating set is minimal total dominating set if no proper subset of S is

a total dominating set of G. The total domination number γt is the minimum cardinality taken

over all minimal total dominating sets of G. A γt-set is any minimal total dominating set with

cardinality γt.

A proper coloring of G is an assignment of colors to the vertices of G, such that adjacent

vertices have different colors.

The smallest number of colors for which there exists a proper coloring of G is called

chromatic number of G and is denoted by χ(G). Let V = {u1, u2, u3, · · · , up} and C =

{C1, C2, C3, · · · , Cn}, n 6 p be a collection of subsets Ci ⊂ V . A color represented in a

vertex u is called a non-repeated color if there exists one color class Ci ∈ C such that Ci = {u}.
A vertex v of degree 1 is called an end vertex or a pendant vertex of G and any vertex

1Received June 6, 2013, Accepted June 12, 2014.
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which is adjacent to a pendant vertex is called a support.

A caterpillar is a tree with the additional property that the removal of all pendant vertices

leaves a path. This path is called the spine of the caterpillar, and the vertices of the spine are

called vertebrae. A vertebra which is not a support is called a zero string. In a caterpillar,

consider the consecutive i zero string, called zero string of length i. A caterpillar which has no

zero string of length at least 2 is said to be of class 1 and all other caterpillars are of class 2.

Let G be a graph without isolated vertices. For an integer k > 1, a Smarandachely k-

dominator coloring of G is a proper coloring of G with the extra property that every vertex

in G properly dominates a k-color classes and the smallest number of colors for which there

exists a Smarandachely k-dominator coloring of G is called the Smarandachely k-dominator

chromatic number of G and is denoted by χS
td(G) . Let G be a graph without isolated vertices.

A total dominator coloring of a graph G is a proper coloring of G with the extra property that

every vertex in G properly dominates a color class. The smallest number of colors for which

there exists a total dominator coloring of G is called the total dominator chromatic number of

G and is denoted by χtd(G). In this paper we determine total dominator chromatic number in

caterpillars.

Throughout this paper, we use the following notations.

Notation 1.1. Usually, the vertices of Pn are denoted by u1, u2, · · · , un in order. For i < j ,

we use the notation 〈[i, j]〉 for the sub path induced by 〈ui, ui+1, · · · , uj〉 . For a given coloring

C of Pn , C/〈[i, j]〉 refers to the coloring C restricted to 〈[i, j]〉 .

We have the following theorem from [1].

Theorem 1.2([1]) Let G be any graph with δ(G) > 1. Then max{χ(G), γt(G)} 6 χtd(G) 6

χ(G) + γt(G).

From Theorem 1.2, χtd(Pn) ∈ {γt(Pn), γt(Pn) + 1, γt(Pn) + 2}. We call the integer n,

good (respectively bad, very bad) if χtd(Pn) = γt(Pn) + 2 (if respectively χtd(Pn) = γt(Pn) +

1, χtd(Pn) = γt(Pn)). First, we prove a result which shows that for large values of n, the

behavior of χtd(Pn) depends only on the residue class of n mod 4 [More precisely, if n is good,

m > n and m ≡ n(mod 4) then m is also good]. We then show that n = 8, 13, 15, 22 are the

least good integers in their respective residue classes. This therefore classifies the good integers.

Fact 1.3 Let 1 < i < n and let C be a td-coloring of Pn. Then, if either ui has a repeated

color or ui+2 has a non-repeated color, C/〈[i+ 1, n]〉 is also a td-coloring.

Theorem 1.4([2]) Let n be a good integer. Then, there exists a minimum td-coloring for Pn

with two n-d color classes.

§2. Total Dominator Colorings in Caterpillars

After the classes of stars and paths, caterpillars are perhaps the simplest class of trees. For

this reason, for any newly introduced parameter, we try to obtain the value for this class. In
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this paper, we give an upper bound for χtd(T ), where T is a caterpillar (with some restriction).

First, we prove a theorem for a very simple type which however illustrates the ideas to be used

in the general case.

Theorem 2.1 Let G be a caterpillar such that

(i) No two vertices of degree two are adjacent;

(ii) The end vertebrae have degree at least 3;

(iii) No vertex of degree 2 is a support vertex.

Then χtd(G) 6

⌈3r + 2

2

⌉

.

Proof LetC be the spine ofG. Let u1, u2, · · · , ur be the support vertices and ur+1, ur+2, · · · ,
u2r−1 be the vertices of degree 2 in C. In a td-coloring of G, all support vertices receive a non-

repeated color, say 1 to r and all pendant vertices receive the same repeated color say r + 1

and the vertices ur+1 and u2r−1 receive a non-repeated color say r + 2 and r + 3 respectively.

Consider the vertices {ur+2, ur+3, · · · , u2r−2}. We consider the following two cases.

Case 1 r is even.

In this case the vertices ur+3, ur+5, · · · , ur+( r
2−2), ur+ r

2
, ur+( r

2+2), · · · , u2r−3 receive the

non-repeated colors say r+4 to r +
( r

2
+ 1
)

=
3r + 2

2
and the remaining vertices ur+2, ur+4, · · · ,

u2r−2 receive the already used repeated color r + 1 respectively. Thus χtd(G) 6
3r + 2

2
.

Case 2 r is odd.

In this case the vertices ur+3, ur+5, · · · , ur+( r
2−2), ur+ r

2
, ur+( r

2+2), · · · , u2r−4, u2r−2 re-

ceive the non-repeated colors say r + 4 to r +

(
r + 3

2

)

=
3r + 3

2
and the remaining vertices

ur+2, ur+4, · · · , u2r−3 receive the already used repeated color r + 1 respectively. Thus

χtd(G) 6
3r + 3

2
=
⌈3r + 2

2

⌉

. 2
Illustration 2.2 In Figures 1 and 2, we present 2 caterpillars holding with the upper

bound of χtd(G) in Theorem 2.1.

···

1 2 3 4 5 68 7 10 7 9

7 7 7 7 7 7

··· ··· ··· ··· ···

Figure 1

Clearly, χtd(G) = 10 =
3r + 2

2
.
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···

1 9 2 8 3 11 4 8 5 12 6 10 7

8 8 8 8 8 8 8

··· ··· ··· ··· ··· ······

Figure 2

Clearly, χtd(G) = 12 =
⌈3r + 2

2

⌉

.

Remark 2.3 Let C be a minimal td-coloring of G. We call a color class in C, a non-dominated

color class (n− d color class) if it is not dominated by any vertex of G. These color classes are

useful because we can add vertices to those color classes without affecting td-coloring.

Theorem 2.4 Let G be a caterpillar of class 2 having exactly r vertices of degree at least 3

and ri zero strings of length i, 2 6 i 6 m,m = maximum length of a zero string in G. Further

suppose that rn 6= 0 for some n, where n − 2 is a good number and that end vertebrae are of

degree at least 3. Then

χtd(G) 6 2(r + 1) +

m∑

i=3
i≡1,2,3(mod4)

ri

⌈ i− 2

2

⌉

+

m∑

i=4
i≡0(mod4)

ri

(⌈ i− 2

2

⌉

+ 1

)

.

Proof Let S be the spine of the caterpillar G and let V (S) = {u1, u2, · · · , ur}. We give

the coloring of G as follows:

Vertices in S receive non-repeated colors, say from 1 to r. The set N(uj) is given the color

r + j, 1 6 j 6 r (uj is not adjacent to an end vertex of zero string of length 3 and if a vertex

is adjacent to two supports, it is given one of the two possible colors). This coloring takes care

of any zero string of length 1 or 2. Now, we have assumed rn 6= 0 for some n, where n− 2 is a

good number. Hence there is a zero string of length n in G.

By Theorem 1.4, there is a minimum td-coloring of this path in which there are two n− d

colors. We give the sub path of length n this coloring with n − d colors being denoted by

2r + 1, 2r + 2. The idea is to use these two colors whenever n− d colors occur in the coloring

of zero strings. Next, consider a zero string of length 3, say

ui x1 x2 x3 ui+1

Figure 3

where ui and ui+1 are vertices of degree at least 3 and we have denoted the vertices of the string

of length 3 by x1, x2, x3 for simplicity. Then, we give x1 or x3, say x1 with a non-repeated color;
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we give x2 and x3 the colors 2r + 1 and 2r + 2 respectively. Thus each zero string of length

3 introduces a new color and
⌈3 − 2

2

⌉

= 1. Similarly, each zero string of length i introduces
⌈ i− 2

2

⌉

new colors when i ≡ 1, 2, 3(mod 4). However, the proof in cases when i > 3 is different

from case i = 3 (but are similar in all such cases in that we find a td-coloring involving two

n− d colors). e.g. a zero string of length 11.

We use the same notation as in case i = 3 with a slight difference:

ui xi y1 y2 y3 y4 y5 y6 y7 y8 y9 xi+1 ui+1

Figure 4

ui and ui+1 being support vertices receive colors i and i+1. xi and xi+1 receive r+i and r+i+1

respectively. For the coloring of P9 , we use the color classes {y1, y4}, {y2}, {y3}, {y5, y9}, {y6},
{y7}, {y8}. We note that this is not a minimal td-coloring which usually has no n − d color

classes. This coloring has the advantage of having two n − d color classes which can be given

the class 2r+1 and 2r+2 and the remaining vertices being given non-repeated colors. In cases

where i is a good integer, Pi−2 requires
⌈ i− 2

2

⌉

+ 2 colors. However there will be two n − d

color classes for which 2r + 1 and 2r + 2 can be used. Thus each such zero string will require

only
⌈ i− 2

2

⌉

new colors (except for the path containing the vertices we originally colored with

2r + 1 and 2r + 2). However, if i ≡ 0(mod4), i− 2 ≡ 2(mod4), and we will require
⌈ i− 2

2

⌉

+ 1

new colors. It is easily seen this coloring is a td-coloring. Hence the result. 2
Illustration 2.5 In Figures 5 − 7, we present 3 caterpillars with minimum td-coloring.

···

···

···

···

1

2

5 7 9 10 7 8 11 12 8 6

3

4

7

65

7

Figure 5

Then, χtd(T ) = 12 < 2(r + 1) + r10

⌈10 − 2

2

⌉

.
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··· ·· · ·· · ·· ·

1 5 6 2 11 9 7 3 7 9 12 13 9 10 14 15 9 8 4

8765

Figure 6

Then, χtd(T2) = 15 = 2(r + 1) + r3

⌈3 − 2

2

⌉

+ r10

⌈10 − 2

2

⌉

··· ·· · ·· · ·· ·

1 5 6 2 6 9 11 12 9 10 13 14 15 16 9 7 3 17 9

8765

8 4

Figure 7

Then, χtd(T3) = 17 = 2(r + 1) + r3 + r12

(⌈12 − 2

2

⌉

+ 1

)

.

Remark 2.7 (1) The condition that end vertebrae are of degree at least 3 is adopted for the

sake of simplicity. Otherwise the caterpillar ’begins’ or ’ends’ (or both) with a segment of a

path and we have to add the χtd -values for this (these) path(s).

(2) If in Theorem 2.1, we assume that all the vertices of degree at least 3 are adjacent

(instead of (ii)), we get χtd(G) = r + 1.

(3) The bound in Theorem 2.4 does not appear to be tight. We feel that the correct bound

will have 2r + 1 on the right instead of 2r + 2. There are graphs which attain this bound.
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We know nothing of what will happen in future, but by the analogy of past
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By Abraham Lincoln, an American president.
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