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Abstract 

   In this paper, we introduce and study the concept of "neutrosophic closed set "and "neutrosophic continuous function".  Possible ap-

plication to GIS topology rules are touched upon. 

 Keywords: Neutrosophic Closed Set, Neutrosophic Set; Neutrosophic Topology; Neutrosophic Continuous Function. 

1 INTRODUCTION 

     The idea of "neutrosophic set" was first given by 

Smarandache [11, 12]. Neutrosophic operations have been 

investigated by Salama at el. [1-10]. Neutrosophy  has laid 

the foundation for a whole family of new mathematical 

theories, generalizing both their crisp and fuzzy 

counterparts [9, 13]. Here we shall present the  

neutrosophic crisp version of these concepts. In this paper, 

we introduce and study the concept of "neutrosophic closed set 

"and "neutrosophic continuous function".   

2  TERMINOLOGIES 

     We recollect some relevant basic preliminaries, and in 

particular the work of Smarandache in [11, 12], and 

Salama at el. [1-10]. 

2.1 Definition [5] 

A neutrosophic topology (NT for short) an a non empty 

set X  is a family   of neutrosophic subsets in X  satisfy-

ing the following axioms 

 1NT ,1
N N

O  ,

 2NT 1 2
G G   for any

1 2
,G G  , 

 3NT  :
i i

G G i J      

In this case the pair  ,X   is called a neutrosophic

topological space ( NTS  for short) and any neutrosophic 

set in   is known as neuterosophic open set ( NOS  for

short)  in X . The elements of   are called open

neutrosophic sets, A neutrosophic set F is closed if and 

only if it C (F) is neutrosophic open. 

2.1 Definition [5] 
The complement of (C (A) for short) of is called a neutro-
sophic closed set ( for short) in A . NOSA NCS X. 

3 Neutrosophic Closed Set . 
3.1 Definition  
    Let  ,X   be a neutrosophic topological space. A 
neutrosophic set A in  ,X   is said to be neutrosophic 
closed (in shortly N-closed).         
If  Ncl (A)  G whenever A  G and G is neutrosophic 

open; the complement of  neutrosophic closed set is 
Neutrosophic open. 

3.1 Proposition 

     If A and B are neutrosophic closed sets then AB is 
Neutrosophic closed set. 

3.1 Remark 

     The intersection of two neutrosophic closed (N-closed 
for short)  sets need not be neutrosophic closed set. 

3.1 Example 

       Let  = {a, b, c} and 

4
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      A = <(0.5,0.5,0.5) , (0.4,0.5,0.5) , (0.4,0.5,0.5)> 
      B = <(0.3,0.4,0.4) , (0.7,0.5,0.5) , (0.3,0.4,0.4)> 

Then  = { 0N ,1N  ,  A, B} is a neutrosophic topology on . 
Define the two neutrosophic sets 1A  and 2A as follows,

      1A = <(0.5,0.5,0.5),(0.6,0.5,0.5),(0.6,0.5,0.5)> 

        2A = <(0.7,0.6,0.6((0.3,0.5,0.5),(0.7,0.6,0.6)> 

       1A  and 2A are neutrosophic closed set but 1A  2A  is 
not a neutrosophic closed set. 
3.2 Proposition   
        Let  ,X   be a neutrosophic topological space. If B is 
neutrosophic closed set and   B  A  Ncl (B), then A is 
N-closed. 

3.4 Proposition 

    In a neutrosophic topological space (,), = (the 
family of all neutrosophic closed sets) iff every 
neutrosophic subset of (,) is a neutrosophic closed set. 

Proof. 

suppose that every  neutrosophic  set  A  of (,) is N-
closed. Let A, since  A  A and A is N-closed, Ncl (A) 
 A. But A  Ncl (A). Hence, Ncl (A) =A. thus, A  . 
Therefore, T  . If B   then 1-B   . and hence 
B, That is,   . Therefore = conversely, suppose 

that A be a neutrosophic set in (,). Let B be a 
neutrosophic open set in (,).  such that A  B. By 
hypothesis, B is neutrosophic N-closed. By definition of 
neutrosophic closure, Ncl (A)  B. Therefore A is N-
closed. 

3.5 Proposition   
Let (,) be a neutrosophic topological space. A 
neutrosophic set A is neutrosophic open iff B  Nnt (A), 
whenever B is neutrosophic closed and B  A. 
Proof 
 Let A a neutrosophic open set and B be a N-closed, such 

that B  A. Now, B  A 1A 1B and 1A is a 
neutrosophic closed set  Ncl (1A)  1B. That is, 
B=1(1B)  1Ncl (1A). But 1Ncl (1A) = Nint (A). 
Thus, B  Nint (A).  Conversely, suppose that A be a 
neutrosophic set, such that B  Nint (A) whenever B is 
neutrosophic closed and B  A. Let 1A  B  1B  A. 

Hence  by assumption 1B  Nint (A). that is, 1Nint (A) 
 B. But 1Nint (A) =Ncl (1A). Hence  Ncl(1A)  B. 
That is 1A is  neutrosophic closed set. Therefore, A is 
neutrosophic open set 

3.6 Proposition 

 If Nint (A)  B  A and if A is neutrosophic open set then 
B is also neutrosophic open set. 

4  Neutrosophic Continuous Functions

4.1 Definition 
i) If BBBB  ,,  is a NS in Y, then the preimage of  B 
under 

,f
 denoted by ),(1 Bf  is a NS in X defined by 

.)(),(),()( 1111
   fffBf BB  

ii) If AAAA  ,,  is a NS in X, then the image of A 

under ,f denoted by ),(Af  is the a NS in Y defined by 
.))(),(),()( c

AAA fffAf 

    Here we introduce the properties of images and 
preimages some of which we shall frequently use in the 
following sections . 

4.1 Corollary 

Let   A,  JiAi :  , be NSs in X, and

B,  KjB j :  NS in Y, and YXf : a

 function. Then  

(a) ),()( 2121 AfAfAA 

),()( 2
1

1
1

21 BfBfBB    

(b) ))((1 AffA   and if f is injective, then 

))((1 AffA  . 

(c) BBff  ))((1  and if f is surjective, then 

,))((1 BBff  . 

(d) ),())( 11
ii BfBf   ),())( 11

ii BfBf    

(e) );()( ii AfAf  );()( ii AfAf  and if f is injective, 

then  );()( ii AfAf   

(f) 
NNf 1)(!1 

NNf 0)0(1  . 

(g) ,0)0( NNf  NNf 1)1(   if f is subjective. 

Proof 

    Obvious. 

4.2 Definition 
Let  1,X  and  2,Y  be two NTSs, and  let

YXf : be a function. Then f  is said to be continuous 
iff  the preimage of each NCS in 2  is a NS in 1 . 

4.3 Definition 
Let  1,X  and  2,Y  be two NTSs and  let

YXf : be a function. Then f  is said to be open iff the 
image of each NS in 1  is a NS in 2 . 

4.1 Example 
Let  oX ,  and  oY ,  be two NTSs

(a) If YXf :  is continuous in the usual sense, then in 

this case, f  is continuous in the sense of Definition 5.1 

too. Here we consider the NTs on X and Y, respectively, 

as follows :  o
c
GG G   :,0,1

 and
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 o
c
HH H   :,0,2 , 

In  this case we have, for each 2,0,  c
HH , 

oH  , 

)(),0(),(,0, 1111 c
HH

c
HH ffff   

1
1 )((),0(,    c

H fff . 

(b) If YXf :  is neutrosophic open in the usual 

sense, then in this case, f  is neutrosophic open 

in the sense of  Definition 3.2. 

Now we obtain some characterizations of 
neutrosophic continuity:  

4.1 Proposition 

  Let ),(),(: 21  YXf  . 

f is neutrosop continuous iff the preimage of each NS 

(neutrosophic closed set) in 2  is a NS in 2 . 

4.2 Proposition 
  The following are equivalent to each other: 

(a)  ),(),(: 21  YXf   is neutrosophic 

continuous . 

(b) ))(()(( 11 BfNIntBNIntf    for each CNS B 

in Y. 

(c) ))(())(( 11 BNClfBfNCl    for each NCB in 

Y. 

4.2 Example 
Let  2,Y  be a NTS and YXf : be a function. In

this case  2
1

1 :)(    HHf is a NT on X. Indeed, it 
is the coarsest NT on X which makes the function 

YXf : continuous. One may call it the initial 
neutrosophic crisp  topology  with respect to .f  

4.4 Definition 

 Let (,) and (,S) be two neutrosophic topological space, 
then   

 (a) A map  : (,)  (,S) is called N-continuous (in 
short N-continuous) if the inverse image of every closed 
set in (,S) is Neutrosophic closedin (,). 
(b) A map :(,) (,S) is called neutrosophic-gc 
irresolute if the inverse image of every Neutrosophic 
closedset in (,S) is Neutrosophic closedin (,). 

Equivalently if the inverse image of every Neutrosophic 
open set in (,S) is Neutrosophic open in (,). 
(c) A map :(,) (,S) is said to be strongly 
neutrosophic continuous if 1(A) is both neutrosophic 
open and neutrosophic closed in (,) for each 
neutrosophic  set A in (,S). 

(d) A map  : (,)  (,S) is said to be perfectly 
neutrosophic continuous if 1 (A) is both neutrosophic 
open and neutrosophic closed in (,) for each 
neutrosophic open set A in (,S). 
(e) A map :(,)(,S) is said to be strongly N-
continuous if the inverse image of every Neutrosophic 

open set in (,S) is neutrosophic open in (,). 

(F) A map :(,)(,S) is said to be perfectly N-
continuous if the inverse image of every Neutrosophic 
open set in (,S) is both neutrosophic open and 
neutrosophic closed in (,). 

4.3 Proposition  
Let (,) and (,S) be any two neutrosophic topological 
spaces.  Let  : (,)  (,S) be generalized neutrosophic 
continuous. Then for every neutrosophic set A in , 
(Ncl(A))  Ncl((A)). 

4.4 Proposition   
Let (,) and (,S) be any two neutrosophic topological 
spaces.  Let  : (,)  (,S) be generalized neutrosophic 
continuous. Then for every neutrosophic set A in , 
Ncl(1(A))  1(Ncl(A)). 

4.5 Proposition 

 Let (,) and (,S) be any two neutrosophic topological 
spaces. If A is a Neutrosophic closedset in (,) and if  : 
(,)  (,S) is neutrosophic continuous and 
neutrosophic-closed then (A) is Neutrosophic closedin 
(,S). 

Proof. 
 Let G be a neutrosophic-open in (,S). If (A)  G, then 
A  1(G) in (,). Since A is neutrosophic closedand 
1(G) is neutrosophic open in (,), Ncl(A)  1(G),      
(i.e) (Ncl(A)G. Now by assumption, (Ncl(A)) is 

neutrosophic closed and   Ncl((A))  Ncl((Ncl(A))) = 
(Ncl(A))  G. Hence, (A) is N-closed. 

4.5 Proposition 

 Let (,) and (,S) be any two neutrosophic topological 
spaces, If  : (,)  (,S) is neutrosophic continuous 

then it is N-continuous. 
    The converse of proposition 4.5 need not be true. See 

Example 4.3. 

4.3 Example   
Let  =a,b,c and  =a,b,c. Define neutrosophic sets A 

and B as follows A =     .5)(0.4,0.4,0 , 30.2,0.4,0. , 50.4,0.4,0.  
      B =      60.4,0.5,0. , 30.3,0.2,0. , 6.0,5.0,4.0  

Then the family  = 0N  , 1N, A is a neutrosophic topology 
on  and S = 0N  , 1N, B is       a neutrosophic topology on 
. Thus (,) and (,S) are neutrosophic topological 
spaces. Define  : (,)  (,S) as (a) = b , (b) = a, (c) 

= c. Clearly f is N-continuous. Now  is not neutrosophic 
continuous, since 1(B)   for B  S. 

4.4  Example   
Let  = a,b,c. Define the neutrosophic  sets A and B as 

follows. 
   A =      4.0,5.0,4.0 , 50.5,0.5,0. , 4.0,5.0,4.0

6
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     B =      50.3,0.4,0. , 50.3,0.4,0. , 5.0,6.0,7.0

and  C =      50.5,0.5,0. , 50.4,0.5,0. , 5.0,5.0,5.0

       = 0N  , 1N, A ,B    
and S = 0N  , 1N, C are neutrosophic topologies on . 
Thus (,) and (,S) are neutrosophic topological spaces. 
Define  : (,)  (,S) as follows (a) = b, (b) = b, (c) 

= c. Clearly  is N-continuous. Since 
D =   .7)(0.6,0.6,0 , .3)(0.4,0.4,0 , 7.0,6.0,6.0

is  neutrosophic open in (,S), 1(D) is not neutrosophic 
open in (,). 
4.6  Proposition  
 Let (,) and (,S) be any two neutrosophic topological 

space. If  :  (,)  (,S) is strongly N-continuous then 
 is neutrosophic continuous. 
    The converse of Proposition 3.19 is not true. See 
Example 3.3 

4.5 Example 

      Let  =a,b,c. Define the neutrosophic sets A and B 
as follows. 

     A = .9)(0.9,0.9,0 , .1)(0.1,0.1,0 , .9)(0.9,0.9,0

     B =  .8)(0.9,0.1,0 , )(0.1,0.1,0 , .9)(0.9,0.9,0

and   C = .9)(0.9,0.9,0 , )(0.1,0,0.1 , .9)(0.9,0.9,0  
 = 0N, 1N, A ,B and S = 0N  , 1N, C are neutrosophic 

topologies on . Thus (,) and (,S) are neutrosophic 
topological spaces. Also define  :(,) (,S) as follows      
(a) = a, (b) = c, (c) = b. Clearly  is neutrosophic 
continuous. But  is not strongly N-continuous. Since 

D =   .99)(0.9,0.9,0 , 01)(0.05,0,0. , 99.0,9.0,9.0

Is an Neutrosophic open set in (,S), 1(D) is not 

neutrosophic open in (,). 

4.7 Proposition   
Let (,) and (, S) be any two neutrosophic topological 
spaces.  If : (,)  (,S) is perfectly N-continuous then 
 is strongly N-continuous. 

    The converse of Proposition 4.7 is not true. See 
Example 4.6 

4.6 Example  
Let  = a,b,c. Define the neutrosophic sets A and B as 
follows. 

      A = .9)(0.9,0.9,0 , .1)(0.1,0.1,0 , .9)(0.9,0.9,0

      B = ,0.99)(0.99,0.99 , (0.01,0,0) , ,0.99)(0.99,0.99

And   C = .9)(0.9,0.9,0 , .05)(0.1,0.1,0 , .9)(0.9,0.9,0  
 = 0N  , 1N, A ,B and S = 0N ,1N, C are neutrosophic 
topologies space on . Thus (,) and (ٍٍ,S) are 
neutrosophic topological spaces. Also define  :  (,)  

(,S) as follows (a) = a, (b) = (c) = b. Clearly  is 
strongly N-continuous. But  is not perfectly               N 
continuous. Since D = .9)(0.9,0.9,0 , )(0.1,0.1,0 , )9.0,9.0,9.0(

   Is an Neutrosophic open set in (,S), 1(D) is 
neutrosophic open and not neutrosophic closed in (,). 

4.8 Proposition  
Let (,) and (,S) be any neutrosophic topological 
spaces. If : (,)  (,S) is strongly neutrosophic 
continuous then  is strongly N-continuous. 
    The converse of proposition 3.23 is not true. See 
Example 4.7 

4.7 Example  
 Let  = a,b,c and Define the neutrosophic sets A and B 
as follows. 

     A = .9)(0.9,0.9,0 , .1)(0.1,0.1,0 , .9)(0.9,0.9,0

      B = ,0.99)(0.99,0.99 , (0.01,0,0) , ,0.99)(0.99,0.99

and    C = .9)(0.9,0.9,0 , .05)(0.1,0.1,0 , .9)(0.9,0.9,0

 = 0N  , 1N, A ,B and S = 0N  , 1N, C are neutrosophic 
topologies on . Thus (,) and (ٍٍ,S) are neutrosophic 
topological spaces. Also define  :  (,)  (,S) as 
follows: (a) = a, (b) = (c) = b. Clearly  is strongly N-
continuous. But  is not strongly neutrosophic continuous. 
Since 

      D = .9)(0.9,0.9,0 , )(0.1,0.1,0 , )9.0,9.0,9.0(

be a neutrosophic set in (,S), 1(D) is neutrosophic open 
and not neutrosophic closed in (,). 

4.9  Proposition  
Let (,),(,S) and (,R) be any three neutrosophic 

topological spaces. Suppose  : (,)  (,S), g : (,S) 
 (,R) be maps. Assume  is neutrosophic gc-irresolute 
and g is N-continuous then g   is N-continuous. 

4.10  Proposition 

 Let (,)  , (,S) and (,R) be any three neutrosophic 

topological spaces. Let  :  (,)  (,S), g : (,S)  
(,R) be map, such that  is strongly  N-continuous and g 
is N-continuous. Then the composition g   is 
neutrosophic continuous. 

4.5 Definition  

A neutrosophic topological space (,) is said to be 
neutrosophic 1/2 if every Neutrosophic closed set in (,) 
is neutrosophic closed in (,). 
4.11  Proposition   
   Let (,),(,S) and (,R) be any neutrosophic 
topological spaces.      Let  :  (,)  (,S) and  g : (,S) 

 (,R) be mapping and (,S) be neutrosophic 1/2 if  
and g are N-continuous then the composition g   is N-
continuous. 

    The proposition 4.11 is not valid if (,S) is not 
neutrosophic  1/2. 

4.8 Example 

     Let  = a,b,c. Define the neutrosophic sets A,B and 
C as follows. 

      A = .3)(0.4,0.4,0 , .6)(0.4,0.4,0

      B = .3)(0.3,0.4,0 , .6)(0.4,0.5,0  
and    C = .4)(0.5,0.3,0 , .5)(0.4,0.6,0
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Then the family  = 0N  , 1N, A, S = 0N  , 1N, B and R = 
0N  , 1N, C are neutrosophic topologies on . Thus 
(,),(,S) and (,R) are neutrosophic topological spaces. 
Also define  :  (,)  (,S) as (a) = b, (b) = a, (c) = 
c and g : (,S)  (,R) as g(a) = b, g(b) = c, g(c) = b. 
Clearly  and g are N-continuous function. But g   is not    

N-continuous. For 1  C is neutrosophic closed in (,R). 
1(g1(1C)) is not N closed in (,). g   is not N-
continuous.  
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Abstract. The objective of this paper is to study neutro-

sophic vector spaces. Some basic definitions and proper-

ties of the classical vector spaces are generalized. It is 

shown that every neutrosophic vector space over a neu-

trosophic field (resp. a field) is a vector space. Also, it is 

shown that an element of a neutrosophic vector space 

over a neutrosophic field can be infinitely expressed as a 

linear combination of some elements of the neutrosophic 

vector space. Neutrosophic quotient spaces and neutro-

sophic vector space homomorphism are also studied.   

Keywords: Weak neutrosophic vector space, strong neutrosophic vector space, field, neutrosophic field. 

1 Introduction and Preliminaries 

The theory of fuzzy set introduced by L. Zadeh [9] is 

mainly concerned with the measurement of the degree of 
membership and non-membership of a given abstract situa-

tion. Despite its wide range of real life applications, fuzzy 
set theory cannot be applied to model an abstract situation 

where indeterminancy is involved. In his quest to model-
ling situations involving indeterminates, F. Smarandache 

introduced the theory of neutrosophy in 1995. Neutroso-

phic logic is an extension of the fuzzy logic in which inde-

terminancy is included. In the neutrosophic logic, each 

proposition is characterized by the degree of truth in the set 

(T), the degree of falsehood in the set (F) and the degree of 

indeterminancy in the set (I) where T,F,I are subsets of ] -

,0,1,+ [. Neutrosophic logic has wide applications in sci-

ence, engineering, IT, law, politics, economics, finance, etc. 

The concept of neutrosophic algebraic structures was in-

troduced by F. Smarandache and W.B. Vasantha Kan-

dasamy in 2006. However, for details about neutrosophy 

and neutrosophic algebraic structures, the reader should 

see [1, 2, 3, 4, 5, 6, 7, 8]. 

Definition 1.1. Let U be a universe of discourse and let 

M be a subset of U. M is called a neutrosophic set if an 
element ( , , )x x T I F U= ∈ belongs to M in the follow-

ing way: 

(1) x is t% true in M, 

(2) x is i% indeterminate in M, and 

(3) x is f% false in M,  

where t T∈ , i I∈ and f F∈ .

It is possible to have t+i+f=1 as in the case of classical 

and fuzzy logics and probability. Also, it is possible to 

have t+i+f<1 as in the case of intuitionistic logic and as in 

the case of paraconsistent logic, it is possible to have 

t+i+f>1. 

Remark 1. Statically, T,I,F are subsets of ]-,0,1,+[ but 

dynamically, they are functions/operators depending on 

many known or unknown parameters.    

Example 1. The probability of that a student will pass 

his final year examination in Mathematics is 60% true ac-

cording to his Mathematics Teacher from Year 1, 25 or 30-
35% false according to his present poor performance, and 

15 or 20% indeterminate due to sickness during his final 
year examination.     

Definition 1.2. Let ( , )G ∗ be any group and let

( )G I G I= ∪ . The couple ( ( ), )G I ∗ is called a neu-

trosophic group generated by G and I under the binary op-

eration ∗ . The indeterminancy factor I is such that

I I I∗ = . If ∗  is ordinary multiplication, then

*...* n
IastI I I I= = and if ∗  is ordinary addition, then

...I I I I nI∗ ∗ ∗ ∗ = for  n∈� .

If abba ∗=∗ for all , ( ),a b G I∈ we say that G(I)

is commutative. Otherwise, G(I) is called a non-

commutative neutrosophic group. 

Theorem 1.3. [5] Let G(I) be a neutrosophic group. 

Then,  

(1) G(I) in general is not a group; 

(2)  G(I) always contain a group. 

Example 2. [3] Let G(I)={e, a, b, c, I, aI, bI, cI} be a 
set, where a

2
=b

2
=c

2
=e, bc=cb=a, ac=ca=b, ab=ba=c. Then 

(G(I),.) is a commutative neutrosophic group. 

Definition 1.4. Let (K,+,.) be any field and let 

( )K I K I= ∪ be a neutrosophic set generated by K

and I. The triple (K(I),+,.) is called a neutrosophic field. 

The zero element 0 K∈  is represented by 0+0I in K(I)

and  1 K∈ is represented by 1+0I in K(I).

Definition 1.5. Let K(I) be a neutrosophic field and let 

F(I) be a nonempty subset of K(I). F(I) is called a neutro-

sophic subfield of K(I) if F(I) is itself a neutrosophic field. 

It is essential that F(I) contains a proper subset which is a 

field. 

9
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Example 3. ( )I� , ( )I�  and ( )I�  are respectively

neutrosophic fields of rational, real and complex numbers. 

( )I� is a neutrosophic subfield of ( )I� and ( )I� is a

neutrosophic subfield of ( )I� .

2 Neutrosophic Vector Spaces 

Definition 2.1. Let (V,+,.) be any vector space over a 

field K and let ( )V I V I=< ∪ > be a neutrosophic set

generated by V and I. The triple (V(I),+,.) is called a weak 

neutrosophic vector space over a field K. If V(I) is a neu-

trosophic vector space over a neutrosophic field K(I), then 

V(I) is called a strong neutrosophic vector space. The ele-

ments of V(I) are called neutrosophic vectors and the ele-

ments of K(I) are called neutrosophic scalars.     

If , ( )u a bI v c dI V I= + = + ∈ where a,b,c and d

are vectors in V and ( )k mI K Iα = + ∈ where k and m

are scalars in K, we define: 

( ) ( )u v a bI c dI+ = + + +

( ) ( ) ,a c b d I= + + + and

( ).( )u k mI a bIα = + +

. ( . . . )k a k b m a m b I= + + + .

Example 4. (1) ( )I� is a weak neutrosophic vector

space over a field � and it is a strong neutrosophic vector 

space over a neutrosophic field ( )I� .

(2) ( )
n

I� is a weak neutrosophic vector space over a

field � and it is a strong neutrosophic vector 

space over a neutrosophic field ( )I� .

(3) ( ) {[ ] : ( )}m n ij ijM I a a I× = ∈� is a weak neu-

trosophic vector space over a field � and it is a 

strong neutrosophic vector space over a neutroso-

phic field ( )I� .

Theorem 2.2. Every strong neutrosophic vector space 

is a weak neutrosophic vector space. 

Proof. Suppose that V(I) is a strong neutrosophic space 

over a neutrosophic field K(I). Since ( )K K I⊆ for every

field K, it follows that V(I) is a weak neutrosophic vector 

space. 

Theorem 2.3. Every weak (strong) neutrosophic vector 

space is a vector space. 

Proof. Suppose that V(I) is a strong neutrosophic space 

over a neutrosophic field K(I). Obviously, (V(I),+,.) is an 

abelian group. Let , ( )u a bI v c dI V I= + = + ∈ ,

, ( )k mI p nI K Iα β= + = + ∈ where , , ,a b c d V∈

and , , ,k m p n K∈ . Then

(1) ( ) ( )( )u v k mI a bI c dIα + = + + + +

[ ]ka kc kb kd ma mb mc md I= + + + + + + +

( )( ) ( )( )k mI a bI k mI c dI= + + + + +

u vα α= + .

(2) ( ) ( )( )u k mI p nI a bIα β+ = + + + +

[ ]ka pa kb pb ma na mb nb I= + + + + + + +

( )( ) ( )( )k mI a bI p nI a bI= + + + + +

u uα β= +

(3) ( ) (( )( ))( )u k mI p nI a bIαβ = + + +

[kpa kpb kna mpa mna knb= + + + + + +

]mpb mnb I+

( )(( )( ))k mI p nI a bI= + + +

( )uα β=

(4) For 1 1 0 ( )I K I+ + ∈ , we have

1 (1 0 )( )u I a bI= + +

( 0 0)a b I= + +

a bI= + .

Accordingly, V(I) is a vector space. 

Lemma 2.4. Let V(I) be a strong neutrosophic vector 

space over a neutrosophic field K(I) and let u=a+bI,v=c+dI, 

( ), ( ).w e fI V I k mI K Iα= + ∈ = + ∈ Then:

(1) u+w=v+w implies u=v. 

(2) α0=0. 

(3) 0u=0. 

(4) (-α)u=α(-u)=-(αu) 

Definition 2.5. Let V(I) be a strong neutrosophic vec-

tor space over a neutrosophic field K(I) and let W(I) be a 

nonempty subset of V(I). W(I) is called a strong neutroso-

phic subspace of V(I) if W(I) is itself a strong neutrosophic 

vector space over K(I). It is essential that W(I) contains a 

proper subset which is a vector space.  

Definition 2.6. Let V(I) be a weak neutrosophic vector 

space over  a field K and let W(I) be a nonempty subset of 

V (I). W(I) is called a weak neutrosophic subspace of V(I) 
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if W(I) is itself a weak neutrosophic vector space over K. 

It is essential that W(I) contains a proper subset which is a 

vector space. 

Theorem 2.7. Let V(I) be a strong neutrosophic vector 

space over a neutrosophic field K(I) and let W(I) be a non-

empty subset of V(I). W(I) is a strong neutrosophic sub-

space of V(I) if and only if the following conditions hold: 

(1) , ( )u v W I∈ implies ( )u v W I+ ∈ .

(2) ( )u W I∈ implies ( )u W Iα ∈ for all 

( )K Iα ∈ .

(3) W(I) contains a proper subset which is a vector 

space. 

Corollary 2.8. Let V(I) be a strong neutrosophic vec-

tor space over a neutrosophic field K(I) and let W(I) be a 

nonempty subset of V(I). W(I) is a strong neutrosophic 

subspace of V(I) if and only if the following conditions 

hold: 

(1)   , ( )u v W I∈ implies ( )u v W Iα β+ ∈  for all

, ( )K Iα β ∈ .

(2) W(I) contains a proper subset which is a vector 

space. 

Example 5. Let V(I) be a weak (strong) neutrosophic 

vector space. V(I) is a weak (strong) neutrosophic sub-

space called a trivial weak (strong) neutrosophic subspace. 

Example 6. Let 
3( ) ( )V I I= � be a strong neutroso-

phic vector space over a neutrosophic field ( )I� and let

( ) {( , ,0 0 0 )W I u a bI v c dI I= = + = + = +

( ) : , , , }.V I a b c d V∈ ∈

Then W(I) is a strong neutrosophic subspace of V(I). 

Example 7. Let ( ) ( ) {[ ] :m n ij ijV I M I a a×= =

( )}I∈� be a strong neutrosophic vector space over

( )I� and let

( ) ( ) {[ ] : ( )m n ij ijW I A I b b I×= = ∈� and

( ) 0}trace A = .

Then W(I) is a strong neutrosophic subspace of V(I). 

Theorem 2.9. Let V(I) be a strong neutrosophic vector 

space over a neutrosophic field K(I) and let { ( )}n nW I ∈Λ

be a family of strong neutrosophic subspaces of V(I). Then 

( )nW I∩   is a strong neutrosophic subspace of V(I).

Remark 2. Let V(I) be a strong neutrosophic vector 

space over a neutrosophic field K(I) and let W1(I) and 

W2(I) be two distinct strong neutrosophic subspaces of 

V(I). Generally, 1 1( ) ( )W I W I∪ is not a strong neutroso-

phic subspace of V(I). However, if 
1 2( ) ( )W I W I⊆  or

2 1( ) ( )W I W I⊆ , then 1 2( ) ( )W I W I∪  is a strong neu-

trosophic subspace of V(I). 

Definition 2.10. Let U(I) and W(I) be any two strong 

neutrosophic subspaces of a strong neutrosophic vector 

space V(I) over a neutrosophic field K(I). 

(1) The sum of U(I) and W(I) denoted by U(I)+W(I) 

is defined by the set 

{ : ( ), ( )}u w u U I w W I+ ∈ ∈ .

(2) V(I) is said to be the direct sum of U(I) and W(I) 

written ( ) ( ) ( )V I U I W I= ⊕  if every element

( )v V I∈  can be written uniquely as v=u+w

where ( )u U I∈ and ( )w W I∈ .

Example 8. Let 
3( ) ( )V I I= � be a strong neutroso-

phic vector space over a neutrosophic field ( )I� and let

( ) {( , ,0) : , ( )}U I u v u v I= ∈� and

( ) {(0,0, ) : ( )}.W I w w I= ∈�

Then ( ) ( ) ( )V I U I W I= ⊕ .

Lemma 2.11. Let W(I) be a strong neutrosophic sub-

space of a strong neutrosophic vector space V(I) over a 

neutrosophic field K(I). Then: 

(1) W(I)+W(I)=W(I). 

(2) w+W(I)=W(I) for all ( )w W I∈ .

Theorem 2.12. Let U(I) and W(I) be any two strong 

neutrosophic subspaces of a strong neutrosophic vector 

space V(I) over a neutrosophic field K(I). Then: 

(1) U(I)+W(I) is a strong neutrosophic subspace of 

V(I). 

(2) U(I) and W(I) are contained in U(I)+W(I). 

Proof. (1) Obviously, U+W is a subspace contained in 

U(I)+W(I). Let , ( ) ( )u w U I W I∈ + and  let

11
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, ( )K Iα β ∈ . Then 1 2 1 2( ) ( )u u u I w w I= + + + ,

3 4 3 4( ) ( )w u u I w w I= + + +  where ,i iu U w W∈ ∈ ,

i=1,2,3,4, ,k mI p nIα β= + = +  where 

, , ,k m p n K∈ . Now,

1 3 2 1 4[( ) [u w ku pu ku mu puα β+ = + + + + +

3 4 1 3 2 1] ] [( ) [nu nu I kw pw kw mw+ + + + + +

4 3 4 ] ]pw nw nw I+ +

( ) ( ).U I W I∈ +

Accordingly, U(I)+W(I) is a strong neutrosophic sub-

space of V(I). 

(2) Obvious. 

Theorem 2.13. Let U(I) and W(I) be strong neutroso-

phic subspaces of a strong neutrosophic vector space V(I) 

over a neutrosophic field K(I). ( ) ( ) ( )V I U I W I= ⊕ if

and only if the following conditions hold: 

(1) V(I)=U(I)+W(I) and 

(2) ( ) ( ) {0}.U I W I∩ =

Theorem 2.14. Let V1(I) and V2(I) be strong neutroso-

phic vector spaces over a neutrosophic field K(I). Then 

1 2 1 2 1 1 2 2( ) ( ) {( , ) : ( ), ( )}V I V I u u u V I u V I× = ∈ ∈

is a strong neutrosophic vector space over K(I) where ad-

dition and multiplication are defined by 

1 2 1 2 1 1 2 2( ) ( ) ( , ),u u v v u v u v+ + + = + +

1 2 1 2( , ) ( , )u u u uα α α= .

Definition 2.15. Let W(I) be a strong neutrosophic 

subspace of a strong neutrosophic vector space V(I) over a 

neutrosophic field K(I). The quotient V(I)/W(I) is defined 

by the set 

{ ( ) : ( )}.v W I v V I+ ∈

V(I)/W(I) can be made a strong neutrosophic vector 

space over a neutrosophic field K(I) if addition and multi-

plication are defined for all ( )), ( ( )u W I v W I+ + ∈

( ) / ( )V I W I and ( )K Iα ∈ as follows:

( ( )) ( ( )) ( ) ( ),u W I v W I u v W I+ + + = + +

( ( )) ( )u W I u W Iα α+ = + .

The strong neutrosophic vector space (V(I)/W(I),+,.) 

over a neutrosophic field K(I) is called a strong neutroso-

phic quotient space.  

Example 9. Let V(I) be any strong neutrosophic vector 

space over a neutrosophic field K(I). Then V(I)/V(I) is 

strong neutrosophic zero space. 

Definition 2.16. Let V(I) be a strong neutrosophic vec-

tor space over a neutrosophic field K(I) and let 

1 2 3, ,..., ( )v v v V I∈ .

(1) An element ( )v V I∈ is said to be a linear combi-

nation of the 
iv s  if 

1 1 2 2 ... ,n nv v v vα α α= + + + where ( ).i K Iα ∈  

(2) iv s are said to be linearly independent if 

1 1 2 2 ... 0n nv v vα α α+ + + =  

implies that 1 2 ... 0nα α α= = = = . In this case,

the set 1 2{ , ,..., }nv v v is called a linearly inde-

pendent set. 

(3) 
iv s are said to be linearly dependent if 

1 1 2 2 ... 0n nv v vα α α+ + + =  

implies that not all iα are equal to zero. In this 

case, the set 
1 2{ , ,..., }nv v v is called a linearly de-

pendent set. 

Definition 2.17. Let V(I) be a weak neutrosophic vec-

tor space over a field K(I) and let 1 2 3, ,..., ( )v v v V I∈ .

(1) An element ( )v V I∈ is said to be a linear combi-

nation of the 
iv s if 

1 1 2 2 ... ,n nv k v k v k v= + + + where ( ).ik K I∈  

(2) 
iv s are said to be linearly independent if 

1 1 2 2 ... 0n nk v k v k v+ + + =

implies that 1 2 ... 0nk k k= = = = . In this case,

the set 1 2{ , ,..., }nv v v is called a linearly inde-

pendent set. 

(3) iv s are said to be linearly dependent if 

1 1 2 2 ... 0n nk v k v k v+ + + =

implies that not all 
iα are equal to zero. In this 

case, the set 1 2{ , ,..., }nv v v is called a linearly de-

pendent set. 

12
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Theorem 2.18. Let V(I) be a strong neutrosophic vec-

tor space over a neutrosophic field K(I) and let U[I] and 

W[I] be subsets of V(I) such that [ ] [ ]U I W I⊆ . If U[I] is

linearly dependent, then then W[I] is linearly dependent. 

Corrolary 2.19. Let V(I) be a strong neutrosophic vec-

tor space over a neutrosophic field K(I). Every subset of a 

linearly dependent set in V(I) is linearly dependent. 

Theorem 2.20. Let V(I) be a strong neutrosophic vec-

tor space over a neutrosophic field K(I) and let U[I] and 

W[I] be subsets of V(I) such that [ ] [ ]U I W I⊆ . If U[I] is

linearly independent, then then W[I] is linearly independ-

ent.    

Example 10. Let ( ) ( )V I I= � be a weak neutroso-

phic vector space over a field ( ) ( )K I I= � . An element

7 24 ( )v I V I= + ∈  is a linear combination of the ele-

ments 1 21 2 , 2 3 ( )v I v I V I= + = + ∈ since 7+24I=

27(1+2I)-10(2+3I). 

Example 11. Let ( ) ( )V I I= � be a strong neutroso-

phic vector space over a field ( ) ( )K I I= � . An element

7 24 ( )v I V I= + ∈  is a linear combination of the ele-

ments 1 21 2 , 2 3 ( )v I v I V I= + = + ∈ since

7 24 (1 )(1 2 ) (3 2 )(2 3 ),I I I I I+ = + + + + +

where 1 ,3 2 ( )I I K I+ + ∈

(5 (16 / 3) )(1 2 ) (1 )(2 3 ),I I I I= + + + − +

where 5 (16 / 3) ,1 ( )I I K I+ − ∈

(9 (4 / 3) )(1 2 ) ( 1 )(2 3 ),I I I I= + + + − + +

where 9 (4 / 3) , 1 ( )I I K I+ − + ∈

(13 )(1 2 ) ( 3 2 )(2 3 ),I I I I= − + + − + +

where 13 , 3 2 ( )I I K I− − + ∈

This example shows that the element v=7+24I can be 

infinitely expressed as a linear combination of the elements 

1 21 2 , 2 3 ( )v I v I V I= + = + ∈ . This observation is re-

corded in the next Theorem. 

Theorem 2.21. Let V(I) be a strong neutrosophic vec-

tor space over a neutrosophic field K(I) and let 

1 2 3, ,..., ( )v v v V I∈ . An element ( )v V I∈ can be infi-

nitely expressed as a linear combination of the iv s . 

Proof. Suppose that 1 1 2 2 ... ,n nv v v vα α α= + + +

where 
21 1 1 2 2, , ,...,v a bI v a b I v a b I= + = + = +

n n nv a b I= + and
21 1 1 2 2, ,...,k m I k m Iα α= + = +

( )n n nk m I K Iα = + ∈  . Then

1 1 1 1 2 2 2 2( )( ) ( )( )a bI k m I a b I k m I a b I+ = + + + + +

... ( )( )n n n nk m I a b I+ + + +  

from which we obtain 

1 1 2 2 ... ,n na k a k a k a+ + + =  

1 1 1 1 1 1 2 2 2 2 ... n nb k a m b m b k a m b k+ + + + + + +

n n n na m b m b+ =

This is a linear system in unknowns ki,mi,i=1,2,3,...,n. 

Since the system is consistent and have infinitely many so-

lutions, it follows that the iv s can be infinitely combined 

to produce v. 

Remark 3. In a strong neutrosophic vector space V(I) 

over a neutrosophic field K(I), it is possible to have 

0 ( ),0 ( )v V I K Iα≠ ∈ ≠ ∈  and yet 0vα = . For in-

stance, if v=k-kI and mIα = where 0 ,k m K≠ ∈ , we

have ( ) 0v mI k kI mkI mkIα = − = − = .

Theorem 2.22. Let V(I) be a strong neutrosophic vec-

tor space over a neutrosophic field K(I) and let 

1 1 1 2 2 2, ,..., n n nv k k I v k k I v k k I= − = − = − be ele-

ments of V(I) where 0 ik K≠ ∈ . Then 
1 2{ , ,..., }nv v v  is 

a linearly dependent set. 

Proof. Let 
1 1 1 2 2 2, ,...,p q I p q Iα α= + = +

n n np q Iα = + be elements of K(I). Then

1 1 2 2 ... 0n nv v vα α α+ + + =  

which implies that 

1 1 1 1 2 2 2 2( )( ) ( )( ) ...p q I k k I p q I k k I+ − + + − +

( )( ) 0n n n np q I k k I+ + − =  

from which we obtain 

1 1 2 2 ... 0n nk p k p k p+ + + = .

This is a homogeneous linear system in unknowns 

, 1, 2,...,ip i n= . It is clear that the system has infinitely

many nontrivial solutions. Hence are not all zero and there-

13
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fore, 1 2{ , ,..., }nv v v is a linearly dependent set. 

Example 12. (1) Let ( ) ( )n
V I I= � be a strong neu-

trosophic vector space over a neutrosophic field ( )I� .

The set 

1 2{ (1,0,0,...,0), (0,1,0,...,0),...,v v= =

(0,0,0,...,1)}nv =  

is a linearly independent set in V(I). 

(2) Let ( ) ( )n
V I I= � be a weak neutrosophic vector

space over a neutrosophic field � . The set 

1 2{ (1,0,0,...,0), (0,1,0,...,0),...,v v= =

1(0,0,0,...,1), ( ,0,0,...,0),k kv v I+= =  

2 (0, ,0,...,0),..., (0,0,0,..., )}k nv I v I+ = =  

is a linearly independent set in V(I). 

Theorem 2.23. Let V(I) be a strong neutrosophic vec-

tor space over a neutrosophic field K(I) and let X[I] be a 

nonempty subset of V(I). If L(X[I]) is the set of all linear 

combinations of elements of X[I], then: 

(1) L(X[I]) is a strong neutrosophic subspace of V(I) 

containing X[I]. 

(2) If W(I) is any strong neutrosophic subspace of V(I) 

containing X[I], then ( [ ]) ( )L X I W I⊂ .

Proof.  (1) Obviously, L(X[I]) is nonempty since X[I] 

is nonempty. Suppose that [ ]v a bI X I= + ∈  is arbitrary,

then for 1 0 ( )I K Iα = + ∈ , we have (1 0 )v Iα = +

( ) ( [ ])a bI a bI L X I+ = + ∈ . Therefore, X[I] is con-

tained in L(X[I]). Lastly, let , ( [ ])v w L X I∈ . Then

1 1 2 2 ..., ,n nv v v vα α α= + +  

1 1 2 2 ..., ,n nw w w wβ β β= + +  

Where , ( ), , ( )i j i jv w X I K Iα β∈ ∈ . For ,α β ∈

( )K I , it can be shown that v wα β+ ∈ ( [ ])L X I .

Since L(X) is a proper subset of L(X[I]) which is a sub-

space of V containing X, it follows that L(X[I]) is a strong 

neutrosophic subspace of V(I) containing X[I]. 

(2) Same as the classical case and omitted. 

Definition 2.24. Let V(I) be a strong neutrosophic vec-

tor space over a neutrosophic field K(I). 

(1) The strong neutrosophic subspace L(X[I]) of 

Theorem 2.23 is called the span of X[I] and it is 

denoted by span(X[I]). 

(2) X[I] is said to span V(I) if V(I)=span(X[I]). 

(3) A linearly independent subset 

1 2[ ] { , ,..., }nB I v v v= of V(I) is called a basis for 

V(I) if [ ]B I  spans V(I). 

Example 13. (1) Let ( ) ( )n
V I I= � be a strong neu-

trosophic vector space over a neutrosophic field ( )I� .

The set 

1 2[ ] { (1,0,0,...,0), (0,1,0,...,0),...,B I v v= = =

(0,0,0,...,1)}nv =  

is a basis for V(I). 

(2) Let ( ) ( )n
V I I= � be a weak neutrosophic vector

space over � . The set 

1 2{ (1,0,0,...,0), (0,1,0,...,0),...,B v v= = =

1(0,0,0,...,1), ( ,0,0,...,0),k kv v I+= =  

2 (0, ,0,...,0),..., (0,0,0,..., )}k nv I v I+ = =  

is a basis for  V(I). 

Theorem 2.25. Let V(I) be a strong neutrosophic vec-

tor space over a neutrosophic field K(I). The bases of V(I) 

are the same as the bases of V over a field K. 

Proof. Suppose that 1 2{ , ,..., }nB v v v= is an arbitrary 

basis for V over the field K. Let v=a+bI be an arbitrary 

element of V(I) and let 1 1 1 ,k m Iα = + 2 2 2 ,k m Iα = +

..., n n nk m Iα = + be elements of K(I). Then from

1 1 2 2 ... 0,n nv v vα α α+ + + = we obtain

1 1 2 2 ... 0,n nk v k v k v+ + + =  

1 1 2 2 ... 0.n nm v m v m v+ + + =  

Since iv s are linearly independent, we have ki=0 and 

mj=0 where i,j=1,2,...,n. Hence 0, 1,2,...,i i nα = = . 

This shows that B is also a linearly independent set in V(I). 

To show that B spans V(I), let v=a+bI 

1 1 2 2 ... ,n nv v vα α α= + + + .Then we have

1 1 2 2 ... ,n na k v k v k v= + + +  

1 1 2 2 ... .n nb m v m v m v= + + +  

Since ,a b V∈ , it follows that v=a+bI can be written

14
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uniquely as a linear combination of iv s . Hence, B is a ba-

sis for V(I). Since B is arbitrary, the required result follows. 

Theorem 2.26. Let V(I) be a strong neutrosophic vec-

tor space over a neutrosophic field K(I). Then the bases of 

V(I) over K(I) are contained in the bases of the weak neu-

trosophic vector space V(I) over a field K(I). 

Definition 2.27. Let V(I) be a strong neutrosophic vec-

tor space over a neutrosophic field K(I). The number of 

elements in the basis for V(I) is called the dimension of 

V(I) and it is denoted by dim ( ( ))s V I . If the number of 

elements in the basis for V(I) is finite, V(I) is called a finite 

dimensional strong neutrosophic vector space. Otherwise, 

V(I) is called an infinite dimensional strong neutrosophic 

vector space. 

Definition 2.28. Let V(I) be a weak neutrosophic vec-

tor space over a field K(I). The number of elements in the 

basis for V(I) is called the dimension of V(I) and it is de-

noted by dim ( ( ))s V I . If the number of elements in the 

basis for V(I) is finite, V(I) is called a finite dimensional 

strong neutrosophic vector space. Otherwise, V(I) is called 

an infinite dimensional weak neutrosophic vector space. 

Example 14. (1) The strong neutrosophic vector space 

of Example 12(1) is finite dimensional and dim ( ( ))s V I

=n. 

(2) The weak neutrosophic vector space of Example 

12(2) is finite dimensional and dim ( ( ))w V I n= .

Theorem 2.29. Let V(I) be a finite dimensional strong 

neutrosophic vector space over a field K(I). Then every ba-

sis of V(I) has the same number of elements. 

Theorem 2.30. Let V(I) be a finite dimensional weak 

(strong) neutrosophic vector space over a field K(resp. 

over a neutrosophic field K(I)). If dim ( ( ))s V I n=  , then

dim ( ( )) 2w V I n=  .

 Theorem 2.31. Let W(I) be a strong neutrosophic sub-

space of a finite dimensional strong neutrosophic vector 

space V(I) over a neutrosophic field K(I). Then W(I) is fi-

nite dimensional and dim ( ( )) dim ( ( ))s sW I V I≤ .If 

dim ( ( )) dim ( ( ))s sW I V I= , then W(I)=V(I). 

Theorem 2.32. Let U(I) and W(I) be a finite dimen-

sional strong neutrosophic subspaces of a strong neutro-

sophic vector space V(I) over a neutrosophic field K(I). 

Then U(I)+W(I) is a finite dimensional strong neutroso-

phic subspace of V(I) and 

dim ( ( ) ( )) dim ( ( )) dim ( ( ))s s sU I W I U I W I+ = +

dim ( ( ) ( ))s U I W I− ∩ .

If ( ) ( ) ( )V I U I W I= ⊕ , then

dim ( ( ) ( )) dim ( ( )) dim ( ( ))s s sU I W I U I W I+ = +

Definition 2.33. Let V(I) and W(I) be strong neutroso-

phic vector spaces over a neutrosophic field K(I) and let 

: ( ) ( )V I W Iφ → be a mapping of V(I) into W(I). φ  is

called a neutrosophic vector space homomorphism if the 

following conditions hold: 

(1) φ  is a vector space homomorphism.

(2) ( )I Iφ = .

If φ  is a bijective neutrosophic vector space homo-

morphism, then φ  is called a neutrosophic vector space

isomorphism and we write ( ) ( )V I W I≅ .

Definition 2.34. Let V (I) and W(I) be strong neutro-

sophic vector spaces over a neutrosophic field K(I) and let 

: ( ) ( )V I W Iφ → be a neutrosophic vector space homo-

morphism. 

(1) The kernel of φ denoted by Kerφ  is defined by

the set { ( ) : ( ) 0}v V I vφ∈ =  .

(2) The image of φ  denoted by Imφ   is defined by

the set { ( ) : ( )w W I v wφ∈ = for some

( )}v V I∈ .

Example 15. Let V(I) be a strong neutrosophic vector 

space over a neutrosophic field K(I). 

(1) The mapping : ( ) ( )V I V Iφ → defined by

( )v vφ =  for all ( )v V I∈  is neutrosophic vector

space homomorphism and Kerφ =0.

(2) The mapping : ( ) ( )V I V Iφ → defined by

( ) 0vφ =  for all ( )v V I∈  is neutrosophic vec-

tor space homomorphism since ( )I V I∈ but

15
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( ) 0Iφ ≠ .

Definition 2.35. Let V (I) and W(I) be strong neutro-

sophic vector spaces over a neutrosophic field K(I) and let 

: ( ) ( )V I W Iφ → be a neutrosophic vector space homo-

morphism. Then: 

(1) Kerφ  is not a strong neutrosophic subspace of

V(I) but a subspace of V. 

(2) Imφ  is a strong neutrosophic subspace of W(I).

Proof. (1) Obviously, ( )I V I∈  but ( ) 0Iφ ≠ . That

Kerφ  is a subspace of V is clear. (2) Clear.

Theorem 2.36. Let V (I) and W(I) be strong neutro-

sophic vector spaces over a neutrosophic field K(I) and let 

: ( ) ( )V I W Iφ → be a neutrosophic vector space homo-

morphism. If 1 2{ , ,..., }nB v v v=  is a basis for V(I), then 

1 2( ) { ( ), ( ),..., ( )}nB v v vφ φ φ φ=  is a basis for W(I). 

Theorem 2.37. Let W(I) be a strong neutrosophic sub-

space of a strong neutrosophic vector space V(I) over a 

neutrosophic field K(I). Let : ( ) ( ) / ( )V I V I W Iφ → be

a mapping defined by ( ) ( )v v W Iφ = +  for all

( )v V I∈ . Then φ  is not a neutrosophic vector space

homomorphism.  

Proof. Obvious since ( ) ( )I I W Iφ = + =

( )W I I≠  .

Theorem 2.38. Let W(I) be a strong neutrosophic sub-

space of a strong neutrosophic vector space V(I) over a 

neutrosophic field K(I) and let : ( ) ( )V I U Iφ →  be a

neutrosophic vector space homomorphism from V(I) into a 

strong neutrosophic vector space U(I) over K(I). If 

( ) : ( ) ( )W I W I U Iφ →  is the restriction of φ  to W(I) is

defined by ( ) ( ) ( )W I w wφ φ=   for all, then:

(1) ( )W Iφ is a neutrosophic vector space homomorph-

ism. 

(2) ( ) ( )W IKer Ker W Iφ φ= ∩ .

(3) ( )Im ( ( ))W I W Iφ φ= .

Remark 4. If V(I) and W(I) are strong neutrosophic 

vector spaces over a neutrosophic field K(I) and 

, : ( ) ( )V I W Iφ ψ → are neutrosophic vector space

homomorphisms, then ( )φ ψ+ and ( )αφ  are not neutro-

sophic vector space homomorphisms since ( )( )Iφ ψ+ =

( ) ( ) 2I I I I I Iφ ψ+ = + = ≠ and ( )( )Iαφ =

( )I I Iαφ α= ≠  for all ( )K Iα ∈ . Hence, if

( ( ), ( ))Hom V I W I   is the collection of all neutrosophic 

vector space homomorphisms from V(I) into W(I), then 

( ( ), ( ))Hom V I W I  is not a neutrosophic vector space 

over K(I). This is different from what is obtainable in the 

classical vector spaces. 

Definition 2.39. Let U(I), V(I) and W(I) be strong neu-

trosophic vector spaces over a neutrosophic field K(I) and 

let : ( ) ( ), : ( ) ( )U I V I V I W Iφ ψ→ → be neutroso-

phic vector space homomorphisms. The composition 

: ( ) ( )U I W Iψφ →  is defined by ( ) ( ( ))u uψφ ψ φ=

for all ( )u U I∈ .

Theorem 2.40. Let U(I), V(I) and W(I) be strong neu-

trosophic vector spaces over a neutrosophic field K(I) and 

let : ( ) ( ), : ( ) ( )U I V I V I W Iφ ψ→ → be neutroso-

phic vector space homomorphisms. Then the composition 

: ( ) ( )U I W Iψφ →  is a neutrosophic vector space

homomorphism. 

Proof. Clearly,ψφ  is a vector space homomorphism.

For ( )u I U I= ∈ , we have:

( ) ( ( ))I Iψφ ψ φ=

( )Iψ=

.I=

Hence ψφ  is a neutrosophic vector space homo-

morphism.     

Corrolary 2.41. Let L(V(I)) be the collection of all 

neutrosophic vector space homomorphisms from V(I) onto 

V(I). Then ( ) ( )φ ψλ φψ λ= for all , , ( ( ))L V Iφ ψ λ ∈ .

Theorem 2.42. Let U(I), V(I) and W(I) be strong neu-

trosophic vector spaces over a neutrosophic field K(I) and 

let : ( ) ( ), : ( ) ( )U I V I V I W Iφ ψ→ → be neutroso-

16
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phic vector space homomorphisms. Then 

(1) If ψφ  is injective, then φ  is injective.

(2) If ψφ  is surjective, then ψ  is surjective.

(3) If ψ  and φ  are injective, then ψφ  is injective.

Let V(I) be a strong neutrosophic vector space over a 

neutrosophic field K(I) and let : ( ) ( )V I V Iφ → be a

neutrosophic vector space homomorphism. If 

1 2{ , ,..., }nB v v v=  is a basis for V(I), then each 

( ) ( )iv V Iφ ∈  and thus for ( )ij K Iα ∈ , we can write

1 11 1 12 2 1( ) ... n nv v v vφ α α α= + + +

1 21 1 22 2 2( ) ... n nv v v vφ α α α= + + +

... 

1 1 2 2( ) ...n n n nn nv v v vφ α α α= + + +

Let 

11 12 1

21 22 2

1 2

[ ]

n

n

B

n n nn

α α α

α α α
φ

α α α

 
 
 =
 
 
 

�

�

� � � �

�

[ ]Bφ  is called the matrix representation of φ relative

to the basis B. 

 Theorem 2.43. Let V(I) be a strong neutrosophic vec-

tor space over a neutrosophic field K(I) and let 

: ( ) ( )V I V Iφ → be a neutrosophic vector space homo-

morphism. If  B is a basis for V(I) and v is any element of 

V(I), then 

[ ] [ ] [ ( )]B B Bv vφ φ= .

Example 16.  Let 
3( ) ( )V I I= � be a strong neutro-

sophic vector space over a neutrosophic field K(I)= ( )I�

and let (1 2 , ,3 2 ) ( )v I I I V I= + − ∈ . If : ( )V Iφ →

( )V I  is a neutrosophic vector space homomorphism de-

fined by ( )v vφ =  for all ( )v V I∈ , then relative to the

basis 1 2 3( (1,0,0), (0,1,0), (0,0,1)}B v v v= = = = for

V(I), the matrix of φ  is obtained as

1 0 0 0 0 0

[ ] 0 0 1 0 0 0

0 0 0 0 1 0

B

I I I

I I I

I I I

φ

+ + + 
 = + + + 
 + + + 

For (1 2 , ,3 2 ) ( )v I I I V I= + − ∈ , we have

1 2 3( ) (1 2 ) (3 2 )v v I v Iv I vφ = = + + + −

So that 

1 2

[ ] [ ( )]

3 2

B B

I

v I v

I

φ

+ 
 = = 
 − 

And we have 

[ ] [ ] [ ( )]B B Bv vφ φ=

Example 17. Let 
3( ) ( )V I I= � be a weak neutroso-

phic vector space over a neutrosophic field K=� and let 

(1 2 ,3 4 ) ( )v I I V I= − − ∈ . If : ( )V Iφ → ( )V I  is a

neutrosophic vector space homomorphism defined by 

( )v vφ =  for all ( )v V I∈ , then relative to the basis

1 2 3 4( (1,0), (0,1), ( ,0), (0, )}B v v v I v I= = = = = for

V(I), the matrix of φ  is obtained as

1 0 0 0

0 1 0 0
[ ]

0 0 1 0

0 0 0 1

Bφ

 
 
 =
 
 
 

For (1 2 ,3 4 ) ( )v I I V I= − − ∈ , we have

1 2 3 4( ) 3 2 4 .v v v v v vφ = = + − −

Therefore, 

1

3
[ ] [ ( )]

2

4

B Bv vφ

 
 
 = =
 −
 
− 

And thus 

[ ] [ ] [ ( )]B B Bv vφ φ=

3 Conclusion 

In this paper, we have studied neutrosophic vector 

spaces. Basic definitions and properties of the classical 

vector spaces were generalized. It was shown that every 

weak (strong) neutrosophic vector space is a vector space. 

17
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Also, it was shown that an element of a strong neutroso-

phic vector space can be infinitely expressed as a linear 

combination of some elements of the neutrosophic vector 

space. Neutrosophic quotient spaces and neutrosophic vec-

tor space homomorphisms were also studied. Matrix repre-

sentations of neutrosophic vector space homomorphisms 

were presented.  

References 

 [1] A. A. A. Agboola, A. D. Akinola, and O. Y. Oyebola. Neu-

trosophic Rings I, Int. J. Math. Comb. 4 (2011), 1-14. 

 [2] A. A. A. Agboola, E. O. Adeleke, and S. A. Akinleye. Neu-

trosophic Rings II, Int. J. Math. Comb. 2 (2012), 1-8. 

 [3] A. A. A. Agboola, A. O. Akwu, and  Y. T. Oyebo. Neutro-

sophic Groups and Neutrosophic Subgroups, Int. J. Math. 

Comb. 3 (2012), 1-9. 

 [4] F. Smarandache. A Unifying Field in Logics: Neutrosophic 

Logic, Neutrosophy, Neutrosophic Set, Neutrosophic Prob-

ability (3rd Ed.). American Research Press, Rehoboth, 2003. 
URL: http://fs.gallup.unm.edu/eBook-Neutrosophic4.pdf.

 [5] W.B. Vasantha Kandasamy and F. Smarandache. Some Neu-

trosophic Algebraic Structures and Neutrosophic N-

Algebraic Structures. Hexis, Phoenix, Arizona, 2006. URL: 

http://fs.gallup.unm.edu/NeutrosophicN-

AlgebraicStructures.pdf. 

 [6] W.B. Vasantha Kandasamy and F. Smarandache. Neutroso-

phic Rings, Hexis, Phoenix, Arizona, 2006. URL: 

http://fs.gallup.unm.edu/NeutrosophicRings.pdf. 

 [7] W.B. Vasantha Kandasamy and F. Smarandache. Basic Neu-

trosophic Algebraic Structures and Their Applications to 

Fuzzy and Neutrosophic Models. Hexis, Church Rock, 2004. 

 [8] W.B. Vasantha Kandasamy and F. Smarandache. Fuzzy In-

terval Matrices, Neutrosophic Interval Matrices and their 

Applications. Hexis, Phoenix, Arizona, 2006. 1-9. 

 [9]  L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 

338-353. 

 [10] L.A. Zadeh, A Theory of Approximate Reasoning. Machine 

Intelligence 9 (1979), 149-194. 

 [11] H.J. Zimmermann, Fuzzy Set Theory and its Applications. 

Kluwer, Boston, 1994. 

Received: June 20th, 2014.   Accepted: July 28, 2014.

18



Neutrosophic Sets and Systems, Vol. 4, 2014 

Mumtaz Ali,  Florentin Smarandache,  Muhammad Shabir and Munazza Naz, Neutrosophic Bi-LA-Semigroup and Neu-

trosophic N-LA-Semigroup 

Neutrosophic Bi-LA-Semigroup and Neutrosophic N-LA-

Semigroup 

Mumtaz Ali
1*

, Florentin Smarandache
2 
, Muhammad Shabir

3
 and Munazza Naz

4

1,3Department of Mathematics, Quaid-i-Azam University, Islamabad, 44000,Pakistan. E-mail: mumtazali770@yahoo.com, 

mshabirbhatti@yahoo.co.uk
2
University of New Mexico, 705 Gurley Ave., Gallup, New Mexico 87301, USA E-mail: fsmarandache@gmail.com 

4Department of Mathematical Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan. 

E-mail: munazzanaz@yahoo.com 

Abstract. In this paper we define neutrosophic bi-LA-

semigroup and neutrosophic N-LA-semigroup. Infact this 

paper is an extension of our previous paper neutrosophic 

left almost semigroup shortly neutrosophic LA-

semigroup. We also extend the neutrosophic ideal to neu-

trosophic biideal and neutrosophic N-ideal. We also find 

some new type of neutrosophic ideal which is related to 

the strong or pure part of neutrosophy. We have given 

sufficient amount of  examples to illustrate the theory of 

neutrosophic bi-LA-semigroup, neutrosophic N-LA-

semigroup and display many properties of them this pa-

per. 

Keywords: Neutrosophic LA-semigroup, neutrosophic ideal, neutrosophic bi-LA-semigroup, neutrosophic biideal, neutrosophic 

N-LA-semigroup, neutrosophic N-ideal.

1 Introduction 

 Neutrosophy is a new branch of philosophy which studies 

the origin and features of neutralities in the nature. Floren-

tin Smarandache in 1980 firstly introduced the concept of 

neutrosophic logic where each proposition in neutrosophic 

logic is approximated to have the percentage of truth in a 

subset T, the percentage of indeterminacy in a subset I, and 

the percentage of falsity in a subset F so that this neutro-

sophic logic is called an extension of fuzzy logic. In fact 

neutrosophic set is the generalization of classical sets, con-

ventional fuzzy set  1 , intuitionistic fuzzy set  2 and in-

terval valued fuzzy set  3 . This mathematical tool is used

to handle problems like imprecise, indeterminacy and in-

consistent data etc. By utilizing neutrosophic theory, 

Vasantha Kandasamy and Florentin Smarandache dig out 

neutrosophic algebraic structures in 11 . Some of them

are neutrosophic fields, neutrosophic vector spaces, neu-

trosophic groups, neutrosophic bigroups, neutrosophic N-

groups, neutrosophic semigroups, neutrosophic bisemi-

groups, neutrosophic N-semigroup, neutrosophic loops, 

neutrosophic biloops, neutrosophic N-loop, neutrosophic 

groupoids, and neutrosophic bigroupoids and so on. 

  A left almost semigroup abbreviated as LA-semigroup is 

an algebraic structure which was introduced by M .A.  

Kazim and M. Naseeruddin  3 in 1972. This structure is
basically a midway structure between a groupoid and a 
commutative semigroup. This structure is also termed as 
Able-Grassmann’s groupoid abbreviated as AG -groupoid 

 6 . This is a non associative and non commutative
algebraic structure which closely resemble to commutative 

semigroup. The generalization of semigroup theory is an 
LA-semigroup and this structure has wide applications in 
collaboration with semigroup. 
  We have tried to develop the ideal theory of LA-
semigroups in a logical manner. Firstly, preliminaries and 
basic concepts are given for neutrosophic LA-semigroup. 

Then we  presented the newly defined notions and results 
in neutrosophic bi-LA-semigroups and neutrosophic N-
LA-semigroups. Various types of neutrosophic biideals 
and neutrosophic N-ideal are defined and elaborated with 
the help of examples. 

2 Preliminaries 

Definition 1. Let   ,S  be an LA-semigroup and let

 : ,S I a bI a b S    . The neutrosophic LA-
semigroup is generated by S  and I under   denoted as 

   ,N S S I   , where I is called the
neutrosophic element with property 

2I I . For an 

integer n , n I and nI are neutrosophic elements and 
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0. 0I  .
1I 

, the inverse of I is not defined and hence
does not exist. 
Similarly we can define neutrosophic RA-semigroup on 
the same lines. 

Definition 2. Let  N S  be a neutrosophic LA-semigroup

and  N H  be a proper subset of  N S . Then

 N H is called a neutrosophic sub LA-semigroup if

 N H  itself is a neutrosophic LA-semigroup under the
operation of  N S .

Definition 3. A neutrosophic sub LA-semigroup  N H
is called strong neutrosophic sub LA-semigroup or pure 
neutrosophic sub LA-semigroup if all the elements of 

 N H are neutrosophic elements.

Definition 4. Let  N S  be a neutrosophic LA-semigroup
and  N K  be a subset of  N S . Then  N K  is

called Left (right)  neutrosophic ideal of  N S  if

     N S N K N K
, {      N K N S N K }.

If  N K  is both left and right neutrosophic ideal, then

 N K  is called a two sided neutrosophic ideal or simply
a neutrosophic ideal. 

Definition 5.  A neutrosophic ideal  N K  is called
strong neutrosophic ideal or pure neutrosophic ideal if all 
of its elements are neutrosophic elements. 

 3 Neutrosophic Bi-LA-Semigroup 

Definition 6. Let  ( ( ), , )BN S   be a non-empty set with 

two binary operations   and .  ( ( ), , )BN S   is said to 

be a neutrosophic bi-LA-semigroup if 1 2( )BN S P P 

where atleast one of  1( , )P   or 2( , )P  is a neutrosophic 

LA-semigroup and other is just an LA- semigroup. 1P  and 

2P  are proper subsets of ( )BN S . 

Similarly we can define neutrosophic bi-RA-semigroup on 
the same lines. 

Theorem 1. All neutrosophic bi-LA-semigroups 
contains the corresponding bi-LA-semigroups. 

Example 1. Let 1 2( ) { }BN S S I S I     be a 
neutrosophic  bi-LA-semigroup where 

 1 1,2,3,4,1 ,2 ,3 ,4S I I I I I   is a neutrosophic 

LA-semigroup with the following table. 

* 1 2 3 4 1I 2I 3I 4I 

1 1 4 2 3 1I 4I 2I 3I 

2 3 2 4 1 3I 2I 4I 1I 

3 4 1 3 2 4I 1I 3I 2I 

4 2 3 1 4 2I 3I 1I 4I 

1I 1I 4I 2I 3I 1I 4I 2I 3I 

2I 3I 2I 4I 1I 3I 2I 4I 1I 

3I 4I 1I 3I 2I 4I 1I 3I 2I 

4I 2I 3I 1I 4I 2I 3I 1I 4I 

 2 1,2,3,1 ,2 ,3S I I I I   be another neutrosophic 

bi-LA-semigroup with the following table. 

* 1 2 3 1I 2I 3I 

1 3 3 3 3I 3I 3I 

2 3 3 3 3I 3I 3I 

3 1 3 3 1I 3I 3I 

1I 3I 3I 3I 3I 3I 3I 

2I 3I 3I 3I 3I 3I 3I 

3I 1I 3I 3I 1I 3I 3I 

Definition 7. Let 1( ( ) P ;: , )BN S P    be a neutro-

sophic bi-LA-semigroup. A proper subset  ( , , )T   is said 

to be a neutrosophic sub bi-LA-semigroup of ( )BN S  if 

1.  1 2T T T   where 1 1T P T   and 

2 2T P T  and 

2. At least one of 1( , )T  or 2( , )T   is a neutrosoph-

ic LA-semigroup. 

Example 2: ( )BN S  be a neutrosophic bi-LA-

semigroup in Example 1. Then 

{1,1 } {3,3 }P I I   and {2,2 } {1,1 }Q I I   are 

neutrosophic sub bi-LA-semigroups of ( )BN S . 
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Theorem 2. Let  BN S  be a neutrosophic bi-LA-
semigroup and  N H  be a proper subset of  BN S .
Then  N H is a neutrosophic sub bi-LA-semigroup of

 BN S  if      .N H N H N H .

Definition 8. Let 1( ( ) P , , )BN S P    be any 

neutrosophic bi-LA-semigroup. Let J  be a prop-

er subset of ( )BN S  such that 1 1J J P   and 

2 2J J P   are ideals of 1P  and 2P  respectively. 

Then J  is called the neutrosophic biideal of 

( )BN S . 

Example  3. Let  1 2( ) { }BN S S I S I     be a 
neutrosophic bi-LA-semigroup, where 

 1 1,2,3,1 ,2 ,3S I I I I   be another neutrosophic 
bi-LA-semigroup with the following table. 

* 1 2 3 1I 2I 3I 

1 3 3 3 3I 3I 3I 

2 3 3 3 3I 3I 3I 

3 1 3 3 1I 3I 3I 

1I 3I 3I 3I 3I 3I 3I 

2I 3I 3I 3I 3I 3I 3I 

3I 1I 3I 3I 1I 3I 3I 

And  2 1,2,3, ,2 ,3S I I I I   be another neutro-

sophic LA-semigroup with the following table. 

. 1 2 3 I 2I 3I 

1 3 3 2 3I 3I 2I 

2 2 2 2 2I 2I 2I 

3 2 2 2 2I 2I 2I 

I 3I 3I 2I 3I 3I 2I 

2I 2I 2I 2I 2I 2I 2I 

3I 2I 2I 2I 2I 2I 2I 

Then  1,1I,3,3 {2,2 },P I I 

 1,3,1 ,3 {2,3,2 I,3I}Q I I   are neutrosophic

biideals of ( )BN S . 

Proposition 1. Every neutrosophic biideal of a 
neutrosophic bi-LA-semigroup is trivially a  
 Neutrosophic sub bi-LA-semigroup but the conver is not 
true in general. 
One can easily see the converse by the help of example. 

3 Neutrosophic Strong Bi-LA-Semigroup 

Definition 9: If both 1( , )P   and 2( , )P  in the  

Definition  6. are neutrosophic strong LA-

semigroups then we call  ( ( ), , )BN S   is a neu-

trosophic strong bi-LA-semigroup. 

Definition 10. Let 1( ( ) P , , )BN S P    be a 

neutrosophic bi-LA-semigroup. A proper subset  

( , , )T   is said to be a neutrosophic strong sub 

bi-LA-semigroup of ( )BN S  if 

1.  1 2T T T   where 1 1T P T   and 

2 2T P T  and 

2.  1( , )T  and 2( , )T   are neutrosophic 

strong LA-semigroups. 

Example 4. Let ( )BN S  be a neutrosophic bi-
LA-semigroup in Example 3.  
Then  1I,3 {2 },P I I   and

 1 ,3 {2 I,3I}Q I I  are neutrosophic strong sub bi-
LA-semigroup  of ( )BN S . 

Theorem 4: Every neutrosophic strong sub bi-

LA-semigroup is a neutrosophic sub bi-LA-

semigroup. 

Definition 11. Let ( ( ), , )BN S   be a strong neutrosoph-

ic bi-LA-semigroup where 1 2( ) PBN S P    with 

1( , )P   and 2( , )P  be any two neutrosophic LA-

semigroups. Let J  be a proper subset of ( )BN S  where 

1 2I I I   with 1 1I I P   and 2 2I I P   are neu-

trosophic ideals of the neutrosophic LA-semigroups 1P

and 2P  respectively. Then I  is called or defined as the 
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neutrosophic strong biideal of ( )BN S . 

Theorem 5: Every neutrosophic strong  biideal is trivially 

a neutrosophic sub bi-LA-semigroup. 

Theorem 6: Every neutrosophic strong biideal is a neutro-

sophic strong sub bi-LA-semigroup. 

Theorem 7: Every neutrosophic strong biideal is a neutro-

sophic biideal. 

Example 5. Let ( )BN S  be a neutrosophic bi-LA 
semigroup in Example (*) .Then  

 1I,3 {2 },P I I   and   1 ,3 {2 I,3I}Q I I 
are neutrosophic strong biideal of ( )BN S . 

4 Neutrosophic N-LA-Semigroup 

Definition 12. Let 1 2{ ( ), ,..., }S N    be a non-empty set 

with N -binary operations defined on it. We call ( )S N  a 

neutrosophic N -LA-semigroup ( N  a positive integer)  if 

the following conditions are satisfied. 

1) 1( ) ... NS N S S   where each iS  is a proper sub-

set of ( )S N  i.e. 
i jS S  or 

j iS S  if  i j . 

2) ( , )i iS   is either a neutrosophic LA-semigroup or an 

LA-semigroup for 1,2,3,...,i N . 

Example 6. Let 1 2 3 1 2 3S(N) {S S S , , , }       
be a neutrosophic  3-LA-semigroup where 

 1 1,2,3,4,1 ,2 ,3 ,4S I I I I  is a neutrosophic LA- 
semigroup with the following table. 

* 1 2 3 4 1I 2I 3I 4I 

1 1 4 2 3 1I 4I 2I 3I 

2 3 2 4 1 3I 2I 4I 1I 

3 4 1 3 2 4I 1I 3I 2I 

4 2 3 1 4 2I 3I 1I 4I 

1I 1I 4I 2I 3I 1I 4I 2I 3I 

2I 3I 2I 4I 1I 3I 2I 4I 1I 

3I 4I 1I 3I 2I 4I 1I 3I 2I 

4I 2I 3I 1I 4I 2I 3I 1I 4I 

 2 1,2,3,1 ,2 ,3S I I I  be another neutrosophic bi-LA-

semigroup with the following table. 

* 1 2 3 1I 2I 3I 

1 3 3 3 3I 3I 3I 

2 3 3 3 3I 3I 3I 

3 1 3 3 1I 3I 3I 

1I 3I 3I 3I 3I 3I 3I 

2I 3I 3I 3I 3I 3I 3I 

3I 1I 3I 3I 1I 3I 3I 

And  3 1,2,3, ,2 ,3S I I I  is another neutrosophic LA-

semigroup with the following table. 

. 1 2 3 I 2I 3I 

1 3 3 2 3I 3I 2I 

2 2 2 2 2I 2I 2I 

3 2 2 2 2I 2I 2I 

I 3I 3I 2I 3I 3I 2I 

2I 2I 2I 2I 2I 2I 2I 

3I 2I 2I 2I 2I 2I 2I 

Theorem 8 All neutrosophic N-LA-semigroups contains 
the corresponding N-LA-semigroups. 

Definition 13. Let 

1 2 1 2( ) { .... , , ,..., }N NS N S S S       be a neutro-

sophic  N -LA-semigroup. A proper subset 

1 2 1 2{P ....P , , ,..., }N NP P       of ( )S N  is said 

to be a neutrosophic sub N -LA-semigroup if 

, 1,2,...,i iP P S i N    are sub LA-semigroups of 

iS  in which atleast some of the sub LA-semigroups are 

neutrosophic sub LA-semigroups. 

Example 7: Let 1 2 3 1 2 3S(N) {S S S , , , }       be a 

neutrosophic 3-LA-semigroup in above  Example 6.  
Then clearly {1,1 } {2,3,3 } {2,2I},P I I    

{2,2 } {1,3,1 ,3 } {2,3,2I,3I},Q I I I    and 
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{4,4 } {1 ,3 } {2I,3I}R I I I    are neutrosophic 
sub 3-LA-semigroups of S(N) . 

Theorem 19. Let ( )N S  be a neutrosophic N-LA- 
semigroup and  N H  be a proper subset of ( )N S .
Then  N H is a neutrosophic sub N-LA-semigroup of

( )N S  if      .N H N H N H .

Definition 14. Let 

1 2 1 2( ) { .... , , ,..., }N NS N S S S       be a neutro-

sophic N -LA-semigroup. A proper subset 

1 2 1 2{P .... , , ,..., }N NP P P        of ( )S N  is 

said to be a neutrosophic N -ideal, if the following condi-

tions are true, 

1. P  is a neutrosophic sub N -LA-semigroup of

( )S N .

2. Each , 1,2,...,i iP S P i N    is an ideal of 

iS .

Example 8. Consider Example 6. 

Then 1 {1,1 } {3,3 } {2,2 },I I I I    and 

2 {2,2 } {1 ,3 } {2,3,3I}I I I I    are neutrosophic 3-

ideals of ( )S N . 

Theorem 10: Every neutrosophic N-ideal is trivially a 

neutrosophic sub N-LA-semigroup but the converse is not 

true in general. 

One can easily see the converse by the help of example. 

5 Neutrosophic Strong N-LA-Semigroup 

Definition 15: If all the N -LA-semigroups ( , )i iS  in 

Definition (  ) are neutrosophic strong LA-semigroups  (i.e. 

for  1,2,3,...,i N ) then we call ( )S N  to be a neutro-

sophic strong N -LA-semigroup. 

Definition 16. Let 

1 2 1 2( ) { .... , , ,..., }N NS N S S S       be a neutro-

sophic strong N -LA-semigroup. A proper subset 

1 2 1 2{T .... T , , ,..., }N NT T        of ( )S N  is 

said to be a neutrosophic strong sub N -LA-semigroup if 

each  ( , )i iT   is a neutrosophic strong sub LA-semigroup 

of  ( , )i iS   for  1,2,...,i N  where i iT S T  . 

Theorem 11: Every neutrosophic strong sub N-LA-

semigroup is a neutrosophic sub N-LA-semigroup. 

Definition 17. Let 

1 2 1 2( ) { .... , , ,..., }N NS N S S S       be a neutro-

sophic strong  N -LA-semigroup. A proper subset 

1 2 1 2{J ....J , , ,..., }N NJ J       where 

t tJ J S   for  1,2,...,t N  is said to be a neutro-

sophic strong N -ideal of ( )S N  if the following condi-

tions are satisfied. 

1) Each it is a neutrosophic sub LA-semigroup of

, 1,2,...,tS t N  i.e. It is a neutrosophic strong N-

sub LA-semigroup of ( )S N .

2) Each it is a two sided ideal of tS  for 1,2,...,t N . 

Similarly one can define neutrosophic strong N -left ideal 

or neutrosophic strong right ideal of  ( )S N . 

A neutrosophic strong N -ideal is one which is both a neu-

trosophic strong N -left ideal and N -right ideal of 

( )S N . 

Theorem 12: Every neutrosophic strong  Nideal is trivially 

a neutrosophic sub N-LA-semigroup. 

Theorem 13: Every neutrosophic strong  N-ideal is a neu-

trosophic strong sub N-LA-semigroup. 

Theorem 14: Every neutrosophic strong  N-ideal is a N-

ideal. 

Conclusion 

In this paper we extend neutrosophic LA-semigroup to 
neutrosophic  bi-LA-semigroup and neutrosophic N-LA-

semigroup. The neutrosophic ideal theory of neutrosophic 
LA-semigroup is extend to neutrosophic biideal and neu-
trosophic N-ideal. Some new type of neutrosophic ideals 
are discovered which is strongly neutrosophic or purely 
neutrosophic. Related examples are given to illustrate neu-

trosophic bi-LA-semigroup, neutrosophic N-LA-
semigroup and many theorems and properties are discussed. 
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Abstract. The aim of this paper is to introduce the concept of re-

lation on neutrosophic parameterized soft set (NP- soft sets) theo-

ry. We have studied some related properties and also put forward 

some propositions on neutrosophic parameterized soft relation 

with proofs and examples. Finally the notions of symmetric, 

transitive, reflexive, and equivalence neutrosophic parameterized 

soft set relations have been established in our work. Finally a de-

cision making method on NP-soft sets is presented.  

Keywords: Soft set, neutrosophic parameterized soft set, NP-soft relations. 

1. Introduction

Neutrosophic set theory was introduced in 1995 with the 

study of Smarandache [21] as mathematical tool for han-

dling problem involving imprecise, indeterminacy and in-

consistent data. The concept of neutrosophic set generaliz-

es the concept of fuzzy sets [22], intuitionistic fuzzy sets [1] 

and so on.  In neutrosophic set, indeterminacy is quantified 

explicitly and truth-membership, indeterminacy member-

ship and falsity-membership are independent. Neutrosoph-

ic set theory has successfully used in logic, economics, 

computer science, decision making process and so on.  

The concept of soft set theory is another mathematical the-

ory dealing with uncertainty and vagueness, developed by 

Russian researcher [20]. The soft set theory is free from the 

parameterization inadequacy syndrome of fuzzy set theory, 

rough set theory, probability theory. Many interesting re-

sults of soft set theory have been studied by embedding the  

ideas of fuzzy sets, intuitionistic fuzzy sets, neutrosophic 

sets and so on. For example; fuzzy soft sets [3,9,17], on in-

tuitionistic fuzzy soft set theory [10,18], on possibility in-

tuitionistic fuzzy soft set [2], on neutrosophic soft set [19], 

on intuitionistic neutrosophic soft set [4,7], on generalized 

neutrosophic soft set [5], on interval-valued neutrosophic 

soft set [6], on fuzzy parameterized soft set theory 

[14,15,16], on intuitionistic fuzzy parameterized soft set 

theory [12], on IFP−fuzzy soft set theory [13],  on fuzzy 

parameterized fuzzy soft set theory [11]. 

Later on, Broumi et al. [8] defined the neutrosophic pa-

rameterized soft sets (NP-soft sets) which is a generaliza-

tion of fuzzy parameterized soft sets (FP-soft sets) and in-

tuitionistic fuzzy parameterized soft sets (IFP-soft sets).  

In this paper our main objective is to extend the concept re-

lations on FP-soft sets[14] to the case of NP-soft sets. The 
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paper is structured as follows. In Section 2, some basic 

definition and preliminary results are given which will be 

used in the rest of the paper. In Section 3, we define rela-

tions on NP-soft sets and some of its algebraic properties 

are studied. In section 4, we present decision making 

method on NP-soft relations. Finally we conclude the pa-

per. 

2. Preliminaries

Throughout this paper, let U be a universal set and E be the 

set of all possible parameters under consideration with re-

spect to U, usually, parameters are attributes, characteris-

tics, or properties of objects in U.  

We now recall some basic notions of neutrosophic set, soft 

set and neutrosophic parameterized soft set. For more de-

tails, the reader could refer to [8,20,21].  

Definition 2.1. [21] Let U be a universe of discourse then 

the neutrosophic set A is an object having the form  

A = {< x: A(x), A(x), A(x)>,x ∈ U}, 

where the functions , ,  : U→]−0,1+[ define respec-

tively the degree of membership, the degree of indetermi-

nacy, and the degree of non-membership of the element x 

∈ X to the set A with the condition.  

−0≤ A(x)+ A(x) + A(x)≤3+    (1) 

From philosophical point of view, the neutrosophic set 

takes the value from real standard or non-standard subsets 

of ]−0,1+[. So instead of ]−0,1+[ we need to take the inter-

val [0,1] for technical applications, because ]−0,1+[ will be 

difficult to apply in the real applications  such as in scien-

tific and engineering problems. 

For two NS, 

 , ( ), ( ), ( )NS A A AA x x x x x X   

And 

 , ( ), ( ), ( )NS B B BB x x x x x X   

Then, 

1. NS NSA B   if and only if 

 ( ) ( ), ( ) ( )A B A Bx x x x      and       

( ) ( ).A Bx x    

2. NS NSA B   if and only if, 

( ) ( ), ( ) ( ), ( ) ( )A B A B A Bx x x x x x         for 

any x X . 

3. The complement of  is denoted by  and is de-

fined by

 , ( ),1 ( ), ( )NS A A AA x x x x x X     

4.   ,min ( ), ( ) ,A BA B x x x  

 ,max ( ), ( )A Ax x  ,

  max ( ), ( ) :A Bx x x X  

5.    ,min ( ), ( ) ,max ( ), ( ) ,A B A AA B x x x x x    

  max ( ), ( ) :A Bx x x X  

 As an illustration, let us consider the following example. 

Example 2.2. Assume that the universe of discourse 

U= 1 2 3, ,x x x . It may be further assumed that the values 

of x1, x2 and are in [0, 1] Then, A is a neutrosophic set 

(NS) of U, such that, 





1 2

3

,0.7,0.5,0.2 , ,0.4,0.5,0.5 ,

,0.4,0.5,0.6

A x x

x



Definition 2.3.[8] Let U be an initial universe, P (U) be the 

power set of U, E be a set of all parameters and K be a ne 
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trosophic set over E. Then a neutrosophic parameterized 

soft sets 


 

, ( ), ( ), ( ) ,

          ( ) :

K K K K

K

x x x x

f x x E

   



:E  [0, 1], :E  [0, 1], :E  [0, 1] 

and :E  P(U) such that  =Φ if  

. 

Here, the function   ,  and called membership 

function, indeterminacy function and non-membership 

function of neutrosophic parameterized soft set (NP-soft 

set), respectively.  

Example 2.4. Assume that  1 2 3, ,U u u u is a universal 

set and  1 2,E x x  is a set of parameters. If 

 1 2,0.7,0.3,0.4 , ,0.7,0.5,0.4K x x

and 

 1 2 5 2( ) , , ( )K Kf x u u f x U  . 

Then a neutrosophic parameterized soft set  is written 

by  

  



1 2 5 2,0.7,0.3,0.4 , , , ,0.7,0.5,

        0.4 ,

K x u u x

U

 

3. Relations on the NP-Soft Sets

In this section, after given the cartesian products of two 

NP- soft sets, we define a relations on NP- soft sets and 

study their desired properties.  

Definition  3.1. Let , ( ).K L NPS U    Then, a Carte-

sian product of  and K L  , denoted by ˆ ,K L    is 

defined as;     





ˆ ˆ

ˆ ˆ

ˆ ( , ) , ( , ) , ( , ),

ˆ( , ) , ( , ) : ( , )

K L K L K L

K L K L

x y x y x y

x y f x y x y E E

  



 

 

 

 

Where 

ˆ ( , ) ( ) ( )K LK Lf x y f x f y    

  and 

      

 

 

 

( , ) min ( ), ( )
x̂

( , ) max ( ), ( )
x̂

( , ) max ( ), ( )
x̂

K L
K L

K L
K L

K L
K L

x y x y

x y x y

x y x y

  

  

  







Here ( , ), ( , ), ( , )
ˆ ˆ ˆx x xK L K L K L

x y x y x y    is a t-norm. 

Example 3.2. Let  1 2 3 4 5 6 7 8, , , , , , , ,U u u u u u u u u

9 10 11 12 13 14 15, , , , , ,u u u u u u u
,

 1 2 3 4 5 6 7 8, , , , , , ,E x x x x x x x x
, 





2 3

5 6 7

,0.5,0.6,0.3 , ,0.3,0.2,0.9 ,

,0.6,0.7,0.3 , ,0.1,0.4,0.6 , ,0.7,0.5,0.3

K x x

x x x



 and 





1 2

4 8

,0.5,0.6,0.3 , ,0.5,0.6,0.3 ,

,0.9,0.8,0.1 , ,0.3,0.2,0.9

L x x

x x



be to neutrosophic sets of E. Suppose that 

  
  

  

  

2 1 2 4 5 7 8 10 12 14 15

3 2 5 8 11 15

5 2 3 4 7 8 11 12 15

6 2 4 6 7 10 12

,0.5,0.6,0.3 , , , , , , , , , , ,

,0.3,0.2,0.9 , , , , , ,

,0.6,0.7,0.3 , , , , , , , , ,

,0.1,0.4,0.6 , , , , , , ,

K x u u u u u u u u u u

x u u u u u

x u u u u u u u u

x u u u u u u

 

  7 2 5 6 8 9 13 15,0.7,0.5,0.3 , , , , , , ,x u u u u u u u

and

  
  

  

  

1 1 5 6 9 10 13

2 1 2 4 5 7 8 10 12 14 15

4 2 5 9 10 11 14

8 2 5 8 10 12 14

,0.7,0.4,0.6 , , , , , , ,

,0.5,0.6,0.3 , , , , , , , , , , ,

,0.9,0.8,0.1 , , , , , , ,

,0.4,0.7,0.2 , , , , , ,

L x u u u u u u

x u u u u u u u u u u

x u u u u u u

x u u u u u u

 

 Then, the Cartesian product of K  and L is obtained as 

follows; 
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  



 

  

2 1 1 5 10

2 2

1 2 4 5 7 8 10 12 14 15

2 4 2 5 10 14

2 8

x̂ ( , ),0.5,0.6,0.6 , , , ,

( , ),0.5,0.6,0.3 ,

, , , , , , , , ,

( , ),0.5,0.8,0.3 , , , , ,

( , ),

K L x x u u u

x x

u u u u u u u u u u

x x u u u u

x x

  

  

  

  

  

2 5 8 10 12 14

3 1 5

3 2 2 5 8 15

3 4 2 5 11

3 8

0.4,0.7,0.3 , , , , , , ,

( , ),0.3,0.4,0.9 , ,

( , ),0.3,0.6,0.9 , , , , ,

( , ),0.3,0.8,0.9 , , , ,

( , ),0.3,0

u u u u u u

x x u

x x u u u u

x x u u u

x x   2 5 8.7,0.9 , , , ,u u u

 

  

5 1

5 2 2 4 7 8 12 15

( , ),0.6,0.7,0.6 , ,

( , )0.5,0.7,0.3 , , , , , , ,

x x

x x u u u u u u



  

  

  

  

  

  

5 4 2 11

5 8 2 8 12

6 1 6 10

6 2 2 4 7 10 12

6 4 2 10

6 8 2 10 12

7 1

( , ),0.6,0.8,0.3 , , ,

( , ),0.4,0.7,0.3 , , , ,

( , ),0.1,0.4,0.6 , , ,

( , ),0.1,0.6,0.6 , , , , , ,

( , ),0.1,0.8,0.6 , , ,

( , ),0.1,0.7,0.6 , , , ,

( , ),0.7,0.5,0.6 ,

x x u u

x x u u u

x x u u

x x u u u u u

x x u u

x x u u u

x x u  

  

  

  

5 6 9 13

7 2 2 5 8 15

7 4 2 5 9

7 8 2 5 8

, , , ,

( , ),0.5,0.6,0.3 , , , , ,

( , ),0.7,0.8,0.3 , , , ,

( , ),0.4,0.7,0.3 , , ,

u u u

x x u u u u

x x u u u

x x u u u

Definition  3.3. Let K , ( ).L NPS U   Then, a NP-soft 

relation from K  to L , denoted by NR , is a NP-soft 

subset of x̂K L  . Any NP-soft subset  of  x̂K L   is

called a NP-soft relation  on .K  

Note that if  , ( ), ( ), ( ) ,K K Kx x x x    ( )Kf x  K

and   , ( ), ( ), ( ) , ( )L L L L Ly y y y f y     , then 




( , ), ( , ), ( , ),
ˆ ˆx x

( , ) , ( , )
ˆ ˆx x

N
K L K L

N
K L K L

R x y x y x y

x y f x y R

   







Where ˆ ( , ) ( ) ( )K LK Lf x y f x f y   . 

Example 3.4. Let us consider the Example 3.2. Then, we 

define a NP-soft relation, from to K L  , as follows 




( , ), ( , ), ( , ),
ˆ ˆx x

( , ) , ( , ) (1 , 8)
ˆ ˆx x

N i j i j i j
K L K L

i j i j
K L K L

R x y x y x y

x y f x y i j

   





 

Such that 

( , ) 0.3
x̂

( , ) 0.5
x̂

( , ) 0.7
x̂

i j
K L

i j
K L

i j
K L

x y

x y

x y













Then 

  



 

  

2 1 1 5 10

2 2

1 2 4 5 7 8 10 12 14 15

2 4 2 5 10 14

2 8 2 5 8 10 1

( , ),0.5,0.6,0.6 , , , ,

( , ),0.5,0.6,0.3 ,

, , , , , , , , ,

( , ),0.5,0.8,0.3 , , , , ,

( , ),0.4,0.7,0.3 , , , , ,

R x x u u u
N

x x

u u u u u u u u u u

x x u u u u

x x u u u u u



  

  

  

  

  

2 14

5 2 2 4 7 8 12 15

5 4 2 11

5 8 2 8 12

7 1 5 6 9 13

7 2

, ,

( , ),0.5,0.7,0.3 , , , , , , ,

( , ),0.6,0.8,0.3 , , ,

( , ),0.4,0.7,0.3 , , , ,

( , ),0.7,0.5,0.6 , , , , ,

( , ),0

u

x x u u u u u u

x x u u

x x u u u

x x u u u u

x x   

  

  

2 5 8 15

7 4 2 5 9

7 8 2 5 8

.5,0.6,0.3 , , , , ,

( , ),0.7,0.8,0.3 , , , ,

( , ),0.4,0.7,0.3 , , , .

u u u u

x x u u u

x x u u u
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Definition  3.5.  Let K , ( )L NPS U   and NR  be 

NP-soft relation from to K L  . Then domain and range 

of NR  respectively is defined as; 

 

 

( ) :

( ) : .

N K N

N L N

D R R

R R R

   

  

 

 

Example 3.6. Let us consider the Example 3.4 


 

  

  

2

1 2 4 5 7 8 10 12 14 15

3 2 5 8 11 15

5 2 3 4 7 8 11 12 15

6

( ) ,0.5,0.6,0.3 ,

, , , , , , , , , ,

,0.3,0.2,0.9 , , , , , ,

,0.6,0.7,0.3 , , , , , , , , ,

,0.1,

ND R x

u u u u u u u u u u

x u u u u u

x u u u u u u u u

x



  

  
2 4 6 7 10 12

7 2 5 6 8 9 13 15

0.4,0.6 , , , , , , ,

,0.7,0.5,0.3 , , , , , , ,

u u u u u u

x u u u u u u u

  



 

  

1 1 5 6 9 10 13

2

1 2 4 5 7 8 10 12 14 15

4 2 5 9 10 11 14

8

( ) ,0.7,0.4,0.6 , , , , , , ,

,0.5,0.6,0.3 ,

, , , , , , , , , ,

,0.9,0.8,0.1 , , , , , , ,

,0.4

NR R x u u u u u u

x

u u u u u u u u u u

x u u u u u u

x



  2 5 8 10 12 14,0.7,0.2 , , , , , ,u u u u u u

Definition 3.7. Let NR  be a NP-soft relation  from 

to K L  . Then, inverse of NR ,
1

NR 
 from to K L 

is a NP-soft relation defined as; 

   
1

N NR R      

Example 3.8. Let us consider the Example 4.4. Then 

1

NR 
 is from to K L   is obtained by 

  

 

  

1

1 2 1 5 10

2 2

1 2 4 5 7 8 10 12 14 15

4 2 2 5 10 14

8 2

( , ),0.5,0.6,0.6 , , , ,

( ( , ),0.5,0.6,0.3

, , , , , , , , , , )

( , ),0.5,0.8,0.3 , , , , ,

( , ),0.4,0.7,0.3 ,

NR x x u u u

x x

u u u u u u u u u u

x x u u u u

x x

 

  

  

  

  

2 5 8 10 12 14

2 5 2 4 7 8 12 15

4 5 2 11

8 5 2 8 12

1 7 5 6

, , , , , ,

( , ),0.5,0.7,0.3 , , , , , , ,

( , ),0.6,0.8,0.3 , , ,

( , ),0.4,0.7,0.3 , , , ,

( , ),0.7,0.5,0.6 , , ,

u u u u u u

x x u u u u u u

x x u u

x x u u u

x x u u  

  

  

  

9 13

2 7 2 5 8 15

4 7 2 5 9

8 7 2 5 8

, ,

( , ),0.5,0.6,0.3 , , , , ,

( , ),0.7,0.8,0.3 , , , ,

( , ),0.4,0.7,0.3 , , , .

u u

x x u u u u

x x u u u

x x u u u

Proposition 3.9. Let 
1N

R  and 
2N

R  be two NP-soft rela-

tion. Then 
1

1

1 1

1 1

1 2 1 2

1. 

2. 

N N

N N N N

R R

R R R R





 

 
 

 

  

Proof: 

   

 
1

1 1

1
1 1

1 1

1 2 1 2

1 1

1 2

1. 

2. 

N
N N

N N N N

N N

R R R

R R R R

R R

     

       


 

 

 

 

  

 

 

Definition 3.10. If 
1N

R  and 
2N

R are two NP- soft rela-

tion from K  to L , then a compostion of two NP-soft 

relations 
1N

R  and 
2N

R  is defined by 

1 2 1 2N N N N
R R aR R     
     

      
     
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Proposition 3.11. Let 
1N

R  and 
2N

R  be two NP-soft rela-

tion from to K L  . 

Then, 

1

1 1

1 2 2 1N N N N
R R R R 



  
 

 
 

Proof: 

1

1 2 1 2

1 2

2 1

1 1

2 1

=

=

=

N N N N

N N

N N

N N

R R R R

R R

R R

R R

     

   

   

   



 

   
   

   

   
   

   

   
   

   

   
   

   

1 1

2 1

=
N N

R R    
 
 

Therefore we obtain 

1

1 1

1 2 2 1N N N N
R R R R 



  
 

 
 

Definition 3.12. A  relationNP soft  R
N

 on K  is 

said to be a NP-soft symmetric relation

 If  
1 1

,  , .K
N N

R R          

Definition 3.13. A  relationNP soft  R
N

 on K  is 

said to be a NP-soft transitive relation

if ,N N NR R R   

 that is, 

 and , , , .N N N KR R R             

Definition 3.14. A  relationNP soft  R
N

 on K

is said to be a NP-soft reflexive relation

If  , .N KR      

Definition 3.15. A NP-soft relation NR  on K  is said to 

be a NP-soft equivalence relation  if it is symmetric, 

transitive and reflexive. 

Example  3.16. Let 

 

 

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

, , , , , , , ,  

, , , , , , , and

U u u u u u u u u

E x x x x x x x x









1 2

3

,0.5,0.4,0.7 , ,0.6,0.8,0.4 ,

0.2,0.5,0.1 .

X x x

x



 Suppose that 

  
  

  

1 2 3 5 6 7 8

2 2 6 8

3 1 2 4 5 7 8

,0.5,0.4,0.7 , , , , , , ,

0.6,0.8,0.4 , , , ,       

,0.2,0.5,0.1 , , , , , ,

K x u u u u u u

x u u u

x u u u u u u

 

Then, a cartesian product on K  is obtained as follows. 

  
  

  

  

1 1 2 3 5 6 7 8

1 2 2 6 8

1 3 2 5 7 8

2 1 2 6 8

x̂ ( , ),0.5,0.4,0.7 , , , , , , ,

( , ),0.5,0.8,0.7 , , , ,

( , ),0.2,0.5,0.7 , , , , ,

( , ),0.5,0.8,0.7 , , , ,

K K x x u u u u u u

x x u u u

x x u u u u

x x u u u

  

  

  

  

  

2 2 2 6 8

2 3 2 8

3 1 2 5 7 8

3 2 2 8

3 3

( , ),0.6,0.8,0.4 , , , ,

( , ),0.2,0.8,0.4 , , ,

( , ),0.2,0.5,0.7 , , , , ,

( , ),0.2,0.8,0.4 , , ,

( , ),0.2,0.5,

x x u u u

x x u u

x x u u u u

x x u u

x x   1 2 4 5 7 80.1 , , , , , ,u u u u u u

Then, we get a neutrosophic parameterized soft relation 

 on N KR    as follows 
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


( , ), ( , ), ( , ),
ˆ ˆx x

( , ) , ( , ) (1 , 8)
ˆ ˆx x

i j i j i j
K L K L

i j i j
K L K L

R x y x y x y
N

x y f x y i j

   





 

Where 

( , ) 0.3
x̂

( , ) 0.5
x̂

( , ) 0.7
x̂

i j
K L

i j
K L

i j
K L

x y

x y

x y













Then 

  
  

  

  

1 1 2 3 5 6 7 8

1 2 2 6 8

2 1 2 6 8

2 2 2 6 8

( , ),0.5,0.4,0.7 , , , , , , ,

( , ),0.5,0.8,0.7 , , , ,

( , ),0.5,0.8,0.7 , , , ,

( , ),0.6,0.8,0.4 , , , .

NR x x u u u u u u

x x u u u

x x u u u

x x u u u



NR  on K  is an NP-soft equivalence relation because it 

is symmetric, transitive and reflexive. 

Proposition 3.17. If NR  is symmetric, if and only if 
1

NR 

is so. 

Proof: If NR  is symmetric, then 

1 1 .N N N NaR R R R           So, 
1

NR 
 is

symmetric. 

 Conversely, if 
1

NR 
 is symmetric,

then  

1 1 1 1 1( ) ( ) ( )N N N N NR R R R R                

  So, NR  is symmetric. 

Proposition 3.18. NR is symmetric if and only 

if
1 .N NR R   

Proof: If NR  is symmetric, then 

1 .N N NR R R          So, 
1

N NR R  . 

Conversely, if 
1

N NR R  , then 

1 .N N NR R R        So, 
NR  is symmetric . 

Proposition 3.19. If 
1 2
 and N NR R  are symmetric rela-

tions on K , then 
1 2N NR R  is symmetric on K  if and 

only if 
1 2 2 1N N N NR R R R   

Proof: If 
1 2
 and N NR R  are symmetric, then it im-

plies
1 1 2 2

1 1 and N N N NR R R R   . We have 

 
1 2 2 1

1
1 1.N N N NR R R R 


    

Then 
1 2N NR R  is symmetric. It implies 

 
1 2 1 2 2 1 2 1

1
1 1 .N N N N N N N NR R R R R R R R   


     

  Conversely, 

 
1 2 2 1 2 1 1 2

1
1 1 .N N N N N N N NR R R R R R R R   


   

So, 
1 2N NR R  is symmetric. 

Corollary 3.20. If NR  is symmetric, then 
n

NR  is sym-

metric for all positive integer n, where 

 times

....n

N N N N

n

R R R R   . 

Proposition 3.21. If NR  is transitive, then 
1

NR 
 is also

transitive. 

Proof: 

 

   

   

   

 

1

1 1

1 1

N N N N

N N

N N

N N

N N

R R R R

R R

R R

R R

R R

      

   

   

   

  



 

 

 

 

 

 



So, 
1 1 1.N N NR R R     The proof is completed. 
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Proposition 3.22. If NR  is reflexive, then 
1

NR 
 is so.

Proof: 
1 1  andN N N NaR R R R         

1 1 .N N N NR aR R R            

The proof is completed. 

Proposition 3.23. If NR  is symmetric and transitive, then 

NR  is reflexive. 

Proof: Its clearly. 

Definition 3.24. Let ( ),  K NNPS U R   be an 

NP soft  equivalence relation on  and .K NR    

Then, an equivalence class of   , denoted by   ,
NR

  is 

defined as  

   : .N
N

R
R

   

Example 3.25. Let us consider the Example 3. 16 Then an 

equivalence class of  

 will be as fol-

lows. 

  

  
  

  

1 2 3 5 6 7 8

1 2 3 5 6 7 8

2 2 6 8

3 1 2 4 5 7 8

,0.5,0.4,0.7 , , , , , ,

,0.5,0.4,0.7 , , , , , , ,

0.6,0.8,0.4 , , , ,

,0.2,0.5,0.1 , , , , , ,

NR
x u u u u u u

x u u u u u u

x u u u

x u u u u u u

   

4. Decision Making Method

In this section, we construct a soft neutrosophication op-

erator and a decision making method on NP soft   rela-

tions. 

Definition 4.1. Let ( ) K NPS U   and NR  be a NP-

soft  relation on K . The neutrosophication operator, de-

noted by NsR , is defined by 

    



: ,  , , ( ), ( ),

( ) ,

N N

N

N N N R R

R

sR R F U sR X X U u u u

u u U

 



  



Where 

1
( ) ( , ) ( )

1
( ) ( , ) ( )

1
( ) ( , ) ( )

N N

N N

N N

R R i j

i j

R R i j

i j

R R i j

i j

u x x u
X X

u x x u
X X

u x x u
X X

  

  

  
















and where  

1,    ( , )
( )

0,   ( , )

N

N

R i j

R i j

u f x x
u

u f x x



 



Note that X X  is the cardinality of .X X  

Definition 4.2. Let  NP-soft set and NsR  a neutro-

sophication operator, then a reduced fuzzy set of K   is a 

fuzzy set over U denoted by 

( )
( ) :N

K

sR u
u u U

u




 
 

  
  

Where  : 0,1
N

U
sR

    and 

( ) ( ) ( )
( )

2

K K K

N

u u u
u

sR

  


 


Now; we can construct a decision making method on 

NP soft   relation by the following algorithem; 
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1. construct a feasible neutrosophic  subset  over ,X E

2. construct a    over ,KNP soft set U  

3. construct a  relation  over N KNP soft R   ac-

cording to the requests,

4. calculate the neutrosophication operator

 over ,N NsR R

5. calculate the reduced fuzzy set K

6. select the objects from K , which have the largest 

membership value. 

Example 4.3. A customer, Mr. X, comes to the auto gallery 

agent to buy a car which is over middle class. Assume that 

an auto gallery agent has a set of different types of car 

 1 2 3 4 5 6 7 8, , , , , , , ,U u u u u u u u u   which may be charac-

terized by a set of parameters  1 2 3 4, , , .E x x x x  For 

1,2,3,4i   the parameters ix  stand for 

ty”, ”cheap”, “modern” and “large”, respectively. If Mr. X 

has to consider own set of parameters, then we select a car 

on the basis of the set of customer parameters by using the 

algorithm as follows.  

1. Mr. X constructs a neutrosophic set X over E,

  X= {<x1,0.5, 0.4 ,0.7>,<x2,0.6, 0.8 ,0.4>,<x3,0.2, 0.5 

,0.1>} 

2. Mr. X constructs a NP soft  set  over ,K U  

  
  

  

1 2 3 5 6 7 8

2 2 6 8

3 1 2 4 5 7 8

,0.5,0.4,0.7 , , , , , , ,

,0.6,0.8,0.4 , , , ,

,0.2,0.5,0.1 , , , , , ,

K x u u u u u u

x u u u

x u u u u u u

 

3. The neutrosophic parameterized soft relation NR over 

K  is calculated according to the Mr X’s request 

(The car must be a over middle class, it means the 

membership degrees are over 0.5 ), 

  
  

  

  

  

1 1 2 3 5 6 7 8

1 2 2 6 8

1 3 2 5 7 8

2 1 2 6 8

2 2 2 6 8

( , ),0.4,0.6,0.7 , , , , , , ,

( , ),0.4,0.6,0.7 , , , ,

( , ),0.2,0.5,0.7 , , , , ,

( , ),0.4,0.6,0.7 , , ,

( , ),0.6,0.8,0.4 , , , ,

NR x x u u u u u u

x x u u u

x x u u u u

x x u u u

x x u u u



  

  

  

  

2 3 2 8

3 1 2 5 7 8

3 2 2 8

3 3 1 2 4 5 7 8

( , ),0.2,0.8,0.4 , , ,

( , ),0.2,0.5,0.7 , , , , ,

( , ),0.2,0.8,0.4 , , ,

( , ),0.2,0.5,0.1 , , , , , ,

x x u u

x x u u u u

x x u u

x x u u u u u u

4. The soft neutrosophication operator  over 
NR Ns R

calculated as follows 

 1

2 3

4 5

6 7

8

,0.022,0.055,0.011 ,

,0.311,0.633,0.533 , ,0.044,0.066,0.077 ,

,0.022,0.055,0.011 , ,0.111,0.233,0.244 ,

,0.2,0.288,0.277 , ,0.133,0.322,0.288 ,

,0.311,0.

NsR u

u u

u u

u u

u



633,0.533

5. Reduced fuzzy set K  calculated as follows 

1 2 3 4 5

6 7 8

0.033 0.205 0.016 0.033 0.05
( ) , , , , ,

0.105 0.083 0.205
, , ;  

K u
u u u u u

u U
u u u




 



 



6. Now, Mr. X select the optimum car u2 and u8 which

have the biggest membership degree 0.205 among the

other cars.

5. Conclusion

In this work, we have defined relation on NP-soft sets and 

studied some of their properties. We also defined symmet-

ric, transitive, reflexive and equivalence relations on the 
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NP-soft sets. Finally, we construct a decision making 

method and gave an application which shows that this 

method successfully works. In future work, we will extend 

this concept to interval valued neutrosophic parameterized 

soft sets. 
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Abstract. 

A single-valued neutrosophic set (SVNS) and an interval 

neutrosophic set (INS) are two instances of a neutrosoph-

ic set, which can efficiently deal with uncertain, impre-

cise, incomplete, and inconsistent information. In this 

paper, we develop a novel method for solving single-

valued neutrosophic multi-criteria decision making with 

incomplete weight information, in which the criterion 

values are given in the form of single-valued neutrosoph-

ic sets (SVNSs), and the information about criterion 

weights is incompletely known or completely unknown. 

The developed method consists of two stages. The first 

stage is to use the maximizing deviation method to estab-

lish an optimization model, which derives the optimal 

weights of criteria under single-valued neutrosophic en-

vironments. After obtaining the weights of criteria 

through the above stage, the second stage is to develop a 

single-valued neutrosophic TOPSIS (SVNTOPSIS) 

method to determine a solution with the shortest distance 

to the single-valued neutrosophic positive ideal solution 

(SVNPIS) and the greatest distance from the single-

valued neutrosophic negative ideal solution (SVNNIS). 

Moreover, a best global supplier selection problem is 

used to demonstrate the validity and applicability of the 

developed method. Finally, the extended results in inter-

val neutrosophic situations are pointed out and a compar-

ison analysis with the other methods is given to illustrate 

the advantages of the developed methods. 

Keywords: neutrosophic set, single-valued neutrosophic set (SVNS), interval neutrosophic set (INS), multi-criteria decision  mak-

ing (MCDM), maximizing deviation method; TOPSIS. 

1. Introduction

Neutrosophy, originally introduced by Smarandache
[12], is a branch of philosophy which studies the origin, 

nature and scope of neutralities, as well as their interac-
tions with different ideational spectra [12]. As a powerful 
general formal framework, neutrosophic set [12] generaliz-
es the concept of the classic set, fuzzy set [24], interval-
valued fuzzy set [14,25], vague set [4], intuitionistic fuzzy 
set [1], interval-valued intuitionistic fuzzy set [2], paracon-

sistent set [12], dialetheist set [12], paradoxist set [12], and 
tautological set [12]. In the neutrosophic set, indeterminacy 
is quantified explicitly and truth-membership, indetermi-
nacy-membership, and falsity-membership are independent, 
which is a very important assumption in many applications 
such as information fusion in which the data are combined 

from different sensors [12]. Recently, neutrosophic sets 
have been successfully applied to image processing [3,5,6]. 

The neutrosophic set generalizes the above mentioned 
sets from philosophical point of view. From scientific or 
engineering point of view, the neutrosophic set and set-
theoretic operators need to be specified. Otherwise, it will 

be difficult to apply in the real applications [16,17]. There-
fore, Wang et al. [17] defined a single valued neutrosophic 
set (SVNS), and then provided the set theoretic operators 
and various properties of single valued neutrosophic sets 

(SVNSs). Furthermore, Wang et al. [16] proposed the set-
theoretic operators on an instance of neutrosophic set 

called interval neutrosophic set (INS). A single-valued 
neutrosophic set (SVNS) and an interval neutrosophic set 
(INS) are two instances of a neutrosophic set, which give 
us an additional possibility to represent uncertainty, impre-
cise, incomplete, and inconsistent information which exist 
in real world. Single valued neutrosophic sets and interval 

neutrosophic sets are different from intuitionistic fuzzy sets 
and interval-valued intuitionistic fuzzy sets. Intuitionistic 
fuzzy sets and interval-valued intuitionistic fuzzy sets can 
only handle incomplete information, but cannot handle the 
indeterminate information and inconsistent information 
which exist commonly in real situations. The connectors in 

the intuitionistic fuzzy set and interval-valued intuitionistic 
fuzzy set are defined with respect to membership and non-
membership only (hence the indeterminacy is what is left 
from 1), while in the single valued neutrosophic set and in-
terval neutrosophic set, they can be defined with respect to 
any of them (no restriction). For example [17], when we 

ask the opinion of an expert about certain statement, he or 
she may say that the possibility in which the statement is 
true is 0.6 and the statement is false is 0.5 and the degree in 
which he or she is not sure is 0.2. This situation can be ex-
pressed as a single valued neutrosophic set 0.6,0.2,0.5 , 
which is beyond the scope of the intuitionistic fuzzy set. 
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For another example [16], suppose that an expert may say 
that the possibility that the statement is true is between 0.5 
and 0.6, and the statement is false is between 0.7 and 0.9, 
and the degree that he or she is not sure is between 0.1 and 
0.3. This situation can be expressed as an interval neutro-
sophic set      0.5,0.6 , 0.1,0.3 , 0.7,0.9 , which is beyond the 

scope of the interval-valued intuitionistic fuzzy set. 
Due to their abilities to easily reflect the ambiguous na-

ture of subjective judgments, single valued neutrosophic 
sets (SVNSs) and interval neutrosophic sets (INSs) are 
suitable for capturing imprecise, uncertain, and incon-
sistent information in the multi-criteria decision analysis 

[20,21,22,23]. Most recently, some methods [20,21,22,23] 
have been developed for solving the multi-criteria decision 
making (MCDM) problems with single-valued neutrosoph-
ic or interval neutrosophic information. For example, Ye 
[20] developed a multi-criteria decision making method us-
ing the correlation coefficient under single-valued neutro-

sophic environments. Ye [21]  defined the single valued 
neutrosophic cross entropy, based on which, a multi-
criteria decision making method is established in which 
criteria values for alternatives are single valued neutro-
sophic sets (SVNSs). Ye [23] proposed a simplified neu-
trosophic weighted arithmetic average operator and a sim-

plified neutrosophic weighted geometric average operator, 
and then utilized two aggregation operators to develop a 
method for multi-criteria decision making problems under 
simplified neutrosophic environments. Ye [22] defined the 
similarity measures between interval neutrosophic sets 
(INSs), and then utilized the similarity measures between 

each alternative and the ideal alternative to rank the alter-
natives and to determine the best one. However, it is noted 
that the aforementioned methods need the information 
about criterion weights to be exactly known. When using 
these methods, the associated weighting vector is more or 
less determined subjectively and the decision information 

itself is not taken into consideration sufficiently. In fact, in 
the process of multi-criteria decision making (MCDM), we 
often encounter the situations in which the criterion values 
take the form of single valued neutrosophic sets (SVNSs) 
or interval neutrosophic sets (INSs), and the information 
about attribute weights is incompletely known or com-

pletely unknown because of time pressure, lack of 
knowledge or data, and the expert’s limited expertise about 
the problem domain [18]. Considering that the existing 
methods are inappropriate for dealing with such situations, 
in this paper, we develop a novel method for single valued 
neutrosophic or interval neutrosophic MCDM with incom-

plete weight information, in which the criterion values take 
the form of single valued neutrosophic sets (SVNSs) or in-
terval neutrosophic sets (INSs), and the information about 
criterion weights is incompletely known or completely un-
known. The developed method is composed of two parts. 
First, we establish an optimization model based on the 

maximizing deviation method to objectively determine the 

optimal criterion weights. Then, we develop an extended 
TOPSIS method, which we call the single valued neutro-
sophic or interval neutrosophic TOPSIS, to calculate the 
relative closeness coefficient of each alternative to the sin-
gle valued neutrosophic or interval neutrosophic positive 
ideal solution and to select the optimal one with the maxi-

mum relative closeness coefficient. Two illustrative exam-
ples and comparison analysis with the existing methods 
show that the developed methods can not only relieve the 
influence of subjectivity of the decision maker but also re-
main the original decision information sufficiently. 

To do so, the remainder of this paper is set out as 

follows. Section 2 briefly recalls some basic concepts of 
neutrosophic sets, single-valued neutrosophic sets 
(SVNSs), and interval neutrosophic sets (INSs). Section 3 
develops a novel method based on the maximizing 
deviation method and the single-valued neutrosophic 
TOPSIS (SVNTOPSIS) for solving the single-valued 

neutrosophic multi-criteria decision making with 
incomplete weight information. Section 4 develops a novel 
method based on the maximizing deviation method and the 
interval neutrosophic TOPSIS (INTOPSIS) for solving the 
interval neutrosophic multi-criteria decision making with 
incomplete weight information. Section 5 provides two 

practical examples to illustrate the effectiveness and 
practicality of the developed methods. Section 6 ends the 
paper with some concluding remarks. 

2 Neutrosophic sets and and SVNSs 

In this section, we will give a brief overview of neutro-
sophic sets [12], single-valued neutrosophic set (SVNSs) 

[17], and interval neutrosophic sets (INSs) [16]. 

2.1 Neutrosophic sets 

Neutrosophic set is a part of neutrosophy, which stud-

ies the origin, nature, and scope of neutralities, as well as 

their interactions with different ideational spectra [12], and 

is a powerful general formal framework, which generalizes 

the above mentioned sets from philosophical point of view. 

Smarandache [12] defined a neutrosophic set as fol-

lows: 

Definition 2.1 [12]. Let X  be a space of points (objects), 

with a generic element in X  denoted by x . A neutrosoph-

ic set A  in X  is characterized by a truth-membership 

function  AT x , a indeterminacy-membership function 

 AI x , and a falsity-membership function  AF x . The 

functions  AT x ,  AI x  and  AF x  are real standard or 

nonstandard subsets of 0 ,1    . That is 

  : 0 ,1AT x X     ,   : 0 ,1AI x X      , and

  : 0 ,1AF x X     .
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There is no restriction on the sum of  AT x ,  AI x  and 

 AF x , so      0 sup sup sup 3A A AT x I x F x     . 

Definition 2.2 [12]. The complement of a neutrosophic set 

A  is denoted by 
cA  and is defined as 

     1c AA
T x T x ,      1c AA

I x I x , and 

     1c AA
F x F x  for every x  in X . 

Definition 2.3 [12]. A neutrosophic set A  is contained in 

the other neutrosophic set B , A B  if and only if 

   inf infA BT x T x ,    sup supA BT x T x , 

   inf infA BI x I x ,    sup supA BI x I x , 

   inf infA BF x F x , and    sup supA BF x F x  for 

every x  in X . 

2.2 Single-valued neutrosophic sets (SVNSs) 

A single-valued neutrosophic set (SVNS) is an instance 

of a neutrosophic set, which has a wide range of applica-

tions in real scientific and engineering fields. In the follow-

ing, we review the definition of a SVNS proposed by 

Wang et al. [17]. 

Definition 2.4 [17]. Let X  be a space of points (objects) 

with generic elements in X  denoted by x . A single-

valued neutrosophic set (SVNS) A  in X  is characterized 

by truth-membership function  AT x , indeterminacy-

membership function  AI x , and falsity-membership 

function  AF x , where        , , 0,1A A AT x I x F x   for 

each point x  in X . 

A SVNS A  can be written as 

      , , ,A A AA x T x I x F x x X         (1) 

Let       , , ,i A i A i A i iA x T x I x F x x X   and 

      , , ,i B i B i B i iB x T x I x F x x X   be two sin-

gle-valued neutrosophic sets (SVNSs) in 

 1 2, , , nX x x x . Then we define the following dis-

tances for A  and B . 

(i) The Hamming distance 

 
       

   1

1
,

3

n
A i B i A i B i

i A i B i

T x T x I x I x
d A B

F x F x

    
 
  

  (2) 

(ii) The normalized Hamming distance 

 
       

   1

1
,

3

n
A i B i A i B i

i A i B i

T x T x I x I x
d A B

n F x F x

    
 
  

  (3) 

(iii) The Euclidean distance 

 
       

   

2 2

2
1

1
,

3

n
A i B i A i B i

i
A i B i

T x T x I x I x
d A B

F x F x

   
 
 
  

  (4) 

(iv) The normalized Euclidean distance 

 
       

   

2 2

2
1

1
,

3

n
A i B i A i B i

i
A i B i

T x T x I x I x
d A B

n F x F x

   
 
 
  

 (5) 

2.3 Interval neutrosophic sets (INSs) 

Definition 2.5 [16]. Let X  be a space of points (objects) 

with generic elements in X  denoted by x . An interval 

neutrosophic set (INS) A  in X  is characterized by a 

truth-membership function  
A

T x , an indeterminacy-

membership function  
A

I x , and a falsity-membership

function  
A

F x . For each point x  in X , we have that 

       inf ,sup 0,1
A A A

T x T x T x    , 

       inf ,sup 0,1
A A A

I x I x I x    , 

       inf ,sup 0,1
A A A

F x F x F x    ,

and      0 sup sup sup 3
A A A

T x I x F x    . 

Let       , , ,i i i i iA A A
A x T x I x F x x X   and 

      , , ,i i i i iB B B
B x T x I x F x x X   be two inter-

val neutrosophic sets (INSs) in  1 2, , , nX x x x , 

where      inf ,supi i iA A A
T x T x T x    ,

     inf ,supi i iA A A
I x I x I x    ,

     inf ,supi i iA A A
F x F x F x    ,

      inf ,supi i iB B B
T x T x T x    ,

     inf ,supi i iB B B
I x I x I x    ,

and      inf ,supi i iB B B
F x F x F x    . Then Ye [22]

defined the following distances for A  and B . 

(i) The Hamming distance 

 

       

       

       
1

,

inf inf sup sup

1
inf inf sup sup

6

inf inf sup sup

i i i iB BA A
n

i i i iB BA A
i

i i i iB BA A

d A B

T x T x T x T x

I x I x I x I x

F x F x F x F x




    
 
    
 
   
 


  (6) 

(ii) The normalized Hamming distance 
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 

       

       

       
1

,

inf inf sup sup

1
inf inf sup sup

6

inf inf sup sup

i i i iB BA A
n

i i i iB BA A
i

i i i iB BA A

d A B

T x T x T x T x

I x I x I x I x
n

F x F x F x F x




    
 
    
 
   
 


 (7) 

(iii) The Euclidean distance 

 

       

       

       

2 2

2 2

1
2 2

,

inf inf sup sup

1
inf inf sup sup

6

inf inf sup sup

i i i iB BA A

n

i i i iB BA A
i

i i i iB BA A

d A B

T x T x T x T x

I x I x I x I x

F x F x F x F x





    
 
 

    
 
   
 


 (8) 

(iv) The normalized Euclidean distance 

 

       

       

       

2 2

2 2

1
2 2

,

inf inf sup sup

1
inf inf sup sup

6

inf inf sup sup

i i i iB BA A

n

i i i iB BA A
i

i i i iB BA A

d A B

T x T x T x T x

I x I x I x I x
n

F x F x F x F x





    
 
 

    
 
   
 


(9) 

3 A novel method for single-valued neutrosophic 
multi-criteria decision making with incomplete 
weight information 

3.1 Problem description 

The aim of multi-criteria decision making (MCDM) 

problems is to find the most desirable alternative(s) from a 

set of feasible alternatives according to a number of criteria 

or attributes. In general, the multi-criteria decision making 

problem includes uncertain, imprecise, incomplete, and in-

consistent information, which can be represented by 

SVNSs. In this section, we will present a method for han-

dling the MCDM problem under single-valued neutrosoph-

ic environments. First, a MCDM problem with single-

valued neutrosophic information can be outlined as: let 

 1 2, , , mA A A A  be a set of m  alternatives and 

 1 2, , , nC c c c  be a collection of n  criteria, whose 

weight vector is  1 2, , ,
T

nw w w w , with  0,1jw  , 

1,2, ,j n , and 
1

1
n

j

j

w


 . In this case, the character-

istic of the alternative iA  ( 1,2, ,i m ) with respect to 

all the criteria is represented by the following SVNS: 

      , , ,
i i ii j A j A j A j jA c T c I c F c c C 

where        , , 0,1
i i iA j A j A jT c I c F c  , and 

     0 3
i i iA j A j A jT c I c F c    ( 1,2, ,i m ,

1,2, ,j n ). 

Here,  
iA jT c  indicates the degree to which the alter-

native iA  satisfies the criterion jc ,  
iA jI c  indicates the 

indeterminacy degree to which the alternative iA  satisfies 

or does not satisfy the criterion jc , and  
iA jF c  indicates 

the degree to which the alternative iA  does not satisfy the 

criterion jc . For the sake of simplicity, a criterion value 

     , , ,
i i ij A j A j A jc T c I c F c  in iA  is denoted by a sin-

gle-valued neutrosophic value (SVNV) , ,ij ij ij ija T I F

( 1,2, ,i m , 1,2, ,j n ), which is usually derived 

from the evaluation of an alternative iA  with respect to a 

criterion jC  by means of a score law and data processing 

in practice [19,22]. All ija  ( 1,2, ,i m , 1,2, ,j n ) 

constitute a single valued neutrosophic decision matrix 

   , ,ij ij ij ijm n m n
A a T I F

 
   (see Table 1): 

Table 1: Single valued neutrosophic decision matrix A . 

3.2 Obtaining the optimal weights of criteria by 
the maximizing deviation method 

Due to the fact that many practical MCDM problems 

are complex and uncertain and human thinking is inherent-

ly subjective, the information about criterion weights is 

usually incomplete. For convenience, let   be a set of the 

known weight information [8,9,10,11], where   can be 

constructed by the following forms, for i j : 

Form 1. A weak ranking:  i jw w ; 

1 1c jc
nc

1A 11 11 11, ,T I F 1 1 1, ,j j jT I F
1 1 1, ,n n nT I F

iA 1 1 1, ,i i iT I F , ,ij ij ijT I F , ,in in inT I F

mA 1 1 1, ,m m mT I F , ,mj mj mjT I F , ,mn mn mnT I F
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Form 2. A strict ranking:  i j iw w    ( 0i  ); 

Form 3. A ranking of differences:  i j k lw w w w   , 

for j k l  ; 

Form 4. A ranking with multiples:  i i jw w

( 0 1i  ); 

Form 5. An interval form:  i i i iw    

( 0 1i i i      ). 

Wang [15] proposed the maximizing deviation method 

for estimating the criterion weights in MCDM problems 

with numerical information. According to Wang [15], if 

the performance values of all the alternatives have small 

differences under a criterion, it shows that such a criterion 

plays a less important role in choosing the best alternative 

and should be assigned a smaller weight. On the contrary, 

if a criterion makes the performance values of all the alter-

natives have obvious differences, then such a criterion 

plays a much important role in choosing the best alterna-

tive and should be assigned a larger weight. Especially, if 

all available alternatives score about equally with respect 

to a given criterion, then such a criterion will be judged un-

important by most decision makers and should be assigned 

a very small weight. Wang [15] suggests that zero weight 

should be assigned to the criterion of this kind. 

Here, based on the maximizing deviation method, we 

construct an optimization model to determine the optimal 

relative weights of criteria under single valued neutrosoph-

ic environments. For the criterion jc C , the deviation of 

the alternative iA  to all the other alternatives can be de-

fined as below: 

 
2 2 2

1 1

,
3

m m
ij qj ij qj ij qj

ij ij qj

q q

T T I I F F
D d a a

 

    
  

1,2, ,i m , 1,2, ,j n  (10) 

where  
2 2 2

,
3

ij qj ij qj ij qj

ij qj

T T I I F F
d a a

    


denotes the single valued neutrosophic Euclidean distance 

between two single-valued neutrosophic values (SVNVs) 

ija  and qja  defined as in Eq. (4). 

Let 

 
1 1 1

2 2 2

1 1

,

3

m m m

j ij ij qj

i i q

m m
ij qj ij qj ij qj

i q

D D d a a

T T I I F F

  

 

  

    

 



1,2, ,j n  (11) 

then jD  represents the deviation value of all alternatives 

to other alternatives for the criterion jc C . 

Further, let 

 

2 2 2

1 1 1 1 3

n n m m
ij qj ij qj ij qj

j j j

j j i q

T T I I F F
D w w D w

   

    
  

(12) 

then  D w  represents the deviation value of all alterna-

tives to other alternatives for all the criteria. 

Based on the above analysis, we can construct a non-

linear programming model to select the weight vector w  

by maximizing  D w , as follows:

 

2 2 2

1 1 1

2

1

max
3

s.t. 0, 1,2, , , 1

n m m
ij qj ij qj ij qj

j

j i q

n

j j

j

T T I I F F
D w w

w j n w

  



    


  





        (M-1) 

To solve this model, we construct the Lagrange function 

as follows: 

 

2 2 2

1 1 1

2

1

,
3

1
2

n m m
ij qj ij qj ij qj

j

j i q

n

j

j

T T I I F F
L w w

w





  



    
 

 
 

 





       (13) 

where   is the Lagrange multiplier. 

Differentiating Eq. (13) with respect to jw

( 1,2, ,j n ) and  , and setting these partial deriva-

tives equal to zero, then the following set of equations is 

obtained: 

2 2 2

1 1

0
3

m m
ij qj ij qj ij qj

j

i qj

T T I I F FL
w

w


 

    
  


  

         (14) 

2

1

1
1 0

2

n

j

j

L
w

 

 
   

  
    (15) 

It follows from Eq. (14) that 

2 2 2

1 1 3

m m
ij qj ij qj ij qj

i q

j

T T I I F F

w


 

    





 (16)     

Putting Eq. (16) into Eq. (15), we get 
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2
2 2 2

1 1 1 3

n m m
ij qj ij qj ij qj

j i q

T T I I F F


  

 
     

   
 
 

 

       (17) 

Then, by combining Eqs. (16) and (17), we have 

2 2 2

1 1

2
2 2 2

1 1 1

3

3

m m
ij qj ij qj ij qj

i q

j

n m m
ij qj ij qj ij qj

j i q

T T I I F F

w

T T I I F F

 

  

    



 
     

 
 
 



 

       (18) 

By normalizing jw  ( 1,2, ,j n ), we make their sum 

into a unit, and get 

2 2 2

1 1

2 2 2

1

1 1 1

3

3

m m
ij qj ij qj ij qj

j i q

j n

n m m
ij qj ij qj ij qjj

j

j i q

T T I I F F

w
w

T T I I F Fw

 



  

    

 

    






  (19) 

which can be considered as the optimal weight vector of 

criteria. 

However, it is noted that there are practical situations in 

which the information about the weight vector is not com-

pletely unknown but partially known. For such cases, we 

establish the following constrained optimization model: 

 

2 2 2

1 1 1

1

max
3

s.t. , 0, 1,2, , , 1

n m m
ij qj ij qj ij qj

j

j i q

n

j j

j

T T I I F F
D w w

w w j n w

  



    


   





    (M-2) 

It is noted that the model (M-2) is a linear programming 

model that can be solved using the MATLAB mathematics 

software package. Suppose that the optimal solution to the 

model (M-2) is  1 2, , ,
T

nw w w w , which can be con-

sidered as the weight vector of criteria. 

3.3. Extended TOPIS method for the MCDM with 
single valued neutrosophic information 

TOPSIS method, initially introduced by Hwang and 

Yoon [7], is a widely used method for dealing with 

MCDM problems, which focuses on choosing the alterna-

tive with the shortest distance from the positive ideal solu-

tion (PIS) and the farthest distance from the negative ideal 

solution (NIS). After obtaining the criterion weight values 

on basis of the maximizing deviation method, in the fol-

lowing, we will extend the TOPSIS method to take single-

valued neutrosophic information into account and utilize 

the distance measures of SVNVs to obtain the final ranking 

of the alternatives. 

In general, the criteria can be classified into two types: 

benefit criteria and cost criteria. The benefit criterion 

means that a higher value is better while for the cost crite-

rion is valid the opposite. Let 1C  be a collection of benefit 

criteria and 2C  be a collection of cost criteria, where 

1 2C C C  and 1 2C C  . Under single-valued neu-

trosophic environments, the single-valued neutrosophic 

PIS (SVNPIS), denoted by A
, can be identified by using

a maximum operator for the benefit criteria and a mini-

mum operator for the cost criteria to determine the best 

value of each criterion among all alternatives as follows: 

 1 2, , , nA a a a     (20) 

where 

     

     

1

2

max ,min ,min , if ,

min ,max ,max , if .

ij ij ij
i ii

j

ij ij ij
i i i

T I F j C

a

T I F j C



 


 
 


  (21) 

The single-valued neutrosophic NIS (SVNNIS), denoted 

by A
, can be identified by using a minimum operator for

the benefit criteria and a maximum operator for the cost 

criteria to determine the worst value of each criterion 

among all alternatives as follows: 

 1 2, , , nA a a a         (22) 

where 

     

     

1

2

min ,max ,max , if ,

max ,min ,min , if .

ij ij ij
i i i

j

ij ij ij
i ii

T I F j C

a

T I F j C



 


 
 


     (23) 

The separation measures, id 
 and id 

, of each alterna-

tive from the SVNPIS A
 and the SVNNIS A

, respec-

tively, are derived from 
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 

     

     

1

2

1

2 2 2

2 22

,

max min min

3

min max max

3

n

i j ij j

j

ij ij ij ij ij ij
i ii

j

j C

ij ij ij ij ij ij
i i i

j

j C

d w d a a

T T I I F F

w

T T I I F F

w

 









 
     

  

 
     

 







  (24) 

 

     

     

1

2

1

2 22

2 2 2

,

min max max

3

max min min

3

n

i j ij j

j

ij ij ij ij ij ij
i i i

j

j C

ij ij ij ij ij ij
i ii

j

j C

d w d a a

T T I I F F

w

T T I I F F

w

 









 
     

  

 
     

 







  (25) 

The relative closeness coefficient of an alternative iA

with respect to the single-valued neutrosophic PIS A
 is

defined as the following formula: 

i
i

i i

d
C

d d



 



 (26) 

where 0 1iC  , 1,2, ,i m . Obviously, an alternative 

iA  is closer to the single-valued neutrosophic PIS A
 and

farther from the single-valued neutrosophic NIS A
 as iC

approaches 1. The larger the value of iC , the more differ-

ent between iA  and the single-valued neutrosophic NIS 

A
, while the more similar between iA  and the single-

valued neutrosophic PIS A
. Therefore, the alternative(s)

with the maximum relative closeness coefficient should be 

chosen as the optimal one(s). 

Based on the above analysis, we will develop a practi-

cal approach for dealing with MCDM problems, in which 

the information about criterion weights is incompletely 

known or completely unknown, and the criterion values 

take the form of single-valued neutrosophic information. 

The flowchart of the proposed approach for MCDM is 

provided in Fig. 1. The proposed approach is composed of 

the following steps: 

Step 1. For a MCDM problem, the decision maker (DM) 

constructs the single-valued neutrosophic decision matrix 

   , ,ij ij ij ijm n m n
A a T I F

 
  , where , ,ij ij ij ija T I F

is a single-valued neutrosophic value (SVNV), given by 

the DM, for the alternative iA  with respect to the attribute 

jc . 

Step 2. If the information about the criterion weights is 

completely unknown, then we use Eq. (19) to obtain the 

criterion weights; if the information about the criterion 

weights is partly known, then we solve the model (M-2) to 

obtain the criterion weights. 

Step 3. Utilize Eqs. (20), (21), (22), and (23) to determine 

the single-valued neutrosophic positive ideal solution 

(SVNPIS) A
 and the single-valued neutrosophic negative

ideal solution (SVNNIS) A
.

Step 4. Utilize Eqs. (24) and (25) to calculate the separa-

tion measures id 
 and id 

 of each alternative iA  from the 

single-valued neutrosophic positive ideal solution 

(SVNPIS) A
 and the single-valued neutrosophic negative

ideal solution (SVNNIS) A
, respectively.

Step 5. Utilize Eq. (26) to calculate the relative closeness 

coefficient iC  of each alternative iA  to the single-valued 

neutrosophic positive ideal solution (SVNPIS) A
.

Step 6. Rank the alternatives iA  ( 1,2, ,i m ) accord-

ing to the relative closeness coefficients iC  ( 1,2, ,i m ) 

to the single-valued neutrosophic positive ideal solution 

(SVNPIS) A
 and then select the most desirable one(s).

4 A novel method for interval neutrosophic multi-
criteria decision making with incomplete weight 
information 

In this section, we will extend the results obtained in 

Section 3 to interval neutrosophic environments. 

4.1. Problem description 

Similar to Subsection 3.1, a MCDM problem under in-

terval neutrosophic environments can be summarized as 

follows: let  1 2, , , mA A A A  be a set of m  alterna-

tives and  1 2, , , nC c c c  be a collection of n  criteria, 

whose weight vector is  1 2, , ,
T

nw w w w , with 

 0,1jw  , 1,2, ,j n , and 
1

1
n

j

j

w


 . In this case,

the characteristic of the alternative iA  ( 1,2, ,i m ) 

with respect to all the criteria is represented by the follow-

ing INS: 

      
       

   

, , ,

, inf ,sup , inf ,sup ,

inf ,sup

i i i
i j j j j jA A A

j j j j jA A A A

j

j jA A

A c T c I c F c c C

c T c T c I c I c
c C

F c F c

 

    
    

  
    

where        inf ,sup 0,1
i

j j jA A A
T c T c T c  

  , 

       inf ,sup 0,1
i

j j jA A A
I c I c I c  

  ,
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       inf ,sup 0,1
i

j j jA A A
F c F c F c  

  , and 

     sup sup sup 3j j jA A A
T c I c F c  

 ( 1,2, ,i m , 1,2, ,j n ). 

Here,      inf ,sup
i

j j jA A A
T c T c T c 

   indicates the 

interval degree to which the alternative iA  satisfies the cri-

terion jc ,      inf ,sup
i

j j jA A A
I c I c I c 

   indicates 

the indeterminacy interval degree to which the alternative 

iA  satisfies or does not satisfy the criterion jc , and 

     inf ,sup
i

j j jA A A
F c F c F c 

   indicates the inter-

val degree to which the alternative iA  does not satisfy the 

criterion jc . For the sake of simplicity, a criterion value 

     , , ,
i i i

j j j jA A A
c T c I c F c  in iA  is denoted by an in-

terval neutrosophic value (INV) 

, , , , , , ,L U L U L U

ij ij ij ij ij ij ij ij ij ija T I F T T I I F F            

( 1,2, ,i m , 1,2, ,j n ), which is usually derived 

from the evaluation of an alternative iA  with respect to a 

criterion jc  by means of a score law and data processing 

in practice [19,22]. All ija  ( 1,2, ,i m , 1,2, ,j n ) 

constitute an interval neutrosophic decision matrix 

     , , , , , , ,L U L U L U

ij ij ij ij ij ij ij ij ij ijm n m n m n

A a T I F T T I I F F
  

             

(see Table 2): 

Table 2: Interval neutrosophic decision matrix A . 

4.2. Obtaining the optimal weights of criteria un-
der interval neutrosophic environments by the 
maximizing deviation method 

In what follows, similar to Subsection 3.2, based on the 

maximizing deviation method, we construct an optimiza-

tion model to determine the optimal relative weights of cri-

teria under interval neutrosophic environments. For the at-

tribute jc C , the deviation of the alternative iA  to all 

the other alternatives can be defined as below: 

 

2 2 2

2 2 2

1 1

,
6

L L U U L L

ij qj ij qj ij qj

U U L L U U
m m

ij qj ij qj ij qj

ij ij qj

q q

T T T T I I

I I F F F F
D d a a

 

     

    
  

    1,2, ,i m , 1,2, ,j n  (27) 

where  

2 2 2

2 2 2

,
6

L L U U L L

ij qj ij qj ij qj

U U L L U U

ij qj ij qj ij qj

ij qj

T T T T I I

I I F F F F
d a a

     

    


denotes the interval neutrosophic Euclidean distance be-

tween two interval neutrosophic values (INVs) ija  and qja

defined as in Eq. (8). 

Let 

 
1 1 1

2 2 2

2 2 2

1 1

,

6

m m m

j ij ij qj

i i q

L L U U L L

ij qj ij qj ij qj

U U L L U U
m m

ij qj ij qj ij qj

i q

D D d a a

T T T T I I

I I F F F F

  

 

  

     

    

 



1,2, ,j n  (28) 

then jD  represents the deviation value of all alternatives 

to other alternatives for the criterion jc C . 

Further, let 

 
1

2 2 2

2 2 2

1 1 1 6

n

j j

j

L L U U L L

ij qj ij qj ij qj

U U L L U U
n m m

ij qj ij qj ij qj

j

j i q

D w w D

T T T T I I

I I F F F F
w



  

 

 
      

 
     

 
 
 
 
 



 

(29) 

then  D w  represents the deviation value of all alterna-

tives to other alternatives for all the criteria. 

From the above analysis, we can construct a non-linear 

programming model to select the weight vector w  by 

maximizing  D w , as follows:

2 1c jc
nc

1A 11 11 11, ,T I F 1 1 1, ,j j jT I F 1 1 1, ,n n nT I F

iA 1 1 1, ,i i iT I F , ,ij ij ijT I F , ,in in inT I F

mA 1 1 1, ,m m mT I F , ,mj mj mjT I F , ,mn mn mnT I F
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 

2 2 2

2 2 2

1 1 1

2

1

max
6

s.t. 0, 1,2, , , 1

L L U U L L

ij qj ij qj ij qj

U U L L U U
n m m

ij qj ij qj ij qj

j

j i q

n

j j

j

T T T T I I

I I F F F F
D w w

w j n w

  



 
      

 
     

  
 
 
 
 

  

 



  (M-3) 

To solve this model, we construct the Lagrange function: 

 

2 2 2

2 2 2

1 1 1

2

1

,
6

1
2

L L U U L L

ij qj ij qj ij qj

U U L L U U
n m m

ij qj ij qj ij qj

j

j i q

n

j

j

T T T T I I

I I F F F F
L w w

w





  



 
      

 
     

  
 
 
 
 

 
 

 

 



 (30) 

where   is the Lagrange multiplier. 

Differentiating Eq. (30) with respect to jw

( 1,2, ,j n ) and  , and setting these partial deriva-

tives equal to zero, then the following set of equations is 

obtained: 

2 2 2

2 2 2

1 1 6

0

L L U U L L

ij qj ij qj ij qj

U U L L U U
m m

ij qj ij qj ij qj

i qj

j

T T T T I I

I I F F F FL

w

w

 

     

    
 







         (31) 

2

1

1
1 0

2

n

j

j

L
w

 

 
   

  
         (32) 

It follows from Eq. (32) that 

2 2 2

2 2 2

1 1 6

L L U U L L

ij qj ij qj ij qj

U U L L U U
m m

ij qj ij qj ij qj

i q

j

T T T T I I

I I F F F F

w


 

     

    





 (33) 

Putting Eq. (33) into Eq. (32), we get 

2
2 2 2

2 2 2

1 1 1 6

L L U U L L

ij qj ij qj ij qj

U U L L U U
n m m

ij qj ij qj ij qj

j i q

T T T T I I

I I F F F F


  

 
     

 
      

   
 
 
 
 

 

   (34) 

Then, by combining Eqs. (33) and (34), we have 

2 2 2

2 2 2

1 1

2
2 2 2

2 2 2

1 1 1

6

6

L L U U L L

ij qj ij qj ij qj

U U L L U U
m m

ij qj ij qj ij qj

i q

j

L L U U L L

ij qj ij qj ij qj

U U L L U U
n m m

ij qj ij qj ij qj

j i q

T T T T I I

I I F F F F

w

T T T T I I

I I F F F F

 

  

     

    



 
      

 
     

 
 
 
 
 



 

  (35) 

By normalizing jw  ( 1,2, ,j n ), we make their sum 

into a unit, and get 
2 2 2

2 2 2

1 1

2 2 2

1
2 2 2

1 1 1

6

6

L L U U L L

ij qj ij qj ij qj

U U L L U U
m m

ij qj ij qj ij qj

j i q

j n
L L U U L L

ij qj ij qj ij qjj

j

U U L L U U
n m m

ij qj ij qj ij qj

j i q

T T T T I I

I I F F F F

w
w

T T T T I Iw

I I F F F F

 



  

     

    

 

     

    







    (36) 

which can be considered as the optimal weight vector of 

criteria. 

However, it is noted that there are practical situations in 

which the information about the weight vector is not com-

pletely unknown but partially known. For such cases, we 

establish the following constrained optimization model: 

 

2 2 2

2 2 2

1 1 1

1

max
6

s.t. , 0, 1,2, , , 1

L L U U L L

ij qj ij qj ij qj

U U L L U U
n m m

ij qj ij qj ij qj

j

j i q

n

j j

j

T T T T I I

I I F F F F
D w w

w w j n w

  



 
      

 
     

  
 
 
 
 

   

 



                                                (M-4) 
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It is noted that the model (M-4) is a linear programming 

model that can be solved using the MATLAB mathematics 

software package. Suppose that the optimal solution to the 

model (M-4) is  1 2, , ,
T

nw w w w , which can be con-

sidered as the weight vector of criteria. 

4.3. Extended TOPIS method for the MCDM with 
interval neutrosophic information 

After obtaining the weights of criteria on basis of the 

maximizing deviation method, similar to Subsection 3.3, 

we next extend the TOPSIS method to interval neutrosoph-

ic environments and develop an extended TOPSIS method 

to obtain the final ranking of the alternatives. 

Under interval neutrosophic environments, the interval 

neutrosophic PIS (INPIS), denoted by A
, and the interval

neutrosophic NIS (INNIS), denoted by A , can be defined 

as follows: 

 1 2, , , nA a a a      (37) 

 1 2, , , nA a a a       (38) 

where 

     

     
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    (40) 

The separation measures, id 
 and id 

, of each alterna-

tive iA  from the INPIS A
 and the INNIS A

, respec-

tively, are derived from 

 

     

     
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 (41) 
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 (42) 

The relative closeness coefficient of an alternative iA

with respect to the interval neutrosophic PIS A
 is defined

as the following formula: 

i
i

i i

d
C

d d



 



 (43) 

where 0 1iC  , 1,2, ,i m . Obviously, an alternative 

iA  is closer to the interval neutrosophic PIS A
 and far-

ther from the interval neutrosophic NIS A
 as iC  ap-

proaches 1. The larger the value of iC , the more different 

between iA  and the interval neutrosophic NIS A
, while

the more similar between iA  and the interval neutrosophic 

PIS A
. Therefore, the alternative(s) with the maximum

relative closeness coefficient should be chosen as the op-

timal one(s). 

Based on the above analysis, analogous to Subsection 

3.3, we will develop a practical approach for dealing with 

MCDM problems, in which the information about criterion 

weights is incompletely known or completely unknown, 

and the criterion values take the form of interval neutro-

sophic information. 

The flowchart of the proposed approach for MCDM is 
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provided in Fig. 1. The proposed approach is composed of 

the following steps: 

Step 1. For a MCDM problem, the decision maker con-

structs the interval neutrosophic decision matrix 

   , ,ij ij ij ijm n m n
A a T I F

 
  , where , ,ij ij ij ija T I F

is an interval neutrosophic value (INV), given by the DM, 

for the alternative iA  with respect to the criterion jc . 

Step 2. If the information about the criterion weights is 

completely unknown, then we use Eq. (36) to obtain the 

criterion weights; if the information about the criterion 

weights is partly known, then we solve the model (M-4) to 

obtain the criterion weights. 

Step 3. Utilize Eqs. (37), (38), (39), and (40) to determine 

the interval neutrosophic positive ideal solution (INPIS) 

A
 and the interval neutrosophic negative ideal solution

(INNIS) A
.

 Step 4. Utilize Eqs. (41) and (42) to calculate the separa-

tion measures id 
 and id 

 of each alternative iA  from the 

interval neutrosophic positive ideal solution (INPIS) A

and the interval neutrosophic negative ideal solution (IN-

NIS) A
, respectively.

 Step 5. Utilize Eq. (43) to calculate the relative closeness 

coefficient iC  of each alternative iA  to the interval neu-

trosophic positive ideal solution (INPIS) A
.

Step 6. Rank the alternatives iA  ( 1,2, ,i m ) accord-

ing to the relative closeness coefficients iC  ( 1,2, ,i m ) 

to the interval neutrosophic positive ideal solution (INPIS) 

A
 and then select the most desirable one(s).

5 Illustrative examples 

5.1. A practical example under single-valued neu-
trosophic environments 

Example 5.1 [13]. In order to demonstrate the application 

of the proposed approach, a multi-criteria decision making 

problem adapted from Tan and Chen [13] is concerned 

with a manufacturing company which wants to select the 

best global supplier according to the core competencies of 

suppliers. Now suppose that there are a set of four suppli-

ers  1 2 3 4 5, , , ,A A A A A A  whose core competencies are

evaluated by means of the following four criteria: 

(1) the level of technology innovation ( 1c ), 

(2) the control ability of flow ( 2c ), 

(3) the ability of management ( 3c ), 

(4) the level of service ( 4c ). 

It is noted that all the criteria jc  ( 1,2,3,4j  ) are the 

benefit type attributes. The selection of the best global 

supplier can be modeled as a hierarchical structure, as 

shown in Fig. 2. According to [21], we can obtain the 

evaluation of an alternative iA  ( 1,2,3,4,5i  ) with re-

spect to a criterion jc  ( 1,2,3,4j  ) from the question-

naire of a domain expert. Take 11a  as an example. When 

we ask the opinion of an expert about an alternative 1A

with respect to a criterion 1c , he or she may say that the 

possibility in which the statement is good is 0.5 and the 

statement is poor is 0.3 and the degree in which he or she 

is not sure is 0.1. In this case, the evaluation of the alterna-

tive 1A  with respect to the criterion 1c  is expressed as a 

single-valued neutrosophic value 11 0.5,0.1,0.3a  . 

Through the similar method from the expert, we can obtain 

all the evaluations of all the alternatives iA  ( 1,2,3,4,5i  ) 

with respect to all the criteria jc  ( 1,2,3,4j  ), which are 

listed in the following single valued neutrosophic decision 

matrix    , ,ij ij ij ijm n m n
A a T I F

 
   (see Table 3). 

 Table 3: Single valued neutrosophic decision matrix A .

Selection of the best global supplier

3A 4A
2A

1A 5A

1c
2c 3c

4c

Fig. 2: Hierarchical structure. 

In what follows, we utilize the developed method to 

find the best alternative(s). We now discuss two different 

cases. 

Case 1: Assume that the information about the criterion 

weights is completely unknown; in this case, we use the 

following steps to get the most desirable alternative(s). 

Step 1. Considering that the information about the criterion 

weights is completely unknown, we utilize Eq. (19) to get 

the optimal weight vector of attributes: 

3 1c 2c 3c 4c

1A 0.5,0.1,0.3 0.5,0.1,0.4 0.3,0.2,0.3 0.7,0.2,0.1

2A 0.6,0.1,0.2 0.5,0.2,0.2 0.5,0.4,0.1 0.4,0.2,0.3

3A
0.9,0.0,0.1 0.3,0.2,0.3 0.2,0.2,0.5 0.4,0.3,0.2

4A 0.8,0.1,0.1 0.5,0.0,0.4 0.6,0.2,0.1 0.2,0.3,0.4

5A 0.7,0.2,0.1 0.4,0.3,0.2 0.6,0.1,0.3 0.5,0.4,0.1
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 0.2184,0.2021,0.3105,0.2689
T

w 

Step 2. Utilize Eqs. (20), (21), (22), and (23) to determine 

the single valued neutrosophic PIS A
 and the single val-

ued neutrosophic NIS A
, respectively:

 0.9,0.0,0.1 , 0.5,0.0,0.2 , 0.6,0.1,0.1 , 0.7,0.2,0.1A 

 0.5,0.2,0.3 , 0.3,0.3,0.4 , 0.2,0.4,0.5 , 0.2,0.4,0.4A 

Step 3: Utilize Eqs. (24) and (25) to calculate the separa-

tion measures id 
 and id 

 of each alternative iA  from the 

single valued neutrosophic PIS A
 and the single valued

neutrosophic NIS A
, respectively:

1 0.1510d   , 1 0.1951d   , 2 0.1778d   , 

2 0.1931d   , 3 0.1895d   , 3 0.1607d   , 

4 0.1510d   , 4 0.2123d   , 5 0.1523d   ,   

5 0.2242d   . 

Step 4: Utilize Eq. (26) to calculate the relative closeness 

coefficient iC  of each alternative iA  to the single valued 

neutrosophic PIS A
:

1 0.5638C  ,  2 0.5205C  , 3 0.4589C  , 

 4 0.5845C  , 5 0.5954C  . 

 Step 5: Rank the alternatives iA  ( 1,2,3,4,5i  ) accord-

ing to the relative closeness coefficient iC  ( 1,2,3,4,5i  ). 

Clearly, 5 4 1 2 3A A A A A , and thus the best alter-

native is 5A . 

Case 2: The information about the criterion weights is 

partly known and the known weight information is given 

as follows: 

1 2 3

4

4

1

0.15 0.25, 0.25 0.3, 0.3 0.4,

0.35 0.5, 0, 1,2,3,4, 1j j

j

w w w

w w j w


      
 

   
     

 


 

Step 1: Utilize the model (M-2) to construct the single-

objective model as follows: 

  1 2 3 4max 2.9496 2.7295 4.1923 3.6315

s.t.

D w w w w w

w

    




By solving this model, we get the optimal weight vec-

tor of criteria  0.15,0.25,0.3,0.35
T

w  .

Step 2. Utilize Eqs. (20), (21), (22), and (23) to determine 

the single valued neutrosophic PIS A
 and the single val-

ued neutrosophic NIS A
, respectively:

 0.9,0.0,0.1 , 0.5,0.0,0.2 , 0.6,0.1,0.1 , 0.7,0.2,0.1A 

 0.5,0.2,0.3 , 0.3,0.3,0.4 , 0.2,0.4,0.5 , 0.2,0.4,0.4A 

Step 3: Utilize Eqs. (24) and (25) to calculate the separa-

tion measures id 
 and id 

 of each alternative iA  from the 

single valued neutrosophic PIS A
 and the single valued

neutrosophic NIS A
, respectively:

1 0.1368d   , 1 0.2260d   , 2 0.1852d   , 

2 0.2055d   , 3 0.2098d   , 3 0.1581d   , 

4 0.1780d   , 4 0.2086d   , 5 0.1619d   ,   

5 0.2358d   . 

Step 4: Utilize Eq. (26) to calculate the relative closeness 

coefficient iC  of each alternative iA  to the single valued 

neutrosophic PIS A
:

1 0.6230C  ,  2 0.5260C  , 3 0.4297C  , 

4 0.5396C  , 5 0.5928C  . 

Step 5: Rank the alternatives iA  ( 1,2,3,4,5i  ) accord-

ing to the relative closeness coefficient iC  ( 1,2,3,4,5i  ). 

Clearly, 1 5 4 2 3A A A A A , and thus the best alter-

native is 1A . 

5.2. The analysis process under interval neutro-
sophic environments 

Example 5.2. Let’s revisit Example 5.1. Suppose that the 

five possible alternatives are to be evaluated under the 

above four criteria by the form of INVs, as shown in the 

following interval neutrosophic decision matrix A  (see 

Table 4). 

Table 4: Interval neutrosophic decision matrix A . 

In what follows, we proceed to utilize the developed 

method to find the most optimal alternative(s), which con-

sists of the following two cases: 

Case 1: Assume that the information about the criterion 

weights is completely unknown; in this case, we use the 

following steps to get the most desirable alternative(s). 

Step 1. Considering that the information about the criterion 

weights is completely unknown, we utilize Eq. (36) to get 

the optimal weight vector of attributes: 

4 1c 2c 3c 4c

1A
<[0.7, 0.9], 

[0.1, 0.2], 

[0.5, 0.6]> 

<[0.3, 0.4], 

[0.2, 0.3], 

[0.4, 0.5]> 

<[0.3, 0.5], 

[0.2, 0.3], 

[0.6, 0.7]> 

<[0.7, 0.9], 

[0.3, 0.4], 

[0.5, 0.6]> 

2A
<[0.5, 0.6], 

[0.2,0.3], 

[0.2, 0.4]> 

<[0.2, 0.3], 

[0.1, 0.3], 

[0.7, 0.8]> 

< [0.5, 0.7], 

[0.2, 0.3], 

[0.7, 0.8]> 

<[0.8, 0.9], 

[0.1, 0.2], 

[0.5, 0.7]> 

3A
< [0.4, 0.5], 

[0.2, 0.3], 

[0.4, 0.6]> 

<[0.3, 0.4], 

[0.1, 0.2], 

[0.7, 0.9]> 

<[0.3, 0.5], 

[0.2, 0.3], 

[0.6, 0.7]> 

<[0.7, 0.9], 

[0.2, 0.3], 

[0.5, 0.6]> 

4A
< [0.2,0.3], 

[0.1, 0.2], 

[0.4, 0.5]> 

<[0.4, 0.5], 

[0.3, 0.5], 

[0.2, 0.3]> 

<[0.8, 0.9], 

[0.1, 0.3], 

[0.3, 0.4]> 

< [0.2,0.3], 

[0.3, 0.5], 

[0.6, 0.8]> 

5A
<[0.7, 0.8], 

[0.3,0.4], 

[0.6,0.7] > 

< [0.6, 0.7], 

[0.1, 0.2], 

[0.7, 0.9]> 

<[0.2, 0.3], 

[0.1, 0.2], 

[0.7, 0.8]> 

<[0.6, 0.7], 

[0.3, 0.4], 

[0.4, 0.5]> 
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 0.2490,0.2774,0.2380,0.2356
T

w 

Step 2. Utilize Eqs. (37), (38), (39), and (40) to determine 

the interval neutrosophic PIS A
 and the interval neutro-

sophic NIS A
, respectively:

0.7,0.9,0.1,0.2,0.2,0.4 , 0.6,0.7,0.1,0.2, 0.2,0.3 ,

0.8,0.9,0.1,0.2,0.3,0.4 , 0.8,0.9,0.1,0.2, 0.4,0.5
A

  
  
  

 

   

   

0.2,0.3,0.3,0.4,0.6,0.7 , 0.2,0.3,0.3,0.5,0.7,0.9 ,

0.2,0.3,0.2,0.3,0.7,0.8 , 0.2,0.3,0.3,0.5,0.6,0.8
A

  
  
  

Step 3: Utilize Eqs. (41) and (42) to calculate the separa-

tion measures id 
 and id 

 of each alternative iA  from the 

interval neutrosophic PIS A
 and the interval neutrosophic

NIS A
, respectively:

1 0.2044d   , 1 0.2541d   , 2 0.2307d   , 

 2 0.2405d   , 3 0.2582d   , 3 0.1900d   , 

 4 0.2394d   ,   4 0.2343d   , 5 0.2853d   , 

   5 0.2268d   . 

Step 4: Utilize Eq. (43) to calculate the relative closeness 

coefficient iC  of each alternative iA  to the interval neu-

trosophic PIS A
:

1 0.5543C  ,  2 0.5104C  , 3 0.4239C  , 

 4 0.4946C  , 5 0.4429C  . 

Step 5: Rank the alternatives iA  ( 1,2,3,4,5i  ) accord-

ing to the relative closeness coefficient iC  ( 1,2,3,4,5i  ). 

Clearly, 1 2 4 5 3A A A A A , and thus the best alter-

native is 1A . 

Case 2: The information about the attribute weights is 

partly known and the known weight information is given 

as follows: 

1 2 3

4

4

1

0.25 0.3, 0.25 0.35, 0.35 0.4,

0.4 0.45, 0, 1,2,3,4, 1j j

j

w w w

w w j w


      
 

   
     

 


Step 1: Utilize the model (M-4) to construct the single-

objective model as follows: 

  1 2 3 4max 4.2748 4.7627 4.0859 4.0438

s.t.

D w w w w w

w

   




By solving this model, we get the optimal weight vector 

of criteria  0.25,0.25,0.35,0.4
T

w  . 

Step 2. Utilize Eqs. (37), (38), (39), and (40) to determine 

the interval neutrosophic PIS A
 and the interval neutro-

sophic NIS A
, respectively:

0.7,0.9,0.1,0.2,0.2,0.4 , 0.6,0.7,0.1,0.2, 0.2,0.3 ,

0.8,0.9,0.1,0.2,0.3,0.4 , 0.8,0.9,0.1,0.2, 0.4,0.5
A

  
  
  

 

   

   

0.2,0.3,0.3,0.4,0.6,0.7 , 0.2,0.3,0.3,0.5,0.7,0.9 ,

0.2,0.3,0.2,0.3,0.7,0.8 , 0.2,0.3,0.3,0.5,0.6,0.8
A

  
  
  

Step 3: Utilize Eqs. (41) and (42) to calculate the separa-

tion measures id 
 and id 

 of each alternative iA  from the 

interval neutrosophic PIS A
 and the interval neutrosophic 

NIS A
, respectively:

1 0.2566d   , 1 0.3152d   , 2 0.2670d   , 

 2 0.3228d   , 3 0.2992d   , 3 0.2545d   , 

 4 0.3056d   ,   4 0.2720d   , 5 0.3503d   , 

   5 0.2716d   . 

Step 4: Utilize Eq. (43) to calculate the relative closeness 

coefficient iC  of each alternative iA  to the interval neu-

trosophic PIS A
:

1 0.5513C  ,  2 0.5474C  , 3 0.4596C  , 

 4 0.4709C  , 5 0.4368C  . 

Step 5: Rank the alternatives iA  ( 1,2,3,4,5i  ) accord-

ing to the relative closeness coefficient iC  ( 1,2,3,4,5i  ). 

Clearly, 1 2 4 3 5A A A A A , and thus the best alter-

native is 1A . 

5.3. Comparison analysis with the existing single-
valued neutrosophic or interval neutrosophic 
multi-criteria decision making methods 

Recently, some methods [20,21,22,23] have been de-

veloped for solving the MCDM problems with single-

valued neutrosophic or interval neutrosophic information. 

In this section, we will perform a comparison analysis be-

tween our new methods and these existing methods, and 

then highlight the advantages of the new methods over 

these existing methods. 

It is noted that these existing methods have some in-

herent drawbacks, which are shown as follows: 

(1) The existing methods [20,21,22,23] need the decision 

maker to provide the weights of criteria in advance, which 

is subjective and sometime cannot yield the persuasive re-

sults. In contrast, our methods utilize the maximizing devi-

ation method to determine the weight values of criteria, 

which is more objective and reasonable than the other ex-

isting methods [20,21,22,23]. 

(2) In Ref. [23], Ye proposed a simplified neutrosophic 

weighted arithmetic average operator and a simplified neu-

trosophic weighted geometric average operator, and then 

utilized two aggregation operators to develop a method for 

multi-criteria decision making problems under simplified 

neutrosophic environments. However, it is noted that these 
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operators and method need to perform an aggregation on 

the input simplified neutrosophic arguments, which may 

increase the computational complexity and therefore lead 

to the loss of information. In contrast, our methods do not 

need to perform such an aggregation but directly deal with 

the input simplified neutrosophic arguments, thereby can 

retain the original decision information as much as possi-

ble. 

(3) In Ref. [22], Ye defined the Hamming and Euclidean 

distances between interval neutrosophic sets (INSs) and 

proposed the similarity measures between INSs on the ba-

sis of the relationship between similarity measures and dis-

tances. Moreover, Ye [22] utilized the similarity measures 

between each alternative and the ideal alternative to rank 

the alternatives and to determine the best one. In order to 

clearly demonstrate the comparison results, we use the 

method proposed in [22] to revisit Example 5.2, which is 

shown as follows: 

First, we identify an ideal alternative by using a maxi-

mum operator for the benefit criteria and a minimum oper-

ator for the cost criteria to determine the best value of each 

criterion among all alternatives as: 

0.7,0.9,0.1,0.2,0.2,0.4 , 0.6,0.7,0.1,0.2, 0.2,0.3 ,

0.8,0.9,0.1,0.2,0.3,0.4 , 0.8,0.9,0.1,0.2, 0.4,0.5
A

  
  
  

 

In order to be consistent with Example 5.2, the same dis-

tance measure and the same weights for criteria are adopt-

ed here. Then, we apply Eq. (8) to calculate the similarity 

measure between an alternative iA  ( 1,2,3,4,5i  ) and 

the ideal alternative A
 as follows:

   1 1, 1 , 1 0.2044 0.7956s A A d A A       

   2 2, 1 , 1 0.2307 0.7693s A A d A A       

   3 3, 1 , 1 0.2582 0.7418s A A d A A       

   4 4, 1 , 1 0.2394 0.7606s A A d A A       

   5 5, 1 , 1 0.2853 0.7147s A A d A A     

Finally, through the similarity measure  , is A A

( 1,2,3,4,5i  ) between each alternative and the ideal al-

ternative, the ranking order of all alternatives can be de-

termined as: 1 2 4 3 5A A A A A . Thus, the optimal 

alternative is 1A . 

It is easy to see that the optimal alternative obtained by 

the Ye’ method [22] is the same as our method, which 

shows the effectiveness, preciseness, and reasonableness of 

our method. However, it is noticed that the ranking order 

of the alternatives obtained by our method is 

1 2 4 5 3A A A A A , which is different from the 

ranking order obtained by the Ye’ method [22]. Concretely, 

the ranking order between 3A  and 5A  obtained by two 

methods are just converse, i.e., 5 3A A  for our method 

while 3 5A A  for the Ye’ method [22]. The main reason is 

that the Ye’ method determines a solution which is the 

closest to the positive ideal solution (PIS), while our meth-

od determines a solution with the shortest distance from 

the positive ideal solution (PIS) and the farthest from the 

negative ideal solution (NIS). Therefore, the Ye’ method is 

suitable for those situations in which the decision maker 

wants to have maximum profit and the risk of the decisions 

is less important for him, while our method is suitable for 

cautious (risk avoider) decision maker, because the deci-

sion maker might like to have a decision which not only 

makes as much profit as possible, but also avoids as much 

risk as possible. 

Conclusions 

Considering that some multi-criteria decision making 

problems contain uncertain, imprecise, incomplete, and in-
consistent information, and the information about criterion 
weights is usually incomplete, this paper has developed a 
novel method for single-valued neutrosophic or interval 
neutrosophic multi-criteria decision making with incom-
plete weight information. First, motivated by the idea that a 

larger weight should be assigned to the criterion with a 
larger deviation value among alternatives, a maximizing 
deviation method has been presented to determine the op-
timal criterion weights under single-valued neutrosophic or 
interval neutrosophic environments, which can eliminate 
the influence of subjectivity of criterion weights provided 

by the decision maker in advance. Then, a single-valued 
neutrosophic or interval neutrosophic TOPSIS is proposed 
to calculate the relative closeness coefficient of each alter-
native to the single-valued neutrosophic or interval neutro-
sophic positive ideal solution, based on which the consid-

ered alternatives are ranked and then the most desirable 
one is selected. The prominent advantages of the devel-
oped methods are that they can not only relieve the influ-
ence of subjectivity of the decision maker but also remain 
the original decision information sufficiently. Finally, the 
effectiveness and practicality of the developed methods 

have been illustrated with a best global supplier selection 
example, and the advantages of the developed methods 
have been demonstrated with a comparison with the other 
existing methods. 

. 

48



Neutrosophic Sets and Systems, Vol. 4, 2014 

 Zhiming Zhang and Chong Wu, A novel method for single-valued neutrosophic multi-criteria decision making with incom-

plete weight information 

Acknowledgment 

The authors would like to thank the anonymous
reviewers for their valuable suggestions as to how to 
improve this paper. This work was supported by the
National Natural Science Foundation of China (Grant Nos. 
61073121, 71271070 and 61375075) and the Natural
Science Foundation of Hebei Province of China (Grant 
Nos. F2012201020 and A2012201033).

References 

[1] K. Atanassov. Intuitionistic fuzzy sets, Fuzzy Sets and Sys-

tems, 20 (1986), 87–96. 

[2] K. Atanassov and G. Gargov. Interval valued intuitionistic 

fuzzy sets, Fuzzy Sets and Systems, 31 (1989), 343–349. 

[3] H.D. Cheng and Y. Guo. A new neutrosophic approach to 

image thresholding, New Mathematics and Natural Compu-

tation, 4(3) (2008), 291–308. 

[4] W.L. Gau and D.J. Buehrer. Vague sets, IEEE Transactions 

on Systems, Man, and Cybernetics, Part B: Cybernetics, 23 

(1993), 610–614. 

[5] Y. Guo and H.D. Cheng. New neutrosophic approach to im-

age segmentation, Pattern Recognition, 42 (2009), 587–595. 

[6] Y. Guo, H.D. Cheng, Y. Zhang, and W. Zhao. A new neu-

trosophic approach to image denoising, New Mathematics 

and Natural Computation, 5(3) (2009), 653–662. 

[7] C.L. Hwang and K. Yoon. Multiple Attribute Decision Mak-

ing: Methods and Applications, Springer, Berlin, Heidelberg, 

New York, 1981. 

[8] S.H. Kim and B.S. Ahn. Interactive group decision making 

procedure under incomplete information, European Journal 

of Operational Research, 116 (1999), 498–507. 

[9] S.H. Kim, S.H. Choi, and J.K. Kim. An interactive proce-

dure for multiple attribute group decision making with in-

complete information: Range-based approach, European 

Journal of Operational Research, 118 (1999), 139–152. 

[10] K.S. Park. Mathematical programming models for charac-
tering dominance and potential optimality when multicrite-

ria alternative values and weights are simultaneously in-

complete, IEEE transactions on systems, man, and cybernet-

ics-part A, Systems and Humans, 34 (2004), 601–614. 

[11] K.S. Park and S.H. Kim. Tools for interactive multi-attribute 

decision making with incompletely identified information, 

European Journal of Operational Research, 98 (1997), 111–123.

[12] F. Smarandache. A unifying field in logics. neutrosophy: 

neutrosophic probability, set and logic, American Research 
Press, Rehoboth, 1999. 

[13] C. Tan and X. Chen. Intuitionistic fuzzy Choquet integral 

operator for multi-criteria decision making, Expert Systems 

with Applications, 37 (2010), 149–157. 
[14] I. Turksen. Interval valued fuzzy sets based on normal forms, 

Fuzzy Sets and Systems, 20 (1986), 191–210. 

[15] Y.M. Wang. Using the method of maximizing deviations to 

make decision for multi-indices, System Engineering and 
Electronics, 7 (1998), 24–26. 

[16] H. Wang, F. Smarandache, Y.Q. Zhang, and R. 

Sunderraman. Interval neutrosophic sets and logic: Theory 

and applications in computing, Hexis, Phoenix, AZ, 2005. 

[17] H. Wang, F. Smarandache, Y.Q. Zhang, and R. 

Sunderraman. Single valued neutrosophic sets, Multispace 

and Multistructure, 4 (2010), 410–413. 

[18] Z.S. Xu. A method for multiple attribute decision making 

with incomplete weight information in linguistic setting, 

Knowledge-Based Systems, 20 (8) (2007), 719–725. 

[19] J. Ye. Fuzzy cross entropy of interval-valued intuitionistic 

fuzzy sets and its optimal decision-making method based on 

the weights of alternatives, Expert Systems with Applica-

tions, 38 (2011), 6179–6183. 

[20] J. Ye. Multicriteria decision-making method using the corre-

lation coefficient under single-valued neutrosophic envi-

ronment, International Journal of General Systems, 42(4) 

(2013), 386–394. 

[21] J. Ye. Single valued neutrosophic cross-entropy for mul-

ticriteria decision making problems, Applied Mathematical 
Modelling, 38(3) (2014), 1170-1175. 

[22] J. Ye. Similarity measures between interval neutrosophic 
sets and their applications in multicriteria decision-making,

Journal of Intelligent & Fuzzy Systems, 26(1) (2013),165-172
[23] J. Ye. A multicriteria decision-making method using aggre-

gation operators for simplified neutrosophic sets, Journal of 

Intelligent & Fuzzy Systems, (2013), http://dx.doi.org/ 

10.3233/IFS-130916. 

[24] L.A. Zadeh. Fuzzy sets, Information and Control, 8 (1965),338-353
[25] L. Zadeh. The concept of a linguistic variable and its appli-

cation to approximate reasoning, Part 1, Information Sci-

ences, 8 (1975), 199–249. 

Stage 3: Single valued 

neutrosophic or interval 

neutrosophic TOPSIS

Determine the final rank and 

select the optimal alternative(s)

Determine the criterion weights
Stage 2: The maximizing 

deviation method

Stage 1: Problem description

Construct  single valued neutrosophic or 

interval neutrosophic decision matrix

Form single valued neutrosophic 

or interval neutrosophic MCDM

The 

developed 

method

Fig. 1: The flowchart of the developed methods

Received: June 21, 2014. Accepted: July 1, 2014.

49

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V05-48N53XK-81&_user=10&_coverDate=07%2F20%2F1989&_alid=911295606&_rdoc=256&_fmt=high&_orig=search&_cdi=5637&_st=13&_docanchor=&view=c&_ct=281&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=38252c20aea9d2f800d40c11fd9da673
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V05-48N53XK-81&_user=10&_coverDate=07%2F20%2F1989&_alid=911295606&_rdoc=256&_fmt=high&_orig=search&_cdi=5637&_st=13&_docanchor=&view=c&_ct=281&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=38252c20aea9d2f800d40c11fd9da673


Neutrosophic Sets and Systems, Vol. 4, 2014 

A.A. Salama, Florentin Smarandache and S. A. Alblowi,  New Neutrosophic  Crisp Topological Concepts

New Neutrosophic  Crisp Topological Concepts 

A. A. Salama
1
, Florentin Smarandache

2
 and S. A. Alblowi3

1Department of Mathematics and Computer Science, Faculty of Sciences, Port Said University, Egypt. 

E mail:drsalama44@gmail.com 

 2Department of   Mathematics, University of New Mexico Gallup, NM, USA. E mail:smarand@unm.edu  
3Department of Mathematics, King Abdulaziz University, Jeddah, Saudia Arabia.E mail: salwaalblowi@hotmail.com 

Abstract 

   In this paper, we introduce the concept of ""neutrosophic crisp neighborhoods system for the neutrosophic crisp point ". Added to, 

we introduce and study the concept of neutrosophic crisp local function, and construct a new type of neutrosophic crisp topological 

space via neutrosophic crisp ideals.   Possible application to GIS topology rules are touched upon. 

 Keywords: Neutrosophic Crisp Point, Neutrosophic Crisp Ideal; Neutrosophic Crisp Topology; Neutrosophic Crisp Neighborhoods

1 INTRODUCTION 

     The idea of "neutrosophic set" was first given by 

Smarandache [14, 15]. In 2012 neutrosophic operations 

have been investigated by Salama et al. [4-13]. The fuzzy

set was introduced by Zadeh [17]. The intuitionstic fuzzy 

set was introduced by Atanassov [1, 2, 3]. Salama et al.

[11]defined intuitionistic fuzzy ideal for a set and 

generalized the concept of fuzzy ideal concepts, first 

initiated by Sarker [16]. Neutrosophy  has laid the 

foundation for a whole family of new mathematical 

theories, generalizing both their crisp and fuzzy 

counterparts. Here we shall present the  neutrosophic crisp 

version of these concepts.   In this paper, we introduce the 

concept of  "neutrosophic crisp points "and "neutrosophic 

crisp neigbourhoods systems". Added to we  define the 

new concept of  neutrosophic crisp  local function, and 

construct new type of neutrosophic  crisp topological space 

via neutrosophic crisp ideals. 

2  TERMINOLOGIES 

     We recollect some relevant basic preliminaries, and in 

particular the work of Smarandache in [14, 15], and 

Salama et  al. [4 -13].

2.1 Definition [13] 
    Let X be a non-empty fixed set. A  neutrosophic crisp 

set (NCS for short) A  is an object having the form

  321 ,, AAAA   where 321   and , AAA are  subsets of  X 

satisfying  21 AA ,  31 AA and  32 AA . 

2.2 Definition [13].  

  Let  X be a nonempty set and Xp   Then  the 
neutrosophic crisp point Np  defined    by 

   c
N ppp ,, is called  a  neutrosophic crisp point

(NCP for short) in X, where NCP is a triple ({only one 

element in X}, the empty set,{the complement of the same 
element in X}).  

2.3 Definition [13] 

 Let  X  be  a nonempty set, and Xp a fixed element 

in X. Then the neutrosophic crisp set    c

NN ppp ,,

is called “vanishing neutrosophic crisp point“ (VNCP for 

short) in X, where VNCP is a triple (the empty set,{only 

one element in X},{the complement of the same element in 

X}). 

2.4 Definition [13] 

 Let    c
N ppp ,, be a NCP in X and 

321
,, AAAA   a neutrosophic crisp set in X. 

(a) Np  is said to be contained in A  ( Ap N  for short)

iff 1Ap  .  

(b) Let 
NNp  be a VNCP in X, and 

321
,, AAAA  a

neutrosophic crisp set in X. Then 
NNp  is said to be
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(b) Let 
NNp  be a VNCP in X, and 

321
,, AAAA  a

neutrosophic crisp set in X. Then 
NNp  is said to be

contained in A  ( Ap
NN  for short ) iff 3Ap .

2.5 Definition [13]. 

    Let X be non-empty set, and L a non–empty family of 

NCSs. We call L a neutrosophic crisp ideal (NCL for 

short) on  X  if 

i. LBABLA   and  [heredity],

ii. LL and   BABLA [Finite additivity].

A neutrosophic crisp ideal L is called a 

 - neutrosophic crisp ideal if    LM
jj 


  , implies 

LjM
Jj





(countable additivity). 

      The smallest and largest neutrosophic crisp ideals on a 

non-empty set X are  N and the NSs on X. Also,

cf NCL  ,LNC  are denoting the neutrosophic crisp 

ideals (NCL for short) of neutrosophic subsets having 

finite and countable support of X respectively. Moreover, 

if A is a nonempty NS in X, then  ABNCSB  :  is an

NCL on X. This is called the principal NCL of all NCSs,  

denoted by NCL A . 

2.1 Proposition [13] 

Let  JjL j :  be any non - empty family of

neutrosophic crisp ideals on a set X. Then 
Jj

jL


 and 


Jj

jL


 are neutrosophic crisp ideals on X, where 

321
,, j

Jj
j

Jj
j

Jj
j

Jj
AAAL


 or

321
,, j

Jj
j

Jj
j

Jj
j

Jj
AAAL


  and 

321
,, j

Jj
j

Jj
j

Jj
j

Jj
AAAL


 or 

.,,
321 j

Jj
j

Jj
j

Jj
j

Jj
AAAL


  

2,2 Remark [13] 

 The neutrosophic crisp ideal defined by the single 

neutrosophic set 
N  is the smallest element of the ordered

set of all neutrosophic crisp ideals on X. 

2.1 Proposition [13] 

 A neutrosophic crisp set
321

,, AAAA  in the 

neutrosophic crisp ideal L on X is a base of L iff every 

member of L is contained in A. 

3. Neutrosophic  Crisp Neigborhoods System

3.1 Definition.

Let
321

,, AAAA  ,  be a neutrosophic crisp set on a 

set X, then       ,,, 321 pppp  321 ppp  X is called 

a neutrosophic crisp point 

An NCP       ,,, 321 pppp   is said to be belong to a 

neutrosophic crisp set 
321

,, AAAA  , of X, denoted 

by Ap , if may be defined by two types 

i) Type 1:
 2211 }{,}{ ApAp  and 33}{ Ap 

ii) Type 2:
 2211 }{,}{ ApAp  and 33}{ Ap 

3.1 Theorem 

   Let ,,, 321 AAAA  and ,,, 321 BBBB  be neu-

trosophic crisp subsets of X. Then BA  iff 

Ap implies Bp for any neutrosophic crisp point 

p in X. 

Proof 
  Let BA  and Ap . Then two types 

Type 1:
 2211 }{,}{ ApAp  and 33}{ Ap  or 

Type 2:
 2211 }{,}{ ApAp  and 33}{ Ap  . Thus Bp . 

Conversely, take any x in X. Let  11 Ap   and 

22 Ap  and 33 Ap  . Then  p  is a neutrosophic crisp 

point in X. and Ap . By the hypothesis Bp . Thus 

11 Bp  ,   or Type 1:
 2211 }{,}{ BpBp  and 33}{ Bp  or 

 Type 2:
 2211 }{,}{ BpBp  and 33}{ Bp  . Hence. 

BA . 

3.2 Theorem 

   Let  
321

,, AAAA , be a neutrosophic crisp 

subset of X. Then  .: AppA   

   Proof 
  Since  .: App  may be two types 
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    Type 1:

   333222111 :,:},:{ AppAppApp  or 

   Type 2:

   333222111 :,:},:{ AppAppApp  . Hence 

321
,, AAAA

3.1 Proposition 

Let  JjA j :  is a family of   NCSs in X. Then

)( 1a      321 ,, pppp  j
Jj

A

  iff jAp  for each 

Jj . 

)( 2a j
Jj

Ap

 iff Jj  such that jAp  .

. 

3.2 Proposition 

 Let 
321

,, AAAA  and 
321

,, BBBB   be two 

neutrosophic crisp sets in X. Then 

a) BA    iff   for each p  we have

BpAp   and for each p  we have 

BpAp  . 

b) BA   iff   for each p  we have

BpAp   and for each p   we 

have BpAp  . 

3.3 Proposition 

    Let 
321

,, AAAA  be a neutrosophic crisp set in X. 

Then 

     333222111 :,:,: AppAppAppA  .

3.2 Definition 

    Let YXf : be a function and p  be a nutrosophic 

crisp point in X. Then the image of p  under f , denoted 

by )( pf , is defined by 

     321 ,,)( qqqpf  ,where )(),( 2211 pfqpfq  .and

)( 33 pfq  . 

It is easy to see that )( pf  is indeed a NCP in Y, namely 
qpf )( , where )( pfq  , and it is exactly the same 

meaning of the image of a NCP under the function f . 

4 4. Neutrosophic Crisp Local functions 

4.1 Definition 

Let p be a neutrosophic crisp point of a neutrosophic 

crisp topological space  ,X . A neutrosophic crisp neigh-

bourhood ( NCNBD for short) of a neutrosophic crisp 

point p if there is a neutrosophic crisp open set( NCOS for 

short) B in X such that .ABp   

4.1 Theorem 

Let  ,X  be a neutrosophic crisp topological space

(NCTS for short) of X. Then the neutrosophic crisp set A 

of X is NCOS iff A is a NCNBD of  p for every neutro-

sophic crisp set .Ap  

Proof 

 Let  A be NCOS of  X . Clearly A is a NCBD of any 

.Ap  Conversely, let .Ap Since A is a NCBD of  p, 

there is a NCOS B in X such that .ABp  So we have 

 AppA  :   AApB  : and 

hence  ApBA  :  . Since each B is NCOS. 

 4.2 Definition 

Let  ,X be a neutrosophic crisp topological spaces

(NCTS for short) and L be neutrsophic crisp ideal (NCL, 

for short) on X. Let A be any NCS of X. Then the neutro-

sophic crisp local function  ,LNCA  of A is the union of 

all neutrosophic crisp points( NCP, for short) 

      ,,, 321 pppP   such that if  )( pNU   and 

 N(P) of nbd every Ufor   :),(* LUAXpLNA 
,

),( LNCA  is called a neutrosophic crisp local function 

of A with respect to L and    which it will be denoted by 

),( LNCA , or simply   LNCA .

4.1 Example 

    One may easily verify that. 

If L= )(),(C N then  },{ ANCclLAN   , for any neutro-

sophic  crisp set NCSsA  on X. 

If    NLA    ),(NC      then  Xon  NCSs all L , for 

any NCSsA  on X . 

4.2 Theorem 

Let  ,X  be a NCTS and 21, LL be two topological

neutrosophic crisp ideals on X. Then for any neutrosophic 

crisp sets A, B  of   X. then the following statements are 

verified  

i) ),,(),(  LNCBLNCABA  

ii) ),(),( 1221  LNCALNCALL   . 

iii) )()( ANCclANCclNCA   . 
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iv)  NCANCA ** .

v)   
 NCBNCABANC .,

vi) ).()()()( LNCBLNCALBANC  

vii)   .

 NCAANCL   

viii) ),( LNCA  is neutrosophic  crisp closed set . 

Proof 

i) Since BA  , let      321 ,, pppp   1
* LNCA  then 

LUA   for every  pNU  . By hypothesis we get

LUB  , then      321 ,, pppp   1
* LNB . 

ii) Clearly. 21 LL   implies ),(),( 12  LNCALNCA    as 

there may be other IFSs which belong to 2L  so that for 

GIFP      321 ,, pppp   1
* LNCA  but  P  may not 

be contained in  2LNCA . 

iii) Since   LN   for any NCL on X, therefore by (ii)

and Example 3.1,      )(ANCclONCALNCA N  

for any NCS A on X. Suppose 

     3211 ,, pppP   )( 1
* LANCcl . So for every 

 1PNCU  , ,)( NUANC   there exists 

     3212 ,, qqqP    ULNCA  1
*  such that for every V

NCNBD of   .,22 LUAPNP   Since  2pNVU 

then   LVUA   which leads to LUA  , for every

)( 1PNU   therefore  )( *
1 LANCP   and so

    NCANANCcl   While, the other inclusion follows di-

rectly. Hence )(   NCANCclNCA .But the inequali-

ty )(   NCANclNCA . 

iv) The inclusion    BANCNCBNCA  fol-

lows directly by (i). To show the other implication, let 

  BANCp  then for every ),( pNCU 

  ,., eiLUBA      .LUBUA   then, we have 

two cases LUA   and LUB   or the converse, this 

means that exist  PNUU 21 ,  such that LUA  1 ,

,1 LUB  LUA  2  and LUB  2 . Then 

  LUUA  21  and   LUUB  21  this gives

    ,21 LUUBA    )(21 PCNUU   which contra-

dicts the hypothesis. Hence the equality holds in various 

cases. 

vi) By  (iii), we have

  )(NCANCclNCA
  NCANCANCcl )(

Let  ,X  be a NCTS and L be NCL on X . Let us  de-

fine the  neutrosophic  crisp closure operator 

)()(   ANCAANCcl  for any NCS A of X. Clearly, let 

)(ANCcl  is a neutrosophic   crisp operator. Let 

)(LNC    be NCT generated by NCcl

.i.e    .)(: cc AANCclALNC    now

 NL      ANCclANCAAANCcl    for eve-

ry  neutrosophic crisp set A. So,
     )( NN . Again 

 Xon  NCSs  allL     ,AANCcl   be-

cause NNCA * , for every neutrosophic  crisp set A so 

 LNC *  is the neutrosophic crisp discrete topology on X. 

So we can conclude by Theorem 4.1.(ii). 

   LNCNC N
*)(    i.e. * NCNC  , for  any neutro-

sophic   ideal 1L  on X. In particular, we have for two topo-

logical neutrosophic ideals ,1L  and 2L  on X, 

   2
*

1
*

21 LNCLNCLL    . 

4.3 Theorem 

Let 21,  be two neutrosophic  crisp topologies on X. 

Then for any topological neutrosophic crisp ideal L on X, 

21    implies ),(),( 12  LNALNA   , for every A L  then 

21

   NCNC

Proof 

Clear. 

A basis   ,LNC  for )(LNC   can be described 

as follows: 

   ,LNC  LBABA  ,:  . Then we have the fol-

lowing theorem 

4.4 Theorem 

   ,LNC  LBABA  ,:   Forms a basis for

the generated NT of the NCT  ,X  with topological neu-

trosophic crisp ideal L on X. 

Proof 

Straight forward. 

The relationship between NC  and NC )(L estab-

lished throughout the following result which have an im-

mediately   proof . 

4.5 Theorem 

Let 21 ,  be two neutrosophic crisp topologies on X. 

Then for any topological neutrosophic ideal L on X,  

21   implies 
21

   NCNC . 

4.6 Theorem 

Let   ,  be a NCTS and 21  , LL  be two neutrosophic

crisp ideals on X . Then for any neutrosophic crisp set A in 

X, we have  
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i)      .)(,)(,, 221121 LNCLNCALNCLNCALLNCA     ii) 

    )(()()()( 122121 LLNCLLNCLLNC
  

Proof  

Let  ,,21 LLp   this means that there exists

 PNCU   such that  21 LLUA p  i.e. There exists

11 L  and 22 L  such that  21  UA  because of 

the heredity of L1, and assuming NO 21  .Thus we 

have   21  UA  and    12   pUA  there-

fore   221 LAU    

and   112 LAU   . Hence   ,, 12 LNCLNCAp    or 

  ,, 21 LNCLNCAP    because p  must belong to either 1

or 2 but not to both. This gives

     .)(,)(,, 221121 LNCLNCALNCLNCALLNCA     .

To show the second inclusion, let us as-

sume   ,, 21 LNCLNCAP   . This implies that there exist 

 PNU   and 22 L  such that   12 LAU p   . By the

heredity of 2L ,  if we assume that A2  and define 

  AU  21   . Then we 

have   2121 LLUA   . Thus,

     .)(,)(,, 221121 LNCLNCALNCLNCALLNCA   

and similarly, we can get    .)(,, 1221 LLNCALLNCA    .  

This gives the other inclusion, which complete the proof. 

4.1 Corollary 

.Let   ,  be a NCTS with topological neutrosophic

crisp ideal L on X. Then 

i) )())(()(NC and ),(),( LLNCNCLLNCALNCA   

ii)    )()()( 2121 LNCLNCLLNC   

Proof   

Follows  by applying the previous statement. 
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Abstract. Soft set theory is a general mathematical tool 

for dealing with uncertain, fuzzy, not clearly defined ob-

jects. In this paper we introduced soft neutrosophic 

loop,soft neutosophic biloop, soft neutrosophic N -loop

with the discuission of some of their characteristics. We 

also introduced a new type of soft neutrophic loop, the so 

called soft strong neutrosophic loop which is of pure neu-

trosophic character. This notion also found in all the oth-

er corresponding notions of soft neutrosophic thoery. We 

also given some of their properties of this newly born 

soft structure related to the strong part of neutrosophic 

theory. 

Keywords: Neutrosophic loop, neutrosophic biloop, neutrosophic N-loop, soft set, soft neutrosophic loop,soft neutrosophic biloop, 

soft neutrosophic N-loop.

1 Introduction 

  Florentin Smarandache for the first time intorduced the 

concept of neutrosophy in 1995 , which is basically a new 

branch of philosophy which actually studies the origion, 

nature, and scope of neutralities. The neutrosophic logic 

came into being by neutrosophy. In neutrosophic logic 

each proposition is approximated to have the percentage of 

truth in a subset T , the percentage of indeterminacy in a 

subset I , and the percentage of falsity in a subset F . 

Neutrosophic logic is an extension of fuzzy logic. In fact 

the neutrosophic set is the generalization of classical set, 

fuzzy conventional set, intuitionistic fuzzy set, and interal 

valued fuzzy set. Neutrosophic logic is used to overcome 

the problems of imperciseness, indeterminate, and incon-

sistentness of date etc. The theoy of neutrosophy is so ap-

plicable to every field of agebra. W.B Vasantha Kan-

dasamy and Florentin Smarandache introduced neutro-

sophic fields, neutrosophic rings, neutrosophic vectorspac-

es, neutrosophic groups, neutrosophic bigroups and neutro-

sophic N -groups, neutrosophic semigroups, neutrosophic 

bisemigroups, and neutrsosophic N -semigroups, neutro-

sophic loops, nuetrosophic biloops, and neutrosophic N -

loops, and so on. Mumtaz ali et.al. introduced nuetosophic 

LA -semigoups. 

  Molodtsov intorduced the theory of soft set. This mathe-

matical tool is free from parameterization inadequacy, 

syndrome of fuzzy set theory, rough set theory, probability 

theory and so on. This theory has been applied successfully 

in many fields such as smoothness of functions, game the-

ory, operation reaserch, Riemann integration, Perron inte-

gration, and probability. Recently soft set theory attained 

much attention of the researchers since its appearance and 

the work based on several operations of soft set introduced 

in  2,9,10 . Some properties and algebra may be found

in   1 .  Feng et.al. introduced soft semirings in  5 . By

means of level soft sets an adjustable approach to fuzy soft 

set can be seen in  6 . Some other concepts together with

fuzzy set and rough set were shown in  7,8 .

  This paper is about to introduced soft nuetrosophic loop, 

soft neutrosphic biloop, and soft neutrosophic N -loop and 

the related strong or pure part of neutrosophy with the no-

tions of soft set theory. In the proceeding section, we de-

fine soft neutrosophic loop, soft neutrosophic strong loop, 

and some of their properties are discuissed. In the next sec-

tion, soft neutrosophic biloop are presented with their 

strong neutrosophic part. Also in this section some of their 

characterization have been made. In the last section soft 

neutrosophic N -loop and their coresponding strong theo-

ry have been constructed with some of their properties. 

2 Fundamental Concepts 

Neutrosophic Loop 

Definition 1. A neutrosophic loop is generated by a loop 

L  and I denoted by L I . A neutrosophic loop in 

general need not be a loop for 
2I I  and I  may not 

have an inverse but every element in a loop has an inverse. 
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Definition 2. Let L I  be a neutrosophic loop. A 

proper subset P I  of L I  is called the neutro-

sophic subloop, if P I  is itself a neutrosophic loop 

under the operations of  L I . 

Definition 3. Let ( , )L I  be a neutrosophic loop of 

finite order. A proper subset P  of  L I  is said to be 

Lagrange neutrosophic subloop, if P  is a neutrosophic 

subloop under the operation  and ( ) / oo P L I . 

Definition 4. If every neutrosophic subloop of L I  is 

Lagrange then we call L I  to be a Lagrange neutro-

sophic loop. 

Definition 5. If L I  has no Lagrange neutrosophic 

subloop then we call L I  to be a Lagrange free neu-

trosophic loop. 

Definition 6. If L I  has atleast one Lagrange neutro-

sophic subloop then we call L I  to be a weakly La-

grange neutrosophic loop. 

Neutrosophic Biloops 

Definition 6. Let 1 2( , , )B I    be a non-empty neu-

trosophic set with two binary operations  1 2,  , B I

is a neutrosophic biloop if the following conditions are sat-

isfied. 

1. 1 2B I P P    where 1P  and 2P  are proper 

subsets of B I . 

2. 1 1( , )P   is a neutrosophic loop. 

3. 2 2( , )P   is a group or a loop. 

Definition 7. Let 1 2( , , )B I    be a neutrosophic bi-

loop. A proper subset P  of B I   is said to be a neu-

trosophic subbiloop of B I  if 1 1 2( , , )P    is itself a 

neutrosophic biloop under the operations of B I . 

Definition 8. Let 1 2 1 2( , , )B B B     be a finite neu-

trosophic biloop. Let 1 2 1 2(P , , )P P     be a neutro-

sophic biloop. If o(P) / o(B)  then we call P , a Lagrange 

neutrosophic subbiloop of B . 

Definition 9. If every neutrosophic subbiloop of B  is La-

grange then we call B  to be a Lagrange neutrosophic bi-

loop. 

Definition 10. If B  has atleast one Lagrange neutrosophic 

subbiloop then we call B  to be a weakly Lagrange neutro-

sophic biloop. 

Definition 11. If B  has no Lagrange neutrosophic subbi-

loops then we call B  to be a Lagrange free neutrosophic 

biloop. 

Neutrosophic N-loop 

Definition 12. Let 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }n NS B S B S B S B        

be a non-empty neutrosophic set with N -binary opera-

tions. ( )S B  is a neutrosophic N -loop if  

1 2( ) ( ) ( ) ... ( )nS B S B S B S B    , ( )iS B  are 

proper subsets of ( )S B  for 1 i N  and some of 

( )iS B  are neutrosophic loops and some of the ( )iS B  are 

groups. 

Definition 13. Let 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }n NS B S B S B S B        

be a neutrosophic  N -loop. A proper subset 

1 2(P, , ,..., )N    of ( )S B  is said to be a neutrosophic 

sub N -loop of  ( )S B  if P  itself is a neutrosophic N -

loop under the operations of ( )S B . 

Definition 14. Let 

1 2 1 2( ... , , ,..., )N NL L L L        be a neutrosoph-

ic N -loop of finite order. Suppose P  is a proper subset 

of L , which is a neutrosophic sub N -loop. If  

( ) / ( )o P o L   then we call P  a Lagrange neutrosophic 

sub  N -loop. 

Definition 15.If every neutrosophic sub N -loop is La-

grange then we call L  to be a Lagrange neutrosophic N -

loop. 
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Definition 16. If L  has atleast one Lagrange neutrosophic 

sub  N -loop then we call L  to be a weakly Lagrange 

neutrosophic N -loop. 

Definition 17. If L  has no Lagrange neutrosophic sub 

N -loop then we call L  to be a Lagrange free neutrosoph-

ic N -loop. 

Soft Sets 

Throughout this subsection U refers to an initial universe,

E  is a set of parameters, ( )PU  is the power set of  U ,

and ,A B E . Molodtsov defined the soft set in the

following manner: 

Definition 7. A pair ( , )F A  is called a soft set over U
where F is a mapping given by  : ( )F A PU .

In other words, a soft set over  U  is a parameterized fami-

ly of subsets of the universe  U . For  a A  , (a)F
may be considered as the set of  a -elements of the soft set

( , )F A  , or as the set of  a -approximate elements of the

soft set. 

Example 1.  Suppose that U  is the set of shops. E is the

set of parameters and each parameter is a word or sentence. 

Let 

  
high rent,normal rent,

in good condition,in bad condition
E  . 

Let us consider a soft set ( , )F A which describes the at-

tractiveness of shops that Mr.Z  is taking on rent. Suppose

that there are five houses in the universe  

1 2 3 4 5{ , , , , }U s s s s s  under consideration, and that

1 2 3{ , , }A a a a  be the set of parameters where

1a   stands for the parameter 'high rent,

2a   stands for the parameter 'normal rent,

3a   stands for the parameter 'in good condition.

Suppose that 

1 1 4( ) { , }F a s s  ,

2 2 5( ) { , }F a s s ,

3 3( ) { }.F a s
The soft set ( , )F A  is an approximated family

{ ( ), 1,2,3}iF a i of subsets of the set U which gives

us a collection of approximate description of an object. 

Then ( , )F A  is a soft set as a collection of approxima-

tions over  U , where

21 1  { , }) ,( high rea nt s sF

2 2 5( )   { , },F normal ra ent s s

3 3( )    { }.F in good condit na io s

Definition 8.  For two soft sets ( , )F A  and  ( ,C)H  over

U , ( , )F A  is called a soft subset of  ( ,C)H  if

1. A C   and

2. ( ) ( )F a H a , for all  x A  .

This relationship is denoted by ( , ) ( ,C)F A H . Simi-

larly ( , )F A  is called a soft superset of ( ,C)H  if

( ,C)H  is a soft subset of ( , )F A  which is denoted by

( , ) ( ,C)F A H .

Definition 9.  Two soft sets ( , )F A  and ( ,C)H  over

U are called soft equal if ( , )F A  is a soft subset of

( ,C)H  and ( ,C)H  is a soft subset of ( , )F A .

Definition 10.  Let ( , )F A  and ( ,C)K  be two soft sets

over a common universe U such that  A C  .

Then their restricted intersection is denoted by 

( , ) ( ,C) ( ,D)RF A K H  where ( ,D)H  is de-

fined as  ( ) ( ) )H c F c c for all

Dc A C .

Definition 11.  The extended intersection of two soft sets  

( , )F A  and  ( ,C)K  over a common universe U is the

soft set  ( ,D)H  , where  D A C  , and for all

c C  , ( )H c  is defined as

( ) if c ,

( ) K( ) if c ,

( ) ( ) if c .

F c A C

H c c C A

F c c A C

We write  ( , ) ( , ) ( ,D)F A K C H .

Definition 12. The restricted union of two soft sets  

( , )F A  and ( ,C)K  over a common universe U is the

soft set  ( ,D)H , where  D A C  , and for all

c D  , ( )H c  is defined as  ( ) ( ) ( )H c F c c
for all  c D  . We write it as
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( , ) ( ,C) ( ,D).RF A K H

Definition 13. The extended union of two soft sets  

( , )F A  and ( ,C)K  over a common universe U is the

soft set  ( ,D)H , where  D A C  , and for all

c D  ,  ( )H c   is defined as

( ) if c ,

( ) K( ) if c ,

( ) ( ) if c .

F c A C

H c c C A

F c K c A C

We write ( , ) ( ,C) ( ,D)F A K H .

3 Soft Neutrosophic Loop 

Definition 14. Let L I  be a neutrosophic loop and 

( , )F A  be a soft set over L I . Then ( , )F A  is 

called soft neutrosophic loop if and only if ( )F a  is neu-

trosophic subloop of  L I  for all a A . 

Example 2. Let 7(4)L I L I    be a neutro-

sophic loop where 7(4)L  is a loop. Then ( , )F A  is a soft 

neutrosophic loop over L I , where 

1 2

3

( ) { , ,2,2 }, ( ) { ,3 },

F( ) { , }.

F a e eI I F a e

a e eI

 



Theorem 1. Every soft neutrosophic loop over L I

contains a soft loop over L . 

Proof. The proof is straightforward. 

Theorem 2. Let ( , )F A  and ( , )H A  be two soft neutro-

sophic loops over L I . Then their intersection 

( , ) ( , )F A H A  is again soft neutrosophic loop over 

L I . 

Proof. The proof is staightforward. 

Theorem 3. Let ( , )F A  and ( ,C)H  be two soft neutro-

sophic loops over L I . If  A C   , then 

( , ) ( ,C)F A H  is a soft neutrosophic loop over 

L I . 

Remark 1. The extended union of two soft neutrosophic 

loops ( , )F A  and ( ,C)K  over  L I  is not a soft 

neutrosophic loop over L I . 

With the help of example we can easily check the above 

remark. 

Proposition 1. The extended intersection of two soft neu-

trosophic loopps over L I  is a soft neutrosophic loop 

over L I . 

Remark 2. The restricted union of two soft neutrosophic 

loops ( , )F A  and ( , )K C  over  L I  is not a soft 

neutrosophic loop over L I .  

One can easily check it by the help of example. 

Proposition 2. The restricted intersection of two soft neu-

trosophic loops over L I  is a soft neutrosophic loop 

over L I . 

Proposition 3. The AND  operation of two soft neutro-

sophic loops over L I  is a soft neutrosophic loop 

over L I . 

Remark 3. The OR  operation of two soft neutosophic 

loops over L I  may not be a soft nuetrosophic loop 

over L I . 

Definition 15. Let 

( ) { ,1,2,..., , ,1 ,2 ,..., }nL m I e n eI I I nI   be a 

new class of neutrosophic loop and ( , )F A  be a soft neu-

trosophic loop over ( )nL m I . Then ( , )F A  is called 

soft new class neutrosophic loop if ( )F a  is a neutrosoph-

ic subloop of ( )nL m I  for all a A . 

Example 3. Let 
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5(3) { ,1,2,3,4,5, ,1 ,2 ,3 ,4 ,5 }L I e eI I I I I I   be 

a new class of neutrosophic loop. Let 

1 2 3 4 5{ , , , , }A a a a a a be a set of parameters. Then 

( , )F A  is soft new class neutrosophic loop over 

5(3)L I , where 

1 2

3 3

5

( ) { , ,1,1 }, ( ) { , ,2,2 },

( ) { , ,3,3 }, ( ) { , ,4,4 },

( ) { , ,5,5 }.

F a e eI I F a e eI I

F a e eI I F a e eI I

F a e eI I

 

 



Theorem 4. Every soft new class neutrosophic loop over 

( )nL m I  is a soft neutrosophic loop over 

( )nL m I  but the converse is not true. 

Proposition 4. Let ( , )F A  and ( ,C)K  be two soft new 

class neutrosophic loops over ( )nL m I . Then 

1) Their extended intersection ( , ) ( ,C)EF A K  is a 

soft new class neutrosophic loop over ( )nL m I . 

2) Their restricted intersection  ( , ) ( ,C)RF A K  is a 

soft new classes neutrosophic loop over 

( )nL m I . 

3) Their AND  operation  ( , ) ( ,C)F A K  is a soft

new class neutrosophic loop over ( )nL m I .

Remark 4. Let ( , )F A and (K,C)  be two soft new class 

neutrosophic loops over ( )nL m I . Then 

1) Their extended union ( , ) ( ,C)EF A K  is not a soft 

new class neutrosophic loop over ( )nL m I . 

2) Their restricted union  ( , ) ( ,C)RF A K  is not a 

soft new class neutrosophic loop over ( )nL m I . 

3) Their OR  operation ( , ) ( ,C)F A K  is not a soft

new class neutrosophic loop over ( )nL m I . 

One can easily verify (1),(2), and (3) by the help of ex-

amples. 

Definition 16. Let ( , )F A  be a soft neutrosophic loop 

over L I . Then ( , )F A  is called the identity soft 

neutrosophic loop over L I  if ( ) { }F a e  for all 

a A , where e  is the identity element of L I . 

Definition 17. Let ( , )F A  be a soft neutrosophic loop 

over L I . Then ( , )F A  is called an absolute soft 

neutrosophic loop over L I  if ( )F a L I   for 

all a A . 

Definition 18. Let ( , )F A  and ( ,C)H  be two soft neu-

trosophic loops over L I . Then  ( ,C)H  is callsed 

soft neutrosophic subloop of ( , )F A , if 

1. C A .

2. ( )H a  is a neutrosophic subloop of ( )F a  for all

a A .

Example 4.  Consider the neutrosophic loop 

15(2) { ,1,2,3,4,...,15, ,1 ,2 ,...,14 ,15 }L I e eI I I I I 

of order 32 . Let 1 2 3{ , , }A a a a  be a set of parameters. 

Then  ( , )F A  is a soft neutrosophic loop over 

15(2)L I , where 

1

2

3

( ) { ,2,5,8,11,14, ,2 ,5 ,8 ,11 ,14 },

( ) {e,2,5,8,11,14},

F( ) { ,3, ,3 }.

F a e eI I I I I I

F a

a e eI I







Thus ( ,C)H  is a soft neutrosophic subloop of ( , )F A  

over 15(2)L I , where 

1

2

( ) { , ,2 ,5 ,8 ,11 ,14 },

( ) { ,3}.

H a e eI I I I I I

H a e





Theorem 5. Every soft loop over L  is a soft neutrosophic 

subloop over L I . 

Definition 19. Let L I  be a neutrosophic loop and 

( , )F A  be a soft set over L I . Then  ( , )F A  is 

called soft normal neutrosophic loop if and only if ( )F a

is normal neutrosophic subloop of L I  for all 
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a A . 

Example 5. Let 

5(3) { ,1,2,3,4,5, ,1 ,2 ,3 ,4 ,5 }L I e eI I I I I I   be 

a neutrosophic loop. Let 1 2 3{ , , }A a a a be a set of pa-

rameters. Then clearly  ( , )F A  is soft normal neutrosoph-

ic loop over 5(3)L I , where 

1 2

3

( ) { , ,1,1 }, ( ) {e,eI,2,2 I},

( ) {e,eI,3,3I}.

F a e eI I F a

F a

 



Theorem 6. Every soft normal neutrosophic loop over 

L I  is a soft neutrosophic loop over  L I  but 

the converse is not true. 

Proposition 5. Let ( , )F A  and ( ,C)K  be two soft nor-

mal neutrosophic loops over L I . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft normal neutrosophic loop over L I . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is a soft normal neutrosophic loop over L I . 

3. Their AND  operation  ( , ) ( ,C)F A K  is a

soft normal neutrosophic loop over L I .

Remark 5. Let ( , )F A and (K,C)  be two soft normal 

neutrosophic loops over L I . Then 

1. Their extended union ( , ) ( ,C)EF A K  is not a 

soft normal neutrosophic loop over L I . 

2. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft normal neutrosophic loop over L I . 

3. Their OR  operation ( , ) ( ,C)F A K  is not a

soft normal neutrosophic loop over  L I .

One can easily verify (1),(2), and (3) by the help of ex-

amples. 

Definition 20. Let L I  be a neutrosophic loop and 

( , )F A  be a soft neutrosophic loop over  L I . Then 

( , )F A  is called soft Lagrange neutrosophic loop if  

( )F a  is a Lagrange neutrosophic subloop of L I

for all  a A . 

Example 6. In Example (1) , ( ,A)F  is a soft Lagrange 

neutrosophic loop over L I .  

Theorem 7. Every soft Lagrange neutrosophic loop over 

L I  is a soft neutrosophic loop over  L I  but 

the converse is not true. 

Theorem 8. If L I  is a Lagrange neutrosophic loop, 

then ( , )F A  over L I  is a soft Lagrange neutro-

sophic loop but the converse is not true. 

 Remark 6. Let ( , )F A  and ( ,C)K  be two soft La-

grange neutrosophic loops over L I . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange neutrosophic loop over

L I . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft Lagrange neutrosophic loop over

L I . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft Lagrange neutrosophic loop over L I . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft Lagrnage neutrosophic loop over  L I . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft Lagrange neutrosophic loop over L I . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange neutrosophic loop over  L I . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 21. Let L I  be a neutrosophic loop and 
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( , )F A  be a soft neutrosophic loop over  L I . Then 

( , )F A  is called soft weak Lagrange neutrosophic loop if 

atleast one ( )F a  is not a Lagrange neutrosophic subloop 

of L I  for some a A . 

Example 7.  Consider the neutrosophic loop 

15(2) { ,1,2,3,4,...,15, ,1 ,2 ,...,14 ,15 }L I e eI I I I I 

of order 32 . Let 1 2 3{ , , }A a a a  be a set of parameters. 

Then  ( , )F A  is a soft weakly Lagrange neutrosophic 

loop over 15(2)L I , where 

1

2

3

( ) { ,2,5,8,11,14, ,2 ,5 ,8 ,11 ,14 },

( ) {e,2,5,8,11,14},

F( ) { ,3, ,3 }.

F a e eI I I I I I

F a

a e eI I







Theorem 9. Every soft weak Lagrange neutrosophic loop 

over L I  is a soft neutrosophic loop over L I  

but the converse is not true. 

Theorem 10. If L I  is weak Lagrange neutrosophic 

loop, then ( , )F A  over L I  is also soft weak La-

grange neutrosophic loop but the converse is not true. 

Remark 7. Let ( , )F A  and ( ,C)K  be two soft weak 

Lagrange neutrosophic loops over L I . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft weak Lagrange neutrosophic loop

over L I .

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft weak Lagrange neutrosophic loop

over L I .

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft weak Lagrange neutrosophic loop over

L I . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft weak Lagrnage neutrosophic loop over

L I . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft weak Lagrange neutrosophic loop over 

L I . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft weak Lagrange neutrosophic loop over

L I . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples.

Definition 22. Let L I  be a neutrosophic loop and 

( , )F A  be a soft neutrosophic loop over  L I . Then 

( ,A)F  is called soft Lagrange free neutrosophic loop if 

( )F a  is not a lagrange neutrosophic subloop of L I

for all a A . 

Theorem 11. Every soft Lagrange free neutrosophic loop 

over L I  is a soft neutrosophic loop over L I  

but the converse is not true. 

Theorem 12. If L I  is a Lagrange free neutrosophic 

loop, then ( , )F A  over L I  is also a soft Lagrange 

free neutrosophic loop but the converse is not true. 

Remark 8. Let ( , )F A  and ( ,C)K  be two soft Lagrange 

free neutrosophic loops over L I . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange soft neutrosophic loop over

L I . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange soft neutrosophic loop over

L I . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft Lagrange free neutrosophic loop over

L I . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft Lagrnage soft neutrosophic loop over

L I . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft Lagrange free neutrosophic loop over

L I . 
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6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange free neutrosophic loop over

L I . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

4 Soft Neutrosophic Strong Loop 

Definition 23. Let L I  be a neutrosophic loop and 

( , )F A  be a soft set over L I . Then ( , )F A  is 

called soft neutrosophic strong loop if and only if ( )F a  is 

a strong neutrosophic subloop of  L I  for all a A . 

Proposition 6. Let ( , )F A  and ( ,C)K  be two soft neu-

trosophic strong loops over L I . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft neutrosophic strong loop over L I . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is a soft neutrosophic strong loop over L I . 

3. Their AND  operation  ( , ) ( ,C)F A K  is a

soft neutrosophic strong loop over L I .

Remark 9. Let ( , )F A and (K,C)  be two soft neutro-

sophic strong loops over L I . Then 

1. Their extended union ( , ) ( ,C)EF A K  is not a 

soft neutrosophic strong loop over L I . 

2. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft neutrosophic strong loop over L I . 

3. Their OR  operation ( , ) ( ,C)F A K  is not a

soft neutrosophic strong loop over  L I .

One can easily verify (1),(2), and (3) by the help of ex-

amples. 

Definition 24. Let ( , )F A  and ( ,C)H  be two soft neu-

trosophic strong loops over L I . Then  ( ,C)H  is 

called soft neutrosophic strong subloop of ( , )F A , if 

1. C A .

2. ( )H a  is a neutrosophic strong subloop of ( )F a

for all a A .

Definition 25. Let L I  be a neutrosophic strong loop 

and ( , )F A  be a soft neutrosophic loop over L I . 

Then ( , )F A  is called soft Lagrange neutrosophic strong 

loop if  ( )F a  is a Lagrange neutrosophic strong subloop 

of L I  for all  a A . 

Theorem 13. Every soft Lagrange neutrosophic strong 

loop over L I  is a soft neutrosophic loop over  

L I  but the converse is not true. 

Theorem 14. If L I  is a Lagrange neutrosophic 

strong loop, then ( , )F A  over L I  is a soft La-

grange neutrosophic loop but the converse is not true. 

 Remark 10. Let ( , )F A  and ( ,C)K  be two soft La-

grange neutrosophic strong loops over L I . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange neutrosophic strong loop

over L I .

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft Lagrange strong neutrosophic loop

over L I .

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft Lagrange neutrosophic strong loop over

L I . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft Lagrnage neutrosophic strong loop over

L I . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft Lagrange neutrosophic strong loop over

L I . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange neutrosophic strong loop over
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L I . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 26.  Let L I  be a neutrosophic strong 

loop and ( , )F A  be a soft neutrosophic loop over  

L I . Then ( , )F A  is called soft weak Lagrange neu-

trosophic strong loop if atleast one ( )F a  is not a La-

grange neutrosophic strong subloop of L I  for some 

a A . 

Theorem 15. Every soft weak Lagrange neutrosophic 

strong loop over L I  is a soft neutrosophic loop over 

L I  but the converse is not true. 

Theorem 16. If L I  is weak Lagrange neutrosophic 

strong loop, then ( , )F A  over L I  is also soft weak 

Lagrange neutrosophic strong loop but the converse is not 

true. 

Remark 11. Let ( , )F A  and ( ,C)K  be two soft weak 

Lagrange neutrosophic strong loops over L I . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft weak Lagrange neutrosophic strong

loop over L I .

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft weak Lagrange neutrosophic strong

loop over L I .

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft weak Lagrange neutrosophic strong loop

over L I .

4. Their extended union ( , ) ( ,C)EF A K  is not a

soft weak Lagrnage neutrosophic strong loop over

L I . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft weak Lagrange neutrosophic strong loop

over L I .

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft weak Lagrange neutrosophic strong loop over

L I . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 27.  Let L I  be a neutrosophic strong 

loop and ( , )F A  be a soft neutrosophic loop over  

L I . Then ( ,A)F  is called soft Lagrange free neu-

trosophic strong loop if ( )F a  is not a lagrange neutro-

sophic strong subloop of L I  for all a A . 

Theorem 17. Every soft Lagrange free neutrosophic strong 

loop over L I  is a soft neutrosophic loop over 

L I  but the converse is not true. 

Theorem 18. If L I  is a Lagrange free neutrosophic 

strong loop, then ( , )F A  over L I  is also a soft La-

grange free neutrosophic strong loop but the converse is 

not true. 

Remark 12. Let ( , )F A  and ( ,C)K  be two soft La-

grange free neutrosophic strong loops over L I . 

Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic strong

loop over L I .

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft Lagrange free neutrosophic strong

loop over L I .

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft Lagrange free neutrosophic strong loop

over L I .

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft Lagrnage free strong neutrosophic strong

loop over  L I .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft Lagrange free neutrosophic loop over

L I . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange free neutrosophic strong loop over

63



Neutrosophic Sets and Systems, Vol. 4, 2014 

 Mumtaz Ali, Christopher Dyer, Muhammad Shabir and Florentin Smarandache, Soft Neutrosophic Loops and Their Gen-

eralization

L I . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Soft Neutrosophic Biloop 

Definition 27. Let 1 2( , , )B I    be a neutrosophic 

biloop and ( , )F A  be a soft set over  1 2( , , )B I   . 

Then ( , )F A  is called soft neutrosophic biloop if and only 

if ( )F a  is a neutrosophic subbiloop of 

1 2( , , )B I    for all a A . 

Example 8. Let  
6

1 2( , , ) ({ ,1,2,3,4,5, ,1 ,2 ,3 ,4 ,5 } {g : g }B I e eI I I I I I e     

 be a neutrosophic biloop. Let 1 2{ , }A a a  be a set of 

parameters.  Then ( , )F A  is clearly soft neutrosophic bi-

loop over 1 2( , , )B I   , where 

2 4

1

3

2

( ) {e,2,eI,2 I} {g , , },

( ) {e,3,eI,3I} {g , }.

F a g e

F a e

 

 

Theorem 19. Let ( , )F A  and ( , )H A  be two soft neu-

trosophic biloops over 1 2( , , )B I   . Then their in-

tersection ( , ) ( , )F A H A  is again a soft neutrosophic 

biloop over  1 2( , , )B I   . 

Proof. Straightforward. 

Theorem 20. Let ( , )F A  and ( ,C)H  be two soft neu-

trosophic biloops over 1 2( , , )B I     such that 

A C   . Then their union is soft neutrosophic biloop 

over 1 2( , , )B I   . 

Proof. Straightforward. 

Proposition 7. Let ( , )F A  and ( ,C)K  be two soft neu-

trosophic biloops over 1 2( , , )B I   . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft neutrosophic biloop over 

1 2( , , )B I   . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is a soft neutrosophic biloop over

1 2( , , )B I   .

3. Their AND  operation  ( , ) ( ,C)F A K  is a

soft neutrosophic biloop over 1 2( , , )B I   . 

Remark 13. Let ( , )F A and (K,C)  be two soft neutro-

sophic biloops over 1 2( , , )B I   . Then 

1. Their extended union ( , ) ( ,C)EF A K  is not a 

soft neutrosophic biloop over  1 2( , , )B I   . 

2. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft neutrosophic biloop over

1 2( , , )B I   .

3. Their OR  operation ( , ) ( ,C)F A K  is not a

soft neutrosophic biloop over  1 2( , , )B I   . 

One can easily verify (1),(2), and (3) by the help of ex-

amples. 

Definition 28. Let 2 1 2( ( ) , , )nB L m I B      be a 

new class neutrosophic biloop and ( , )F A  be a soft set 

over 2 1 2( ( ) , , )nB L m I B     . Then 

2 1 2( ( ) , , )nB L m I B      is called soft new class 

neutrosophic subbiloop if and only if ( )F a  is a neutro-

sophic subbiloop of  2 1 2( ( ) , , )nB L m I B      

for all a A . 

Example 9. Let 1 2 1 2( , , )B B B     be a new class 

neutrosophic biloop, where 

1 5(3) { ,1,2,3,4,5, ,2 ,3 ,4 ,5I}B L I e eI I I I    

be a new class of neutrosophic loop and  
12

2 { : }B g g e   is a group.  

e,eI, 1,1I  1,g6,

e,eI, 2,2I  1,g2,g4,g6,g8,g10,

e,eI, 3,3I  1,g3,g6,g9,
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e,eI,4,4I  1,g4,g8   are neutrosophic subloops

of  B  . Let 1 2 3 4{ , , , }A a a a a  be a set of parameters.

Then ( , )F A  is soft new class neutrosophic biloop over 

B , where 
6

1

2 4 6 8 10

2

3 6 6

3

4 8

4

( ) { , ,1,1 } { , },

( ) {e,eI,2,2 I} { , , , , , },

( ) { , ,3,3 } { , , , },

( ) { , ,4,4 } { , , }.

F a e eI I e g

F a e g g g g g

F a e eI I e g g g

F a e eI I e g g

 

 

 

 

Theorem 21. Every soft new class neutrosophic biloop 

over 2 1 2( ( ) , , )nB L m I B      is trivially a soft 

neutrosophic biloop over but the converse is not true. 

Proposition 8. Let ( , )F A  and ( ,C)K  be two soft new 

class neutrosophic biloops over 

2 1 2( ( ) , , )nB L m I B     . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft new class neutrosophic biloop over 

2 1 2( ( ) , , )nB L m I B     . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is a soft new class neutrosophic biloop over 

2 1 2( ( ) , , )nB L m I B     . 

3. Their AND  operation  ( , ) ( ,C)F A K  is a

soft new class neutrosophic biloop over

2 1 2( ( ) , , )nB L m I B     .

Remark 14. Let ( , )F A and (K,C)  be two soft new 

class neutrosophic biloops over 

2 1 2( ( ) , , )nB L m I B     . Then 

1. Their extended union ( , ) ( ,C)EF A K  is not a 

soft new class neutrosophic biloop over 

2 1 2( ( ) , , )nB L m I B     . 

2. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft new class neutrosophic biloop over 

2 1 2( ( ) , , )nB L m I B     . 

3. Their OR  operation ( , ) ( ,C)F A K  is not a

soft new class neutrosophic biloop over

2 1 2( ( ) , , )nB L m I B     .

One can easily verify (1),(2), and (3) by the help of ex-

amples. 

Definition 29. Let ( , )F A  be a soft neutrosophic biloop 

over 1 2 1 2( , , )B B I B     . Then  ( , )F A  is 

called the identity soft neutrosophic biloop over  

1 2 1 2( , , )B B I B      if  1 2( ) { , }F a e e  for all 

a A , where 1e , 2e  are the identities of 

1 2 1 2( , , )B B I B       respectively. 

Definition 30. Let ( , )F A  be a soft neutrosophic biloop 

over  1 2 1 2( , , )B B I B     . Then  ( , )F A  is 

called an absolute-soft neutrosophic biloop over 

1 2 1 2( , , )B B I B      if  

1 2 1 2( ) ( , , )F a B I B      for all a A . 

Definition 31. Let ( , )F A  and ( ,C)H  be two soft neu-

trosophic biloops over 1 2 1 2( , , )B B I B     . 

Then ( ,C)H  is called soft neutrosophic subbiloop of 

( , )F A , if 

1. C A .

2. ( )H a  is a neutrosophic subbiloop of ( )F a  for

all a A .

 Example 10. Let 1 2 1 2( , , )B B B     be a neutrosoph-

ic biloop, where 

1 5(3) { ,1,2,3,4,5, ,2 ,3 ,4 ,5I}B L I e eI I I I    

be a new class of neutrosophic loop and  
12

2 { : }B g g e   is a group. Let 1 2 3 4{ , , , }A a a a a  

be a set of parameters. Then ( , )F A  is soft neutrosophic 

biloop over B , where 

6

1

2 4 6 8 10

2

3 6 6

3

4 8

4

( ) { , ,1,1 } { , },

( ) {e,eI,2,2 I} { , , , , , },

( ) { , ,3,3 } { , , , },

( ) { , ,4,4 } { , , }.

F a e eI I e g

F a e g g g g g

F a e eI I e g g g

F a e eI I e g g

 

 

 

 

Then ( ,C)H  is soft neutrosophic subbiloop of ( , )F A , 

where 
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2

1

6

2

( ) { ,2) { , },

( ) {e,eI,3,3 } { , }.

H a e e g

H a I e g

 

 

Definition 32. Let 1 2( , , )B I    be a neutrosophic 

biloop and ( , )F A  be a soft set over  1 2( , , )B I   . 

Then ( , )F A  is called soft Lagrange neutrosophic biloop 

if and only if ( )F a   is  Lagrange neutrosophic subbiloop 

of 1 2( , , )B I    for all a A . 

Example 11. Let 1 2 1 2(B , , )B B     be a neutrosophic 

biloop of order 20 , where 1 5(3)B L I   and 

8

2 { : }B g g e  .  Then clearly ( , )F A  is a soft La-

grange soft neutrosophic biloop over 1 2( , , )B I   , 

where 

1

2

( ) {e,eI,2,2 I} {e},

F( ) { , ,3,3 } { }.

F a

a e eI I e

 

 

Theorem 22. Every soft Lagrange neutrosophic biloop 

over 1 2 1 2( , , )B B I B      is a soft neutrosophic 

biloop but the converse is not true. 

Remark 15. Let ( , )F A  and ( ,C)K  be two soft La-

grange neutrosophic biloops over 

1 2 1 2( , , )B B I B     . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange neutrosophic biloop over

1 2 1 2( , , )B B I B     . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft Lagrange neutrosophic biloop over 

1 2 1 2( , , )B B I B     . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft Lagrange neutrosophic biloop over

1 2 1 2( , , )B B I B     . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft Lagrnage neutrosophic biloop over 

1 2 1 2( , , )B B I B     . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft Lagrange neutrosophic biloop over 

1 2 1 2( , , )B B I B     . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange neutrosophic biloop over

1 2 1 2( , , )B B I B     .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 33. Let 1 2( , , )B I    be a neutrosophic 

biloop and ( , )F A  be a soft set over  1 2( , , )B I   . 

Then ( , )F A  is called soft weakly Lagrange neutrosophic 

biloop if atleast one  ( )F a  is not a Lagrange neutrosophic 

subbiloop of 1 2( , , )B I    for some a A . 

Example 12. Let 1 2 1 2(B , , )B B     be a neutrosophic 

biloop of order 20 , where 1 5(3)B L I   and 

8

2 { : }B g g e  .  Then clearly ( , )F A  is a soft weak-

ly Lagrange neutrosophic biloop over 1 2( , , )B I   , 

where 

1

4

2

( ) {e,eI,2,2 I} {e},

F( ) { , ,3,3 } {e,g }.

F a

a e eI I

 

 

Theorem 23. Every soft weakly Lagrange neutrosophic bi-

loop over 1 2 1 2( , , )B B I B      is a soft neutro-

sophic biloop but the converse is not true. 

Theorem 24. If 1 2 1 2( , , )B B I B      is a weakly 

Lagrange neutrosophic biloop, then  ( , )F A  over B  is al-

so soft weakly Lagrange neutrosophic biloop but the con-

verse is not holds. 

Remark 16. Let ( , )F A  and ( ,C)K  be two soft weakly 

Lagrange neutrosophic biloops over 

1 2 1 2( , , )B B I B     . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft weakly Lagrange neutrosophic biloop

over 1 2 1 2( , , )B B I B     . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  
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is not a soft weakly Lagrange neutrosophic biloop 

over 1 2 1 2( , , )B B I B     .

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft weakly Lagrange neutrosophic biloop over

1 2 1 2( , , )B B I B     . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft weakly Lagrnage neutrosophic biloop over  

1 2 1 2( , , )B B I B     . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft weakly Lagrange neutrosophic biloop over 

1 2 1 2( , , )B B I B     . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft weakly Lagrange neutrosophic biloop over

1 2 1 2( , , )B B I B     .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 34. Let 1 2( , , )B I    be a neutrosophic 

biloop and ( , )F A  be a soft set over  1 2( , , )B I   . 

Then ( , )F A  is called soft Lagrange free neutrosophic bi-

loop if and only if  ( )F a  is not a Lagrange neutrosophic 

subbiloop of 1 2( , , )B I    for all a A . 

Example 13. Let 1 2 1 2(B , , )B B     be a neutrosophic 

biloop of order 20 , where 1 5(3)B L I   and 

8

2 { : }B g g e  .  Then clearly ( , )F A  is a soft La-

grange free  neutrosophic biloop over 1 2( , , )B I   , 

where 
2 4 6

1

4

2

( ) {e,eI,2,2 I} {e,g ,g ,g },

F( ) { , ,3,3 } {e,g }.

F a

a e eI I

 

 

Theorem 25. Every soft Lagrange free neutrosophic bi-

loop over 1 2 1 2( , , )B B I B      is a soft neutro-

sophic biloop but the converse is not true. 

Theorem 26. If 1 2 1 2( , , )B B I B      is a La-

grange free neutrosophic biloop, then  ( , )F A  over B  is 

also soft Lagrange free neutrosophic biloop but the con-

verse is not holds. 

Remark 17. Let ( , )F A  and ( ,C)K  be two soft La-

grange free neutrosophic biloops over 

1 2 1 2( , , )B B I B     . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic biloop

over 1 2 1 2( , , )B B I B     . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft Lagrange free neutrosophic biloop 

over 1 2 1 2( , , )B B I B     . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft Lagrange free neutrosophic biloop over

1 2 1 2( , , )B B I B     . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft Lagrnage free neutrosophic biloop over  

1 2 1 2( , , )B B I B     . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft Lagrange free neutrosophic biloop over 

1 2 1 2( , , )B B I B     . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange free neutrosophic biloop over

1 2 1 2( , , )B B I B     .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples.  

Soft Neutrosophic Strong Biloop 

Definition 35. Let 1 2 1 2( , , )B B B     be a neutro-

sophic biloop where 1B  is a neutrosopphic biloop and 2B

is a neutrosophic group and  F,A  be soft set over B .

Then ( , )F A  over B  is called soft neutrosophic strong 

biloop if and only if ( )F a  is a neutrosopchic strong sub-

biloop of B for all a A . 

Example 14. Let 1 2 1 2( , , )B B B     where 

1 5(2)B L I   is a neutrosophic loop and 

2 {0,1,2,3,4,,1I,2 I,3I,4 I}B   under multiplication 

modulo 5  is a neutrosophic group. Let 1 2{ , }A a a be a 

set of parameters. Then ( , )F A  is soft neutrosophic strong 

biloop over B , where 
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1

2

( ) { ,2, ,2 } {1, ,4 },

( ) {e,3,eI,3I} {1, I,4 I}.

F a e eI I I I

F a

 

 

Theorem 27. Every soft neutrosophic strong biloop over 

1 2 1 2( , , )B B B     is a soft neutrosophic biloop but

the converse is not true. 

Theorem 28. If 1 2 1 2( , , )B B B     is a neutrosophic 

strong biloop, then ( , )F A  over B  is also soft neutro-

sophic strong biloop but the converse is not holds. 

Proposition 9. Let ( , )F A  and ( ,C)K  be two soft neu-

trosophic strong biloops over 1 2 1 2( , , )B B B    . 

Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft neutrosophic strong biloop over

1 2 1 2( , , )B B B    .

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is a soft neutrosophic strong biloop over

1 2 1 2( , , )B B B    .

3. Their AND  operation  ( , ) ( ,C)F A K  is a

soft neutrosophic strong biloop over

1 2 1 2( , , )B B B    .

Remark 18. Let ( , )F A and (K,B)  be two soft neutro-

sophic strong biloops over 1 2 1 2( , , )B B B    . Then 

1. Their extended union ( , ) ( ,C)EF A K  is not a 

soft neutrosophic strong biloop over

1 2 1 2( , , )B B B    .

2. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft neutrosophic strong biloop over

1 2 1 2( , , )B B B    .

3. Their OR  operation ( , ) ( ,C)F A K  is not a

soft neutrosophic strong biloop over

1 2 1 2( , , )B B B    .

One can easily verify (1),(2), and (3) by the help of ex-

amples. 

Definition 36. Let ( , )F A  and ( ,C)H  be two soft neu-

trosophic strong biloops over 1 2 1 2( , , )B B B    . 

Then ( ,C)H  is called soft neutrosophic strong subbiloop 

of ( , )F A , if 

3. C A .

4. ( )H a  is a neutrosophic strong subbiloop of

( )F a  for all a A .

Definition 37. Let 1 2 1 2( , , )B B B     be a neutro-

sophic biloop and ( , )F A  be a soft set over  

1 2 1 2( , , )B B B    . Then ( , )F A  is called soft La-

grange neutrosophic strong biloop if and only if ( )F a  is a 

Lagrange neutrosophic strong subbiloop of 

1 2 1 2( , , )B B B     for all a A . 

Theorem 29. Every soft Lagrange neutrosophic strong bi-

loop over 1 2 1 2( , , )B B B     is a soft neutrosophic bi-

loop but the converse is not true. 

Remark 19. Let ( , )F A  and ( ,C)K  be two soft La-

grange neutrosophic strong biloops over 

1 2 1 2( , , )B B B    . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange neutrosophic strong biloop

over 1 2 1 2( , , )B B B    .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange neutrosophic strong biloop

over 1 2 1 2( , , )B B B    .

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft Lagrange neutrosophic strong biloop over

1 2 1 2( , , )B B B    .

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft Lagrnage neutrosophic strong biloop over

1 2 1 2( , , )B B B    .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft Lagrange neutrosophic strong biloop over

1 2 1 2( , , )B B B    .

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange neutrosophic strong biloop over

1 2 1 2( , , )B B B    .
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One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 38. Let 1 2 1 2( , , )B B B     be a neutro-

sophic biloop and ( , )F A  be a soft set over  

1 2 1 2( , , )B B B    . Then ( , )F A  is called soft weak-

ly Lagrange neutrosophic strong biloop if atleast one 

( )F a  is not a Lagrange neutrosophic strong subbiloop of 

1 2 1 2( , , )B B B     for some a A . 

Theorem 30. Every soft weakly Lagrange neutrosophic 

strong biloop over 1 2 1 2( , , )B B B     is a soft neutro-

sophic biloop but the converse is not true. 

Theorem 31. If 1 2 1 2( , , )B B B     is a weakly La-

grange neutrosophic strong biloop, then  ( , )F A  over B

is also soft weakly Lagrange neutrosophic strong biloop 

but the converse does not holds. 

Remark 20. Let ( , )F A  and ( ,C)K  be two soft weakly 

Lagrange neutrosophic strong biloops over 

1 2 1 2( , , )B B B    . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft weakly Lagrange neutrosophic strong 

biloop over 1 2 1 2( , , )B B B    . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft weakly Lagrange neutrosophic strong 

biloop over 1 2 1 2( , , )B B B    . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft weakly Lagrange neutrosophic strong bi-

loop over 1 2 1 2( , , )B B B    . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft weakly Lagrange neutrosophic strong biloop 

over  1 2 1 2( , , )B B B    . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft weakly Lagrange neutrosophic strong bi-

loop over 1 2 1 2( , , )B B B    . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft weakly Lagrange neutrosophic strong biloop

over  1 2 1 2( , , )B B B    . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 39. Let 1 2 1 2( , , )B B B     be a neutro-

sophic biloop and ( , )F A  be a soft set over  

1 2 1 2( , , )B B B    . Then ( , )F A  is called soft La-

grange free neutrosophic strong biloop if and only if 

( )F a  is not a Lagrange neutrosophic subbiloop of 

1 2 1 2( , , )B B B     for all a A . 

Theorem 32. Every soft Lagrange free neutrosophic strong 

biloop over 1 2 1 2( , , )B B B     is a soft neutrosophic 

biloop but the converse is not true. 

Theorem 33. If 1 2 1 2( , , )B B B     is a Lagrange free 

neutrosophic strong biloop, then  ( , )F A  over B  is also 

soft strong lagrange free neutrosophic strong biloop but the 

converse is not true. 

Remark 21. Let ( , )F A  and ( ,C)K  be two soft La-

grange free neutrosophic strong biloops over 

1 2 1 2( , , )B B B    . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic strong bi-

loop over 1 2 1 2( , , )B B B    . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft Lagrange free neutrosophic strong bi-

loop over 1 2 1 2( , , )B B B    . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft Lagrange free neutrosophic strong biloop

over 1 2 1 2( , , )B B B    . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft Lagrnage free neutrosophic strong biloop 

over 1 2 1 2( , , )B B B    . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft Lagrange free neutrosophic strong biloop 

over 1 2 1 2( , , )B B B    . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange free neutrosophic strong biloop

over 1 2 1 2( , , )B B B    . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples.  
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Soft Neutrosophic N-loop 

Definition 40. Let 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B        

be a neutrosophic N -loop and ( , )F A  be a soft set over 

( )S B . Then ( , )F A  is called soft neutrosophic N -loop 

if and only if ( )F a  is a neutrosopchic sub N -loop of 

( )S B  for all a A . 

Example 15. Let  

1 2 3 1 2 3( ) { ( ) ( ) ( ), , , }S B S B S B S B       be a neu-

trosophic 3 -loop, where  1 5( ) (3)S B L I  , 

12

2( ) { : }S B g g e   and  3 3( )S B S . Then ( , )F A   

is sof neutrosophic N -loop over ( )S B , where 

6

1

4 8

2

( ) {e,eI,2,2 I} {e,g } {e,(12)},

F( ) { , ,3,3 } { , , } { ,(13)}.

F a

a e eI I e g g e

  

  

Theorem 34. Let ( , )F A  and ( , )H A  be two soft neu-

trosophic N -loops over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

. Then their intersection ( , ) ( , )F A H A  is again a soft 

neutrosophic N -loop over  ( )S B . 

Proof. Straightforward. 

Theorem 35. Let ( , )F A  and ( ,C)H  be two soft neu-

trosophic N -loops over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B         

such that A C   . Then their union is soft neutro-

sophic N -loop over ( )S B . 

Proof. Straightforward. 

Proposition 10. Let ( , )F A  and ( ,C)K  be two soft neu-

trosophic N -loops over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

. Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft neutrosophic N -loop over ( )S B . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is a soft neutrosophic N -loop over ( )S B . 

3. Their AND  operation  ( , ) ( ,C)F A K  is a

soft neutrosophic N -loop over ( )S B .

Remark 22. Let ( , )F A and ( ,C)H  be two soft neutro-

sophic N -loops over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

Then 

1. Their extended union ( , ) ( ,C)EF A K  is not a 

soft neutrosophic N -loop over ( )S B . 

2. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft neutrosophic N -loop over ( )S B . 

3. Their OR  operation ( , ) ( ,C)F A K  is not a

soft neutrosophic N -loop over ( )S B .

One can easily verify (1),(2), and (3) by the help of ex-

amples. 

Definition 41. Let ( , )F A  be a soft neutrosophic N -loop 

over  

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

. Then ( , )F A  is called the identity soft neutrosophic N -

loop over ( )S B  if 1 2( ) { , ,..., }NF a e e e  for all  

a A , where  1 2, ,..., Ne e e  are the identities element of 

1 2( ), ( ),..., ( )NS B S B S B  respectively. 

Definition 42. Let ( , )F A  be a soft neutrosophic N -loop 

over  

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

. Then ( , )F A  is called an absolute-soft neutrosophic N -

loop over ( )S B  if ( ) ( )F a S B  for all a A . 

Definition 43. Let ( , )F A  and ( ,C)H  be two soft neu-

trosophic N -loops over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

. Then ( ,C)H  is called soft neutrosophic sub N -loop of 

( , )F A , if 

1. C A .

2. ( )H a  is a neutrosophic sub N -loop of ( )F a

for all a A .
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Definition 45. Let 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

be a neutrosophic N -loop and ( , )F A  be a soft set over  

( )S B . Then ( , )F A  is called soft Lagrange neutrosophic 

N -loop if and only if ( )F a   is  Lagrange neutrosophic 

sub N -loop of ( )S B  for all a A . 

Theorem 36. Every soft Lagrange neutrosophic N -loop 

over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B        

is a soft neutrosophic N -loop but the converse is not true. 

Remark 23. Let ( , )F A  and ( ,C)K  be two soft La-

grange neutrosophic N -loops over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

. Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange neutrosophic N -loop over

( )S B .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange neutrosophic N -loop over

( )S B .

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft Lagrange neutrosophic N -loop over ( )B .

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft Lagrnage neutrosophic N -loop over

( )S B .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft Lagrange neutrosophic N -loop over

( )S B .

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange neutrosophic N -loop over

( )S B .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 46. Let 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B        

be a neutrosophic N -loop and ( , )F A  be a soft set over 

( )S B . Then ( , )F A  is called soft weakly Lagrange neu-

trosophic biloop if atleast one ( )F a  is not a Lagrange 

neutrosophic sub N -loop of ( )S B for some a A . 

Theorem 37. Every soft weakly Lagrange neutrosophic 

N -loop over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

is a soft neutrosophic N -loop but the converse is not true. 

Theorem 38. If 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B        

is a weakly Lagrange neutrosophic N -loop, then  ( , )F A  

over ( )S B  is also soft weakly Lagrange neutrosophic 

N -loop but the converse is not holds. 

Remark 24. Let ( , )F A  and ( ,C)K  be two soft weakly 

Lagrange neutrosophic N -loops over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

. Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft weakly Lagrange neutrosophic N -

loop over ( )S B .

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft weakly Lagrange neutrosophic N -

loop over ( )S B .

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft weakly Lagrange neutrosophic N -loop

over ( )S B .

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft weakly Lagrnage neutrosophic N -loop over

( )S B .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft weakly Lagrange neutrosophic N -loop

over ( )S B .

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft weakly Lagrange neutrosophic N -loop over

( )S B .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 47. Let 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B        

be a neutrosophic N -loop and ( , )F A  be a soft set over  
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( )S B . Then ( , )F A  is called soft Lagrange free neutro-

sophic N -loop if and only if  ( )F a  is not a Lagrange 

neutrosophic sub N -loop of ( )S B  for all a A . 

Theorem 39. Every soft Lagrange free neutrosophic N -

loop over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B        

is a soft neutrosophic biloop but the converse is not true. 

Theorem 40. If 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B        

is a Lagrange free neutrosophic N -loop, then  ( , )F A  

over ( )S B  is also soft lagrange free neutrosophic N -

loop but the converse is not hold. 

Remark 25. Let ( , )F A  and ( ,C)K  be two soft La-

grange free neutrosophic N -loops over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

. Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic N -loop

over 1 2 1 2( , , )B B I B     . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange free neutrosophic N -loop

over ( )S B .

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft Lagrange free neutrosophic N -loop over

( )S B .

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft Lagrnage free neutrosophic N -loop over

( )S B .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft Lagrange free neutrosophic N -loop over

( )S B .

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange free neutrosophic N -loop over

( )S B .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Soft Neutrosophic Strong N-loop 

Definition 48. Let 

1 2 1 2{ ... , , ,..., }N NL I L L L         be a neu-

trosophic N -loop and  ( , )F A  be a soft set over 

1 2 1 2{ ... , , ,..., }N NL I L L L        . Then  

( , )F A  is called soft neutrosophic strong N -loop if and 

only if ( )F a  is a neutrosopchic strong sub N -loop of  

1 2 1 2{ ... , , ,..., }N NL I L L L         for all 

a A . 

Example 16. Let 1 2 3 1 2 3{ , , , }L I L L L        

where 1 5 2 7(3) , (3)L L I L L I     and 

3 {1,2,1 ,2 }L I I . Then ( , )F A  is a soft neutrosophic 

strong N -loop over L I , where 

1

2

( ) {e,2,eI,2 I} {e,2,eI,2 I} {1, I},

F( ) {e,3,eI,3I} {e,3,eI,3I} {1,2,2 I}.

F a

a

  

  

Theorem 41. All soft neutrosophic strong N -loops are 

soft neutrosophic N -loops but the converse is not true. 

One can easily see the converse with the help of example. 

 Proposition 11. Let ( , )F A  and ( ,C)K  be two soft 

neutrosophic strong N -loops over 

1 2 1 2{ ... , , ,..., }N NL I L L L        . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft neutrosophic strong N -loop over

L I . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is a soft neutrosophic strong N -loop over

L I . 

3. Their AND  operation  ( , ) ( ,C)F A K  is a

soft neutrosophic strong N -loop over L I . 

Remark 26. Let ( , )F A and (K,C)  be two soft neutro-

sophic strong N -loops over 

1 2 1 2{ ... , , ,..., }N NL I L L L        . Then 
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1. Their extended union ( , ) ( ,C)EF A K  is not a

soft neutrosophic strong N -loop over L I . 

2. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft neutrosophic strong N -loop over 

L I . 

3. Their OR  operation ( , ) ( ,C)F A K  is not a

soft neutrosophic strong N -loop over L I . 

One can easily verify (1),(2), and (3) by the help of ex-

amples. 

Definition 49. Let ( , )F A  and ( ,C)H  be two soft neu-

trosophic strong N -loops over 

1 2 1 2{ ... , , ,..., }N NL I L L L        . Then 

( ,C)H  is called soft neutrosophic strong sub N -loop of 

( , )F A , if 

1. C A .

2. ( )H a  is a neutrosophic strong sub N -loop of

( )F a  for all a A .

Definition 50. Let 

1 2 1 2{ ... , , ,..., }N NL I L L L        be a neu-

trosophic strong N -loop and ( , )F A  be a soft set over 

L I . Then ( , )F A  is called soft Lagrange neutro-

sophic strong N -loop if and only if ( )F a   is a Lagrange 

neutrosophic strong sub N -loop of L I  for all 

a A . 

Theorem 42. Every soft Lagrange neutrosophic strong 

N -loop over 

1 2 1 2{ ... , , ,..., }N NL I L L L         is a soft 

neutrosophic N -loop but the converse is not true. 

Remark 27. Let ( , )F A  and ( ,C)K  be two soft La-

grange neutrosophic strong N -loops over 

1 2 1 2{ ... , , ,..., }N NL I L L L        . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange neutrosophic strong N -

loop over L I .

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft Lagrange neutrosophic strong N -

loop over L I . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft Lagrange neutrosophic strong N -loop over

L I . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft Lagrnage neutrosophic strong N -loop over

L I . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not

a soft Lagrange neutrosophic strong N -loop over

L I . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange neutrosophic strong N -loop over

L I . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 51. Let 

1 2 1 2{ ... , , ,..., }N NL I L L L         be a neu-

trosophic strong N -loop and ( , )F A  be a soft set over 

L I . Then ( , )F A  is called soft weakly Lagrange 

neutrosophic strong N -loop if atleast one ( )F a  is not a 

Lagrange neutrosophic strong sub N -loop of L I  

for some a A . 

Theorem 43. Every soft weakly Lagrange neutrosophic 

strong N -loop over 

1 2 1 2{ ... , , ,..., }N NL I L L L        is a soft 

neutrosophic N -loop but the converse is not true. 

Theorem 44. If 

1 2 1 2{ ... , , ,..., }N NL I L L L         is a 

weakly Lagrange neutrosophic strong N -loop, then  

( , )F A  over L I  is also a soft weakly Lagrange 

neutrosophic strong N -loop but the converse is not true. 

Remark 28. Let ( , )F A  and ( ,C)K  be two soft weakly 

Lagrange neutrosophic strong N -loops over 

1 2 1 2{ ... , , ,..., }N NL I L L L        . Then 
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1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft weakly Lagrange neutrosophic strong

N -loop over L I .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft weakly Lagrange neutrosophic strong

N -loop over L I .

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft weakly Lagrange neutrosophic strong N -

loop over L I .

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft weakly Lagrnage neutrosophic strong N -

loop over L I .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft weakly Lagrange neutrosophic strong N -

loop over L I .

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft weakly Lagrange neutrosophic strong N -

loop over L I .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 52. Let 

1 2 1 2{ ... , , ,..., }N NL I L L L         be a neu-

trosophic N -loop and ( , )F A  be a soft set over  

L I . Then ( , )F A  is called soft Lagrange free neu-

trosophic strong N -loop if and only if  ( )F a  is not a 

Lagrange neutrosophic strong sub N -loop of L I

for all a A . 

Theorem 45. Every soft Lagrange free neutrosophic strong 

N -loop over 

1 2 1 2{ ... , , ,..., }N NL I L L L         is a soft 

neutrosophic N -loop but the converse is not true. 

Theorem 45. If 

1 2 1 2{ ... , , ,..., }N NL I L L L         is a La-

grange free neutrosophic strong N -loop, then  ( , )F A  

over L I  is also a soft Lagrange free neutrosophic 

strong N -loop but the converse is not true. 

Remark 29. Let ( , )F A  and ( ,C)K  be two soft La-

grange free neutrosophic strong N -loops over 

1 2 1 2{ ... , , ,..., }N NL I L L L        . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic strong

N -loop over L I .

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft Lagrange free neutrosophic strong

N -loop over L I .

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft Lagrange free neutrosophic strong N -loop

over L I .

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft Lagrnage free neutrosophic strong N -loop

over  L I .

5. Their restricted union  ( , ) ( ,C)RF A K  is not

a soft Lagrange free neutrosophic strong N -loop

over L I .

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange free neutrosophic strong N -loop

over L I .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Conclusion 

This paper is an extension of neutrosphic loop to soft neu-

trosophic loop. We also extend neutrosophic biloop, neu-

trosophic  N -loop to soft neutrosophic biloop, and soft 

neutrosophic  N -loop. Their related properties and results 

are explained with many illustrative examples. The notions 

related with strong part of neutrosophy also established 

within soft neutrosophic loop. 
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