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Abstract: It has been found that bosons are not subject 

to the Pauli Exclusion Principle. This paper argues that 

in some cases the exclusion principle is also invalid for 

fermions. According to the Law of Included Multiple-

Middle and the like, the 4 neutralities between Pauli 

Exclusion Principle's validity and invalidity are as fol-

lows: first, according to Neutrosophy, any proposition 

has three situations of truth, falsehood and indetermi-

nacy respectively; second, some scholars have pointed 

out that the exclusion principle may be broken in high-

energy state; third, due to the existance of man created 

law (man-made law), the broken exclusion principle 

and the man-made (instantaneous) magnetic monopole 

can be artificially created; fourth, the exclusion princi-

ple is not compatible with law of conservation of ener-

gy, and in physics the principles that are not compatible 

with law of conservation of energy will be invalid in 

some cases. 

Keywords: Neutrosophy, Law of Included Multiple-Middle, exclusion principle, error, law of conservation of ener-

gy, man created law (man-made law), man-made (instantaneous) magnetic monopole

1 Introduction 

As well-known, it has been found that bosons are not 

subject to the Pauli Exclusion Principle. Then there is the 

question: whether or not that in some cases the exclusion 

principle is also invalid for fermions? This paper tries to 

discuss this issue from four aspects based on Law of In-

cluded Multiple-Middle and the like. 

According to the Law of Included Multiple-Middle 

presented in reference [1], for the notion or idea <Neut-A> 

(its meaning can be found below), it can be split into a 

multitude of neutralities between <A> and <Anti-A>, such 

as <neut1A>, <neut2A>, and the like. The <Neut-A> value 

(i.e. neutrality or indeterminacy related to <A> and <Anti-

A>) actually comprises the included middle value. For ex-

ample, for the Pauli Exclusion Principle, between it is 

completely valid and it is completely invalid, there are four 

neutralities or aspects that the Pauli Exclusion Principle is 

only valid under certain conditions. 

Now we will explicit the 4 neutralities between Pauli 

Exclusion Principle's validity and invalidity in sections 2-5. 

2 According to Neutrosophy, any proposition has 
three situations of truth, falsehood and indeter-
minacy respectively 

Neutrosophy is a new branch of philosophy that 

studies the origin, nature, and scope of neutralities, as well 

as their interactions with different ideational spectra. 

This theory considers every notion or idea <A> 

together with its opposite or negation <Anti-A> and the 

spectrum of "neutralities" <Neut-A> (i.e. notions or ideas 

located between the two extremes, supporting neither <A> 

nor <Anti-A>). The <Neut-A> and <Anti-A> ideas 

together are referred to as <Non-A>. 

Neutrosophy is the base of neutrosophic logic, 

neutrosophic set, neutrosophic probability and statistics 

used in engineering applications (especially for software 

and information fusion), medicine, military, cybernetics, 

and physics. 

Neutrosophic Logic is a general framework for 

unification of many existing logics, such as fuzzy logic 

(especially intuitionistic fuzzy logic), paraconsistent logic, 

intuitionistic logic, etc. The main idea of NL is to 

characterize each logical statement in a 3D Neutrosophic 

Space, where each dimension of the space represents 

respectively the truth (T), the falsehood (F), and the 

indeterminacy (I) of the statement under consideration, 

where T, I, F are standard or non-standard real subsets of ]-

0, 1+[ without necessarily connection between them. 

More information about Neutrosophy may be found in 

references [2,3]. 

Because the exclusion principle is invalid for bosons, 

the viewpoint of Neutrosophy that "any proposition is 

falsehood in some cases" has been vindicated. 

Similarly, according to the viewpoint of Neutrosophy, 

the exclusion principle also should have three situations of 

truth, falsehood and indeterminacy respectively for fermi-

ons.  

3 Some scholars have pointed out that the exclu-
sion principle may be broken in high-energy state  

It is well known that some scholars have doubted the 
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validity of exclusion principle. 

For example, in reference [4], it presents that for high-

energy celestial bodies such as neutron stars and the like, 

the broken  Pauli exclusion principle will be observed; and 

points out that  the exclusion principle may be broken in 

high-energy state. 

4 The broken exclusion principle and the man-
made (instantaneous) magnetic monopole can be 
artificially created  

The conventional viewpoint considers that man cannot 

create law. This is a one-sided viewpoint. In some cases, 

man can create law, including change the rule into law. So 

the laws can be divided into at least three kinds: the objec-

tive law, the man created subjective law, as well as the 

synthetic law formed by the above mentioned two kinds of 

laws.  

Now we discuss various man created laws (man-made 

laws). 

In the social science: (1)in stock market the banker 

created the law of stock, (2)for various goods,the whole-

sale price calculation formula is decided by the owner, (3) 

the laws of Chinese new year firecrackers and the Mid-

Autumn Festival cake. 

In the natural science: (1)the law of gravity and the 

theory of general relativity were created by Newton and 

Einstein respectively, (2)some geometries built from a set 

of axioms, (3)various carry-systems in mathematics, (4)the 

operation of fountain with man created law, (5)the temper-

ature law of the greenhouse.  

In thinking science: one divides into two or one divides 

into three (such as the three worlds) and one divides into 

five (such as the five elements in Chinese ancient times), 

and the different laws to learn the knowledge such as the 

sequence of easy-difficult or difficult-easy.  

In the virtual world (the laws don't need to be tested by 

practice): (1)in science fiction the Hubble constant can be 

given arbitrarily as well as the speed of airship can reach 

ten thousand times of the speed of light, (2)in the ancient 

Chinese novel “The Pilgrimage to the West”, Tang Monk’s 

law to punish the Monkey King, (3)in artistic works the 

law of the hero and the beauty, (4)the law to steal vegeta-

bles from the online game.  

Finally the optimum synthetic law formed by subjec-

tive law and objective law, such as Earth's best seasonal 

variation, can be created by people. 

In physics, the man-made laws have not been paid 

enough attention. However, some scholars have presented 

some issues connected with man-made laws. For example, 

some scholars say that "magnetic monopole" can exist. 

"magnetic monopole can exist" is a man-made law, be-

cause in nature "magnetic monopole" does not exist. 

Now, we give an artificial method to create "man-made 

(instantaneous) magnetic monopole". 

Suppose there is a long uniform rectangular-shaped 

magnet, along its middle section (the demarcation section 

of N-pole and S-pole) to cut it at very high speed, as the 

disconnected instant moment, one half of the magnet is the 

pure N-pole, and the other half is the pure S-pole. 

Due to the existence of man-made laws, especially the 

"man-made (instantaneous) magnetic monopole" can be 

created as above mentioned, we can say that the broken 

exclusion principle can be artificially created for fermions. 

5 The exclusion principle is not compatible with 
law of conservation of energy, and in physics the 
principles that are not compatible with law of 
conservation of energy will be invalid in some 
cases  

Firstly the exclusion principle can be written as a 

symmetry form. 

In order to connect the exclusion principle with a 

conserved quantity, supposing "1" (or any other constant) 

denote “valid”, and "does not equal 1" denote “invalid”, in 

this way the exclusion principle (denoted as P) can be 

written as the following form of conserved quantity 

    P=1 

According to Noether's theorem, each continuous 

symmetry of a physical system implies that some physical 

property of that system is conserved. Conversely, each 

conserved quantity has a corresponding symmetry.  

In reference [5] we already point out that for any 

symmetry, we can find the example of violation of 

symmetry or broken symmetry. As a kind of symmetry,  

the exclusion principle (P=1) cannot make an exception. 

As for the reason, in reference [5] we point out: there is no 

strict symmetry in nature. For example, the symmetry for 

law of conservation of energy cannot be the exception.   

The prerequisite of law of conservation of energy is 

the existance of a closed system, but the strictly closed 

system does not exist, there are only approximately closed 

systems. Therefore, the symmetry for law of conservation 

is only approximately correct. 

Although the symmetry for law of conservation of 

energy is only approximately correct, theoretically it could 

be considered as the unique symmetry in physics that is 

strictly correct. For other symmetries, they are correct only 

in the cases that they are not contradicted with this unique 

symmetry or they can be derived by this unique symmetry. 

In reference [6], the examples deriving the improved 

Newton's second law and improved law of gravity 

according to law of conservation of energy are discussed. 

Namely deriving the symmetry for improved Newton's 

second law and symmetry for improved law of gravity 

according to the symmetry for law of conservation of 

energy. 

In reference [6] we also point out: besides law of 

conservation of energy, all other laws of conservation in 

physics may not be correct (or their probabilities of 

correctness are all less than 100%). In reference [6] we 
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also discuss the examples that law of conservation of 

momentum and law of conservation of angular momentum 

are not correct (their results are contradicted with law of 

conservation of energy). 

The essential reason for the exclusion principle may be 

invalid is that it does not take into account the law of con-

servation of energy, and in physics the principles that are 

not compatible with law of conservation of energy will be 

invalid in some cases 

6 Conclusions 

According to Neutrosophy, any proposition has three 
situations of truth, falsehood and indeterminacy 
respectively. We already explicit the 4 neutralities between 
Pauli Exclusion Principle's validity and invalidity. For the 
reason that the exclusion principle may be invalid for 
fermions, we can reach the following conclusions: In 

physics, the law of conservation of energy is the unique 
truth; for other principles, laws and the like, as they are 
established, the law of conservation of energy should be 
considered, otherwise they may be invalid in some cases; 
for many existing principles, laws and the like that do not 

consider the law of conservation of energy, we should 
renewly consider their relationship with the law of 
conservation of energy, in order to determine their fate or 
discuss the problems to modify them. 
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Abstract.  In  this  paper  we  study  the  concept  of
neutrosophic  soft  sets.  Imposing  some  weights  on  the
parameters  considered  we  introduce  here  weighted
neutrosophic  soft  sets.  Some  operations  like  union,

intersection,  complement,  AND,  OR  etc.  have  been
defined on this new concept.  Some properties of  these
newly defined operations have also been verified .

Keywords: Soft sets, neutrosophic sets, neutrosophic soft sets, weighted neutrosophic soft sets.

1  Introduction

The soft set theory initiated by Molodtsov  [ 1 ]  has
been proved as a generic mathematical tool to deal with
problems  involving  uncertainties  or  imprecise  data.  So
called traditional tools such as  fuzzy sets [ 2 ], rough sets 
[ 3 ], vague sets [ 4 ], probability theory etc.  can not be
used  successfully  because  of  inadequecy  present  in  the
parametrization of the tools.  Consequently, Molodtsov has
shown that soft set theory has a potential to use in variety
of  many  fields  [  1  ].  After  its  initiation  a  detailed
theoretical construction has been introduced by Maji et al
in [ 5 ] .  Works on soft set theory is growing very rapidly
with all its potentiality and is being used in different fields
[ 6 – 11, 17,19 ].  In case of soft set the parametrization is
done with the help of words, sentences, functions etc..  For
different characteristics of the parameters present in soft
set theory different hybridization viz. fuzzy soft sets  [ 12 ],
soft rough sets [ 13 ], intuitionistic fuzzy soft sets [ 14 ],
vague soft sets [ 15 ], neutrosophic soft sets [ 16 ] etc. have
been introduced. In [ 16 ] the parameters considered are
neutrosophic  in  nature.  Imposing  the  weights  on  the
parameters  (  may  be  in  a  particular  parameter  also)  we
have  introduced  weighted  neutrosophic  soft  sets  in  this
paper.  In  section  2  of  this  paper  we  have  a  relevant
recapitulation  of  some  preliminaries  for  better
understanding  of  the  paper.   In  section  3  after  defining
weighted  neutrosophic  soft  set  we  have  defined  some
operations like union, intersection, AND, OR etc..  Some
properties of these operations have also been verified in
this  section.  Conclusions  are  there  in  the  concluding
section 4. 

2  Preliminaries 

In this section we recall some relevant definitions.

Definition 2.1 [ 18 ]  A neutrosophic set A on the universe
of discourse X is defined as A = {< x, TA(x), IA(x), FA(x) >,
x  X}, where T, I, F : X → ]− 0, 1+ [ and∈  −0 ≤ TA(x) +
IA(x) + FA(x) ≤ 3+ .

From  philosophical  point  of  view,  the  neutrosophic  set
takes the value from real standard or non-standard subsets
of ]− 0, 1+ [. But in real life application in scientific and
engineering problems it is difficult to use neutrosophic set
with value from real standard or non-standard subset of ]−
0,  1+  [.  Hence  we  consider  the  neutrosophic  set which
takes the value from the subset of [0, 1].

Definition 2.2 [ 18  ] A neutrosophic set A is contained in
another neutrosophic  set B i.e. A  B if x  X, T⊆ ∀ ∈ A(x) ≤
TB(x), IA(x) ≤ IB (x), FA (x) ≥ FB (x).

Definition 2.3 [ 16  ] Let U be an initial universe set and E
be a set of parameters.

 Consider  A  E.  Let  P(  U  )  denotes  the  set  of  all⊂
neutrosophic sets of U. 

The collection ( F, A ) is termed to be the neutrosophic soft
set over U, where F is a mapping given by F : A → P(U).

Definition 2.4 [ 16 ]  Let ( F, A ) and ( G, B ) be two
neutrosophic soft sets over the common universe U. ( F, A )
is said to be neutrosophic soft subset of ( G, B ) if A ⊂ B,
and TF(e)(x) ≤ TG(e)(x), IF(e)(x) ≤ IG(e)(x),  FF(e)(x) ≥ TG(e)(x), 

e  A, x  U.∀ ∈ ∈
We denote it by ( F, A )  ( G, B ).⊆
( F, A ) is said to be neutrosophic soft super set of ( G, B )
if ( G, B ) is a neutrosophic soft subset of ( F, A ). We
denote it by ( F, A )  ( G, B ).⊇

Definition  2.5  [  16  ]  Equality  of  two neutrosophic  soft
sets.

Two NSSs ( F, A ) and ( G, B ) over the common universe
U are said to be equal if ( F, A ) is neutrosophic soft subset
of ( G, B ) and ( G, B ) is neutrosophic soft subset of 
( F, A ). We denote it by ( F, A ) = ( G, B ).

Definition 2.6 [ 16 ] NOT set of a set of parameters. 

Let E = {e1, e2 , · · · , en } be a set of  parameters. The NOT
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 set of E is denoted by  E is defined by  E  = {  e1,  e2 , · ·
· ,  en }, where  ei = not ei , i ( it may be noted that  ∀  and 

are different operators ).

Definition 2.7 [ 16  ]  Complement of a neutrosophic soft
set.
The complement of a neutrosophic soft set ( F, A ) denoted
by (F, A)c and is defined as (F, A)c = (Fc ,  A ), where 
Fc :  A → P(U) is a mapping given by Fc(α) = neutrosophic
soft complement with TF

c
 (e)(x) = FF(e)(x), IF

c
 (e)(x) = IF(e)(x)

and FF
c
 (e)(x) = TF(e)(x), x  U and  e  ∀ ∈ ∀ ∈  A. 

Definition 2.8  [ 16 ] Union of two neutrosophic soft sets.

Let ( H, A ) and ( G, B ) be two NSSs over the common
universe U. Then the union of ( H, A ) and ( G, B ) is
denoted by ‘( H, A )  ( G, B )’ and is defined by ( H, A )∪

 ( G, B ) = ( K, C ), where C = A  B and the truth-∪ ∪
membership,  indeterminacy-membership  and  falsity-
membership of ( K, C ) are as follows:

TK(e)(x) = TH(e)(x), if  e  A − B,∈

            = TG(e)(x), if  e  B − A, ∈
            = max (TH(e)(x), TG(e)(x)), if e  A ∩ B.∈

IK(e)(x) = IH(e)(x), if  e  A − B,∈

           = IG(e)(x), if  e  B − A, ∈
           = ( IH(e)(x) + IG(e)(x) )/2, if e  A ∩ B.∈

FK(e)(x) = FH(e)(x), if  e  A − B,∈

            = FG(e)(x), if  e  B − A, ∈
            = min (FH(e)(x), FG(e)(x)), if e  A ∩ B.∈

Definition 2.9 [ 16 ] Intersection of two neutrosophic soft
sets.

Let  (  H,  A )  and (  G,  B )  be two NSSs over  the  same
universe U. Then the intersection of ( H, A ) and ( G, B ) is
denoted by ‘( H, A ) ∩ ( G, B )’ and is defined by  ( H, A )
∩  ( G, B ) = ( K, C ), where C = A ∩ B and the truth-
membership,  indeterminacy-  membership  and  falsity-
membership of ( K, C ) are as follows:
TK(e)(x) = min (TH(e)(x), TG(e)(x)), if e  A ∩ B.∈
IK(e)(x) = ( IH(e)(x) + IG(e)(x) )/2, if e  A ∩ B.∈
FK(e)(x) = max (FH(e)(x), FG(e)(x)), if e  A ∩ B.∈
Now  we  are  in  the  position  to  define  weighted
neutrosophic soft sets.  

 3 Weighted Neutrosophic Soft Sets

Definition 3.1  A neutrosophic soft set is termed to be a
weighted  neutrosophic  soft  sets  if  a  weight  (wi,  a  real
positive number  ≤ 1) be imposed on the parameter of it.
The ijth entries of the weighted neutrosophic soft set, 

dij = wij × cij where cij  is the ij-th entry in the table of
neutrosophic soft set.

The weighted neutrosophic soft  sets (WNSS) for  the
neutrosophic  soft  sets  (NSS)  (  F,  A )  with  weights  w
associated with the parameter A is denoted by ( F, Aw ).

Example  3.1   For  illustration  we  consider   the
example in [  16 ].    Let  U be the set of houses under
consideration and E is the set of parameters which consist
of neutrosophic words or phases with neutrosophic words.
Consider  E  =  {  beautiful,  wooden,  costly,  very  costly,
moderate, green surroundings, in good repair, in bad repair,
cheap, expensive }. Suppose that, there are five houses in
the universe U given by, U = { h1, h2, h3, h4, h5 } and the set
of parameters A = {e1, e2, e3, e4 }, where e1 stands for the
parameter  ‘beautiful’,  e2 stands  for  the  parameter
‘wooden’,  e3 stands  for  the  parameter  ‘costly’ and  the
parameter  e4  stands for ‘moderate’. Suppose that,
F(beautiful) = {< h1, 0.5, 0.6, 0.3 >, < h2 , 0.4, 0.7, 0.6 >,

< h3 , 0.6, 0.2, 0.3 >, < h4 , 0.7, 0.3, 0.2 >,
< h5 , 0.8, 0.2, 0.3 >},

F(wooden) = {< h1 , 0.6, 0.3, 0.5 >, < h2, 0.7, 0.4, 0.3 >,  
< h3, 0.8, 0.1, 0.2 >, < h4 , 0.7, 0.1, 0.3 >, 
< h5 , 0.8, 0.3, 0.6 >},

F(costly) = {< h1, 0.7, 0.4, 0.3 >, < h2, 0.6, 0.7, 0.2 >, 
< h3, 0.7, 0.2, 0.5 >, < h4, 0.5, 0.2, 0.6 >, 
< h5, 0.7, 0.3, 0.4 >},

F(moderate) = {< h1, 0.8, 0.6, 0.4 >, < h2 , 0.7, 0.9, 0.6 >,  
< h3 , 0.7, 0.6, 0.4 >, < h4 , 0.7, 0.8, 0.6 >,
< h5 , 0.9, 0.5, 0.7 >}.

Then  the  neutrosophic  soft  set  (  F,  A )  describing  the
attractiveness of the houses given in the following tabular
form.

U beautiful wooden costly moderate

h1 (0.5, 0.6, 0.3)  (0.6, 0.3, 0.5)  (0.7,0.4, 0.3) (0.8,0.6, 0.4)

h2 (0.4, 0.7, 0.6 ) (0.7, 0.4, 0.3) (0.6,0.7, 0.2) (0.7,0.9, 0.6)

h3 (0.6, 0.2, 0.3)  (0.8, 0.1, 0.2) (0.7,0.2, 0.5) (0.7,0.6, 0.4)

h4 (0.7, 0.3, 0.2)  (0.7, 0.1, 0.3) (0.5,0.2, 0.6) (0.7,0.8, 0.6)

h5 (0.8, 0.2, 0.3 ) (0.8, 0.3, 0.6) (0.7,0.3, 0.4) (0.9,0.5, 0.7)

Table 1: The Neutrosophic Soft Sets ( F, A ).
Imposing the weights w1  = 0.3, w2 = 0.6, w3= 0.4, w4= 0.7
respectively for the parameters 'beautiful', 'wooden', 'costly'
and 'moderate' the weighted neutrosophic soft sets (WNSS)
corresponding to the neutrosophic soft sets ( F, A )  denoted
by ( F, Aw ) and is given in the following tabular form: 

U beautiful,  
w1  = 0.3

wooden, 
w2 = 0.6, 

costly, 
w3= 0.4, 

moderate,   
 w4= 0.7

h1 (0.15, 0.18,0.09) (0.36, 0.18,0.30) (0.28,0.16, 0.12) (0.56,0.42, 0.28)
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h2(0.12, 0.21,0.18 ) (0.42, 0.24, 0.18) (0.24,0.28, 0.08) (0.49,0.63, 0.42)

h3 (0.18, 0.06,0.18) (0.48, 0.06,0.12) (0.28,0.08, 0.20) (0.49,0.42, 0.28)

h4 (0.21, 0.09,0.06) (0.42, 0.06,0.18) (0.20,0.08, 0.24) (0.49,0.56, 0.42)

h5(0.24, 0.06,0.09 ) (0.48, 0.18,0.36) (0.28,0.12, 0.16) (0.63,0.35, 0.49)

Table 2: The Weighted Neutrosophic Soft Sets (F, Aw ). 

Definition 3.2  Subset of weighted NSS

 Let ( F, Aw ) and ( G, Bw ) be two weighted neutrosophic
soft sets over the common universe U. (F, Aw) is said to be
weighted neutrosophic soft subset of  ( G, Bw  ) if A ⊂ B,
and TF(e)(x) ≤ TG(e)(x), IF(e)(x) ≤ IG(e)(x),  FF(e)(x) ≥ TG(e)(x), 
∀e  A, x  U.∈ ∈

We denote it by ( F, Aw )  ⊆ ( G, Bw ).
(F, Aw ) is said to be neutrosophic soft super set of ( G, Bw )
if  ( G, Bw  )  is a neutrosophic soft subset of  ( F, Aw  ). We
denote it by ( F, A )  ( G, B ). It is to be noted that the⊇
weights w for A and B may not be same.

Definition 3.3 Equality of two weighted neutrosophic soft
sets.

Two WNSSs  (  F,  Aw  ) and  (  G, Bw  ) over  the common
universe U are said to be equal if ( F, Aw ) is neutrosophic
soft subset of ( G, Bw  ) and ( G, Bw  ) is neutrosophic soft
subset of ( F, Aw ). We denote it by ( F, Aw ) = ( G, Bw ).

Definition 3.4 NOT set of a set of parameters. 
Let E = {e1, e2 , · · · , en } be a set of  parameters. The NOT
 set of E is denoted by  E is defined byE  = {  e1,  e2 , · · · ,
  en }, where   ei = not ei , i ( it may be noted that  ∀  and  

are different operators ).

Definition  3.5 Complement  of  a  weighted  neutrosophic
soft set.
The complement of a weighted neutrosophic soft set ( F,
Aw ) denoted by (F, Aw)c and is defined as 
(F, Aw)c = (Fc, Aw), where  Fc  :    → P(U) is a mapping
given  by  Fc(e)  =  neutrosophic  soft  complement  with
TF

c
(e

w
)(x) = FF(e

w
)(x), IF

c
 (e

w
)(x) = IF(e

w
)(x) and 

FF
c
(e

w
)(x)=TF(e

w
)(x).

Example 3.2 Consider the WNSS ( F, Aw ) as in example
3.1 above.

The tabular representation of the complement of ( F, Aw )c

is as below:
U not beautiful,

w1  = 0.3
not wooden, 
w2 = 0.6, 

not costly, 
w3= 0.4, 

not moderate,
 w4= 0.7

h1 (0.09, 0.18,0.15) (0.30,0.18, 0.36) (0.12,0.16, 0.28) (0.28,0.42, 0.56)

h2(0.18, 0.21,0.12) (0.18, 0.24, 0.42) (0.08,0.28, 0.24) (0.42,0.63, 0.49)

h3 (0.18, 0.06,0.18) (0.12 0.06, 0.48) (0.20,0.08, 0.28) (0.28,0.42, 0.49)

h4 (0.06,0.09,0.21 ) (0.18,0.06, 0.42) (0.24,0.08, 0.20) (0.42,0.56, 0.49)

h5(0.09, 0.06, 0.24) (0.36,0.18, 0.48) (0.16,0.12, 0.28) (0.49,0.35, 0.63)

Table 3: The Weighted Neutrosophic Soft Sets ( F, Aw )c.

Definition 3.6 Empty or Null neutrosophic soft  set  with
respect to a parameter.

A  weighted  neutrosophic  soft  set  (  H,  Aw  ) over  the
universe  U  is  termed  to  be  empty  or  weighted  null
neutrosophic  soft  set  with  respect  to  the  parameter  A if
TH(e

w
 ) (x) = 0, 

IH(e
w

 ) (x) = 0  and FH(e
w

 ) (x) = 0, x  U, e  A.∀ ∈ ∀ ∈

In  this  case  the  weighted  null  neutrosophic  soft  set
( WNNSS ) is denoted by ΦA

w .

Example 3.3 Let U = { h1, h2, h3, h4, h5 } the set of five
houses  be  considered  as the  universal  set  and  A  =
{ beautiful, wooden, in the green surroundings } be the set
of parameters that characterizes the houses. Consider the
neutrosophic  soft  set (  H,  Aw)  which  describes  the
attractiveness of the houses and

H(beautiful, w1= 0.4)={< h1, 0,0,0 >, < h2, 0,0,0 >, 
< h3, 0,0,0 >, < h4, 0,0,0 >, <h5, 0,0,0> },

H(wooden, w2= 0.8)={< h1, 0,0,0 >, < h2, 0,0,0 >, 
< h3, 0,0,0 >, < h4, 0,0,0 >, <h5, 0,0,0> },

H(in the green surroundings, w3= 0.6)={< h1, 0,0,0 >, 
    <h2, 0,0,0 >,< h3, 0,0,0 >, <h4, 0,0,0 >, <h5, 0,0,0> }.
Here the ( H,  Aw ) is the weighted null neutrosophic

soft set.

Definition 3.7 Union of  two weighted neutrosophic soft
sets.
Let  (  F,  Aw  ) and  (  G,  Bw  ) be  two  WNSSs  over  the
common universe U. Then the union of (F, Aw) and (G, Bw)
is denoted by ‘( F, Aw )  ⊔ ( G, Bw )’ and is defined by 
( F, Aw )  ⊔ ( G, Bw ) = ( K, Cw ), where C = A  B and the∪
truth-membership, indeterminacy-membership and falsity-
membership of ( K, Cw ) are as follows:
TK(e

w
)(x) = TF(e

w
)(x), if e  A − B,∈

              = TG(e
w

)(x), if e  B − A,∈
         = max. (w1,w2). max. (TF(e

w
)(x),TG(e

w
)(x)), if e  A∩B,∈

IK(e
w

)(x) = IF(e
w

)(x), if e  A− B,∈
             = IG(e

w
)(x), if e  B − A,∈

             = (IF(e
w

)(x) + IG(e
w

)(x))/2, if e  A∩B,∈
FK(e

w
)(x) = FF(e

w
)(x), if e  A − B,∈

              = FG(e
w

)(x), if e  B − A,∈
          = min. (w1,w2). min. (FF(e

w
)(x),FG(e

w
)(x)), if e  A∩B,∈
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Example 3.4 Let ( F, Aw ) and ( G, Bw ) be two WNSSs over the
common universe  U = { h1,  h2,  h3,  h4,  h5 }  and  their  tabular
representations are given below:

U  beautiful wooden  moderate 

(F, A)

h1 (0.6.,0.3,0.7) (0.7,0.3,0.5) (0.6,0.4,0.5)

h2 (0.5,0.4,0.5) (0.6,0.7,0.3) (0.6,0.5,0.4)

h3 (o.7,0.4,0.3) (0.7,0.3,0.5) (0.7,0.4,0.5)

h4 (0.8,0.4,0.7) (0.6,0.3,0.6) (0.7,0.5,0.6)

h5 (0.6,0.7,0.2) (0.7,0.3,0.4) (0.8,0.6,0.5)

weight w1 = 0.4 w2 = 0.3 w3 = 0.6

h1 (0.24,0.12,0.28) (0.21,0.09,0.15) (0.36,0.24,0.30)

h2 (0.20,0.16,0.20) (0.18,0.21,0.09) (0.36,0.30,0.24)

(F, Aw) h3 (0.28,0.16,0.12) (0.21,0.09,0.15) (0.42,0.24,0.30)

h4 (0.32,0.16,0.28) (0.18,0.09,0.18) (0.42,0.30,0.36)

h5 (0.24,0.28,0.08) (0.21,0.09,0.12) (0.48,0.36,0.30)

Table 4: The Weighted Neutrosophic Soft Sets ( F, Aw ).

U costly  moderate 

(G, B)

h1 (0.7,0. 6.,0.6) (0.7,0.8,0.6)

h2 (0.8,0.4,0.5) (0.8,0.8,0.3)

h3 (0.7,0.4,0.6) (0.5,0.6,0.7)

h4 (0.6,0.3,0.5) (0.8,0.5,0.6)

h5 (0.8,0.5,0.4) (0.6,0.3,0.5)

weight w1 = 0.3 w3 = 0.4

h1 (0.21,0.18,0.18) (0.28,0.32,0.24)

h2 (0.24,0.12,0.15) (0.32,0.32,0.12)

(G, Bw) h3 (0.21,0.12,0.18) (0.20,0.24,0.28)

h4 (0.18,0.09,0.15) (0.32,0.20,0.24)

h5 (0.24,0.15,0.12) (0.24,0.12,0.20)

Table 5: The Weighted Neutrosophic Soft Sets ( G, Bw ).

Then the tabular representation of their union ( K, Cw ) =
( F, Aw )  ⊔ ( G, Bw )  is as below:

U  beautiful wooden costly  moderate 

h1 (0.24,0.12,0.28) (0.21,0.09,0.15)(0.21,0.18,0.18)(0.42,0.28,0.20)

h2 (0.20,0.16,0.20) (0.18,0.21,0.09)(0.24,0.12,0.15)(0.48,0.31,0.12)

h3 (0.28,0.16,0.12) (0.21,0.09,0.15)(0.21,0.12,0.18)(0.42,0.24,0.20)

h4 (0.32,0.16,0.28) (0.18,0.09,0.18)(0.18,0.09,0.15)(0.36,0.25,0.24)

h5 (0.24,0.28,0.08) (0.21,0.09,0.12)(0.24,0.15,0.12)(0.48,0.24,0.20)

Table 6: The Weighted Neutrosophic Soft Sets ( K, Cw ).

Definition 3.8 Intersection of two weighted neutrosophic
soft sets.
Let  (  F,  Aw  ) and  (  G,  Bw  ) be  two  WNSSs  over  the
common universe U. Then the intersection of  (F, Aw) and
(G, Bw) is denoted by ‘( F, Aw ) ⊓ ( G, Bw )’ and is defined
by  ( F, Aw ) ⊓ ( G, Bw ) = ( K, Cw ), where C = A  B and∪
the  truth-membership,  indeterminacy-membership  and
falsity-membership of ( K, Cw ) are as follows:
TK(e

w
)(x) = TF(e

w
)(x), if e  A − B,∈

              = TG(e
w

)(x), if e  B − A,∈
         = min. (w1,w2). min. (TF(e

w
)(x),TG(e

w
)(x)), if e  A∩B,∈

IK(e
w

)(x) = IF(e
w

)(x), if e  A − B,∈
             = IG(e

w
)(x), if e  B − A,∈

             = (IF(e
w

)(x) + IG(e
w

)(x))/2, if e  A∩B,∈
FK(e

w
)(x) = FF(e

w
)(x), if e  A − B,∈

              = FG(e
w

)(x), if e  B − A,∈
          = max. (w1,w2). max. (FF(e

w
)(x),FG(e

w
)(x)), if e  A∩B,∈

Example 3.5 Consider the WNSSs ( F, Aw ) and ( G, Bw )
as in  example 3.4,   then their intersection is given in the
following tabular form:

U  beautiful wooden costly  moderate 

h1 (0.24,0.12,0.28) (0.21,0.09,0.15)(0.21,0.18,0.18)(0.24,0.28,0.36)

h2 (0.20,0.16,0.20) (0.18,0.21,0.09)(0.24,0.12,0.15)(0.24,0.31,0.24)

h3 (0.28,0.16,0.12) (0.21,0.09,0.15)(0.21,0.12,0.18)(0.20,0.24,0.42)

h4 (0.32,0.16,0.28) (0.18,0.09,0.18)(0.18,0.09,0.15)(0.28,0.25,0.36)

h5 (0.24,0.28,0.08) (0.21,0.09,0.12)(0.24,0.15,0.12)(0.24,0.24,0.30)

Table 7: The Weighted Neutrosophic Soft Sets ( F, Aw ) ⊓ ( G, Bw )

Neutrosophic Sets and Systems, Vol. 6, 2014

P. K. Maji, Weighted Neutrosophic Soft Sets

9



Consider ( F, Aw ),  ( G, Bw  ) and ( K, Cw  ) be three WNSSs
over the common universe U. Based on the definitions of
union  and  intersections  of  them  we  have  the  following
Propositions:

Proposition: 3.1

i. ( F, Aw )  ⊔ ( F, Aw ) =  ( F, Aw ).
ii. ( F, Aw )  ⊔ ( G, Bw ) = ( G, Bw )  ⊔ ( F, Aw ).
iii. ( F, Aw )  ⊓ ( F, Aw ) =  ( F, Aw ).
iv. ( F, Aw )  ⊓  ( G, Bw ) = ( G, Bw )  ⊓  ( F, Aw ).

Proof:  Proofs being straightforward  are not given.

Proposition: 3.2

i. ( F, Aw )  ⊔ [( G, Bw ) ⊔ ( K, Cw )]
                 = [( F, Aw )  ⊔ ( G, Bw )] ⊔ ( K, Cw ).
ii. ( F, Aw )  ⊓ [( G, Bw ) ⊓ ( K, Cw )]

= [( F, Aw )  ⊓ ( G, Bw )] ⊓ ( K, Cw ).
iii. ( F, Aw )  ⊔ [( G, Bw ) ⊓ ( K, Cw )]
             = [( F, Aw )  ⊔( G, Bw )] ⊓ [( F, Aw )  (⊓  K, Cw )].
iv. ( F, Aw )  ⊓ [( G, Bw ) ⊔ ( K, Cw )]
             = [( F, Aw )  ⊓ ( G, Bw )] ⊔ [( F, Aw )  (⊓  K, Cw )].

Proofs: Proofs being straightforward  are not given.

We can verify the De Morgan's laws in case of union and
intersection of two WNSSs.

Proposition: 3.3

i. [( F, Aw )   ⊓ ( G, Bw )]c = ( F, Aw )c  ⊔ ( G, Bw )c.
ii. [( F, Aw )  ⊔ ( G, Bw )]c = ( F, Aw )c  ⊓ ( G, Bw )c.

Proof: (i).  Let (K, Dw) = ( F, Aw )   ⊓ ( G, Bw ). Therfore 
TK(e

w
)(x) = TF(e

w
)(x), if e  A − B,∈

              = TG(e
w

)(x), if e  B − A,∈
         = min. (w1,w2). min. (TF(e

w
)(x),TG(e

w
)(x)), if e  A∩B,∈

IK(e
w

)(x) = IF(e
w

)(x), if e  A − B,∈
             = IG(e

w
)(x), if e  B − A,∈

             = (IF(e
w

)(x) + IG(e
w

)(x))/2, if e  A∩B,∈
FK(e

w
)(x) = FF(e

w
)(x), if e  A − B,∈

              = FG(e
w

)(x), if e  B − A,∈
          = max. (w1,w2). max. (FF(e

w
)(x),FG(e

w
)(x)), if e  A∩B,∈

So,
TK

c
(e

w
)(x) = FF(e

w
)(x), if e  A − B,∈

              = FG(e
w

)(x), if e  B − A,∈
         = max. (w1,w2). max. (FF(e

w
)(x), FG(e

w
)(x)), if e  A∩B,∈

IK
c
(e

w
)(x) = IF(e

w
)(x), if e  A − B,∈

             = IG(e
w

)(x), if e  B − A,∈
             = (IF(e

w
)(x) + IG(e

w
)(x))/2, if e  A∩B,∈

FK
c
(e

w
)(x) = TF(e

w
)(x), if e  A − B,∈

               = TG(e
w

)(x), if e  B − A,∈
          = min. (w1,w2). min. (TF(e

w
)(x),TG(e

w
)(x)), if e  A∩B.∈

Again for ( F, Aw  )c  ⊔ ( G, Bw  )c, let ( P, Dw ) =  ( H, Aw )c ,
( Q, Ew ) =  ( G, Bw )c  and ( R, Sw ) = ( P, Dw  )c  ⊔ ( Q, Ew  ),
where S = D E.∪

Therefore,
TR(e

w
)(x) = Tp

c
(e

w
)(x) = FH(e

w
)(x), if e  A − B,∈

              = TQ
c
(e

w
)(x) = FG(e

w
)(x), if e  B − A,∈

         = max. (w1,w2). max. (Tp
c
(e

w
)(x),Tq

c
(e

w
)(x)) = max.    

             (w1,w2). max(FH(e
w

)(x), FG(e
w

)(x)), if e  A∩B.∈

IR(e
w

)(x) = (IP
c
(e

w
)(x) + Iq

c
(e

w
)(x))/2 = (IH(e

w
)(x) + IG(e

w
)(x))/2, if 

                                      e  A∩B,∈
             = Ip

c
(e

w
)(x) = IH(e

w
)(x), if e  A − B,∈

             = IQ
c
(e

w
)(x) = IG(e

w
)(x), if e  B − A,∈

FR(e
w

)(x) = Fp
c
(e

w
)(x) = TH(e

w
)(x), if e  A − B,∈

              = FQ
c
(e

w
)(x) = TG(e

w
)(x), if e  B − A,∈

              = min. (w1,w2). min. (Fp
c
(e

w
)(x),Fq

c
(e

w
)(x)) = min.

                  (w1,w2). min(TH(e
w

)(x), TG(e
w

)(x)), if e  A∩B.∈
Thus the result is proved.

Proof (ii).  The proof is similar to the proof of (i).

Definition 3.9  AND operations of two WNSSs.

Let ( F, Aw ) and ( G, Bw ) be two WNSSs over the common
universe U. Then the 'AND' operation of (F, Aw) and 
(G, Bw) is denoted by ‘ (F,A w )∧(G,Bw ) ’ and is defined by
(F,Aw )∧(G,Bw )  = (K, Cw ), where C = A × B and the truth-

membership,  indeterminacy-membership  and  falsity-
membership of ( K, Cw ) are as follows:
TK( α

w
,β w

)(x) = min. (w1,w2). min. (TF(α )(x),TG(β)(x)),
∀α  A,  β  B,∈ ∀ ∈

IK(α
w

,β 
w

)(x)= (TF(α 
w

)(x) + TG( β 
w

)(x))/2, α  A, β  B,∀ ∈ ∀ ∈
FK(α

w
,β 

w
)(x) = max. (w1,w2). max. (FF(α)(x),FG(β)(x)),

∀α  A,  β  B.∈ ∀ ∈

Example 3.6 Consider the example 3.5 above. The tabular
representation of the WNSS (F,A w )∧(G,Bw )  is given below:

U  (beautiful,
costly)

(beautiful,
moderate)

(wooden,
costly) 

(wooden,
moderate)

 (moderate,
costly)

 (moderate,
moderate)

h1 (0.18,0.15,
0.28)

(0.24,0.22,0
.28)

(0.21,0.135,
0.18)

(0.21,0.205,
0.24)

(0.18,0.21,0
.36)

(0.24,0.28,0
.36)

h2 (0.15,0.14,
0.20)

(0.20,0.24,0
.20)

(0.18,0.165,
0.15)

(0.18,0.165,
0.12)

(0.18,0.21,0
.30)

(0.24,0.31,0
.24)

h3 (0.21,0.14,
0.24)

(0.20,0.20,0
.28)

(0.21,0.105,
0.18)

(0.15,0.165,
0.28)

(0.21,0.18,0
.36)

(0.26,0.24,0
.42)

h4 (0.18,0.125
,0.28)

(0.32,0.185,
0.28)

(0.18,0.09,0
.18)

(0.18,0.145,
0.24)

(0.18,0.195,
0.36)

(0.28,0.25,0
.36)

h5 (0.18,0.215
,0.16)

(0.24,0.20,0
.20)

(0.21,0.12,0
.12)

(0.18,0.105,
0.20)

(0.24,0.255,
0.30)

(0.24,0.24,0
.30)

Table 8: The Weighted Neutrosophic Soft Sets  (F,A w )∧(G,Bw )

Definition 3.10. OR operations of two WNSSs.

If ( F, Aw ) and ( G, Bw ) be two WNSSs over the common
universe U  then  ‘(  F,  Aw  )  OR (  G,  Bw  )’ denoted  by
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(F,A w )∨(G,Bw )  is  defined by (F,A w )∨(G,Bw )   = ( O, Cw  ),
where  C  =  A  ×  B  and  the  truth-membership,
indeterminacy-membership and falsity-membership of 
( O, Cw ) are given as follows:
TO( α

w
,β w

)(x) = max. (w1,w2). max. (TF(α )(x),TG(β)(x)),
∀α  A,  β  B,∈ ∀ ∈

IO(α
w

,β 
w

)(x)= (IF(α 
w

)(x) + IG( β 
w

)(x))/2, α  A, β  B,∀ ∈ ∀ ∈
FO(α

w
,β 

w
)(x) = min. (w1,w2). min. (FF(α)(x),FG(β)(x)),

∀α  A,  β  B.∈ ∀ ∈

Example 3.7 Consider the example 3.5 above. The tabular
representation  of  the  WNSS   (F,A w )∨(G,Bw )  is  given
below:

U  (beautiful,
costly)

(beautiful,
moderate)

(wooden,
costly) 

(wooden,
moderate)

 (moderate,
costly)

 (moderate,
moderate)

h1(0.28,0.15,
0.18)

(0.28,0.22,0
.24)

(0.21,0.135,
0.15)

(0.28,0.205,
0.15)

(0.42,0.21,0
.15)

(0.42,0.28,0
.20)

h2(0.32,0.14,
0.15)

(0.32,0.24,0
.12)

(0.24,0.165,
0.09)

(0.32,0.165,
0.09)

(0.48,0.21,0
.12)

(0.48,0.31,0
.12)

h3(0.32,0.14,
0.09)

(0.28,0.20,0
.12)

(0.21,0.105,
0.15)

(0.28,0.165,
0.15)

(0.42,0.18,0
.15)

(0.42,0.24,0
.20)

h4(0.32,0.125
,0.15)

(0.32,0.185,
0.24)

(0.18,0.09,0
.15)

(0.32,0.145,
0.18)

(0.42,0.195,
0.15)

(0.48,0.25,0
.24)

h5(0.32,0.215
,0.06)

(0.24,0.20,0
.08)

(0.24,0.12,0
.12)

(0.28,0.105,
0.12)

(0.48,0.255,
0.12)

(0.48,0.24,0
.20)

Table 9 : The Weighted Neutrosophic Soft Sets   (F,Aw )∨(G,Bw )
It is to be noted that for either AND or OR operations on
two WNSSs the  set  of  parameter  is  a  subset  of  E   E
whereas  for  three  WNSSs the  associated  parameters  are
subset of E  E  E.

Conclusion 

In  this  paper  we  introduce  the  concept  of  weighted
neutrosophic soft sets which is a hybridization of soft sets
and weighted parameter of neutrosophic soft sets. We have
also introduced  some operations like union,  intersection,
AND,  OR  etc.   on  this  newly  defined  concept.  Some
properties of these operations have also been investigated.
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Abstract. Since the world is full of indeterminacy, the neutro-

sophics found their place into contemporary research. The pur-

pose of this paper is to introduce a new type of neutrosophic 

crisp set as the *- neutrosophic crisp sets as a generalization to 

star  intuitionistic set due to Indira  et al.[4 ], and study some of 

its properties. Finally we introduce and study the notion of *- 

neutrosophic relation and some of its properties. 
. 

Keywords: Neutrosophic Crisp Set; Star Intuitionistic Sets; Neutrosophic Relations; Neutrosophic Data. 

.

1 Introduction 

  The fundamental concepts of neutrosophic set, introduced 

by Smarandache in [31, 32, 33], and Salama et al. in [5, 6, 

7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 

25, 26, 27, 28, 29, 30], provides a natural foundation for 

treating mathematically the neutrosophic phenomena 

which exist pervasively in our real world and for building 

new branches of neutrosophic mathematics. Neutrosophy 

has laid the foundation for a whole family of new mathe-

matical theories generalizing both their classical and fuzzy 

counterparts [1, 2, 12, 22, 34 ] such as a neutrosophic set 

theory.  In this paper we introduce a new type of neutro-

sophic crisp set as the *- neutrosophic crisp set, and study 

some of its properties. Finally we introduce and study the 

notion of *- neutrosophic relation and some of its proper-

ties. Possible applications to mathematical computer are 

touched upon. 

2 Terminologies 
We recollect some relevant basic preliminaries, and in par-

ticular, the work of Smarandache in [31, 32, 33], and 

Salama et al. in [5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. Smarandache 

introduced the neutrosophic components T, I, F which rep-

resent the membership, indeterminacy, and non-

membership values respectively, where  1,0 -
is nonstand-

ard unit interval. 

3 *- Neutrosophic Crisp Sets  

We shall now consider some possible definitions for a new 

type of neutrosophic crisp set  

Definition 3.1 

Let X  be a non-empty fixed set. A neutrosophic crisp 

set (NCS for short) A  is an object having the form

.,, 321 AAAA 

Then we define the *- neutrosophic set *A  as 
ccc AAAAAAAAAA )(,)(,)( 213312321

*   where 

321   and , AAA are subsets of X such that 

,)( 321
cAAAM  cAAAS )( 312   and 

cAAAR )( 213  . 

A  *- neutrosophic crisp set is an object having the 

form RSMA ,,*   

Lemma 3.1 
Let X  be a non-empty fixed sample space. A neutro-

sophic crisp set (NCS for short) A  is an object having the 

form .,, 321 AAAA   Then 

ccc AAAAAAAAAA )(,)(,)( 213312321
*   is al-

so a neutrosophic crisp set. 

Proof 
It’s clear. 

Corollary 3.1 

Let X  be a non-empty fixed set. Then 
*

N and 
*

NX

are also neutrosophic crisp set. 

Theorem 3.1 
Let X  be a non-empty fixed sample space, two neutro-

sophic crisp sets A , B  are having the form

 
321 ,, AAAA   , 321 ,, BBBB   , and  two *- neutrosophic 

sets 322
*

111
* ,, ,,, RSMBRSMA  where 

),( 3211 AAAM  ,)( 3121
cAAAS 

12

mailto:drsalama44@gmail.com
mailto:hewayda2011@eng.psu.edu.eg


Neutrosophic Sets and Systems, Vol. 6, 2014 

A. A. Salama
 
 and  Hewayda Elghawalby,*- Neutrosophic Crisp Set & *- Neutrosophic Crisp relations  

,)( 2131
cAAAR  ,)( 3212

cBBBM   

,)( 3122
cBBBS  and 

),( 2132 BBBR   Then BA  implies
** BA  . 

Proof 

Given BA  . Then it is easy to prove that 21 MM  , 

2121 , RRSS  or ,21 MM  2121 , RRSS 

So ** BA  . 

Remark 3.1 

1) All types of 
*

N and N  are concedes. 

2) All types of
*

NX and NX  are concedes. 

3) ** BA  iff 
** BA  and 

** AB  . 

Definition 3.8 

Let   X be a non-empty set, and RSMA ,,*   be a *- 

neutrosophic crisp set on a NCS 321 ,, AAAA   where 

,)( 321
cAAAM  ,)( 312

cAAAS 

,)( 213
cAAAR   Then the complement of the set *A

(
c

A*
, for short   may be defined as three kinds of com-

plements 

 1
C  Type1: cccc

RSMA ,,*  , 

 2
C  Type2: ,,,* MSRA

c


 3
C  Type3: .,,* MSRA cc

  

Definition 2.3 

Let X  be a non-empty fixed set, two neutrosophic crisp 

sets A , B  are having  the  form

 
321 ,, AAAA   , 

321 ,, BBBB   , and two *- neutrosophic crisp 

sets 222
*

111
* ,, ,,, RSMBRSMA  where 

,)( 3211
cAAAM  ,)( 3121

cAAAS 

,)( 2131
cAAAR  ,)( 3212

cBBBM   

,)( 3122
cBBBS   and 

,)( 2132
cBBBR   Then 

1) **  BA   may be defined as two types: 

i) Type1: 332211
** ,, RRSSMMBA  or 

i. Type2: 332211
** ,, RRSSMMBA 

4) **  BA   may be defined as two types: 

i) Type1: 332211
** ,, RRSSMMBA   or 

ii) Type2: .,, 332211
** RRSSMMBA   

Lemma 3.1 

Let **  , BA are *- neutrosophic crisp sets. Then 
C

BABA ****  

It easy to show that L. H. S is also a *- neutrosophic 

crisp sets. 

Example 3.2 

Let },,,,,{ fedcbaX  , }{},{},,,,{ fedcbaA  , 

,}{},{},,,{ edcbaB  },,{},,{},,{ afedcbaC 

},{},,{},,{ dfcebaD   are NCS.  Then 

,}{},{},,,,{* fedcbaA  ,}{},{},,,{* edcbaB 

},{},,{},{* fedcbC 
, 

 The complement may be equal as: 

1) 

,},,,{},,,,,{},,{* dcbafdcbafeA
c


,},,,{},{},{{* dcbaefA
c
 ,},,,{},,,,{},{{* dcbadcbafA

c


,},,,{},,,,{},,,,{)2 * dcbafebafdcaC
c


,}{},,{},,{* bdcfeC
c
 .}{},,,,{},,{* bfebafeC

c


**)3 BA   may be equals the following forms

,},{},,,,{** edcbaBA 

,}{,},,,,{** fdcbaBA 

**)4 BA   may be equals the following forms

,},{},,{},,,{** efdecbaBA 

,},{,},,,{** efcbaBA 

Proposition 3.1 

Let  JjA j :
*

 be arbitrary family of *- neutrosophic 

crisp subsets on X, then 

1) 
*

jA   may be defined two types as : 

i) Type1: jjjj RSMA  ,,* ,or 

ii) Type2: jjjj RSMA  ,,* . 

2) jA*   may be defined  two types as : 

i) Type1: jjjj RSMA  ,,* or 

ii) Type2: jjjj RSMA  ,,* . 

Corollary 3.2 
Let iA  be a NCSs in X where Ji , where J is an index 
set and    *

iA  are corresponding *- neutrosophic crisp 
subsets on X then 

a) **
BAi  for each  Ji **

BAi  . 

b) **
iAB  for each Ji **

iAB  . 

c) 
cc

i
c

ii
c

i AAAA
****

)(;)(  . 
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d) .**** cc

ABBAi   

e) AA
cc
* , 

f) ***
; NNN

c

N

c

XX   . 

Now we shall define the image and preimage of *- 

neutrosophic crisp set. 
Let YX ,  be two non-empty fixed sets and ,: YXf  be a 
function and 321 ,, AAAA   , 321 ,, BBBB   are 

neutrosophic crisp sets on X and 
Y respectively , 111

* ,, RSMA   ,
222

* ,, RSMB   be 
the *- neutrosophic crisp sets on X and Y respectively.

Definition 3.9 

(a) If 
* B  is a *- NCS in Y, then the preimage of * B

under ,f  denoted by ),( *1 Bf 
is a  *- NCS in X 

defined by )(),(),()( 2
1

2
1

2
1*1 RfSfMfBf  

(b) If *A  is a *- NCS in X, then the image of 
* A

under ,f denoted by ),( *Af  is the *- NCS in Y 

defined by .))(),(),()( 111
* cRfSfMfAf   

Here we introduce the properties of images and preimages 

some of which we shall frequently use in the following. 

Corollary 3.2 

Let * A ,  JiAi :
*

 , be  a family of *- NCS in X, and 
* B  , 

 KjB j :*
 *- NCS in Y, and YXf : a function. 

Then 

(a) ),()( 2
*

1
*

2
*

1
* AfAfAA 

),()( 2
*1

1
*1

2
*

1
* BfBfBB  

(b) ))(( *1* AffA   and if f is injective, then 

))(( *1* AffA  , 

(c) **1 ))(( BBff   and if f is surjective, then 

,))(( **1 BBff 

(d) ),())( *1*1
ii BfBf   ),())( *1*1

ii BfBf    

(e) );()( **
iiii AfAf  );()( **

iiii AfAf  and if f is injec-

tive, then );()( **
iiii AfAf 

(f) ,)( **1
NN XYf 

NNf **1 )(   . 

(g) ,)( **
NNf   ,)( **

NN YXf   if f is surjective. 

(h) If f is surjective, then .)( * cc* Af)) (f(A   if further-

more f is injective, then have .)( * cc* Af)) (f(A   

(i) .))(( *11 cc* Bf)(B (f    

Proof  

Clear by definitions. 

4 *- Neutrosophic Crisp Set Relations 

    Here we give the definition relation on *- neutrosophic 

crisp sets and study of its properties.  

Let X, Y and Z be three ordinary nonempty sets 

Definition 4.1 

Let X  be a non-empty fixed set, two neutrosophic crisp 

sets A , B  are having the form

 
321 ,, AAAA   , 

321 ,, BBBB   , and two *- neutrosophic crisp 

sets 222
*

111
* ,, ,,, RSMBRSMA  where 

),( 3211 AAAM  ),( 3121 AAAS 

),( 2131 AAAR 

),( 3212 BBBM  ),( 3122 BBBS  and 

),( 2132 BBBR  Then 

i) The product of two *- neutrosophic crisp sets *A

and *B  is a *- neutrosophic crisp set ** BA  given by 

212121
** ,, RRSSMMBA  on YX  . 

ii) We will call a *- neutrosophic crisp relation
*** BAR  on the direct product YX  . 

The collection of all  *- neutrosophic crisp relations on 

YX  is denoted as )( YXSNCR   

Definition 4.2 

Let *R  be a *- neutrosophic crisp relation on YX  , 

then the inverse of
*R  is donated by 

1*R  where 
*** BAR  on YX   then **1* ABR  on .XY   

Example 4.1 

Let },,,,,{ fedcbaX  , }{},{},,,,{ fedcbaA  , 

,}{},{},,,{ edcbaB   are NCS.  

Then ,}{},{},,,,{* fedcbaA  ,}{},{},,,{* edcbaB  then 

the product of two *- neutrosophic crisp sets given by 

)},{()},,{()},,(),,(),,(),,(),,(),,(),,(),,(),,{(** efdeccbcaccbbbabcabaaaBA 

 and 

)},{()},,{()},,(),,(),,(),,(),,(),,(),,(),,(),,(),,(),,(),,{(** feeddcccbcacdbcbbbabdacabaaaAB 

,  and )},{()},,{()},,{(
*

1 ddccaaR  ,
***

1 BAR  on 

XX  , 

)},(),,{()},,{()},,{(
*

2 dbddccbaR 
***

2 ABR  on 

XX  ,
1*

1


R = )},{()},,{()},,{( ddccaa
** AB   and 

)},(),,{()},,{()},,{(
1*

2 bdddccabR 
  ** AB  . 

We can define the operations of *- neutrosophic crisp 

relations. 

Definition 4.3 

Let *R  and *S  be two *- neutrosophic crisp relations 

between X and Y for every YXyx ),(   and NCSS A
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and B in the form ,,, 321 AAAA 
*A  on X, 

,,, 321 BBBB 
*B on Y Then we can defined the follow-

ing operations 

i) SR  may be defined as two types

a) Type1: ** SR   ,11 SR
MM  ,11 sR

SS 

sR
RR 11 

b) Type2:
** SR   ,11 SR

MM  ,11 sR
SS 

sR
RR 11 

ii) ** SR   may be defined as two types 

a) Type1:
** SR  SRSRSR RRSSMM 111111 ,,  , 

b) Type2:
** SR  SRSRSR RRSSMM 111111 ,,  . 

iii) ** SR   may be defined as two types

a) Type1:
** SR  SRSRSR RRSSMM 111111 ,,  , 

b) Type2:
** SR  SRSRSR RRSSMM 111111 ,,  . 

Theorem 4.1 

Let *R , *S and *Q  be three *- neutrosophic crisp rela-

tions between X and Y for every YXyx ),( , then 

i) .
1*1*** 

 SRSR  

ii)   .
1*1*1** 

 SRSR  

iii)   .
1*1*1** 

 SRSR  

iv) .*
1

1* RR 










 

v)      ******* . QRSRQSR  . 

vi)      ******* . QRSRQSR  . 

vii) If ,** RS  ,** RQ  then .*** RQS   

Proof 

 Clear 

Definition 5.4 

The *- neutrosophic crisp relation )(** XXSNCRI  , 

the *- neutrosophic crisp relation of identity may be de-

fined as two types  

i) Type1:   ****** },{},{ AAAAI

ii) Type2:   ***** ,},{ AAI

Now we define two composite relations of *- neutro-

sophic crisp sets. 

Definition 5.5 

Let *R  be a *- neutrosophic crisp relation in YX  , and 
*S  be a neutrosophic crisp relation in ZY  . Then the 

composition of 
*R  and

*S , 
** SR  be a *- neutrosophic

crisp relation in ZX  as a definition may be defined as two 

types  

i) Type1:

** SR  ),)(( ** zxSR 

})(){({ 2121 SR MMMM  ,

},)(){( 2121 SR SSSS   })(){( 2121 SR RRRR . 

ii) Type2:

** SR  ),)(( ** zxSR 

})(){({ 2121 SR MMMM  ,

},)(){( 2121 SR SSSS   })(){( 2121 SR RRRR . 

Theorem 4.2 

Let
*R  be a *- neutrosophic crisp relation in YX  , and 

S  be a *- neutrosophic crisp relation in 

ZY  then
1*1*1** )(
  RSSR  . 

Proof 

 Let *** BAR  on YX   then ABR 
1* , 

*** DBS  on ZY  then **1* BDS 


, from Definition 

4.3 and similarly we 

can ),(  and  ),(),( 1*1*1** **
)(

* zxIzxIzxI RSSR
   then  

1*1*1** )(
  RSSR 

.
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Abstract. In this paper we introduce the concept of in-

terval valued neutrosophic soft topological space together 

with interval valued neutrosophic soft finer and interval 

valued neutrosophic soft coarser topology. We also de-

fine interval valued neutrosophic interior and closer of an 

interval valued neutrosophic soft set. Some theorems and 

examples are cites. Interval valued neutrosophic soft sub-

space topology are studied. Some examples and theorems 

regarding this concept are presented.. 

Keywords: Soft set, interval valued neutrosophic set, interval valued neutrosophic soft set,  interval valued neutrosophic soft topo-

logical space.

1 Introduction 

In 1999, Molodtsov [9] introduced the concept of soft 

set theory which is completely new approach for modeling 

uncertainty. In this paper [9] Molodtsov established the 

fundamental results of this new theory and successfully 

applied the soft set theory into several directions. Maji et al. 

[7] defined and studied several basic notions of soft set 

theory in 2003. Pie and Miao [11], Aktas and Cagman [1] 

and Ali et. al. [2] improved the work of Maji et al [7]. The 

intuitionistic fuzzy set is introduced by Atanaasov [4] as a 

generalization of fuzzy set [15] where he added degree of 

non-membership with degree of membership. Neutrosoph-

ic set introduced by F. Smarandache in 1995 [12]. 

Smarandache [13] introduced the concept of neutrosophic 

set which is a mathematical tool for handling problems in-

volving imprecise, indeterminacy and inconstant data. Maji 

[8] combined neutrosophic set and soft set and established 

some operations on these sets. Wang et al. [14] introduced 

interval neutrosophic sets. Deli [6] introduced the concept 

of interval-valued neutrosophic soft sets. 

In this paper we form a topological structure on inter-

val valued neutrosophic soft sets and establish some prop-

erties of interval valued neutrosophic soft topological 

space with supporting proofs and examples. 

2 Preliminaries 

In this section we recall some basic notions rele-

vant to soft sets, interval-valued neutrosophic sets and in-

terval-valued neutrosophic soft sets. 

Definition 2.1: [9]  Let U  be an initial universe and E be 

a set of parameters. Let  P U  denotes the power set of U

and A E . Then the pair  ,f A  is called a soft set

overU , where f  is a mapping given by  :f A P U .

Definition 2.2: [13] A neutrosophic set A  on the universe 

of discourse U  is defined as  

       , , ,A A AA x Ux x x x     , where 

, , 0,1
A A A

U  
 

    are functions such that the 

condition:      , 0 3
A A A

x U x x x  
 

       is 

satisfied. 

Here      , ,
A A A

x x x   represent the truth-

membership, indeterminacy-membership and falsity-

membership respectively of the element x U . From 

philosophical point of view, the neutrosophic set takes the 

value from real standard or non-standard subsets of 

0,1
 
  . But in real life application in scientific and 

engineering problems it is difficult to use neutrosophic set 

with value from real standard or non-standard subset of 

0,1
 
  . Hence we consider the neutrosophic set which 

takes the value from the subset of  0,1 .

Definition 2.3: [14] An interval valued neutrosophic set 

A  on the universe of discourse U  is defined as

       , , ,A A AA x x x x x U     , where 

, , 0,1A A A U Int         are functions such that the 
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condition: 

     , 0 3
A A A

x U sup x sup x sup x  
 

       is 

satisfied. 

In real life applications it is difficult to use 

interval valued neutrosophic set with interval-value from 

real standard or non-standard subset of  0,1Int
 
  .

Hence we consider the interval valued neutrosophic set 

which takes the interval-value from the subset 

of   0,1Int  (where   0,1Int  denotes the set of all

closed sub intervals of  0,1 ). The set of all interval valued

neutrosophic sets on U  is denoted by IVNS(U). 

Definition 2.4: [6] Let U  be an universe set, E be a set of 

parameters and A E . Let IVNs(U) denotes the set of all 

interval valued neutrosophic sets of U . Then the pair 

 ,f A  is called an interval valued neutrosophic soft set

(IVNSs in short) over U , where f  is a mapping given 

by  f A IVNs U  . The collection of all interval valued

neutrosophic soft sets over U  is denoted by IVNSs(U). 

Definition 2.5: [6] Let U  be a universe set and E  be a 

set of parameters. Let      , , ,f A g B IVNSs U , where

 f A IVNs U   is defined by

             ( ) , , ,
f a f a f a

f a x Ux x x x    

and   g B IVNs U   is defined by

             ( ) , , ,
g b g b g b

g b x Ux x x x    

where 

                          , , , , , 0,1
f a f a f a g b g b g b

x x x x x x Int      

for x U . Then 

(i)  ,f A  is called interval valued neutrosophic subset of

 ,g B  (denoted by    , ,f A g B ) if A B  and

       f e g e
x x  ,        f e g e

x x  , 

       f e g e
x x   e A  , x U  . Where

       f e g e
x x   iff 

   f e g e
inf inf   and 

   f e g e
sup sup   

       f e g e
x x   iff

   f e g e
inf inf   and 

   f e g e
sup sup   

       f e g e
x x   iff    f e g e

inf inf   and 

   f e g e
sup sup  . 

(ii) Their union, denoted by      , , ,f A g B h C 

(say), is an interval valued neutrosophic soft set overU , 

where C A B   and for e C ,  h C IVNS U 

is defined by 

               , , ,
h e h e h e

h e x x x x x U     ,where 

for x U , 

   

   

   

       

f e

h e g e

f e g e

x if e A B

x x if e B A

x x if e A B



 

 

  


  


  

   

   

   

       

f e

h e g e

f e g e

x if e A B

x x if e B A

x x if e A B



 

 

 

  

  







   

   

   

       

f e

h e g e

f e g e

x if e A B

x x if e B A

x x if e A B



 

 

 

  

  







(iii) Their intersection, denoted by      , , ,f A g B h C   

(say), is an interval valued neutrosophic soft set of overU , 

where C A B   and for e C ,  h C IVNS U   is

defined by 

                , , ,
h e h e h e

h e x Ux x x x     , where 

for x U and e C , 

                       ,
h e f e g e h e f e g e

x x x x x x        

and            h e f e g e
x x x    . 

(iv) The complement of  ,f A , denoted by  ,
c

f A

is an interval valued neutrosophic soft set over U  and is 

defined as    , ,
c cf A f A  , where 

 cf IVNS U is defined by

                   , , 1 ,1 ,c

f a f a f a f a
f a x Ux x sup x inf x x       

 

 for a A . 

Definition 2.6:[5,6] An IVNSs  ,f A  over the universe U

is said to be universe IVNSs with respect to A if 

     1,1
f a

x  ,      0,0
f a

x  ,      0,0
f a

x 

,x U a A    . It is denoted by I . 
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Definition 2.7: An IVNSs  ,f A  over the universe U is

said to be null IVNSs with respect to A if      0,0
f a

x  , 

     1,1
f a

x  ,      1,1
f a

x  ,x U a A    . It is 

denoted by  . 

3 Interval Valued Neutrosophic Soft Topological 
Spaces 

In this section, we give the definition of interval valued 

neutrosophic soft topological spaces with some examples 
and results. We also define discrete and indiscrete interval

valued neutrosophic soft topological space along with 

interval valued neutrosophic soft finer and coarser topology. 

Let U be an universe set, E be the set of 

parameters, 
 U

 be the set of all subsets of U, IVNs(U)

be the set of all interval valued neutrosophic sets in U and 

IVSNs(U;E) be the family of all interval valued 

neutrosophic soft sets over U via parameters in E. 

Definition 3.1: Let  ,A E  be an element of IVNSs(U;E), 

 ,A E  be the collection of all interval valued 

neutrosophic soft subsets of  ,A E . A sub family   of 

 ,A E  is called an interval valued neutrosophic soft 

topology (in short IVNS-topology) on  ,A E  if the 

following axioms are satisfied: 

(i)    , , ,
A

A
E E


    

(ii)     , : ,
k k

A A
k K

f E k K f E 


     

(iii) If    , , ,
A A

g E h E   then    , ,A Ag E h E    

The triplet  , ,
A

E   is called interval valued 

neutrosophic soft topological space (in short IVNS-

topological space) over  ,
A

E . The members of   are 

called  –open IVNS sets (or simply open sets). Here 

: ( )
A

A IVNS U

   is defined as 

         , 0,0 , 1,1 , 1,1 :
A

e x x U

    e A  . 

Example 3.2: Let  1 2 3, ,U u u u ,  1 2 3 4, , ,E e e e e , 

 1 2 3, ,A e e e . The tabular representation of  ,
A

E

given by 

U e1 e2 

u1
([.5,.8],[.3,.5],[.2,.7]) ([.4,.7],[.2,.3],[.1,.3]) 

u2 ([.4,.7],[.3,.4],[.1,.2]) ([.6,.9],[.1,.2],[.1,.2]) 

u3 ([.5,1],[0,.1],[.3,.6]) ([.6,.8],[.2,.4],[.1,.3]) 

Table1:Tabular representation of  ,A E

The tabular representation of  ,
A

E

  is given by 

U e1 e2 

u1 
([0,0],[1,1],[1,1]) ([0,0],[1,1],[1,1]) 

u2 ([0,0],[1,1],[1,1]) ([0,0],[1,1],[1,1]) 

u3 ([0,0],[1,1],[1,1]) ([0,0],[1,1],[1,1]) 

e3 

([0,0],[1,1],[1,1]) 

([0,0],[1,1],[1,1]) 

([0,0],[1,1],[1,1]) 

Table2:Tabular representation of  ,
A

E

The tabular representation of  1,Af E  is given by 

U e1 e2 

u1 
([.1,.7],[.4,.8],[.3,1]) ([.1,.3],[.4,.6],[.2,.6]) 

u2 ([.1,.3],[.6,.7],[.2,.8]) ([0,.5],[.5,.8],[.4,1]) 

u3 ([.4,.8],[.6,.7],[.6,.9]) ([0,.3],[.4,.7],[.2,.8]) 

e3 

([.2,.5],[.8,.9],[.4,.9]) 

([0,.3],[.6,.9],[.1,.7]) 

([.1,.3],[.6,.8],[.3,.7]) 

Table3:Tabular representation of  1,Af E

The tabular representation of  2 ,Af E  is given by 

U e1 e2 

u1 
([.4,.7],[.5,.7],[.4,.9]) ([.2,.3],[.4,.5],[.7,.9]) 

u2 ([.3,.5],[.4,.8],[.1,.4]) ([.4,.6],[.3,.5],[.2,.5]) 

u3 ([.3,.9],[.1,.2],[.6,.7]) ([.5,.7],[.6,.7],[.3,.4]) 

e3 

([.3,.7],[.5,.8],[.1,.2]) 

([.1,.3],[.3,.5],[.6,.8]) 

([.2,.6],[.3,.5],[.5,.8]) 

Table4: Tabular representation of  2 ,Af E

Let      3 1 2
, , ,

A A A
f E f E f E   then the tabular 

representation of  3
,

A
f E  is given by 

e3 

([.3,.9],[0,.1],[0,.2]) 

([.4,.8],[.1,.2],[0,.5]) 

([.4,.9],[.1,.3],[.2,.4]) 
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U e1 e2 

u1
([.1,.7],[.5,.8],[.4,1]) ([.1,.3],[.4,.6],[.7,.9]) 

u2 ([.1,.3],[.6,.8],[.2,.8]) ([0,.5],[.5,.8],[.4,1]) 

u3 ([.3,.8],[.6,.7],[.6,.9]) ([0,.3],[.6,.7],[.3,.8]) 

e3 

([.2,.5],[.8,.9],[.4,.9]) 

([0,.3],[.6,.9],[.6,.8]) 

([.1,.3],[.6,.8],[.5,.8]) 

Table5:Tabular representation of  3,Af E

Let      4 1 2
, , ,

A A A
f E f E f E   then the tabular 

representation of  4
,

A
f E  is given by 

U e1 e2 

u1
([.4,.7],[.4,.7],[.3,.9]) ([.2,.3],[.4,.5],[.2,.6]) 

u2 ([.3,.5],[.4,.7],[.1,.4]) ([.4,.6],[.3,.5],[.2,.5]) 

u3 ([.4,.9],[.1,.2],[.6,.7]) ([.5,.7],[.4,.7],[.2,.4]) 

e3 

([.3,.7],[.5,.8],[.1,.2]) 

([.1,.3],[.3,.5],[.1,.7]) 

([.2,.6],[.3,.5],[.3,.7]) 

Table6:Tabular representation of  4 ,Af E

Here we observe that the sub-family 

            1 2 3 4

1
, , , , , , , , , , ,

A
A A A A A

E E f E f E f E f E


  

of  ,A E  is a IVNS-topology on  ,
A

E , as it satisfies 

the necessary three axioms of topology and  , ,A E   is a 

IVNS-topological space. But the sub-family 

        1 2

2
, , , , , , ,

A
A A A

E E f E f E


   of  ,
A

E  is not an 

IVNS-topology on  ,
A

E , as the union 

     4 1 2
, , ,

A A A
f E f E f E  does not belong to 

2 . 

Definition 3.3: As every IVNS-topology on  ,A E  must 

contains the sets  ,
A

E and  ,A E , so the family 

    , , ,
A

A
E E


    forms a IVNS-topology on 

 ,A E . The topology is called indiscrete IVNS-topology 

and the triplet  , ,A E   is called an indiscrete interval

valued neutrosophic soft topological space (or simply 

indiscrete IVNS-topological space). 

Definition 3.4: Let   denotes the family of all IVNS-

subsets of  ,
A

E . Then we observe that   satisfies all 

the axioms of topology on  ,
A

E . This topology is called

discrete interval valued neutrosophic soft topology and the 

triplet  , ,
A

E   is called discrete interval valued

neutrosophic soft topological space (or simply discrete 

IVNS-topological space). 

Theorem 3.5: Let  :i i I   be any collection of IVNS-

topology on  ,A E . Then their intersection i
i I




 is also 

a IVNS-topology on  ,
A

E . 

Proof: (i) Since    , , ,
A A iE E    for each i I . 

Hence    , , ,
A A i

i I

E E  


 .

(ii) Let   , :
k

A
f E k K  be an arbitrary family 

of interval valued neutrosophic soft sets where 

 ,k

A i
i I

f E 


  for each k K . Then for each i I , 

 ,k

A if E   for k K  and since for each i I , i  ia a 

IVNS-topology, therefore  ,k

A i
k K

f E 


  for each i I . 

Hence  ,
k

A i
k K i I

f E 
 

 .

(iii) Let    1 2
, , ,

A A i
i I

f E f E 


 , then 

   1 2
, , ,

A A i
f E f E   for each i I . Since for each i I , 

i  is an IVNS-topology, therefore    1 2
, ,

A A i
f E f E  

for each i I . Hence    1 2
, ,

A A i
i I

f E f E 


  . 

Thus 
i

i I




 satisfies all the axioms of topology. 

Hence 
i

i I




 forms a IVNS-topology. But union of IVNS-

topologies need not be a IVNS-topology. Let us show this 

with the following example. 

Example 3.6: In example 3.2, the sub families 

      1

3
, , , , ,

A
A A

E E f E


    and  4
, ,

A
E 

   2
, , ,

A A
E f E are IVNS-topologies in  ,A E . But 

their union         1 2

3 4
, , , , , , ,

A
A A A

E E f E f E


    

is not a IVNS-topology in  ,A E . 

Definition 3.7: Let  , ,A E   be an IVNS-topological 

space over  ,A E . An interval valued neutrosophic soft 
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subset  ,Af E  of  ,A E  is called interval valued 

neutrosophic soft closed set (in short IVNS-closed set) if its 

complement  ,
c

Af E  is a member of  . 

Example 3.8: Let us consider example 3.2. then the IVNS-

closed sets in  1, ,A E   are 

U e1 e2 

u1
([.2,.7],[.5,.7],[.5,.8]) ([.1,.3],[.7,.8],[.4,.7]) 

u2 ([.1,.2],[.6,.7],[.4,.7]) ([.1,.2],[.8,.9],[.6,.9]) 

u3 ([.3,.6],[.9,1],[.5,1]) ([.1,.3],[.6,.8],[.6,.8]) 

e3 

([0,.2],[.9,1],[.3,.9]) 

([0,.5],[.8,.9],[.4,.8]) 

([.2,.4],[.7,.9],[.4,.9]) 

Table7:Tabular representation of  ,
c

A E  

U e1 e2 

u1
([1,1], [0,0],[0,0]) ([1,1], [0,0],[0,0]) 

u2 ([1,1], [0,0],[0,0]) ([1,1], [0,0],[0,0]) 

u3 ([1,1], [0,0],[0,0]) ([1,1], [0,0],[0,0]) 

e3 

([1,1], [0,0],[0,0]) 

([1,1], [0,0],[0,0]) 

([1,1], [0,0],[0,0]) 

Table8:Tabular representation of  ,
A

c

E

U e1 e2 

u1
([.3,1],[.2,.6],[.1,.7]) ([.2,.6],[.4,.6],[.1,.3]) 

u2 ([.2,.8],[.3,.4],[.1,.3]) ([.4,1],[.2,.5],[0,.5]) 

u3 ([.6,.9,[.3,.4],[.4,.8]) ([.2,.8],[.3,.6],[0,.3]) 

e3 

([.4,.9],[.1,.2],[.2,.5]) 

([.1,.6],[.1,.4],[0,.3]) 

([.3,.7],[.2,.4],[.1,.3]) 

Table9:Tabular representation of  1,
c

Af E

U e1 e2 

u1
([.4,.9],[.3,.5],[.4,.7]) ([.7,.9],[.5,.6],[.2,.3]) 

u2 ([.1,.4],[.2,.6],[.3,.5]) ([.2,.5],[.5,.7],[.4,.6]) 

u3 ([.6,.7],[.8,.9],[.3,.9]) ([.3,.4],[.3,.4],[.5,.7]) 

e3 

([.1,.2],[.2,.5],[.3,.7]) 

([.6,.8],[.5,.7],[.1,.3]) 

([.5,.8],[.5,.7],[.2,.6]) 

Table10:Tabular representation of  2 ,
c

Af E

U e1 e2 

u1
([.4,1],[.2,.5],[.1,.7]) ([.7,.9],[.4,.6],[.1,.3]) 

u2 ([.2,.8],[.2,.4],[.1,.3]) ([.4,1],[.2,.5],[0,.5]) 

u3 ([.6,.9],[.3,.4],[.3,.8]) ([.3,.8],[.3,.4],[0,.3]) 

e3 

([.4,.9],[.1,.2],[.2,.5]) 

([.6,.8],[.1,.4],[0,.3]) 

([.5,.8],[.2,.4],[.1,.3]) 

Table11:Tabular representation of  3 ,
c

Af E

U e1 e2 

u1
([.3,.9],[.3,.6],[.4,.7]) ([.2,.6],[.5,.6],[.2,.3]) 

u2 ([.1,.4],[.3,.6],[.3,.5]) ([.2,.5],[.5,.7],[.4,.6]) 

u3 ([.6,.7],[.8,.9],[.4,.9])    ([.2,.4],[.3,.6],[.5,.7]) 

e3 

([.1,.2],[.2,.5],[.3,.7]) 

([.1,.7],[.5,.7],[.1,.3]) 

   ([.3,.7],[.5,.7],[.2,.6]) 

Table12:Tabular representation of  4 ,
c

Af E

are the IVNS-closed sets in  1
, ,

A
E  . 

Theorem 3.9: Let  , ,A E   be an IVNS-topological 

space over  ,A E . Then 

1.  ,
A

c

E ,  ,
c

A E  are IVNS-closed sets. 

2. Arbitrary intersection of IVNS-closed sets is

IVNS-closed set.

3. Finite union of IVNS-closed sets is IVNS-closed

set.

Proof: 1. Since    , , ,
A AE E   , therefore 

   , , ,
A

c c

AE E   are IVNS-closed sets. 

2. Let   , :
k

A
f E k K  be an arbitrary family of 

IVNS-closed sets in  , ,A E   and let 

   , ,
k

A A
k K

f E f E


 . 
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Now       , , ,

c
cc k k

A A A

k K k K

f E f E f E
 

  and  ,
c

k

A
f E   

for each k K , so  ,
c

k

A
k K

f E 


 . Hence  ,
c

Af E  . 

Thus  ,Af E  is IVNS-closed set. 

3. Let   , : 1,2,3,...,
i

A
f E i n  be a family of 

IVNS-closed sets in  , ,A E   and let    
1

, ,
n

i

A A
i

g E f E


 . 

Now       
1 1

, , ,

c
n n

cc i i

A A A

i i

g E f E f E
 

   and 

 ,
c

i

A
f E   for 1,2,3,...,i n , so  

1

,
n

c
i

A
i

f E 


 . Hence 

 ,
c

Ag E  . Thus  ,Ag E  is IVNS-closed set. 

Definition 3.10: Let  1, ,A E   and  2, ,A E   be two 

IVNS-topological spaces over  ,A E . If each 

  2,Af E   implies   1,Af E  , then 
1  is called 

interval valued neutrosophic soft finer topology than 
2

and 
2  is called interval valued neutrosophic soft coarser 

topology than 
1 . 

Example 3.11: In example 3.2 and 3.6, 
1  is interval 

valued neutrosophic soft finer topology than 
3  and 

3  is 

called interval valued neutrosophic soft coarser topology 

than 
1 . 

Definition 3.12: Let  , ,A E   be a IVNS-topological 

space over  ,A E  and ß be a subfamily of  . If every 

element of   can be express as the arbitrary interval 

valued neutrosophic soft union of some elements of ß, then 

ß is called an interval valued neutrosophic soft basis for the 

IVNS-topology  . 

Example 3.13: In example 3.2, for the IVNS-

topology

            1

3 41 2
, , ,, , , , , , , ,

A
A AA A A

f E f EE E f E f E


   , the 

subfamily           1 2 3
ß= , , , , , , , , ,

A
A A A A

E E f E f E f E

 

of  ,A E  is a interval valued neutrosophic soft basis 

for the IVNS-topology 
1 . 

4 Some Properties of Interval Valued Neutrosoph-
ic Soft Topological Spaces 

In this section some properties of interval valued 

neutrosophic soft topological spaces are introduced. Some 

results on IVNSInt and IVNSCl are also intoduced. 

Definition 4.1: Let  , ,A E   be a IVNS-topological 

space and let  , ( ; )Af E IVNSS U E . The interval 

valued neutrosophic soft interior and closer of  ,Af E  is 

denoted by IVNSInt(fA,E) and IVNSCl(fA,E) are defined as 

        , , : , ,A A A AIVNSInt f E g E g E f E    and 

 ,AINVNSCl f E 

      , : , ,c

A A Ag E f E g E  respectively. 

Example 4.2: Let us consider example 3.2 and take an 

IVNSS  5 ,Af E  as 

U e1 e2 

u1
([.2,.8],[.3,.6],[.2,.8]) ([.2,.4],[.4,.6],[.2,.4]) 

u2 ([.1,.6],[.4,.5],[.2,.7]) ([.2,.6],[.5,.7],[.1,.7]) 

u3 ([.5,.8],[.5,.6],[.5,.8]) ([.1,.4],[.4,.6],[.1,.5]) 

e3 

([.2,.6],[.7,.8],[.3,.4]) 

([.1,.4],[.2,.5],[.1,.5]) 

([.2,.5],[.5,.8],[.2,.4]) 

Table13:Tabular representation of  5 ,Af E

Now    5 1
, ,

A A
IVNSInt f E f E  and    5 1

, ,
c

A A
IVNSCl f E f E . 

Theorem 4.3: Let  , ,A E   be a IVNS-topological space 

and  ,Af E ,    , ;Ag E IVNSS U E  then the 

following properties hold 

1.    , ,
A A

IVNSInt f E f E

2.        , , , ,
A A A A

f E g E IVNSInt f E IVNSInt g E    

3.  ,AIVNSInt f E 

4.      , , ,
A A A

f E IVNSInt f E f E    

5.     , ,
A A

IVNSInt IVNSInt f E IVNSInt f E

6.    , , ,
A A A A

IVNSInt E IVNSInt U E U  

Proof: 

1. Straight forward.

2.    , ,A Af E g E  implies all the IVNS-open sets 

contained in  ,Af E  also contained in  ,Ag E . 

    i.e. 

             * * * *
, : , , , : , ,

A A A A A A
f E f E f E g E g E g E       
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    i.e. 

             * * * *
, : , , , : , ,

A A A A A A
f E f E f E g E g E g E       

    i.e.    , ,
A A

IVNSInt f E IVNSInt g E

  3.         * *
, , : , ,

A A A A
IVNSInt f E f E f E f E  

It is clear that       * *
, : , ,

A A A
f E f E f E     

       So,  ,
A

IVNSInt f E  . 

4. Let  ,
A

f E  , then by (1) 

   , ,
A A

IVNSInt f E f E . 

Now since  ,Af E   and    , ,A Af E f E , 

Therefore 

          * *
, , : , , ,

A A A A A
f E g E g E g E IVNSInt f E   

i.e,    , ,A Af E IVNSInt f E

Thus    , ,A AIVNSInt f E f E

Conversly, let    , ,A AIVNSInt f E f E

Since by (3)  ,AIVNSInt f E   

Therefore  ,Af E   

5. By (3)  ,AIVNSInt f E   

 By (4)     , ,
A A

IVNSInt IVNSInt f E IVNSInt f E . 

6. We know that    , , ,A AE U E   

 By (4)    , , ,
A A A A

IVNSInt E IVNSInt U E U  

Theorem 4.4: Let  , ,A E   be a IVNS-topological space 

and  ,Af E ,    , ;Ag E IVNSs U E  then the following

properties hold 

1.    , ,
A A

f E IVNSCl f E

2.        , , , ,
A A A A

f E g E IVNSCl f E IVNSCl g E  

3.   ,
c

A
IVNSCl f E   

4.      , , ,
c

A A A
f E IVNSCl f E f E  

5.     , ,
A A

IVNSCl IVNSCl f E IVNSCl f E

6.    , , ,
A A A A

IVNSCl E IVNSCl U E U  

Proof: straight forward. 

Theorem 4.5: Let  , ,
A

E   be an IVNS-topological space 

on  ,A E  and let      , , , ;A Af E g E IVNSs U E .

Then the following properties hold 

1.         , , , ,
A A A A

IVNSInt f E g E IVNSInt f E IVNSInt g E  

2.         , , , ,
A A A A

IVNSInt f E g E IVNSInt f E IVNSInt g E  

 

3.         , , , ,
A A A A

IVNSCl f E g E IVNSCl f E IVNSCl g E  

4.         , , , ,
A A A A

IVNSCl f E g E IVNSCl f E IVNSCl g E  

5.     , ,
c c

A A
IVNSInt f E IVNSCl f E

6.     , ,
c

A A

c
IVNSCl f E IVNSInt f E

Proof: 

1. By theorem 4.2 (1),    , ,A AIVNSInt f E f E

and    , ,A AIVNSInt g E g E .   Thus 

       , , , ,
A A A A

IVNSInt f E IVNSInt g E f E g E   . 

Hence 

        , , , ,
A A A A

IVNSInt f E IVNSInt g E IVNSInt f E g E  

…………… (i) 

Again since      , , ,
A A A

f E g E f E  . By the-

orem 4.2 (2),       , , ,
A A A

IVNSInt f E g E IVNSInt f E  .

Similarly 

      , , ,
A A A

IVNSInt f E g E IVNSInt g E   

Hence 

        , , , ,
A A A A

IVNSInt f E g E IVNSInt f E IVNSInt g E   …

..………… (ii) 

Using (i) and (ii) we get, 

        , , , ,
A A A A

IVNSInt f E g E IVNSInt f E IVNSInt g E  

. 

2. Since      , , ,A A Af E f E g E  . 

By theorem 4.2 (2), 

      , , ,A A AIVNSInt f E IVNSInt f E g E 

.

Similarly,

      , , ,A A AIVNSInt g E IVNSInt f E g E 

.

Hence

        , , , ,
A A A A

IVNSInt f E g E IVNSInt f E IVNSInt g E  

.

3. Similar to 1.

4. Similar to 2.

5.           , , : , ,
cc

A A A A
IVNSInt f E g E g E f E   

      

 

, : , ,

,

cc

A A A

c

A

g E f E g E

IVNSCl f E

   


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6. Similar to 5.

Equality does not hold in theorem 4.4 (2), (4). Let us 

show this by an example. 

Example 4.6: Let  1 2
,U u u ,  1 2 3

, ,E e e e , 

 1 2
,A e e . The tabular representation of  ,

A
E  is giv-

en by 

U e1 e2 

u1
([.5,.8],[.3,.5],[.2,.7]) ([.3,.9],[.1,.2],[0,.1]) 

u2 ([.4,.6],[.3,.4],[.1,.2]) ([.4,.8],[.1,.3],[.1,.2]) 

Table14:Tabular representation of  ,
A

E  

The tabular representation of  ,
A

E

  is given by 

U e1 e2 

u1
([0,0], [1,1], [1,1]) ([0,0], [1,1], [1,1]) 

u2 ([0,0], [1,1], [1,1]) ([0,0], [1,1], [1,1]) 

Table15:Tabular representation of  ,
A

E

The tabular representation of  ,
A

f E  is given by 

U e1 e2 

u1
([.1,.7],[.4,.8],[.3,1]) ([.2,.5],[.7,.9],[.3,.7]) 

u2 ([.1,.2],[.6,.7],[.2,.7]) ([0,.3],[.5,.8],[.4,1]) 

Table16:Tabular representation of  ,
A

f E

Clearly       , , , , ,
A

A A
E E f E


    is a IVNS-topology 

on  ,
A

E . Let us now take two interval valued 

neutrosophic soft sets  ,
A

g E  and  ,
A

h E  as 

U e1 e2 

u1
([.1,.6],[.4,.9],[.4,1]) ([.1,.5],[.7,.9],[.3,.8]) 

u2 ([.1,.2],[.6,.7],[.2,.8]) ([0,.2],[.5,.9],[.4,1]) 

Table17:Tabular representation of  ,Ag E

U e1 e2 

u1
([0,.7],[.5,.8],[.3,1]) ([.2,.5],[.8,1],[.6,.7]) 

u2 ([.1,.2],[.6,.8],[.3,.7]) ([0,.3],[.6,.8],[.5,1]) 

Table18:Tabular representation of  ,Ah E

Now      , , ,
A A A

g E h E f E 

 

        , , , ,
A A A A

IVNSInt g E h E IVNSInt f E f E  

Also    , ,
A

A
IVNSInt g E E


 ,    , ,

A
A

IVNSInt h E E



 

         , , , , ,
A A A

A A
IVNSInt g E IVNSInt h E E E E

  
     

Thus 

        , , , ,
A A A A

IVNSInt f E g E IVNSInt f E IVNSInt g E   .

Therefore equality does not hold for (2). 

By theorem 4.4 (5), 

        , , , ,
A

ccc

A A A
IVNSCl g E IVNScl g E E E


    . 

Similarly    , ,
c

A A
IVNScl h E E . 

Therefore 

         , , , , ,
c c

A A A A A
IVNSCl g E IVNSCl h E E E E     

.  Also 

         

     

  

 

, , , ,

, ,

,

,

cc c

A A A A

c

A A

c

A

c

A

IVNSCl g E h E IVNSCl g E h E

IVNSInt g E h E

IVNSInt f E

f E

  

 





Thus 

        , , , ,
A A A A

IVNSCl f E g E IVNSCl f E IVNSCl g E  

. Therefore equality doesnot hold in (4). 

5 Interval Valued Neutrosophic Soft Subspace 
Topology 

In this section we introduce the concept of 

interval valued neutrosophic soft subspace topology along 

with some examples and results. 

Theorem 5.1: Let  , ,A E   be an IVNS-topological 

space on  ,A E  and    , ,A Af E E . Then the 

collection 
        ,

, , : ,
A

A A Af E
f E g E g E     is 

an IVNS-topology on  ,A E . 

Proof: 

 (i) Since    , , ,
A

A
E E


   , therefore 

       ,
, , ,

A A A
A f f E

f E E E

      and 

       ,
, , ,

A
A A A f E

f E E f E     . 

(ii) Let    ,
, ,

A

k

A f E
f E k K   .Then 

     , , ,
k k

A A A
f E f E g E   where  ,k

Ag E   for each 

k K . 

Now 

             ,
, , , , ,

A

k k k

A A A A A f E
k K k K k K

f E f E g E f E g E 
  

    

(since  ,k

A
k K

g E 


  as each  ,k

Ag E  . 

(iii) Let      
1 2

,
, , ,

A
A A f E

f E f E   then 

     1 1
, , ,

A A A
f E f E g E   and 

     2 2
, , ,

A A A
f E f E g E   where    1 2

, , ,
A A

g E g E  . 
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Now 

             1 2 1 2
, , , , , ,

A A A A A A
f E f E f E g E f E g E    

            

1 2

,
, , ,

A
A A A f E

f E g E g E    

(since    1 2
, ,

A A
g E g E    as    1 2

, , ,
A A

g E g E  ). 

Definition 5.2: Let  , ,A E   be an IVNS-topological 

space on  ,A E  and    , ,A Af E E . Then the 

IVNS-topology         ,
, , : ,

A
A A Af E

f E g E g E     

is called interval valued neutrosophic soft subspace 

topology and   ,
, ,

A
A f E

f E   is called interval valued 

neutrosophic soft subspace of  , ,
A

E  . 

Example 5.3: Let us consider the IVNS-topology 

            1 2 3 4

1 , , , , , , , , , , ,
A A A A A AE E f E f E f E f E    as

in example 3.2 and an IVNSS  ,Af E : 

U e1 e2 

u1 ([.4,.6],[.6,.7],[.3,.5]) ([.5,.7],[.4,.6],[0,.3]) 

u2 ([.2,.3],[.3,.6],[.5,.7]) ([.6,.8],[.4,.5],[.2,.3]) 

u3 ([.5,.7],[.4,.6],[.3,.4]) ([.4,.5],[.7,.9],[.6,.7]) 

e3 

([.3,.5],[.5,.8],[.2,.3]) 

([.5,.8],[.5,.7],[.2,.3]) 

([.1,.3],[.7,.9],[.5,.7]) 

Table19:Tabular representation of  1,Af E

Then      , , ,
A A

f A
E f E E


   : 

U e1 e2 

u1 ([0,0],[1,1],[1,1]) ([0,0],[1,1],[1,1]) 

u2 ([0,0],[1,1],[1,1]) ([0,0],[1,1],[1,1]) 

u3 ([0,0],[1,1],[1,1]) ([0,0],[1,1],[1,1]) 

e3 

([0,0],[1,1],[1,1]) 

([0,0],[1,1],[1,1]) 

([0,0],[1,1],[1,1]) 

Table20:Tabular representation of  ,
A

f
E

     1 1
, , ,

A A A
g E f E f E  : 

U e1 e2 

u1 ([.1,.6],[.6,.7],[.3,1]) ([.1,.3],[.4,.6],[.2,.6]) 

u2 ([.1,.3],[.6,.7],[.5,.8]) ([0,.5],[.4,.5],[.4,1]) 

u3 ([.4,.7],[.4,.6],[.6,.9]) ([0,.3],[.7,.9],[.6,.8]) 

e3 

([.2,.5],[.5,.8],[.4,.9]) 

([0,.3],[.6,.9],[.2,.7]) 

([.1,.3],[.7,.9],[.5,.7]) 

Table21:Tabular representation of  1 ,Ag E

     2 2
, , ,

A A A
g E f E f E  :

U e1 e2 

u1 ([.4,.6],[.6,.7],[.4,.9]) ([.2,.3],[.4,.6],[.7,.9]) 

u2 ([.2,.3],[.4,.8],[.5,.7]) ([.4,.6],[.4,.5],[.2,.5]) 

u3 ([.3,.7],[.4,.6],[.6,.7]) ([.4,.5],[.7,.9],[.6,.7]) 

e3 

([.3,.5],[.5,.8],[.2,.3]) 

([.1,.3],[.5,.7],[.6,.8]) 

([.1,.3],[.7,.9],[.3,.8]) 

Table22:Tabular representation of  2 ,Ag E

     3 3
, , ,

A A A
g E f E f E  :

U e1 e2 

u1 ([.1,.6],[.6,.8],[.4,1]) ([.1,.3],[.4,.6],[.7,.9]) 

u2 ([.1,.3],[.6,.8],[.5,.8]) ([0,.5],[.4,.5],[.4,1]) 

u3 ([.3,.7],[.4,.6],[.6,.9]) ([0,.3],[.7,.9],[.6,.8]) 

e3 

([.2,.5],[.5,.8],[.4,.9]) 

([0,.3],[.6,.9],[.6,.8]) 

([.1,.3],[.7,.9],[.5,.8]) 

Table23:Tabular representation of  3 ,Ag E

     4 4
, , ,

A A A
g E f E f E  : 

U e1 e2 

u1 ([.2,.5],[.5,.8],[.4,.9]) ([.2,.5],[.5,.8],[.4,.9]) 

u2 ([0,.3],[.6,.9],[.6,.8]) ([0,.3],[.6,.9],[.6,.8]) 

u3 ([.1,.3],[.7,.9],[.5,.8]) ([.1,.3],[.7,.9],[.5,.8]) 

e3 

([.3,.5],[.5,.8],[.2,.3]) 

([.1,.3],[.5,.7],[.2,.7]) 

([.1,.3],[.7,.9],[.5,.7]) 

Table24:Tabular representation of  4 ,Ag E

Then 
         ,

1 2
, , , , , , , ,

A A
f E f A A A

E f E g E g E 

 4

,
A

g E  is an interval valued neutrosophic soft subspace
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topology for 
1  and 

  ,
, ,

A
A f E

f E   is called interval 

valued neutrosophic soft subspace of  1, ,A E  . 

Theorem 5.4: Let  , ,A E   be an IVNS-topological space 

on  ,A E , ß  be an IVNS-basis for   and 

   , ,
A A

f E E . Then the family 

        ,
ß = , , : , ß

A
A A Af E

f E g E g E   is an IVNS-basis 

for subspace topology 
 ,Af E
 . 

Proof: Let    ,
,

A
A f E

h E   be arbitrary, then there exists 

an IVNSS  ,
A

g E   such that

     , , ,
A A A

h E f E g E  . Since ß  is a basis for  , 

therefore there exists a sub collection   , :
i

A
E i I   of 

ß  such that    , ,
i

A A
i I

g E E


  . 

Now 

            , , , , , ,
i i

A A A A A A
i I i I

h E f E g E E f E E 
 

      

. Since      ,
, , ß

A

i

A A f E
f E E  , therefore 

 ,
ß

Af E
 is an

IVNS-basis for the subspace topology 
 ,Af E
 . 

Conclusion 

In this paper we introduce the concept of interval 

valued neutrosophic soft topology. Some basic theorem 

and properties of the above concept are also studied. IVN 

interior and IVN closer of an interval valued neutrosophic 

soft set are also defined. Interval valued neutrosophic soft 

subspace topology is also studied. 

In future there will be more research work in this 

concept, taking the basic definitions and results from this 

article. 
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Abstract  

Teacher  recruitment is  a  multi-criteria group  decision-

making  process  involving  subjectivity,  imprecision,  

and fuzziness that can be suitably represented by 

neutrosophic sets. Neutrosophic set, a generalization of 

fuzzy sets  is characterized by a truth-membership 

function, falsity-membership function and an 

indeterminacy-membership function. These functions are 

real standard or non-standard subsets of ] 0-, 1+[ .There is 

no restriction on the sum of the functions, so the sum lies 

between]0-, 3+[. A neutrosophic approach is a more 

general and suitable way to deal with imprecise 

information, when compared to a fuzzy set. The purpose 

of this study is to develop a neutrosophic multi-criteria 

group decision-making model based on hybrid score-

accuracy functions for teacher recruitment in higher 

education. Eight criteria obtained from expert opinions 

are considered for recruitment process. The criteria are 

namely academic performance index, teaching aptitude, 

subject knowledge, research experience, leadership 

quality, personality, management capacity, and personal 

values.  In this paper we use the score  and accuracy 

functions and the hybrid score-accuracy functions of 

single valued neutrosophic numbers (SVNNs) and 

ranking method for SVNNs. Then, multi-criteria group 

decision-making method with unknown weights for 

attributes and incompletely known weights for decision 

makers is used based on the hybrid score-accuracy 

functions under single valued neutrosophic environments. 

We use weight model for attributes based on the hybrid 

score-accuracy functions to derive the weights of 

decision makers and attributes from the decision matrices 

represented by the form of SVNNs to decrease the effect 

of some unreasonable evaluations. Moreover, we use the 

overall evaluation formulae of the weighted hybrid score-

accuracy functions for each alternative to rank the 

alternatives and recruit the most desirable teachers. 

Finally, an educational problem for teacher selection is 

provided to illustrate the effectiveness of the proposed 

model. 

Keywords: Multi-criteria group decision- making, Hybrid score-accuracy function, Neutrosophic numbers (SVNNs), and Single 

valued Neutrosophic set, Teacher recruitment  

Introduction 

Teacher recruitment problem can be considered as a multi-
criteria group decision-making  (MCGDM)  problem that 

generally consists  of  selecting  the  most  desirable 
alternative  from  all  the feasible  alternatives.  Classical 
MCGDM approaches [1,2,3] deal with crisp numbers i.e. 
the ratings and the weights of criteria are measured by 
crisp numbers.  However, it is not always possible to 
present the information by crisp numbers. In order to deal 

this sutuation fuzzy sets introduced by Zadeh in 1965 [4]  
can be used. Atanassov [5]extended  the  concept  of  fuzzy 
sets  to intuitionistic  fuzzy  sets(IFSs) in 1986.   Fuzzy and 
intuitionistic  MCGDM appraoches [6,7]  were studied  
with  fuzzy  or intuitionistic  fuzzy  numbers  i.e.  the  
ratings  and  the  weights  are expressed  by  linguistic  

variables  characterized  by  fuzzy  or intuitionistic  fuzzy 
numbers.   

Teacher recruitment process for higher education can be 

considered as  a spcial case of personnel selection. The 
traditional methods for recruiting teahers generally involve  
subjective judgment  of  experts,  which  make the 
accuracy of the results highly questionable. In order to 
tackle the problem, new methodology is urgently needed.  

Liang and Wang [8] studied  fuzzy multi-criteria decision 
making (MCDM) algorithm for personnel selection.  
Karsak [9] presented fuzzy MCDM approach based on 
ideal and anti-ideal solutions for the selection of the most 
suitable candidate. Günör et  al.[10]  developed  analytical 
hierarchy  process (AHP) for    personnel  selection. 

Dağdeviren  [11]    studied  a  hybrid  model based on 
analytical  network  process  (ANP)  and  modified 
technique  for order  preference  by  similarity  to  ideal  
solution  (TOPSIS)[12]    for supporting  the  personnel  
selection  process  in  the  manufacturing systems.  Dursun  
and  Karsak  [13]  discussed  fuzzy  MCDM approach by 
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using TOPSIS with 2-tuples for personnel selection. 
Personnel selection studies were well reviewed by 
Robertson  and  Smith  [14]. In their studies, Robertson  
and  Smith  [14]  investigated  the  role  of  job  analysis, 
contemporary  models  of  work  performance,  and  set  of 
criteria employed in personnel selection process. Ehrgott 

and Gandibleux [15] presented a comprehensive survey of 
the state of the art in MCDM. Pramanik and Mukhopadhay 
[16] presented a intuitionistic fuzzy MCDM approach for 
teacher selection based grey relational analysis.  

Though fuzzy and intuitionistic fuzzy MCDM problems 
are widely studied, but indeterminacy should be 
incorportated in the model formulation of the problems. 
Inderterminacy plays an important role in decision making 
process.  So neutrosophic set [17] generalization of 

intuitionistic fuzzy sets should be incorporated in the 
decision making process. Neutrosophic set was introduced 
to represent mathematical model of uncertainty, 
imprecision, and inconsistency. Biswas et al. [18] 
presented entropy based grey relational analysis method 
for multi-attribute decision-making under single valued 

neutrosopic assesment.  Biswas et al.[19] also studied a 
new methodology to deal neutrosophic multi-attribute 
decision-making problem. Ye [20] proposed the correlation 
coefficient of SVNSs for single valued neutrosophic multi-
critera decision-making problems.  

The ranking order of alternatives plays an important role in 

decision-making process. In this study, we present a multi-
criteria group decision-making approach for teacher 
recritment in higher education with unknown weights 
based on score and accuracy functions, hybrid score-
accuracy functions proposed by J. Ye [21] under simplified 
neutrosophic environment. 

 Rest of the paper is organized in the following way.  
Section II presents preliminaries of neutrosophic  sets and 
Section III presents  operational  definitions.  Section IV 

presents methodology based on  hybrid score-accuracy 
functions Section V  is devoted to present an example of 
teacher  selection in higher  education based on hybrid 
score-accuracy functions . Section VI presents conclusion, 
finally, section VII presents the concluding remarks. 

Section II 

Mathematical preliminaries on Neutrosophic set 

Some basic concepts of SNSs: 

The neutrosophic set is a part of neutrosophy and 

generalizes fuzzy set, IFS, and IVIFS from philosophical 

point of view [22].  

Definition1. Neutrosophic set [22] 

Let X be a space of points (objects), with a generic element 

in X denoted by x. A neutrosophic set  A in  X is 

characterized by a truth-membership function TA(x), an 

indeterminacy-membership function IA(x), and a falsity-

membership function FA(x). The functions TA(x), IA(x) and 

FA(x) are real standard or nonstandard subsets of  ]0, 1[, 

i.e.,TA(x): X →]0-, 1+[,

IA(x): X →]0-, 1+[, and FA(x): X →]0-, 1+[. Hence, there is

no restriction on the sum of TA(x), IA(x) and FA(x) and 0-

≤sup TA(x) + sup IA(x) + sup FA(x) ≤3+.

Definition 2. Single valued neutrosophic sets [23]. 

Let X be a space of points (objects), with a generic element 

in X denoted by x. A neutrosophic set  A in  X is 

characterized by a truth-membership function  TA(x), an 

indeterminacy-membership function IA(x) and a falsity-

membership function FA(x). If the functions TA(x), IA(x) 

and FA(x) are singleton subintervals/subsets in the real 

standard [0, 1], that isTA(x): X →[0, 1], IA(x): X →[0, 1], 

and FA(x): X →[0, 1]. Then, a simplification of the 

neutrosophic set A is denoted by 

      Xx/xF,xI,xT,xA AAA  which is called a 

SNS. It is a subclass of a neutrosophic set and includes 

SVNS and INS. In this paper, we shall use the SNS whose 

values of the functions TA(x), IA(x) and FA(x) can be 

described by three real numbers (i.e. a SVNS) in the real 

standard [0, 1].  

Definition 3. Single valued neutrosophic number (SNN) 

[21] 

Let X be a universal set. A SVNS A in X is characterized 

by a truth-membership function TA(x), an indeterminacy-

membership function IA(x), and a falsity-membership 

function FA(x). Then, a SVNS A can be denoted by the 

following symbol:  

      Xx/xF,xI,xT,xA AAA   , where TA(x),  

IA(x), FA(x) [0, 1] for each point x in X. Therefore, the 

sum of TA(x), IA(x) and FA(x) satisfies the condition 0 ≤ 

TA(x) + IA(x) + FA(x) ≤3. For a SVNS A in X, the triple 

     xF,xI,xT AAA is called single valued 

neutrosophic number (SVNN), which is the fundamental 

element of a SVNS. 

Definition 4. Complement of SVNS [21] 

The complement of a SVNS A is denoted by Ac  and 

defined as TA
c(x) = FA(x), IA

c(x) = 1 – IA(x),

FA
c(x) = TA(x) for any x in X. Then, it can be denoted by

the following form: 

      Xx/xT,xI1,xF,xA AAA
c 
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For two SVNSs A and B in X, two of their relations are 

defined as follows: A SVNS A is contained in the other 

SVNS B, A ⊆ B, if and only if TA(x) ≤ TB(x), IA(x) ≥ IB(x), 

FA(x) ≥ FB(x) for any x in X.  

Two SVNSs A and B are equal, written as A= B, if and 

only if A ⊆ Band B ⊆ A.  

Ranking methods for SVNNs 

In this subsection, we define the score function, accuracy 

function, and hybrid score-accuracy function of a SVNN, 

and the ranking method for SVNNs.  

Definition 5  Score function and accuracy function [21]         

Let a= ( ) ( ) ( )aF,aI,aT be a SVNN. Then, the score 

function and accuracy function of the SVNN can be 

presented, respectively, as follows:  

s(a) = (1 + T(a) − F(a))/2 for s(a)[0, 1]             (1) 

h(a) = (2 + T(a) −F(a) −I(a))/3 for h(a)  [0, 1]     (2)                                                                                    

For the score function of a SVNN a, if the truth-

membership T(a) is bigger and the falsity-membership F(a) 

are smaller, then the score value of the SVNN a is greater. 

For the accuracy function of a SVNN a, if the sum of T(a), 

1−I(a) and 1−F(a) is bigger, then the statement is more 

affirmative, i.e., the accuracy of the SVNN a is higher. 

Based on score and accuracy functions for SVNNs, two 

theorems  are stated below. 

Theorem 1. 

For any two SVNNs a1 and a2, if a1> a2, then s(a1) > s(a2). 

Theorem 2. 

For any two SVNNs a1 and a2, if s(a1) = s(a2) and a1  a2, 

then h(a1)   h(a2).  

For proof, see [21] 

Based on theorems 1 and 2, a ranking method between 

SVNNs can be given by the following definition.  

Definition [21] 

 Let a1 and a2 be two SVNNs. Then, the ranking method 

can be defined as follows:  

(1) If s(a1) > s(a2), then a1> a2;  

(2) If s(a1) = s(a2) and h(a1)  h(a2), then a1  a2; 

Section III 

Operational definitions of the terms stated in the 
problem 

i) Academic performance: Academic performance

implies the percentage of marks (if grades are given, 

transform it into marks) obtained in post graduate 

examinations.   

ii) Teaching aptitude: Degree of knowledge in strategies

of instruction and information communication technology 

(ICT). 

iii) Subject knowledge: Degree of knowledge of a person

in his/her respective field of study to be delivered during 

his/her instruction.  

iv) Research experience: Research experience of a person

implies his or her contribution of new knowledge in the 

form of publication in reputed peer reviewed journals with 

ISSN.   

v) Leadership quality: Leadership quality of a person

implies the ability a) to challenge status quo b) to 

implement rational decision  

vi) Personality: Defining and explaining personality are of

prime importance while recruiting teachers. But how do 
psychologists measure and study personality? Four distinct 
methods are most common, namely behavioral observation, 
interviewing, projective tests, and questionnaires. McCrae 
& Costa [24] studied five-factor model of personality. Five 
factors of personality are extraversion versus introversion, 

agreeableness versus antagonism, conscientiousness versus 
undirectedness, neuroticism versus emotional stability, and 
openness versus not openness. In this study personality 
implies the five factors of personality traits of five factor 
model. 
vii) Management capacity: Management capacity of a

person implies his/her ability to manage in the actual 
teaching learning process. 

viii) Values: Values will implicitly refer to personal values
that serve as guiding principles about how individuals 
ought to behave. 

Section IV 

Multi-criteria group decision-making methods 
based on hybrid score-accuracy functions 

In a multi-criteria group decision-making problem, let A= 

{A1, A2, …, Am} be a set of alternatives and let C= {C1, C2, 

…, Cn} be a set of attributes. Then, the weights of decision 

makers and attributes are not assigned previously, where 

the information about the weights of the decision makers is 

completely unknown and the information about the 

weights of the attributes is incompletely known in the 

group decision-making problem. In such a case, we 

develop two methods based on the hybrid score-accuracy 

functions for multiple attribute group decision-making 

problems with unknown weights under single valued 

neutrosophic and interval neutrosophic environments. 

Multi-criteria group decision-making method in single 

valued neutrosophic setting 

In the group decision process under single valued 

neutrosophic environment, if a group of t decision makers 
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or experts is required in the evaluation process, then the 

kth decision maker can provide the evaluation information 

of the alternative Ai (i= 1, 2, …, m) on the attribute Cj (j= 1, 

2, …, n), which is represented by the form of a SVNS:  

{ }C∈C/)C(F,)C(I,)C(T,C=A jj
k
Aij

k
Aij

k
Aij

k
i

Here, 3≤)C(F+)C(I+)C(T≤0 j
k
Aij

k
Aij

k
Ai

,

[ ]1,0∈)C(T j
k
Ai

, [ ]1,0∈)C(I j
k
Ai

, [ ]1,0∈)C(F j
k
Ai

, 

for k = 1, 2, …., t, j=1, 2, …., n, i=1, 2, ….,m 

For convenience, F,I,T=a k
ij

k
ij

k
ij

k
ij   is denoted as a SVNN 

in the SVNS. Ak
i (k= 1, 2, …t; i= 1, 2, …, m; j= 1, 2, …, 

n). Therefore, we can get the k-th single valued 

neutrosophic decision matrix  n×m
k
ij

k )A(=D  (k= 1, 2, …, t). 

Then, the group decision-making method is described as 

follows. 

Step1: 

Calculate hybrid score-accuracy matrix 

The hybrid score-accuracy matrix n×m
k
ij

k )Y(=Y (k= 1, 2, 

…, t; i= 1, 2, …, m; j= 1, 2, …, n) is obtained from the 

decision matrix  n×m
k
ij

k )A(=D  by the following formula: 

)F-I-T+2)(α-1(
3

1
+)F-T+1(α

2

1
=Y k

ij
k
ij

k
ij

k
ij

k
ij

k
ij     (3)                                                                

Step2: 

Calculatethe average matrix  

From the obtained hybrid score-accuracy matrices, the 

average matrix  n×m
*
ij

* )Y(=Y (k= 1, 2, …, t; i= 1, 2, …, m; 

j= 1, 2, …, n) is calculated by ∑ )Y(
t

1
=Y

t
1=k

k
ij

*
ij        (4)                                                   

The collective correlation coefficient between Y
k (k=

1, 2, …, t) and Y
* represents as follows:

∑ .

∑ )Y(∑ )Y(

∑ YY
=e

m
1=i

n
1=j

2*
ij

2
n

1=j
k
ij

n
1=j

*
ij

k
ij

k (5) 

Step3: 

Determination decision maker’s weights 

In practical decision-making problems, the decision 

makers may have personal biases and some individuals 

may give unduly high or unduly low preference values 

with respect to their preferred or repugnant objects. In this 

case, we will assign very low weights to these false or 

biased opinions. Since the ‘‘mean value’’ is the 

‘‘distributing center’’ of all elements in a set, the average 

matrix Y
* is the maximum compromise among all

individual decisions of the group. In mean sense, a hybrid 

score-accuracy matrix Yk  is closer to the average one  Y*. 

Then, the preference value (hybrid score-accuracy value) 

of the k-th decision maker is closer to the average value 

and his/her evaluation is more reasonable and more 

important, thus the weight of the k-th decision maker is 

bigger. Hence, a weight model for decision makers can be 

defined as: 

∑ e

e
=λ

t
1=k k

k
k      (6) 

Where 1≤λ≤0 k , 1=∑ λt
1=k k  for k=1, 2, ….,t. 

Step4: 

Calculate collective hybrid score-accuracy matrix 

For the weight vector T
k21 )λ,,λ,λ(=λ  of decision makers

obtained from eqation.(6), we accumulate all individual 

hybrid score-accuracy matrices of n×m
k
ij

k )Y(=Y (k= 1, 2, 

…, t; i= 1, 2, …, m; j= 1, 2, …, n) into a collective hybrid 

score-accuracy matrix nmij)Y(Y  by the following 

formula: 

YY k
ij

t
1k kij     (7) 

Step5: 

Weight model for attributes 

For a specific decision problem, the weights of the 

attributes can be given in advance by a partially known 

subset corresponding to the weight information of the 

attributes, which is denoted by W. Reasonable weight 

values of the attributes should make the overall averaging 

value of all alternatives as large as possible because they 

can enhance the obvious differences and identification of 

various alternatives under the attributes to easily rank the 

alternatives. To determine the weight vector of the 

attributes Ye introduced the following optimization model: 

ij
m

1=i
n

1=j jY∑ ∑ W
m

1
=Wmax

Subject to, 

1=∑ Wn
1=j j

 Wj >0                                                       (8)  

This is a linear programming problem, which can be easily 

solved to determine the weight vector of the attributes W= 

(W1,W2,…,Wn)
T

Step6: 

Ranking alternatives  

To rank alternatives, we can sum all values in each row of 

the collective hybrid score-accuracy matrix corresponding 

to the attribute weights by the overall weighted hybrid 

score-accuracy value of each alternative Ai (i= 1, 2, …, m): 

ij
n

1=j ji Y∑ W=)A(M
    (9) 
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According to the overall hybrid score-accuracy values of 

M(Ai) (i= 1, 2, …, m), we can rank alternatives Ai (i= 1, 2, 

…, m) in descending order and choose the best one. 

Step7: End 

Section V 

Example of Teacher Recruitment Process 

Suppose  that  a  university  is  going  to  recruit  in  the  

post  of  an assistant  professor for a particular subject..  
After initial screening, five  candidates  (i.e. alternatives) 
A1, A2, A3, A4, A5  remain for further evaluation. A 
committee of four decision makers or experts, D1, D2, D3, 
D4 has  been  formed  to  conduct  the  interview  and  
select  the  most appropriate  candidate.  Eight  criteria  

obtained  from  expert opinions,  namely,  academic 
performances  (C1),  subject knowledge  (C2),  teaching 
aptitude  (C3),  research-  experiences (C4),  leadership 
quality  (C5),  personality  (C6), management capacity  (C7) 
and values  (C8)  are  considered  for  recruitment  criteria. 
If four experts are required in the evaluation process, then 

the five possible alternatives Ai (i= 1, 2, 3, 4, 5) are 
evaluated by the form of SVNNs under the above eight 
attributes on the fuzzy concept "excellence". Thus the four 
single valued neutrosophic decision matrices can be 
obtained from the four experts and expressed, respectively, 
as follows:(see Table 1, 2, 3, 4). 

Table1: Single valued neutrosophic decision matrix 
D1= 

3.,1.,7.2.,1.,7.1.,1.,7.3.,1.,7.2.,2.,7.4.,3.,7.3.,3.,8.2.,2.,8.A

4.,2.,7.3.,2.,7.2.,2,.7.2.,2.,7.2.,1.,7.4.,3.,7.3.,2.,8.0.,1.,8.A

3.,3.,7.3.,1.,7.3.,3.,6.3.,2.,7.1.,3.,7.3.,4.,7.2.,3.,8.2.,1.,8.A

4.,3.,7.2.,2.,7.2.,4.,6.2.,3.,7.3.,3.,7.2.,3.,7.1.,2.,8.2.,2.,8.A

3.,4.,7.1.,3.,7.2.,4.,7.1.,4.,7.2.,2.,7.1.,2.,7.1.,1.,8.1.,1.,8.A

CCCCCCCC.

5

4

3

2

1

87654321

Table2: Single valued neutrosophic decision matrix 

D2= 

3.,2.,7.2.,2.,7.2.,1.,7.3.,2.,7.2.,2.,7.3.,3.,7.3.,2.,8.2.,1,.8.A

4.,3.,7.3.,3.,7.2.,2.,7.2,.3.,7.2.,1.,7.4.,3.,7.2.,2.,8.0.,1.,8.A

3.,2.,7.3.,2.,7.3.,3.,6.3.,3.,7.2.,3.,7.3.,3.,7.3.,3.,8.2.,2.,8.A

4.,4.,7.2.,3.,7.3.,4.,6.2.,2.,7.3.,3.,7.3.,3.,7.2.,2.,8.2.,2.,8.A

3.,3.,7.2.,3.,7.2.,4.,7.2.,4.,7.2.,1.,7.2.,2.,7.1.,1.,8.1.,2.,8.A

CCCCCCCC.

5

4

3

2

1

87654321

Table3: Single valued neutrosophic decision matrix 

D3= 

3.,2.,7.2.,2.,7.2.,1.,7.3.,1.,7.2.,1.,7.4.,2.,7.3.,2.,8.2.,1.,8.A

3.,2.,7.3.,2.,7.2.,2.,7.2.,2.,7.2.,1.,7.2.,3.,7.2,.2.,8.0.,1.,8.A

4.,3.,7.3.,2.,7.3.,2.,6.2.,2.,7.2.,3.,7.3.,3.,7.2.,2.,8.2.,2.,8.A

3.,3.,7.2.,3.,7.4.,4.,6.2.,3.,7.3.,2.,7.2.,3.,7.1.,2.,8.1.,2.,8.A

3.,3.,7.2.,3.,7.2.,3.,7.1.,3.,7.1.,2.,7.2.,2.,7.1.,1.,8.0.,1.,8.A

CCCCCCCC.

5

4

3

2

1

87654321

Table4: Single valued neutrosophic decision matrix 

D4= 

3.,2.,7.2.,1.,7.1.,1.,7.3.,1.,7.2.,2.,7.3.,3.,7.0.,3.,8.2.,2.,8.A

4.,2.,7.3.,2.,7.2.,2.,7.2.,2.,7.2.,1.,7.3.,3.,7.3.,2.,8.0.,1.,8.A

3.,3.,7.3.,3.,7.2.,3.,6.2.,2.,7.2.,3.,7.3.,3.,7.2.,2.,8.2.,1.,8.A

3.,3.,7.2.,2.,7.3.,4.,6.2.,3.,7.3.,1.,7.2.,3.,7.1.,2.,8.0.,2.,8.A

3.,4.,7.1.,2.,7.2.,2.,7.1.,3.,7.2.,2.,7.1.,2.,7.1.,2.,8.1.,2.,8.A

CCCCCCCC.

5

4

3

2

1

87654321

Thus, we use the proposed method for single valued 

neutrosophic group decision-making to get the most 
suitable teacher. We take  = 0.5 for demonstrating the 
computing procedure of the proposed method. For the 
above four decision matrices, the following hybrid score-
accuracy matrices are obtained by equation(3):(see Table 5, 
6, 7, 8) 

Table5: Hybrid score accuracy matrix for D1 
Y1= 

4667.15500.16333.14667.15167.13167.14833.16000.1A

3500.14333.15167.15167.15500.13167.15167.18000.1A

4000.14667.13167.14333.15667.13667.16500.16333.1A

3167.15167.13667.14833.14000.14833.16833.16000.1A

3667.15667.14500.15333.15167.16000.17167.17667.1A

CCCCCCCC.

5

4

3

2

1

87654321

Table6: Hybrid score accuracy matrix for D2 
Y2= 

4333.15167.15500.14333.15167.14000.15167.16333.1A

3167.14000.15167.14833.15500.13167.16000.18000.1A

4333.14333.13167.14000.14833.14000.14833.16000.1A

2833.14833.12833.15167.14000.14000.16000.16000.1A

4000.14833.14500.14500.15500.15167.17167.16833.1A

CCCCCCCC.

5

4

3

2

1

87654321

Table7: Hybrid score accuracy matrix for D3 
Y3= 

4333.15167.15500.14667.15500.13500.15167.16333.1A

4333.14333.15167.15167.15500.14833.16000.18000.1A

3167.14333.13500.15167.14833.14000.16000.16000.1A

4000.14833.12000.14833.14333.14833.16833.16833.1A

4000.14833.14833.15667.16000.15167.17167.18000.1A

CCCCCCCC.

5

4

3

2

1

87654321

Table8: Hybrid score accuracy matrix for D4 

Y4= 

4333.15500.16333.14667.15167.14000.17333.16000.1A

3500.14333.15167.15167.15500.14000.15167.18000.1A

4000.14000.14000.15167.14833.14000.16000.16333.1A

4000.15167.12833.14833.14667.14833.16833.17333.1A

3667.16000.15167.15667.15167.16000.16833.16833.1A

CCCCCCCC.

5

4

3

2

1

87654321

      From the above hybrid score-accuracy matrices, by 
using equation (4) we can yield the average matrix Y*.(see 
Table 9) 
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Table9: The average matrix 
Y*= 

4417.15334.15917.14584.13450.13667.15625.16167.1A

3625.14250.15167.15084.15500.13792.15584.18000.1A

3875.14333.13459.14792.15042.13917.15833.16167.1A

3625.15000.12833.14917.14375.14625.16500.16417.1A

3834.15333.14750.15292.15459.15584.17084.17208.1A

CCCCCCCC.

5

4

3

2

1

87654321

  From the  equations. (5) and (6), we determine the 
weights of the three decision makers as follows:

2505.01  2510.02  2491.03  2494.03 

Hence, the hybrid score-accuracy values of the different 

decision makers' evaluations are aggregated[48]  by 
equation (7) and the following collective hybrid score-
accuracy matrix can be obtain as follows(see Table 10): 

Table10: Collective hybrid score accuracy- matrix 

Y= 

4417.15334.15918.14584.13451.13667.15626.16167.1A

3626.14250.15167.15085.15500.13793.15584.18001.1A

3875.14332.13458.14792.15043.13917.15834.16168.1A

3624.15000.12833.14918.14375.14624.16500.16417.1A

3834.15334.14751.15292.15459.15584.17085.17209.1A

CCCCCCCC.

5

4

3

2

1

87654321

Assume that the information about attribute weights is 

incompletely known weight vectors, ,2.0W1.0 1 

,2.0W1.0 2  ,2.0W1.0 3  ,2.0W1.0 4 

,2.0W1.0 5  ,2.0W1.0 6  ,2.0W1.0 7 

2.0W1.0 8   given by the decision makers,  

By using the linear programming model (8), we obtain the 

weight vector of the attributes as: 

[ ]T1.0,1.0,1.0,1.0,1.0,1.0,2.0,2.0=W

By applying eqation (9), we can calculate the overall 

hybrid score-accuracy values )A(M i (i=1, 2, 3, 4, 5): 

58842.1=)A(M 1 , 51208.1=)A(M 2 , 49421.1=)A(M 3 ,

54591.1=)A(M 4 , 50957.1=)A(M 5  

According to the above values of M(Ai) (i= 1, 2, 3, 4, 5), 

the ranking order of the alternatives is  

A1 > A4 > A2 > A5 > A3. Then, the alternative A1 is the best 

teacher.  

 By similar computing procedures, for different values of 

  the ranking orders of the teachers are shown in the 

Table 11. 

Section VI 

Conclusion 
In this paper we employ the score and accuracy functions, 
hybrid score-accuracy functions of SVNNs to recruitt best 
teacher for higher education under single valued 
neutrosophic environments, where the weights of decision 
makers are completely unknown and the weights of 
attributes are incompletely known. Here, the weight values 

obtained from these weight models mainly decrease the 
effect of some unreasonable evaluations, e.g. the decision 
makers may have personal biases and some individuals 
may give unduly high or unduly low preference values 
with respect to their preferred or repugnant objects. Then, 
we use overall evaluation formulae of the weighted hybrid 

score-accuracy functions for each alternative to rank the 
alternatives and select the most desirable teacher. The 
advantages of the model for group decision-making 
methods with single valued neutrosophic information is 
provide simple calculations and good flexibility but also 
handling with the group decision-making problems with 

unknown weights by comparisons with other relative 
decision-making methods under single valued neutrosophic 
environments. In future, we shall continue working in the 
extension and application of the  methods to other domains, 
such as best raw material selection for industries. 

Table11: The ranking order of the teachers taking different 

values of   

 M(Ai)  Ranking order 

0.0 M(A1)=1.61872, 

M(A2)=1.54988, 

M(A3)=1.54441, 

 M(A4)=1.56961, 

M(A5)=1.54697 

A1 > A4 > A2 > A5 > A3. 

0.3 M(A1)=1.60052, 

M(A2)=1.52518, 

M(A3)=1.51429, 

 M(A4)=1.55541, 

M(A5)=1.52317 

A1 > A4 > A2 > A5 > A3. 

0.5 M(A1)=1.58842, 

M(A2)=1.51208, 

M(A3)=1.49426, 

 M(A4)=1.54591, 

M(A5)=1.50957 

A1 > A4 > A2 > A5 > A3. 

0.7 M(A1)=1.57632, 

M(A2)=1.49898, 

M(A3)=1.47404, 

 M(A4)=1.53651, 

M(A5)=1.49307 

A1 > A4 > A2 > A5 > A3. 

1.0 M(A1)=1.55822, 

M(A2)=1.48928, 

M(A3)=1.44392, 

M(A4)=1.52231, 

M(A5)=1.48467 

A1 > A4 > A2 > A5 > A3. 
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Abstract. In this paper we extend soft neutrosophic rings 

and soft neutrosophic fields to soft neutrosophic birings, 

soft neutrosophic N-rings and soft neutrosophic bifields 

and soft neutrosophic N-fields. We also extend soft neu-

trosophic ideal theory to form soft neutrosophic biideal 

and soft neutrosophic N-ideals over a neutrosophic biring 

and soft neutrosophic  N-ring . We have given examples 

to illustrate the theory of soft neutrosophic birings, soft 

neutrosophic N-rings and soft neutrosophic fields and 

soft neutrosophic N-fields and display many properties of 

these. 

Keywords: Neutrosophic biring, neutrosophic N-ring, neutrosophic bifield,neutrosophic N-field,  soft set, soft neutro-
sophic  biring, soft neutrosophic N-ring, soft neutrosophic bifield, soft neutrosophic N-field.

1 Introduction 

     Neutrosophy is a new branch of philosophy which 

studies the origin and features of neutralities in the nature. 

Florentin Smarandache in 1980 firstly introduced the con-

cept of neutrosophic logic where each proposition in neu-

trosophic logic is approximated to have the percentage of 

truth in a subset T, the percentage of indeterminacy in a 

subset I, and the percentage of falsity in a subset F so that 

this neutrosophic logic is called an extension of fuzzy  log-

ic. In fact neutrosophic set is the generalization of classical 

sets, conventional fuzzy set, intuitionistic fuzzy set and in-

terval valued fuzzy set. This mathematical tool is used to 

handle problems like imprecise, indeterminacy and incon-

sistent data etc. By utilizing neutrosophic theory, Vasantha 

Kandasamy and Florentin Smarandache dig out neutro-

sophic algebraic structures.  Some of them are neutrosoph-

ic fields, neutrosophic vector spaces, neutrosophic groups, 

neutrosophic bigroups, neutrosophic N-groups, neutro-

sophic semigroups, neutrosophic bisemigroups, neutro-

sophic N-semigroup, neutrosophic loops, neutrosophic bi-

loops, neutrosophic N-loop, neutrosophip groupoids, and 

neutrosophic bigroupoids and so on. 

Molodtsov in  11  laid down the stone foundation of a

richer structure called soft set theory which is free from the 

parameterization inadequacy, syndrome of fuzzy se theory, 

rough set theory, probability theory and so on. In many ar-

eas it has been successfully applied such as smoothness of 

functions, game theory, operations research, Riemann inte-

gration, Perron integration, and probability. Recently soft 

set theory has attained much attention since its appearance 

and the work based on several operations of soft sets intro-

duced in   2,9,10 .  Some more exciting properties and

algebra may be found in 1 . Feng et al. introduced the soft

semirings 5 . By means of level soft sets an adjustable

approach to fuzzy soft sets based decision making can be 

seen in 6 . Some other new concept combined with fuzzy

sets and  rough sets was presented in 7,8 . AygÄunoglu

et al. introduced the Fuzzy soft groups 4 .

      Firstly, fundamental and basic concepts are given for 
neutrosophic birings, neutrosophic N-rings, neutrosohic bi-
fields and soft neutrosophic N-fields . In the next section 
we presents  the newly defined notions and results in soft 
neutrosophic birings, soft neutrosophic N-rings  and soft 
neutrosophic bifields and soft neutrosophic N-fields. Vari-
ous types of soft neutrosophic biideals and N-ideals of 
birings and N-rings  are defined and elaborated with the 
help of examples. 

2 Fundamental Concepts 

In this section, we give a brief description of neutrosophic 

birings, neutrosophic N-rings, neutrosophic bifields and 

neutrosophic N-fields respectively. 
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Definition 2.1. Let  ( (R), , )BN   be a non-empty set 

with two binary operations   and .  ( (R), , )BN   is 

said to be a neutrosophic biring if 1 2(Rs)BN R R 

where atleast one of  1(R , , )  or 2(R , , )  is a neutro-

sophic ring and other is just a ring. 1R  and 2R  are proper 

subsets of (R).BN

Definition 2.2: Let 1 2(R) (R , , ) (R , , )BN      be a 

neutrosophic biring. Then  (R)BN  is called a commuta-

tive neutrosophic biring if each 1(R , , )  and 2(R , , )

is a commutative neutrosophic ring. 

Definition 2.3: Let 1 2(R) (R , , ) (R , , )BN      be a 

neutrosophic biring. Then  (R)BN  is called a pseudo 

neutrosophic biring if each 1(R , , )  and 2(R , , )  is a 

pseudo neutrosophic ring. 

Definition 2.4 Let 1 2( (R) ; , )BN R R    be a neutro-

sophic biring. A proper subset  ( , , )T   is said to be a 

neutrosophic subbiring of (R)BN  if 

1)  1 2T T T   where 1 1T R T   and 

2 2T R T  and 

2) At least one of 1( , )T  or 2( , )T   is a neutrosophic 

ring. 

Definition 2.5: If both 1(R , )  and 2(R , )  in the above 

definition 2.1 are neutrosophic rings then we call  

( (R), , )BN   to be a strong neutrosophic biring. 

Definition 2.6 Let 1 2( (R) ; , )BN R R    be a neutro-

sophic biring and let ( , , )T   is a neutrosophic subbiring 

of (R)BN . Then ( , , )T   is called a neutrosophic biide-

al of ( )BN R  if 

1) 1 2T T T   where 1 1T R T   and 

2 2T R T  and 

2) At least one of 1( , , )T   or 2( , , )T   is a neutrosoph-

ic ideal. 

If both 1( , , )T   and 2( , , )T  in the above  definition are 

neutrosophic ideals, then we call ( , , )T   to be a strong 

neutrosophic biideal of ( )BN R . 

Definition 2.7:  Let 1 2 1 2{N(R), ,..., , , ,..., }N   be a 

non-empty set with two N -binary operations defined on 

it. We call ( )N R  a neutrosophic N -ring  ( N  a positive 

integer)  if the following conditions are satisfied. 

1) 1 2N(R) ... NR R R     where each iR  is a 

proper subset of N(R)  i.e. 
i jR R  or 

j iR R  if  

i j . 

2) (R , , )i i i  is either a neutrosophic ring or a ring for 

1,2,3,...,i N . 

Definition 2.8:  If all the N -rings (R , )i i  in definition 

2.7  are neutrosophic rings  (i.e. for  1,2,3,...,i N ) 

then we call N(R)  to be a neutrosophic strong N -ring. 

Definition 2.9: Let 

1 2 1 2 1 2N(R) {R .... R , , ,..., , , ,..., }N N NR      

 be a neutrosophic  N -ring. A proper subset 

1 2 1 2{P ....P , , ,..., }N NP P       of N(R)  is said to 

be a neutrosophic N -subring if 

, 1,2,...,i iP P R i N    are subrings of iR  in which 

atleast some of the subrings are neutrosophic subrings. 

Definition 2.10:  Let 

1 2 1 2 1 2N(R) {R .... R , , ,..., , , ,..., }N N NR      

 be a neutrosophic  N -ring. A proper subset 

1 2 1 2 1 2{P .... , , ,..., , , ,..., }N N NP P P        

where t tP P R   for  1,2,...,t N  is said to be a 

neutrosophic N -ideal of ( )N R  if the following condi-

tions are satisfied. 

1) Each it is a neutrosophic subring  of

, 1,2,...,tR t N . 

2) Each it is a two sided ideal of tR  for 1,2,...,t N . 

If (P , , )i i i  in the above  definition are neutrosophic ide-

als, then we call (P , , )i i i  to be a strong neutrosophic N-

ideal of ( )N R . 

Definition 2.11:  Let  ( (F), , )BN   be a non-empty set 

with two binary operations   and .  ( (F), , )BN   is 
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said to be a neutrosophic bifiel if 
1 2(F)BN F F 

where atleast one of  
1(F , , )  or 

2(F , , )  is a neutro-

sophic field and other is just a field. 1F  and 2F  are proper 

subsets of (F).BN  

If in the above definition both 1(F , , )  and 2(F , , )  are 

neutrosophic fields, then we call ( (F), , )BN   to be a 

neutrosophic strong bifield. 

Definition 2.12:  Let 1 2(F) (F , , )BN F    be a neu-

trosophic bifield. A proper subset  ( , , )T   is said to be a 

neutrosophic subbifield of (F)BN  if 

1.  1 2T T T   where 1 1T F T   and 

2 2T F T  and 

2. At least one of 1( , )T  or 2( , )T   is a neutrosoph-

ic field and the other is just a field. 

Definition 2.13:  Let 1 2 1 2{N(F), ,..., , , ,..., }N   be a 

non-empty set with two N -binary operations defined on 

it. We call ( )N R  a neutrosophic N -field  ( N  a positive 

integer)  if the following conditions are satisfied. 

1. 1 2N(F) ... NF F F     where each iF  is a 

proper subset of N(F)  i.e. 
i jR R  or 

j iR R  if  i j . 

2. (R , , )i i i  is either a neutrosophic field or just a 

field for 1,2,3,...,i N .

If in the above definition each (R , , )i i i  is a neutro-

sophic field, then we call ( )N R  to be a strong neutro-

sophic N-field. 

Definition 2.14: Let 

1 2 1 2 1 2N(F) {F .... , , ,..., , , ,..., }N N NF F      

 be a neutrosophic N -field. A proper subset 

1 2 1 2 1 2{T .... T , , ,..., , , ,..., }N N NT T        of 

(F)N  is said to be a neutrosophic N -subfield if each  

( , )i iT   is a neutrosophic subfield  of  (F , , )i i i  for 

1,2,...,i N  where i iT F T  . 

3 Soft Neutrosophic Birings 

Definition 3.1: Let ( (R), , )BN   be a neutrosophic   
biring and ( , )F A  be a soft set over ( (R), , ).BN   Then 

( , )F A  is called soft neutrosophic biring if and only if 
( )F a  is a neutrosophic subbiring of ( (R), , )BN  for 

all .a A  

Example 3.2: Let 1 2(R) (R , , ) (R , , )BN      be a 
neutrosophic biring, where  1(R , , ) ( , , )I      

and 2(R , , ) ( , , )    . Let 1 2 3 4{ , , , }A a a a a  be a 
set of parameters. Then clearly ( , )F A  is a soft 
neutrosophic  biring over ( )BN R , where 

 1 2( ) 2 , 3 ,F a I F a I     

   3 45 , 6 2F a I F a I      . 

Theorem 3.3: Let  ,F A   and  H,A   be two soft

neutrosophic  birings  over  ( )BN R . Then their intersec-

tion  , ,F A H A   is again a soft neutrosophic

biring over  ( )BN R  .

Proof.  The proof is straightforward. 

Theorem 3.4:  Let  ,F A   and  ,H B   be two  soft

neutrosophic birings over  ( )BN R .  If  A B ,

then  , ,F A H B   is a soft neutrosophic  biring

over ( )BN R .

Proof. This is straightforward. 

Remark 3.5: The extended union of two soft  neutrosophic 

birings  ,F A   and  ,K B   over  ( )BN R  is not a

soft neutrosophic ring over  ( )BN R .

We check this by the help of  Examples. 

Remark 3.6: The restricted union of two soft neutrosophic  

rings  ,F A   and  ,K B   over  R I  is not a

soft neutrosophic ring over  .R I

Theorem 3.7: The  OR   operation of two soft neutro-

sophic  rings over  R I  may not be a soft neutro-

sophic  ring over R I . 

 One can easily check these remarks with the help of Ex-

amples. 

Theorem 3.8:  The extended intersection of two  soft neu 

trosophic  birings over  ( )BN R  is soft neutrosophic
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biring over  ( )BN R .

Proof. The proof is straightforward. 

Theorem 3.9:  The restricted intersection of two soft  neu-

trosophic birings over  ( )BN R  is  soft neutrosophic

biring over  ( )BN R .

Theorem 3.10: The AND  operation of two  soft neutro-

sophic  birings over  ( )BN R   is  soft neutrosophic  biring

over  ( )BN R .

Definition 3.11:  Let ,F A  be a soft set over a neutro-

sophic biring over ( )BN R . Then ( , )F A  is called an

absolute soft neutrosophic biring if ( ) ( )F a BN R  for

all .a A

Definition 3.12:  Let ( , )F A  be a soft set over a neutro-

sophic ring ( )BN R . Then ( , )F A  is called soft neutro-

sophic biideal over ( )BN R  if and only if ( )F a  is a neu-

trosophic biideal of ( )BN R .

Theorem 3.1.3:  Every soft neutrosophic biideal ( , )F A
over a neutrosophic biring ( )BN R  is trivially a soft neu-

trosophic biring but the converse may not be true. 

Proposition 3.14: Let ( , )F A  and ( , )K B  be two soft

neutosophic biideals over a neutrosophic biring  

( )BN R . Then

1. Their extended union ( , ) ( , )EF A K B  is

again a soft neutrosophic biideal over ( )BN R .

2. Their extended intersection ( , ) ( , )EF A K B
is again a soft neutrosophic biideal over 

( )BN R .

3. Their restricted union ( , ) ( , )RF A K B  is

again a soft neutrosophic biideal over ( )BN R .

4. Their restricted intersection ( , ) ( , )RF A K B
is again a soft neutrosophic biideal over 

( )BN R .

5. Their OR  operation ( , ) ( , )F A K B  is again

a soft neutrosophic biideal over ( )BN R .

6. Their AND  operation ( , ) ( , )F A K B  is

again a soft neutrosophic biideal over ( )BN R .

Definition 3.15: Let ( , )F A  and ( , )K B  be two soft

neutrosophic birings over ( )BN R . Then ( , )K B  is

called soft neutrosophic subbiring of ( , )F A , if

1. B A , and

2. ( )K a  is a neutrosophic subbiring of ( )F a  for

all a A .

Theorem 3.16:  Every soft biring  over a biring  is a soft 

neutrosophic subbiring of a soft  

neutrosophic biring  over the corresponding neutrosophic 

biring  if B A .

Definition 3.16: Let ( , )F A  and ( , )K B  be two soft

neutrosophic birings over ( )BN R . Then ( , )K B  is

called a soft neutrosophic  biideal of ( , )F A , if

1. B A , and

2. ( )K a  is a neutrosophic biideal of ( )F a  for all

a A .

Proposition 3.17:  All soft neutrosophic biideals are trivi-

ally soft neutrosophic subbirings. 

4 Soft Neutrosophic N-Ring 

Definition 4.1: Let 1 2( (R), , ,..., )NN     be a 

neutrosophic  N-ring and ( , )F A  be a soft set over 
( )N R  Then ( , )F A  is called soft neutrosophic N-ring if 

and only if ( )F a  is a neutrosophic sub N-ring of  
( )N R for all .a A  

Example 4.2: Let 

1 2 3(R) (R , , ) (R , , ) (R , , )N        be 
aneutrosophic 3-ring, where  

1(R , , ) ( , , )I     , 2(R , , ) ( , , )     and 

3(R , , ) ( , , )    . Let 1 2 3 4{ , , , }A a a a a  be a set 
of parameters. Then clearly ( , )F A  is a soft neutrosophic  
N-ring over ( )N R , where 

 1 2( ) 2 , 3 ,F a I F a I       

   3 45 2 , 6 2F a I F a I       
. 
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Theorem 4.3:  Let  ,F A   and  H,A   be two soft

neutrosophic  N-rings  over  ( )N R . Then their intersec-

tion  , ,F A H A   is again a soft neutrosophic N-

ring over  ( )N R  .

Proof.  The proof is straightforward. 

Theorem 4.4:  Let  ,F A   and  ,H B   be two  soft

neutrosophic N-rings over  ( )N R .  If  A B ,

then  , ,F A H B   is a soft neutrosophic  N-ring

over ( )N R .

Proof. This is straightforward. 

Remark 4.5: The extended union of two soft  neutrosophic 

N-rings  ,F A   and  ,K B   over  ( )BN R  is not a

soft neutrosophic ring over  ( )N R .

We can check this by the help of  Examples. 

Remark 4.6: The restricted union of two soft neutrosophic  

N-rings  ,F A   and  ,K B   over  ( )N R  is not a

soft neutrosophic N-ring over  ( )BN R

Theorem 4.7: The  OR   operation of two soft neutro-

sophic  N-rings over  ( )N R  may not be a soft neutro-

sophic  N-ring over ( )N R .

 One can easily check these remarks with the help of Ex-

amples. 

Theorem 4.8: The extended intersection of two  soft neu-

trosophic  N-rings over  ( )N R  is soft neutrosophic  Nring

over  ( )N R .

Proof. The proof is straightforward. 

Theorem. The restricted intersection of two soft  neutro-

sophic N-rings over  ( )N R  is  soft neutrosophic  N-ring

over  (R)N .

Proof. It is obvious. 

Theorem 4.9: The AND  operation of two  soft neutro-

sophic  N-rings over  ( )N R   is  soft neutrosophic  N-ring

over  ( )N R .

Definition 4.10: Let ,F A  be a soft set over a neutro-

sophic N-ring over ( )N R . Then ( , )F A  is called an ab-

solute soft neutrosophic N-ring if ( ) ( )F a N R  for all

.a A

Definition 4.11:  Let ( , )F A  be a soft set over a neutro-

sophic N-ring ( )N R . Then ( , )F A  is called soft neutro-

sophic N-ideal over ( )N R  if and only if ( )F a  is a neu-

trosophic N-ideal of ( )N R .

Theorem 4.12:  Every soft neutrosophic N-ideal ( , )F A
over a neutrosophic N-ring ( )N R  is trivially a soft neu-

trosophic N-ring but the converse may not be true. 

Proposition 4.13:  Let ( , )F A  and ( , )K B  be two soft

neutosophic N-ideals over a neutrosophic N-ring ( )N R .

Then 

1. Their extended intersection ( , ) ( , )EF A K B

is again a soft neutrosophic N-ideal over ( )N R .

2. Their restricted intersection ( , ) ( , )RF A K B

is again a soft neutrosophic N-ideal over ( )N R .

3. Their AND  operation ( , ) ( , )F A K B  is

again a soft neutrosophic N-ideal over ( )N R .

Remark 4.14: Let ( , )F A  and ( , )K B  be two soft neu-

tosophic N-ideals over a neutrosophic N-ring ( )N R .

Then 

1. Their extended union ( , ) ( , )EF A K B  is not

a soft neutrosophic N-ideal over ( )N R .

2. Their restricted union ( , ) ( , )RF A K B  is not

a soft neutrosophic N-ideal over ( )N R .

3. Their OR  operation ( , ) ( , )F A K B  is not a

soft neutrosophic N-ideal over ( )N R .

One can easily see these by the help of examples. 

Definition. 4.15: Let ( , )F A  and ( , )K B  be two soft

neutrosophic N-rings over ( )N R . Then ( , )K B  is called

soft neutrosophic sub N-ring of ( , )F A , if

1. B A , and

2. ( )K a  is a neutrosophic sub N-ring of ( )F a  for
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all a A .

Theorem 4.16: Every soft N-ring  over a N-ring  is a soft 

neutrosophic sub N-ring of a soft  

neutrosophic N-ring  over the corresponding neutrosophic 

N-ring  if B A .

Proof. Straightforward. 

Definition 4.17: Let ( , )F A  and ( , )K B  be two soft

neutrosophic N-rings over ( )N R . Then ( , )K B  is called

a soft neutrosophic  N-ideal of ( , )F A , if

1. B A , and

2. ( )K a  is a neutrosophic N-ideal of ( )F a  for all

a A .

Proposition 4.18: All soft neutrosophic N-ideals are trivi-

ally soft neutrosophic sub N-rings. 

5 Soft Neutrosophic Bifield 

Defintion 5.1: Let ( )BN K  be a neutrosophic bifield and

let ( , )F A  be a soft set over ( )BN K . Then ( , )F A  is

said to be soft neutrosophic bifield if and only if ( )F a  is a

neutrosophic subbifield of ( )BN K  for all a A .

Example 5.2:  Let ( )BN K I  be a

neutrosophic bifield of complex numbers. Let 

1 2{ , }A a a  be a set of parameters and let ( , )F A  be

a soft set of ( )BN K . Then (F,A)  is a soft neutrosophic

bifield over ( )BN K , where

1 2( ) , ( )F a I F a I . 

Where I  and I  are the neutosophic 

fields of real numbers and rational numbers. 

Proposition 5.3:  Every soft neutrosophic bifield is trivial-

ly a soft neutrosophic biring. 

Proof. The proof is trivial. 

Definition 5.4: Let ( , )F A  be a soft neutrosophic bifield 
over a neutrosophic bifield ( )BN K . Then ( , )F A  is  
called an absolute soft neutrosophic bifield if  

( ) ( )F a BN K , for all a A . 

Soft Neutrosophic N-field 

Defintion 5.4:  Let ( )N K  be a neutrosophic N-field and

let ( , )F A  be a soft set over ( )N K . Then ( , )F A  is

said to be soft neutrosophic N-field if and only if ( )F a  is

a neutrosophic sub N-field of ( )N K  for all a A .

Proposition 5.5: Every soft neutrosophic N-field is trivial-

ly a soft neutrosophic N-ring. 

Proof. The proof is trivial. 

Definition 5.6: Let ( , )F A  be a soft neutrosophic N-field 
over a neutrosophic N-field ( )N K . Then ( , )F A  is  
called an absolute soft neutrosophic N-field if  

( ) ( )F a N K , for all a A . 

Conclusion 

In this paper we extend neutrosophicb rings, neutrosophic 

N-rings, Neutrosophic bifields and neutrosophic N-fields 

to soft neutrosophic  birings, soft neutrosophic N-rings and 

soft neutrosophic bifields and soft  neutrosophic N-fields 

respectively. The neutrosophic ideal theory  is extend to 

soft neutrosophic biideal and soft neutrosophic N-ideal. 

Some new types of  soft neutrosophic ideals are discovered 

which is strongly neutrosophic or purely neutrosophic. Re-

lated examples are given to illustrate soft neutrosophic 

biring, soft neutrosophic N-ring, soft neutrosophic bifield 

and soft neutrosophic N-field and many theorems and 

properties are discussed. 
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Abstract: In this paper, the cosine similarity measure of  

neutrosophic refined (multi-) sets is proposed and its properties 

are studied. The concept of this cosine similarity measure of  

neutrosophic refined sets is the extension of improved cosine  

similarity measure of single valued neutrosophic. Finally, using  

this cosine similarity measure of  neutrosophic refined set, the 

application of medical diagnosis is presented. 

Keywords:  Neutrosophic set, neutrosophic refined set, cosine similarity measure. 

1.Introduction:

The  neutrsophic  sets  (NS), proposed by  F. Smarandache 
[7], has been studied and applied in different fields,  
including   decision  making  problems   [1,15],  databases  
[21,22],  medical  diagnosis  problems  [2],  topology  [6], 
control  theory [40],  image  processing [9,22,44] and so 
on. The  concept  of neutrosophic  sets  generalizes  the  

following  concepts:  the classic set, fuzzy set 
[20],intuitionistic fuzzy set [19], and interval valued 
intuitionistic fuzzy set [18] and so on.  The character of 
NSs is that the values of its membership function, non-
membership function and  indeterminacy  function  are  
subsets.  Therefore, H.Wang et al [10] introduced an 

instance of neutrosophic sets known as single valued 
neutrosophic sets (SVNS), which were motivated from the 
practical point of view and that can be used in real 
scientific and engineering application, and provide the set 
theoretic operators and various properties of SVNSs. 
However, in many applications, due to lack of knowledge 

or  data  about  the  problem  domains,  the  decision  
information  may  be  provided  with  intervals,  instead  of 
real numbers.  Thus,  interval  valued  neutrosophic  sets 
(IVNS), as a useful generation of NS, was introduced by 
H.Wang et al [11],  which  is  characterized  by  a  
membership  function, non-membership  function  and  an  

indeterminacy  function, whose values are intervals rather 
than real numbers. Also, the interval valued neutrosophic 

set can represent uncertain, imprecise,  incomplete  and  
inconsistent  information  which exist  in  the  real  world.  

As  an  important  extension  of  NS, SVNS and IVNS has 
many applications in real life [13,14,15,16, 
17,25,32,33,34,35,36,37,38,39] 

Several similarity measures have been proposed by some 

researchers. Broumi and Smarandache [35] defined the 

Hausdorff distance between neutrosophic sets and some 

similarity measures based on the distance, set theoretic 

approach, and matching function to calculate the similarity 

degree between neutrosophic sets. In the same year, 

Broumi and Smarandache [32] also proposed the 

correlation coefficient between interval neutrosphic sets. 

Majumdar and Smanta [24] introduced several similarity 

measures of single valued neutrosophic sets(SVNs) based 

on distances, a maching function, memebership grades, 

and then proposed an entropy measure for a SVNS. 

J.Ye[13] also presented the Hamming and Euclidean 

distances between interval neutrosophic sets(INSs) an their 

similarity measures and applied them to multiple attribute 

decision –making problems with interval neutrosophic 

information. J.Ye [15] further proposed the distance-based 

similarity measure of SVNSs and applied it to the group 

decision making problems with single valued neutrosophic 

information. In other research, J.Ye [16] proposed three 

vector similarity measure for SNSs,an instance of SVNS 

and INS, including the Jaccard, Dice, and cosine similarity 
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measures for SVNS and INSs, and applied them to 

multicriteria decision-making problems with simplified 

neutrosophic information. Recently,  A.Salama [4], 

introduced and studied the concepts of correlation and 

correlation coefficient of neutrosophic data in probability 

spaces and study some of their properties. 

The cosine similarity measure, based on Bhttacharya’s 

distance [3] is the inner product of the two vectors divided 

by the product of their lengths. As the cosine similarity 

measure is the cosine of the angle between the vector 

representations  of fuzzy sets, it is extended to cosine 

similarity measures between SVNSs by J.Ye [15,17] and 

also to cosine similarity measures between INSs by 

Broumi and Smarandache [36]. 

The notion of multisets was formulated first in [31] by 

Yager as generalization of the concept of set theory. 

Several authors from time to time made a number of 

generalization of set theory. For example, Sebastian and 

Ramakrishnan [42] introduced a new notion called 

multifuzzy sets, which is a generalization of multiset. 

Since then, Sebastian and Ramakrishnan [41,42] discussed 

more properties on multi fuzzy set. Later on, T. K. Shinoj 

and S. J. John [43]  made an extension of the concept of 

fuzzy multisets by an intuitionistic fuzzy set, which called 

intuitionistic fuzzy multisets(IFMS). Since then in the 

study on IFMS, a lot of excellent results have been 

achieved by researchers [26,27,28,29,30]. An element of a 

multi fuzzy sets can occur more than once with possibly 

the same or different membership values, whereas an 

element of intuitionistic fuzzy multisets allows the 

repeated occurrences of membership and non--membership 

values. The concepts of FMS and IFMS fails to deal with 

indeterminatcy. In 2013, Smarandache [8] extended the 

classical neutrosophic logic to n-valued refined 

neutrosophic logic, by refining each neutrosophic 

component T, I, F into respectively,   ,   , ...,   and   ,   , 
...,    and   ,   , ...,   . Recently, I.Deli et al .[12] 

introduced the concept of neutrosophic refined sets and 

studied some of their basic properties. The concept of 

neutrosophic refined set (NRS) is  a generalization of fuzzy 

multisets and intuitionistic fuzzy multisets. 

In this paper, motivated by the cosine similarity measure  

based  on  Bhattacharya’s  distance  and the improved 

cosine similarity measure of single valued neutrosophic 

proposed by J.Ye [17]. we  propose  a new  method called 

“cosine  similarity  measure  for   neutrosophic refined 

sets.  The  proposed cosine similarity  measure  is  applied  

to medical diagnosis problems. The paper is structured as 

follows. In Section 2, we first recall the  necessary  

background on cosine similarity measure and neutrosophic 

refined sets. In Section 3,we present cosine similarity 

measure for neutrosophic refined sets  and examines their 

respective properties. In section 4, we present a medical 

diagnosis using  NRS –cosine similarity measure. Finally 

we conclude the paper. 

2.Preliminaries

This section gives a brief overview of the concepts of 
neutrosophic set, single valued neutrosophic set, cosine 
similarity measure and neutrosophic refined sets. 

2.1 Neutrosophic Sets 

Definition 2.1 [7] 
Let U be an universe of discourse then the neutrosophic 

set A is an object having the form  

A = {< x:   ( ),   ( ),   ( )>, x   U}, where the 
functions T, I, F : U→ ]−0, 1+[  define respectively the 
degree of membership (or Truth) , the degree of 
indeterminacy, and the degree of non-membership (or 
Falsehood) of the element x   U to the set A with the 
condition.  

   −0 
≤   ( )+    ( )+    ( ) ≤3+

.      (1) 

From philosophical point of view, the neutrosophic set 
takes the value from real standard or non-standard subsets 
of ]−0, 1+[. So instead of] −0, 1+[ we need to take the 
interval [0, 1] for technical applications, because ]−0, 
1+[will be difficult to apply in the real applications  such as 
in scientific and engineering problems.  

        For two NS,     = {<x,  ( ),    ( )   ( )> |    } 

And     = {<x,   ( ),    ( )    ( )> |    } the two 
relations are defined as follows: 

(1)           If and only if ( )   ( ),   ( ) 
   ( ),   ( )    ( ) 

(2)                         , ( )=  ( ),   ( ) 
=  ( ),   ( ) =  ( ) 

2.2Single Valued Neutrosophic Sets 

Definition 2.2 [10] 

Let X be a space of points (objects) with generic 
elements in X denoted by x. An SVNS A in X is 
characterized by a truth-membership function   ( ), an 
indeterminacy-membership function   ( ), and a falsity-
membership function   ( ),  for each point x in X,   ( ), 
 ( ),   ( )   [0, 1]. 

When X is continuous, an SVNS A can be written as 

  A=∫
   ( )    ( )    ( )  

  
      

(2) 

When X is discrete, an SVNS A can be written as 
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  A= ∑
   (  )    (  )   (  )  

  

 
                                                    

(3) 

For two SVNS,       = {<x,  ( ) ,   ( )   ( )> |    } 

And       ={ <x,   ( ),    ( )    ( )> |    } the two 
relations are defined as follows: 

(1)               if and only if   ( )   ( ),   ( ) 
   ( ),   ( )    ( ) 

(2)                              , ( ) =  ( ), 
  ( ) =  ( ),   ( ) =  ( ) for any    . 

2.3 Cosine Similarity 

Definition 2.3 [5] 
Cosine similarity is a fundamental angle-based measure 

of similarity between two vectors of n dimensions using the 
cosine of the angle between them. It measures the similarity 
between two vectors based only on the direction, ignoring 
the impact of the distance between them. Given two vectors 
of attributes, X = (  ,   , … ,   ) and Y= (  ,   , … ,   ), 
the cosine similarity, cosθ, is represented using a dot 
product and magnitude as 

  Cosθ =
∑      
 
   

√∑   
  

    √∑   
  

   

 (4)                

In vector space, a cosine similarity measure based on 
Bhattacharya’s distance [3] between two fuzzy set    (  ) 
and   (  ) defined as follows: 

  (   ) = 
∑   (  )
 
       (  )

√∑   (  )
  

    √∑   (  )
  

   

 (5) 

The cosine of the angle between the vectors is within 
the values between 0 and 1. 

In 3-D vector space, J. Ye [15] defines cosine similarity 
measure between SVNS as follows: 

     (   ) = 
∑    (  )
 
       (  )   (  )  (  )   (  )  (  )

√∑   (  )
    (  )

    (  )
  

    √∑   (  )
    (  )

    (  )
  

   

(6) 

2.4. Neutrosophic  Refined Sets.          

Definition 2.4 [12]  

Let   and    be two neutrosophic refined sets. 

A = {<x,(  
 ( ),   

 ( ),...,   
 ( )), (  

 ( ),   
 ( ),...,   

 ( )), 

(  
 ( ),   

 ( ),…,   
 ( ))>: x   X} 

where     
 ( ),   

 ( ),...,   
 ( ) : E  [0 ,1], 

,   
 ( ),   

 ( ),...,   
 ( ): E  [0 ,1], and 

  ( ),   
 ( ),...,   

 ( ): E  [0 ,1]  such that  0       
 ( ) 

+     
 ( ) +     

 ( )  3 for i=1,2,…,p for any x  X 

,(  
 ( ),   

 ( ),…,   
 ( )), (  

 ( ),   
 ( ),…,   

 ( )) and 

(  
 ( ),   

 ( ),…,   
 ( )) is the truth-membership 

sequence, indeterminacy-membership sequence and 

falsity-membership sequence of the element x, 

respectively. Also, P is called the dimension of 

neutrosophic refined sets (NRS) A. 

3.Cosine similarity measure for Neutrosophic 
refined Sets. 

Based on the improved cosine similarity measure of single 

valued neutrosophic sets proposed by J.Ye [17] which 

consists of membership, indeterminacy and non 

membership functions defined as follow: 

     (A,B)= 
 

 
∑    [

 (|  (  )   (  )| |  (  )   (  )| |  (  )   (  )|)

 
] 

    

         (7) 

And the cosine similarity measure of neutrosophic refined 

sets consisting of the multiple membership, indetrrminacy, 

and non-membership function is  

    (A,B)=

 

 
∑ {

 

 
∑    [

 (|  
 (  )   

 (  )| |  
 (  )   

 (  )| |  
 (  )   

 (  )|)

 
] 

   }
 
    

  (8) 

Proposition 3.1. The defined cosine similarity measure 

    (A,B) between NRS A and B satisfies the following 

properties 

1. 0      (     1 

2.     (A,B=1 if and only if A= B 

3.     (A,B)=     (B,A) 

4. If  C is a NRS in X and A B C ,then     (A,C) 

     (A,B) and     (A,C)      (B,C) 

Proof: 

(1) 

As the  membership, indeterminacy and non-membership 

functions of the NRSs and the value  

of the cosine function are within [0 ,1],the  similarity 

measure based on cosine function also is within [ 0.1]. 

Hence 0      (A,B)  1. 

(2) 
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 For any two NRSs A and B , if A= B , this implies   
 (  ) 

=   
 (  ),   

 (  ) =   
 (  ),   

 (  ) =   
 (  ) for i= 1,2,…,n 

and j=1,2….,p and      X. Hence |  
 (  )    

 (  )| = 0, 

 |  
 (  )    

 (  )| =0, and |  
 (  )    

 (  )|=0 .Thus 

    (A,B)=1. 

If     A,B)=1 this refers that  |  
 (  )    

 (  )| = 0, 

 |  
 (  )    

 (  )| =0, and |  
 (  )    

 (  )|=0 since 

cos(0)=1.Then ,these equalities indicates   
 (  ) = 

  
 (  ),   

 (  ) =   
 (  ),   

 (  ) =   
 (  ) for all i,j values 

and      X. Hence A= B 

(3) 

 Proof is straightforward 

(4) 

If A B C. then there are   
 (  )    

 (  )    
 (  ), 

  
 (  )    

 (  )    
 (  ), and   

 (  )    
 (  )    

 (  ) 
for all i,j values and     X.Then we have the following 

inequalities 

|  
 (  )    

 (  )|   |  
 (  )    

 (  )| , |  
 (  )  

  
 (  )|   |  

 (  )    
 (  )|, 

|  
 (  )    

 (  )|   |  
 (  )    

 (  )| , |  
 (  )    

 (  )|   

|  
 (  )    

 (  )|, 

|  
 (  )    

 (  )|   |  
 (  )    

 (  )| , |  
 (  )  

  
 (  )|   |  

 (  )    
 (  )|, 

Hence,     (A,C)      (A,B) and     (A,C)  
    (B,C) for k=1,2, since the cosine function is a 

decreasing function  within the interval [0, 
 

 
 ]. 

4 Application 
In this section, we give some applications of NRS in 

medical diagnosis problems using the cosine similarity 

measure. Some of it is quoted from [29,30,41]. 

From now on, we use 

A = {<x,(  
 ( ),   

 ( ),   
 ( )),(  

 ( ),   
 ( ),   

 ( )),.., 
,(  

 ( ),   
 ( ),   

 ( ))>: x   X} 

Instead of  

A = {<x,(  
 ( ),   

 ( ),...,   
 ( )), (  

 ( ),   
 ( ),...,   

 ( )), 

(  
 ( ),   

 ( ),…,   
 ( ))>: x   X} 

4.1. Medical Diagnosis using  NRS –cosine 

similarity measure 
    In what follows, let us consider an illustrative example 

adopted from Rajarajeswari and Uma [29]  with minor 

changes and typically considered in [30,43]. Obviously, 

the application is an extension of intuitionistic fuzzy multi 

sets [29]. 

    "As Medical diagnosis contains lots of uncertainties and 

increased volume of information available to physicians 

from new medical technologies, the process of classifying 

different set of symptoms under a single name of disease 

becomes difficult. In some practical situations, there is the 

possibility of each element having different truth 

membership, indeterminate and false membership 

functions. The proposed similarity measure among the 

patients Vs symptoms and symptoms Vs diseases gives the 

proper medical diagnosis. The unique feature of this 

proposed method is that it considers multi truth 

membership, indeterminate and false membership. By 

taking one time inspection, there may be error in diagnosis. 

Hence, this multi time inspection, by taking the samples of 

the same patient at different times gives best diagnosis" 

[29]. 

    Now, an example of a medical diagnosis will be 

presented. 

Example: Let P={P₁,P₂,P₃} be a set of patients, D={Viral 

Fever, Tuberculosis, Typhoid, Throat disease} be a set of 

diseases and S={Temperature, cough, throat pain, 

headache, body pain} be a set of symptoms. Our solution is 

to examine the patient at different time intervals (three 

times a day), which in turn give arise to different truth 

membership, indeterminate and false membership function 

for each patient. 

    Table I: Q (the relation Between Patient and Symptoms) 

Temperature Cough Throat pain Headache Body Pain 

P₁ (0.4,0.3,0.4) 

(0.3,0.4,0.6) 

(0.2,0.5,0.5) 

(0.5,0.4,0.4) 

(0.4,0.1,0.3) 

(0.3,0.4,0.5) 

(0.3,0.5,0.5) 

(0.2,0.6,0.4) 

(0.1,0.6,0.3) 

(0.5,0.3,0.4) 

(0.5,0.4,0.7) 

(0.3,0.3,0.6) 

(0.5,0.2,0.4) 

(0.2,0.3,0.5) 

(0.1,0.4,0.3) 

P₂ (0.6,0.3,0.5) 

(0.5,0.5,0.2) 

(0.4,0.4,0.5) 

(0.6,0.3,0.7) 

(0.4,0.4,0.2) 

(0.2,0.4,0.5) 

(0.6,0.3,0.3) 

(0.3,0.5,0.4) 

(0.1,0.4,0.5) 

(0.6,0.3,0.1) 

(0.4,0.5,0.8) 

(0.2,0.4,0.3) 

(0.4,0.4,0.5) 

(0.3,0.2,0.7) 

(0.1,0.5,0.5) 

P₃ (0.8,0.3,0.5) 

(0.7,0.5,0.4) 

(0.6,0.4,0.4) 

(0.5,0.5,0.3) 

(0.1,0.6,0.4) 

(0.3,0.4,0.3) 

(0.3,0.3,0.6) 

(0.2,0.5,0.7) 

(0.1,0.4,0.5) 

(0.6,0.2,0.5) 

(0.5,0.3,0.6) 

(0.2,0.2,0.6) 

(0.6,0.4,0.5) 

(0.3,0.3,0.4) 

(0.2,0.2,0.6) 

Let the samples be taken at three different timings in a day (in 08:00,16:00,24:00) 
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Remark :At three different timings in a day (in 08:00,16:00,24:00) 

P₁      the  em er t re may have the disease 1 with chance ( 0.4, 0.3 , 0.4) at 08:00 
P₁      the  em er t re m   h ve the    e  e 2 w th ch  ce ( 0 3  0 4   0 6)  t 16:00 
P₁      the  em er t re m y have the disease 3 with chance ( 0.2, 0.5 , 0.5) at 24:00 

Table II: R (the relation among Symptoms and Diseases) 

R Viral Fever Tuberculosis Typhoid Throat 

disease 

Temperature (0.2,0.5,0.6) (0.4,0.6,0.5) (0.6,0.4,0.5) (0.3,0.7,0.8) 

Cough (0.6,0.4,0.6) (0.8,0.2,0.3) (0.3,0.2,0.6) (0.2,0.4,0.1) 

Throat Pain (0.5,0.2,0.3) (0.4,0.5,0.3) (0.4,0.5,0.5) (0.2,0.6,0.2) 

Headache (0.6,0.8,0.2) (0.2,0.3,0.6) (0.1,0.6,0.3) (0.2,0.5,0.5) 

Body Pain (0.7,0.4,0.4) (0.2,0.3,0.4) (0.2,0.3,0.4) (0.2,0.2,0.3) 

Table III: The Correlation Measure between NRS Q and R 

The highest correlation measure from the Table III 

gives the proper medical diagnosis. Therefore, patient 

P₁  P₂ and P₃ suffers from Tuberculosis 

5.Conclusion

In this paper, we have extended the improved cosine 

similarity of single valued neutrosophic set proposed by 

J.Ye [17] to the case of neutrosophic refined sets and 

proved some of their basic properties. We have present 

an application of cosine similarity measure of 

neutrosophic refined sets in medical diagnosis 

problems. In The future work, we will extend this 

cosine similarity measure  to the case of interval 

neutrosophic refined sets. 

Acknowledgment 
The authors are very grateful to the anonymous referees 

for their insightful and constructive comments and 

suggestions, which have been very helpful in improving 

the paper. 

References 
[1] A.  Kharal,  A  Neutrosophic  Multicriteria  Decision 

Making  Method,  New  Mathematics  and  Natural  
Computation,  Creighton University, USA, 2013. 

[2] Ansari, Biswas, Aggarwal,”Proposal for Applicability of 
Neutrosophic Set Theory in Medical AI”, International 
Journal of Computer Applications (0975 – 8887),Vo 27– 
No.5, (2011)  5-11. 

[3] A. Bhattacharya, ” On a measure of divergence of two 
multinomial population”. Sanakhya Ser A 7 ,(1946) 
401-406 

[4] A. A. Salama, O. M. Khaled and K. M. Mahfouz, 
Neutrosophic Correlation and Simple Linear Regression, 
Neutrosophic Sets and Systems, Vol. 5, (2014) 3-8. 

[5] Candan, K. S. and M. L. Sapino, “Data management for 
multimedia retrieval”, Cambridge University 
Press,(2010). 

[6] F.G Lupiáñez, "On neutrosophic topology", Kybernetes, 
Vol. 37 Iss: 6,(2008), pp.797 - 800 
,Doi:10.1108/03684920810876990. 

[7] F. Smarandache, “A Unifying Field in Logics. 
Neutrosophy: Neutrosophic  Probability, Set and Logic”. 
Rehoboth: American Research Press,(1998). 

[8] F. Smarandache, n-Valued Refinned Neutrosophic 
Logic and Its Applications in Physics, Progress in 
Physics, Vol. 4, (2013) 143-146. 

[9] H. D. Cheng, Y Guo. “A new neutrosophic approach to 
image thresholding”. New Mathematics and Natural 
Computation, 4(3), (2008) 291–308. 

Cosine 

similarity 

measure 

Viral Fever Tuberculosis Typhoid Throat 

diseas 

P₁ 0.9793 0.9915 0.9896 0.9794 

P₂ 0.9831 0.9900 0.9870 0.9723 

P₃ 0.9811 0.9931 0.9917 0.9822 

45



Neutrosophic Sets and Systems, Vol. 6, 2014 

 Said Broumi, Florentin Smarandache, Neutrosophic Refined  Similarity measure based on cosine function 

[10] H. Wang, F. Smarandache, Y. Q .Zhang, , R. 
Sunderraman,, ”Single valued 
neutrosophic”,sets.Multispace and Multistructure, 
4,(2010) 410–413. 

[11] H. Wang, F. Smarandache, Y. Q .Zhang, , R. 
Sunderraman, ”Interval Neutrosophic Sets and Logic: 
Theory and Applications in Computing”, Hexis, 
Phoenix, AZ, (2005). 

[12] I. Deli and S. Broumi,Neutrosophic multisets and its 
application in medical diagnosis, 2014, (submitted) 

[13] J. Ye, ”Similarity measures between interval 
neutrosophic sets and their multicriteria decision-
making method “Journal of Intelligent & Fuzzy 
Systems, DOI: 10.3233/IFS-120724 ,(2013),pp.165-172 

[14] J. Ye.“Cosine Similarity Measures for Intuitionistic 
Fuzzy Sets and Their Applications.”Mathematical and 
Computer Modelling 53, (2011) 91–97. 

[15] J. Ye, Multicriteria decision-making method using the 
correlation coefficient under single-valued neutrosophic 
environment, International Journal of General Systems, 
42(4) (2013) 386--394. 

[16] J. Ye, Vector Similarity Measures of Simplified 

Neutrosophic Sets and Their Application in Multicriteria 

Decision Making  International Journal of Fuzzy 

Systems, Vol. 16, No. 2, June 2014 (204-215). 

[17] J. Ye, Improved cosine similarity measure of simplified 
neutrosophic sets for medicine diagnoses, artificial 
Intelligence in Medecine,2014 (submitted) 

[18] K.Atanassov,Gargov, interval –valued intuitionistic 

fuzzy sets, Fuzzy Sets and Systems 31 (1989) 343-349. 

[19] K.Atanassov, More on intuitionistic fuzzy sets, Fuzzy 

Sets and Systems Vol 33,no.5,(1989) 37-46. 
[20] L. A. Zadeh, Fuzzy Sets, Inform. and Control, 8 (1965) 

338-353. 

[21] M. Arora, R. Biswas, U.S.Pandy, “Neutrosophic 
Relational Database Decomposition”, International 
Journal of Advanced Computer Science and 
Applications, Vol. 2, No. 8, (2011) 121-125. 

[22] M. Arora and R. Biswas,” Deployment of Neutrosophic 
technology to retrieve answers for queries posed in 
natural language”, in 3rdInternational Conference on 
Computer Science and Information Technology ICCSIT, 
IEEE catalog Number CFP1057E-art,Vol.3, ISBN: 978-
1-4244-5540-9,(2010) 435-439. 

[23] M.Zhang, L.Zhang, and H.D.Cheng. “A neutrosophic 
approach to image segmentation based on watershed 
method”. Signal Processing 5, 90 , (2010) 1510-1517. 

[24] P. Majumdar, S.K. Samant,” On similarity and entropy 
of neutrosophic sets”, Journal of Intelligent and Fuzzy 
Systems,1064-1246(Print)-1875-
8967(Online),(2013),DOI:10.3233/IFS-130810, 
IOSPress. 

[25] P. K. Maji, ” Neutrosophic Soft Set”, Annals of Fuzzy 

Mathematics and Informatics,Vol 5, No. 1,ISSN: 2093-
9310 , ISSN:2287-623. 

[26] P. Rajarajeswari and N. Uma, On Distance and 
Similarity Measures of Intuitionistic Fuzzy Multi Set, 
IOSR Journal of Mathematics, 5(4) (2013) 19--23. 

[27] P. Rajarajeswari and N. Uma, A Study of Normalized 
Geometric and Normalized Hamming Distance 
Measures in Intuitionistic Fuzzy Multi Sets, 
International Journal of Science and Research, 
Engineering and Technology, 2(11) (2013) 76--80. 

[28] P. Rajarajeswari, N. Uma, Intuitionistic Fuzzy Multi 
Relations, International Journal of Mathematical 
Archives, 4(10) (2013) 244-249. 

[29] P. Rajarajeswari and N. Uma, Zhang and Fu's Similarity 
Measure on Intuitionistic Fuzzy Multi Sets, International 
Journal of Innovative Research in Science, Engineering 
and Technology, 3(5) (2014) 12309--12317. 

[30] P. Rajarajeswari, N. Uma, Correlation Measure For 

Intuitionistic Fuzzy Multi Sets, International Journal of 

Research in Engineering and Technology, 3(1) (2014) 

611-617. 
[31] R. R. Yager, On the theory of bags (Multi sets), 

International. Joural. of General System, 13 (1986) 23--
37. 

[32] S. Broumi, F. Smarandache , “Correlation Coefficient of 
Interval Neutrosophic set”, Periodical of Applied 
Mechanics and Materials, Vol. 436, 2013, with the title 
Engineering Decisions and Scientific Research in 
Aerospace, Robotics, Biomechanics, Mechanical 
Engineering and Manufacturing; Proceedings of the 
International Conference ICMERA, Bucharest, October 
2013. 

[33] S. Broumi and F. Smarandache, “Intuitionistic 
Neutrosophic Soft Set”, Journal of Information and 
Computing Science, England, UK ,ISSN 1746-
7659,Vol. 8, No. 2, (2013) 130-140. 

[34] S. Broumi, “Generalized Neutrosophic Soft Set”, 
International Journal of Computer Science, Engineering 
and Information Technology (IJCSEIT), ISSN: 2231-
3605, E-ISSN : 2231-3117, Vol.3, No.2, (2013) 17-30. 

[35] S, Broumi and F, Smarandache, ” Several Similarity 
Measures of Neutrosophic Sets”, Neutrosophic Sets and 
Systems, An International Journal in Information 
Science and Engineering, December (2013). 

[36] S. Broumi and F. Smarandache, Cosine Similarity 
Measure of Interval Valued Neutrosophic Sets, 
Neutrosophic Sets and Systems, Vol. 5, 2014,15-20. 

[37] S. Broumi, R. Sahin, F. Smarandache, Generalized 
Interval Neutrosophic Soft Set and its Decision Making 
Problem , Journal of New Results in Science No 7, 
(2014)29-47. 

[38] S. Broumi, I. Deli, and F. Smarandache, Relations on 
Interval Valued Neutrosophic Soft Sets, Journal of New 
Results  in Science, 5 (2014) 1-20 

46

http://iospress.metapress.com/content/8342372573j42764/
http://iospress.metapress.com/content/8342372573j42764/


Neutrosophic Sets and Systems, Vol. 6, 2014 

 Said Broumi, Florentin Smarandache, Neutrosophic Refined  Similarity measure based on cosine function 

[39] S. Broumi, I. Deli, F. Smarandache , Interval 
Neutrosophic parametrized  Soft Sets , Journal of New 
Results in Science ,No 7,(2014) 01-20. 

[40] S. Aggarwal, R. Biswas, A.Q.Ansari, ”Neutrosophic 
Modeling and Control”,978-1-4244-9034-/10 IEEE,( 
2010) 718-723. 

[41] S. Sebastian and T. V. Ramakrishnan, Multi-fuzzy 

extension of crisp functions using bridge functions, 

Annals of Fuzzy Mathematics and Informatics, 2(1) 

(2011) 1--8. 

[42] S. Sebastian and T. V. Ramakrishnan, Multi-Fuzzy Sets, 

International Mathematical Forum, 5(50) (2010) 2471--

2476. 

[43] T. K. Shinoj and S. J. John, Intuitionistic fuzzy multisets 

and its application in medical diagnosis, World 

Academy of Science, Engineering and Technology, 6 

(2012) 01--28. 
[44] Y. Guo, H. D. Cheng “New neutrosophic approach to 

image segmentation”.Pattern Recognition, 42, (2009) 
587–595. 

[45] J. Ye, Vector Similarity Measures of Simplified 

Neutrosophic Sets and Their Application in Multicriteria 

Decision Making  International Journal of Fuzzy 

Systems, Vol. 16, No. 2, June 2014 (204-215) 

47

Received: August 29, 2014.   Accepted: October 10, 2014. 



Neutrosophic Sets and Systems, Vol. 6, 2014 

Shan Ye, Jun Ye, Dice Similarity Measure between Single Valued Neutrosophic Multisets and Its Application in Medical 

Diagnosis 

Dice Similarity Measure between Single Valued 

Neutrosophic Multisets and Its Application in Medical 

Diagnosis 

Shan Ye
1
 and Jun Ye

2
 

1 Tashan Community Health Service Center. 29 Huiri Bridge, Yuecheng District, Shaoxing, Zhejiang 312000, P.R. China. E-mail: shanyeh@sina.com 
2 Department of Electrical and Information Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang 312000, P.R. China. 

E-mail: yehjun@aliyun.com 

Abstract. This paper introduces the concept of a single 

valued neutrosophic multiset (SVNM) as a generalization 

of an intuitionistic fuzzy multiset (IFM) and some basic 

operational relations of SVNMs, and then proposes the 

Dice similarity measure and the weighted Dice similarity 

measure for SVNMs and investigates their properties. Fi-

nally, the Dice similarity measure is applied to a medical 

diagnosis problem with SVNM information. This diagno-

sis method can deal with the medical diagnosis problem 

with indeterminate and inconsistent information which 

cannot be handled by the diagnosis method based on 

IFMs. 

Keywords: Single valued neutrosophic set, multiset, single valued neutrosophic multiset, Dice similarity measure, medical diag-

nosis.

1 Introduction 

In medical diagnosis problems, physicians can obtain a 
lot of information from modern medical technologies, 
which is often incomplete and indeterminate information 

due to the complexity of various diseases. Therefore, real 
medical diagnosis contains lots of incomplete and uncer-
tainty information, which is a usual phenomenon of medi-
cal diagnosis problems. To represent incomplete and un-
certainty information, Atanassov [1] introduced intuition-
istic fuzzy sets (IFSs) as a generalization of fuzzy sets [2]. 

The prominent characteristic of IFS is that a membership 
degree and a non-membership degree are assigned to each 
element in the set. Then, various medical diagnosis meth-
ods have been presented under intuitionistic fuzzy envi-
ronments [3, 4]. Recently, Ye [5] proposed a cosine simi-
larity measure between IFSs and applied it to pattern 

recognition and medical diagnosis. Hung [6] introduced an 
intuitionistic fuzzy likelihood-based measurement and ap-
plied it to the medical diagnosis and bacteria classification 
problems. Further, Tian [7] developed the cotangent simi-
larity measure of IFSs and applied it to medical diagnosis. 

As a generalization of fuzzy sets and IFSs, Wang et al. 

[8] introduced a single valued neutrosophic set (SVNS) as 
a subclass of the neutrosophic set proposed by 
Smarandache [9]. SVNS consists of the three terms like the 
truth-membership, indeterminacy-membership and falsity- 
membership functions and can be better to express inde-
terminate and inconsistent information, but fuzzy sets and 

IFSs cannot handle indeterminate and inconsistent infor-
mation. However, similarity measures play an important 
role in the analysis and research of medical diagnosis, pat-
tern recognition, machine learning, decision making, and 

clustering analysis in uncertainty environment. Therefore, 
various similarity measures of SVNSs have been proposed 
and mainly applied them to decision making and clustering 
analysis. For instance, Majumdar and Samanta [10] intro-

duced several similarity measures of SVNSs based on dis-
tances, a matching function, membership grades, and then 
proposed an entropy measure for a SVNS. Ye [11] pro-
posed three vector similarity measures for simplified neu-
trosophic sets (SNSs), including the Jaccard, Dice, and co-
sine similarity measures for SVNSs and interval neutro-

sophic sets (INSs), and applied them to multicriteria deci-
sion-making problems with simplified neutrosophic infor-
mation. Ye [12] and Ye and Zhang [13] further proposed 
the similarity measures of SVNSs for decision making 
problems. Furthermore, Ye [14] put forward distance-
based similarity measures of SVNSs and applied them to 

clustering analysis. 
In real medical diagnosis problems, however, by only 

taking one time inspection, we wonder whether one can 
obtain a conclusion from a particular person with a particu-
lar decease or not. Sometimes he/she may also show the 
symptoms of different diseases. Then, how can we give a 

proper conclusion? One solution is to examine the patient 
at different time intervals (e.g. two or three times a day). In 
this case, a fuzzy multiset concept introduced by Yager 
[15] is very suitable for expressing this information at dif-
ferent time intervals, which allows the repeated occurrenc-
es of any element. Thus, the fuzzy multiset can occur more 

than once with the possibility of the same or different 
membership values. Then, Shinoj and Sunil [16] extended 
the fuzzy multiset to the intuitionistic fuzzy multiset (IFM) 
and presented some basic operations and a distance meas-
ure for IFMs, and then applied the distance measure to 
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medical diagnosis problem. Rajarajeswari and Uma [17] 
presented the Hamming distance-based similarity measure 
for IFMs and its application in medical diagnosis. However, 
existing IFMs cannot represent and deal with the indeter-
minacy and inconsistent information which exists in real 
situations (e.g. medicine diagnosis problems). To handle 

the medical diagnosis problems with indeterminacy and in-
consistent information, the aims of this paper are: (1) to in-
troduce a single valued neutrosophic multiset (SVNM) as a 
generalization of IFMs and some operational relations for 
SVNMs, (2) to propose the Dice similarity measure of 
SVNMs, (3) to apply the Dice similarity measure to medi-

cal diagnosis. 
The rest of the article is organized as follows. Section 2 

introduces some basic concepts of IFSs, IFMs, and SVNSs. 
Sections 3 introduces a concept of SVNM and some opera-
tional relations of SVNMs. In Section 4, we present the 
Dice similarity measure and the weighted Dice similarity 

measure for SVNMs and investigate their properties. In 
Section 5, we apply the proposed similarity measure to a 
medical diagnosis problem. Conclusions and further re-
search are contained in Section 6. 

2 Preliminaries 

2.1 Some basic concepts of IFSs and IFMs 

Atanassov [1] introduced IFSs as an extension of fuzzy 
sets [2] and gave the following definition. 

Definition 1 [1]. An IFS A in the universe of discourse X is 
defined as }|)(),(,{ XxxxxA AA   , where A(x): X 
 [0, 1] and A(x): X  [0, 1] are the membership degree 

and non-membership degree of the element x to the set A 
with the condition 0  A(x) + A(x)  1 for x  X. 

Then, A(x) = 1  A(x)  A(x) is called Atanassov's 
intuitionistic index or a hesitancy degree of the element x 
in the set A. obviously there is 0  A(x)  1 for x  X. 

Further, Shinoj and Sunil [16] introduced an IFM 

concept by combining the two concepts for IFSs and fuzzy 
multisets together and gave the following definition. 

Definition 2 [16]. Let X be a nonempty set. Then, an IFM 
drawn from X is characterized by the two functions: count 
membership of CMA and count non-membership of CNA 

such that CMA(x): X  R and CNA(x): X  R for x  X, 
where R is the set of all real number multisets drawn from 
the unit interval [0, 1]. Thus, an IFM A is denoted by 

 Xxxxxxxxx

A

q

AAA

q

AAA 



|))(),...,(),(()),(),...,(),((, 2121 
, 

where the membership sequence ))(),...,(),(( 21 xxx q

AAA   is 

a decreasingly ordered sequence 

)(,,...)()( 21 xxx q

AAA   , the corresponding non-

membership sequence ))(),...,(),(( 21 xxx q

AAA  may not

be in decreasing or increasing order, and the sum of 

)(xi

A and )(xi

A satisfies the condition 0 ≤ )(xi

A + 

)(xi

A ≤ 1 for x  X and i = 1, 2, …, q.

For convenience, an IFM A can be denoted by the 
following simplified form: 

 qiXxxxxA i

A

i

A ,...,2,1,|)(),(,   . 

Let  qiXxxxxA i

A

i

A ,...,2,1,|)(),(,   and

 qiXxxxxB i

B

i

B ,...,2,1,|)(),(,    be two IFMs. Then 

there are the following relations [16]: 

(1) Complement:  qiXxxxxA i

A

i

A

c ,...,2,1,|)(),(,   ; 

(2) Inclusion: A ⊆ B if and only if )(xi

A  ≤ )(xi

B , )(xi

A  

≥ )(xi

B  for i = 1, 2, …, q and x  X;

(3) Equality: A = B if and only if A ⊆ B and B ⊆ A; 

(4) Union: 

 qiXxxxxxx

BA

i

B

i

A

i

B

i

A ,...,2,1,|)()(),()(, 






; 

(5) Intersection: 

 qiXxxxxxx

BA

i

B

i

A

i

B

i

A ,...,2,1,|)()(),()(, 






; 

(6) Addition: 


















qiXx

xxxxxxx
BA

i

B

i

A

i

B

i

A

i

B

i

A

,...,2,1,|

)()(),()()()(,  ; 

(7) Multiplication: 


















qiXx

xxxxxxx
BA

i

B

i

A

i

B

i

A

i

B

i

A

,...,2,1,|

),()()()(),()(, 
. 

2.2 Some concepts of SVNSs 

Smarandache [9] originally presented the concept of a 
neutrosophic set from philosophical point of view. A 
neutrosophic set A in a universal set X is characterized by a 
truth-membership function TA(x), an indeterminacy-
membership function IA(x), and a falsity-membership 
function FA(x). The functions TA(x), IA(x), FA(x) in X are 

real standard or nonstandard subsets of ]−0, 1+[, such that 
TA(x): X  ]−0, 1+[, IA(x): X  ]−0, 1+[, and FA(x): X  ]−0,
1+[. Then, the sum of TA(x), IA(x) and FA(x) satisfies −0 ≤
sup TA(x) + sup IA(x) + sup FA(x) ≤ 3+.

However, the neutrosophic set introduced from 
philosophical point of view is difficult to apply it to 

practical applications. Thus, Wang et al. [8] introduced a 
SVNS as a subclass of the neutrosophic set and the 
following definition of SVNS. 
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Definition 3 [8]. Let X be a universal set. A SVNS A in X 
is characterized by a truth-membership function TA(x), an 
indeterminacy-membership function IA(x), and a falsity-
membership function FA(x). Then, a SVNS A can be 
denoted as 

 XxxFxIxTxA AAA  |)(),(),(, ,

where the sum of TA(x), IA(x), FA(x)  [0, 1] satisfies 0 ≤ 
TA(x) + IA(x) + FA(x) ≤ 3 for each x in X. 

For two SVNSs  XxxFxIxTxA AAA  |)(),(),(,  and

 XxxFxIxTxB BBB  |)(),(),(, , there are the following 

relations [8]: 

(1) Complement:  XxxTxIxFxA AAA

c  |)(),(1),(, ; 

(2) Inclusion: A ⊆ B if and only if TA(x) ≤ TB(x), IA(x) ≥
IB(x), FA(x) ≥ FB(x) for any x in X; 

(3) Equality: A = B if and only if A ⊆ B and B ⊆ A; 

(4) Union: 

 XxxFxFxIxIxTxTx

BA

BABABA 



|)()(),()(),()(,


; 

(5) Intersection: 

 XxxFxFxIxIxTxTx

BA

BABABA 



|)()(),()(),()(,


. 

3 Single valued neutrosophic multisets 

This section introduces SVNMs as a generalization of 
SVNSs and IFMs and some operational relations for 
SVNMs. 

Definition 4. Let X be a nonempty set with generic 
elements in X denoted by x. A SVNM A drawn from X is 

characterized by the three functions: count truth-
membership of CTA, count indeterminacy-membership of 
CIA, and count falsity-membership of CFA such that 
CTA(x): X  R, CIA(x): X  R, CFA(x): X  R for x  X, 
where R is the set of all real number multisets in the real 
unit interval [0, 1]. Then, a SVNM A is denoted by 













 Xx
xFxFxFxI

xIxIxTxTxTx
A

q

AAA

q

A

AA

q

AAA
|

))(),(),(()),(

),...,(),(()),(),...,(),((,

21

2121

, 

where the truth-membership sequence 

))(),...,(),(( 21 xTxTxT q

AAA
, the indeterminacy-membership 

sequence ))(),...,(),(( 21 xIxIxI q

AAA
, and the falsity-

membership sequence ))(),...,(),(( 21 xFxFxF q

AAA
 may be in 

decreasing or increasing order, and the sum of )(xT i

A
, 

)(xI i

A
, )(xF i

A
 [0, 1] satisfies the condition 0 ≤ sup )(xT i

A
 

+ sup )(xI i

A
+ sup )(xF i

A
 ≤ 3 for x  X and i = 1, 2, …, q. 

For convenience, a SVNM A can be denoted by the 
simplified form: 

 qiXxxFxIxTxA i

A

i

A

i

A ,...,2,1,|)(),(),(,  . 

Definition 5. The length of an element x in a SVNM is 

defined as the cardinality of CTA(x) or CIA(x), or CFA(x) 
and is denoted by L(x: A). Then L(x: A) = |CTA(x)| = 
|CIA(x)| = |CFA(x)|. 

Definition 6. Let A and B be two SVNMs in X, then the 
length of an element x in A and B is denoted by lx = L(x: A, 

B) = max{L(x: A), L(x: B)}.
For example, we consider SVNMs in the set X = {x1, x2, 

x3} as  

A = {<x1, (0.1, 0.2), (0.2, 0.3), (0.6, 0.8)>, < x2, (0.3, 
0.4, 0.5), (0.2, 0.3, 0.4), (0.5, 0.6, 0.7)>}, 

B = {<x1, (0.2), (0.2), (0.4) >, < x3, (0.3, 0.4, 0.5, 0.6), 

(0.1, 0.2, 0.3, 0.4), (0.1, 0.2, 0.3, 0.5)>}. 

Thus, there are L(x1: A) = 2, L(x2: A) = 3, L(x3: A) = 0; 
L(x1: B) = 1, L(x2: B) = 0, L(x3: B) = 4, lx1 = L(x1: A, B) = 2, 
lx2 = L(x2: A, B) = 3, and lx3 = L(x3: A, B) = 4. 

For convenient operation between SVNMs A and B in 
X, one can make L(x: A) = L(x: B) by appending sufficient 

minimal numbers for the truth-membership degree and 
sufficient maximum numbers for the indeterminacy-
membership and falsity-membership degrees as pessimists 
or sufficient maximum numbers for the truth-membership 
value and sufficient minimal numbers for the 
indeterminacy-membership and falsity-membership values 

as optimists. 

Definition 7. Let A = {x, )(),(),( xFxIxT i

A

i

A

i

A
| x  X, i = 1, 

2, …, q} and B = {x, )(),(),( xFxIxT i

B

i

B

i

B
| x  X, i = 1, 2, 

…, q} be two SVNMs in X. Then, there are the following 

relations: 

(1) Inclusion: A ⊆ B if and only if )(xT i

A
 ≤ )(xT i

B
, )(xI i

A
 

≥ )(xI i

B
, )(xF i

A
 ≥ )(xF i

B
 for i = 1, 2, …, q and x  X; 

(2) Equality: A = B if and only if A ⊆ B and B ⊆ A; 

(3) Complement: 

 qiXxxTxIxFxA i

A

i

A

i

A

c ,...,2,1,|)(),(1),(,  ; 

(4) Union: 


















qiXx

xFxFxIxIxTxTx
BA

i

B

i

A

i

B

i

A

i

B

i

A

,...,2,1,|

)()(),()(),()(,
 ; 

(5)  Intersection: 


















qiXx

xFxFxIxIxTxTx
BA

i

B

i

A

i

B

i

A

i

B

i

A

,...,2,1,|
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 . 
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4 Dice similarity measure of SVNMs 

In this section, we propose the Dice similarity measure 
and the weighted Dice similarity measure for SVNMs and 
investigate their properties. 

Definition 8. Let A = {xj, )(),(),( j

i

Aj

i

Aj

i

A xFxIxT | xj  X, i = 

1, 2, …, q} and B = {xj, )(),(),( j

i

Bj

i

Bj

i

B xFxIxT | xj  X, i = 

1, 2, …, q} be any two SVNMs in X = {x1, x2, …, xn}. 

Then, we define the following Dice similarity measure 

between A and B: 

      

      




























































n

j

l

i j

i

Bj

i

Bj

i

B

j

l

i j

i

Aj

i

Aj

i

A

j

l

i

j

i

Bj

i

A

j

i

Bj

i

Aj

i

Bj

i

A

j

D

j

j

j

xFxIxT
l

xFxIxT
l

xFxF

xIxIxTxT

l

n
BAS

1

1

222

1

222

1

)()()(
1

)()()(
1

)()(

)()()()(2

1
),(

, 

(1) 

where lj = L(xj: A, B) = max{L(xj: A), L(xj: B)} for j = 1, 2, 
…, n. 

Then, the Dice similarity measure has the following 
Proposition 1: 

Proposition 1. For two SVNMs A and B in X = {x1, x2, …, 
xn}, the Dice similarity measure SD(A, B) should satisfy the 
following properties (P1)-(P3): 

(P1) 0  SD(A, B)  1; 

(P2) SD(A, B) = SD(B, A); 

(P3) SD(A, B) = 1 if A = B, i.e., )( j

i

A xT  = )( j

i

B xT , 

)( j

i

A xI  = )( j

i

B xI , )( j

i

A xF  = )( j

i

B xF  for 

every xj  X,  j = 1, 2, …, n, and i = 1, 2, ..., q. 

Proof: 

(P1) It is obvious that the property is true according to 

the inequality abba 222  for Eq. (1). 

(P2) It is straightforward. 

(P3) If A = B, then there are )( j

i

A xT  = )( j

i

B xT , )( j

i

A xI  = 

)( j

i

B xI , )( j

i

A xF  = )( j

i

B xF  for every xj  X, j = 1, 2, …, n 

and i = 1, 2, ..., q. Hence there is SD(A, B) = 1.  

Taking the weight wj of each element xj (j = 1, 2,…, n) 

into account with wj  [0, 1] and 1
1

 

n

j jw , we 

introduce the following weighted Dice similarity measure 

between SVNMs A and B: 
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where lj = L(xj: A, B) = max{L(xj: A), L(xj: B)} for j = 1, 2, 
…, n. If W = (1/n, 1/n,…, 1/n)T, then Eq. (2) reduces to Eq. 
(1). 

Then, the weighted Dice similarity measure has the 
following Proposition 2: 

Proposition 2. For two SVNMs A and B in X = {x1, x2, …, 
xn}, the weighted Dice similarity measure WD(A, B) should 
satisfy the following properties (P1)-(P3): 

(P1) 0  WD(A, B)  1; 

(P2) WD(A, B) = WD(B, A); 

(P3) WD(A, B) = 1 if A = B, i.e., )( j

i

A xT  = )( j

i

B xT , 

)( j

i

A xI  = )( j

i

B xI , )( j

i

A xF  = )( j

i

B xF  for every xj  X, 

j = 1, 2, …, n and i = 1, 2, ..., q. 

By a similar proof method of Proposition 1, we can 
prove that the properties (P1)–(P3). 

5 Medical diagnosis using the Dice similarity 
measure 

In this section, we apply the Dice similarity measure 
to the medical diagnosis problem with SVNM 
information. The details of a typical example adapted 
from [16] are given below. 

Let P = {P1, P2, P3, P4} be a set of four patients, D = 
{D1, D2, D3, D4} = {Viral fever, Tuberculosis, Typhoid, 
Throat disease} be a set of diseases, and S = {S1, S2, S3, S4, 
S5} = {Temperature, Cough, Throat pain, Headache, Body 
pain} be a set of symptoms. In the medical diagnosis 
problem, when we have to take three different samples in 

three different times in a day (e.g. morning, noon and 
night), the characteristic values between patients and the 
indicated symptoms are represented by the following 
SVNMs: 

P1 ={<S1, (0.8, 0.6, 0.5), (0.3, 0.2, 0.1), (0.4, 0.2, 0.1)>, 
<S2, (0.5, 0.4, 0.3), (0.4, 0.4, 0.3), (0.6, 0.3, 0.4)>, <S3, (0.2, 

0.1, 0.0), (0.3, 0.2, 0.2), (0.8, 0.7, 0.7)>, <S4, (0.7, 0.6, 0.5), 
(0.3, 0.2, 0.1), (0.4, 0.3, 0.2)>, <S5, (0.4, 0.3, 0.2), (0.6, 0.5, 
0.5), (0.6, 0.4, 0.4)>}; 

P2 ={<S1, (0.5, 0.4, 0.3), (0.3, 0.3, 0.2),(0.5, 0.4, 0.4)>, 
<S2, (0.9, 0.8, 0.7), (0.2, 0.1, 0.1), (0.2, 0.1, 0.0)>, <S3, (0.6, 
0.5, 0.4), (0.3, 0.2, 0.2), (0.4, 0.3, 0.3)>, <S4, (0.6, 0.4, 0.3), 

(0.3, 0.1, 0.1), (0.7, 0.7, 0.3)>, <S5, (0.8, 0.7, 0.5), (0.4, 0.3, 
0.1), (0.3, 0.2, 0.1)>; 
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P3 ={<S1, (0.2, 0.1, 0.1), (0.3, 0.2, 0.2), (0.8, 0.7, 0.6)>, 
<S2, (0.3, 0.2, 0.2), (0.4, 0.2, 0.2), (0.7, 0.6, 0.5)>, <S3, (0.8, 
0.8, 0.7), (0.2, 0.2, 0.2), (0.1, 0.1, 0.0)>, <S4, (0.3, 0.2, 0.2), 
(0.3, 0.3, 0.3), (0.7, 0.6, 0.6)>, <S5, (0.4, 0.4, 0.3), (0.4, 0.3, 
0.2), (0.7, 0.7, 0.5)>; 

P4 ={<S1, (0.5, 0.5, 0.4), (0.3, 0.2, 0.2), (0.4, 0.4, 0.3)>, 

<S2, (0.4, 0.3, 0.1), (0.4, 0.3, 0.2), (0.7, 0.5, 0.3)>, <S3, (0.7, 
0.1, 0.0), (0.4, 0.3, 0.3), (0.7, 0.7, 0.6)>, <S4, (0.6, 0.5, 0.3), 
(0.6, 0.2, 0.1), (0.6, 0.4, 0.3)>, <S5, (0.5, 0.1, 0.1), (0.3, 0.3, 
0.2), (0.6, 0.5, 0.4)>. 

Then, the characteristic values between symptoms and 
the considered diseases are represented by the form of 

SVNSs: 

D1 (Viral fever) = {<S1, 0.8, 0.1, 0.1>, <S2, 0.2, 0.7, 
0.1>, <S3, 0.3, 0.5, 0.2>, <S4, 0.5, 0.3, 0.2>, <S5, 0.5, 0.4, 
0.1>}; 

D2 (Tuberculosis) = {<S1, 0.2, 0.7, 0.1>, <S2, 0.9, 0.0, 
0.1>, <S3, 0.7, 0.2, 0.1>, <S4, 0.6, 0.3, 0.1>, <S5, 0.7, 0.2, 

0.1>}; 

D3 (Typhoid) = {<S1, 0.5, 0.3, 0.2>, <S2, 0.3, 0.5, 0.2>, 
<S3, 0.2, 0.7, 0.1>, <S4, 0.2, 0.6, 0.2>, <S5, 0.4, 0.4, 0.2>}; 

D4 (Throat disease) = {<S1, 0.1, 0.7, 0.2>, <S2, 0.3, 0.6, 
0.1>, <S3, 0.8, 0.1, 0.1>, <S4, 0.1, 0.8, 0.1>, <S5, 0.1, 0.8, 
0.1>}. 

Then, by using Eq. (1), we can obtain the Dice simi-
larity measure between each patient Pi (i = 1, 2, 3, 4) and 
the considered disease Dj (j = 1, 2, 3, 4), which are shown 
in Table 1. 

Table 1 Measure values of SD(Pi, Dj) 

D1 
(Viral 

fever) 

D2 
(Tuberculosis) 

D3 
(Typhoid) 

D4 
(Throat 

disease) 

P1 0.7810 0.7753 0.8007 0.6946 
P2 0.7978     0.7656 0.7969 0.6826 
P3 0.7576 0.7063 0.7807 0.6492 

P4 0.8188 0.8278 0.8266 0.7139 

In Tables 1, the largest similarity measure indicates the 
proper diagnosis. Hence, Patient P1 suffers from typhoid, 
Patient P2 suffers from viral fever, Patient P3 also suffers 
from typhoid, and Patient P4 suffers from tuberculosis. 

6 Conclusion 

This paper introduced a concept of SVNM and some 

basic operational relations of SVNMs, and then proposed 
the Dice similarity measure and the weighted Dice 
similarity measure for SVNMs and investigated their 
properties. Finally, the Dice similarity measure of SVNMs 
was applied to medicine diagnosis under the SVNM 
environment. The Dice similarity measure of SVNMs is 

effective in handling the medical diagnosis problems with 

indeterminate and inconsistent information which the 
similarity measures of IFMSs cannot handle, because 
IFMSs cannot express and deal with indeterminate and 
inconsistent information.  

In further work, it is necessary and meaningful to ex-
tend SVNMs to interval neutrosophic multisets and their 

operations and measures and to investigate their applica-
tions such as decision making, pattern recognition, and 
medical diagnosis. 

References 

[1] K. Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets and Sys-

tems, 20 (1986), 87-96. 

[2] L. A. Zadeh, Fuzzy Sets. Information and Control, 8 (1965), 

338-353. 

[3] S. K De, R Biswas, and A. R. Roy. An application of 

intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets 

and Systems, 117(2) (2001), 209–213. 

[4] I. K. Vlachos and G. D. Sergiadis. Intuitionistic fuzzy in-

formation — Applications to pattern recognition. Pattern 

Recognition Letters, 28 (2007), 197-206. 

[5] J. Ye. Cosine similarity measures for intuitionistic fuzzy 

sets and their applications. Mathematical and Computer 

Modelling, 53(1-2) (2011), 91-97. 

[6] K. C. Hung. Applications of medical information: Using an 

enhanced likelihood measured approach based on 

intuitionistic fuzzy sets. IIE Transactions on Healthcare 

Systems Engineering, 2(3) (2012), 224-231. 

[7] M. Y. Tian. A new fuzzy similarity based on cotangent 

function for medical diagnosis. Advanced Modeling and 

Optimization, 15( 2) (2013), 151-156. 

[8] H. Wang, F. Smarandache, Y. Q. Zhang, and R. 

Sunderraman. Single valued neutrosophic sets. Multispace 

and Multistructure, 4 (2010), 410-413. 

[9] F. Smarandache. A unifying field in logics. neutrosophy: 

Neutrosophic probability, set and logic. Rehoboth: Ameri-

can Research Press, 1999. 

[10] P. Majumdar and S. K. Samanta. On similarity and entropy 

of neutrosophic sets. Journal of Intelligent and Fuzzy 

Systems, 26(3) (2014), 1245-1252. 

[11] J. Ye. Vector similarity measures of simplified 

neutrosophic sets and their application in multicriteria 

decision making. International Journal of Fuzzy Systems, 

16(2) (2014), 204-211. 

[12] J. Ye. Multiple attribute group decision-making method 

with completely unknown weights based on similarity 

measures under single valued neutrosophic environment. 

Journal of Intelligent and Fuzzy Systems, (2014), doi: 

10.3233/IFS-141252. 

[13] J. Ye and Q. S. Zhang, Single valued neutrosophic similari-

ty measures for multiple attribute decision making. Neutro-

sophic Sets and Systems 2 (2014), 48-54. 

[14] J. Ye. Clustering methods using distance-based similarity 

measures of single-valued neutrosophic sets. Journal of 

Intelligent Systems, (2014), doi: 10.1515/jisys-2013-0091 

[15] R. R. Yager. On the theory of bags, (Multi sets). 

International Journal of General System, 13 (1986), 23-37. 

[16] T. K. Shinoj and J. J. Sunil. Intuitionistic fuzzy multi sets 

and its application in medical diagnosis. World Academy of 

Science, Engineering and Technology, 6(1) (2012), 1418-

52



Neutrosophic Sets and Systems, Vol. 6, 2014 

Shan Ye, Jun Ye, Dice Similarity Measure between Single Valued Neutrosophic Multisets and Its Application in Medical 

Diagnosis

1421.  

[17] P. Rajarajeswari and N. Uma. Normalized hamming simi-

larity measure for intuitionistic fuzzy multi sets and its ap-

plication in medical diagnosis. International Journal of 

Mathematics Trends and Technology, 5(3) (2014), 219-225. 

Received: September 22, 2014.   Accepted: October 20, 2014.

53



Neutrosophic Sets and Systems, Vol. 6, 2014 

Anjan Mukherjee and  Sadhan Sarkar, Several Similarity Measures of Interval Valued Neutrosophic Soft Sets and Their 

Application in Pattern Recognition Problems

Several Similarity Measures of Interval Valued Neutrosophic 

Soft Sets and Their Application in Pattern Recognition 

Problems 

Anjan Mukherjee
1
 and Sadhan Sarkar

2

1 Department of Mathematics, Tripura University, Suryamaninagar, Agartala-799022, Tripura, India, Email: anjan2002_m@yahoo.co.in 
2 Department of Mathematics, Tripura University, Suryamaninagar, Agartala-799022, Tripura, India, Email: Sadhan7_s@rediffmail.com 

Abstract. Interval valued neutrosophic soft set intro-

duced by Irfan Deli in 2014[8] is a generalization of neu-

trosophic set introduced by F. Smarandache in 1995[19], 

which can be used in real scientific and engineering ap-

plications. In this paper the Hamming and Euclidean dis-

tances between two interval valued neutrosophic soft sets 

(IVNS sets) are defined and similarity measures based on 

distances between two interval valued neutrosophic soft 

sets are proposed. Similarity measure based on set theo-

retic approach is also proposed. Some basic properties of 

similarity measures between two interval valued neutro-

sophic soft sets is also studied. A decision making meth-

od is established for interval valued neutrosophic soft set 

setting using similarity measures between IVNS sets. Fi-

nally an example is given to demonstrate the possible ap-

plication of similarity measures in pattern recognition 

problems. 

Keywords: Soft set, Neutrosophic soft set, Interval valued neutrosophic soft set, Hamming distance, Euclidean distance,  Similarity 

measure, pattern recognition.

1 Introduction

      After the introduction of Fuzzy Set Theory by by Prof. 

L. A. Zadeh in 1965[27], several researchers have 

extended this concept in many directions. The traditional 

fuzzy sets is characterized by the membership value or the 

grade of membership value. Some times it may be very 

difficult to assign the membership value for a fuzzy set. 

Consequently the concept of interval valued fuzzy sets[28] 

was proposed to capture the uncertainty of grade of 

membership value. In some real life problems in expert 

system, belief system, information fusion and so on, we 

must consider the truth-membership as well as the falsity-

membership for proper description of an object in 

uncertain, ambiguous environment. Neither the fuzzy sets 

nor the interval valued fuzzy sets is appropriate for such a 

situation. Intuitionistic fuzzy sets[1] introduced by 

Atanassov in 1986 and interval valued intuitionistic fuzzy 

sets[2] introduced by K. Atanassov and G. Gargov in 1989 

are appropriate for such a situation. The intuitionistic fuzzy 

sets can only handle the incomplete information 

considering both the truth-membership (or simply 

membership) and falsity-membership (or non-membership) 

values. But it does not handle the indeterminate and 

inconsistent information which exists in belief system. F. 

Smarandache in 1995 introduced the concept of 

neutrosophic set[19], which is a mathematical tool for han- 

dling problems involving imprecise, indeterminacy and 

inconsistent data.   Soft set theory[11,14] has enriched its 

potentiality since its introduction by Molodtsov in 1999. 

Using the concept of soft set theory P. K. Maji in 2013 

introduced neutrosophic soft set[15] and Irfan Deli in 2014 

introduced the concept of interval valued neutrosophic soft 

sets[8] . Neutrosophic sets and neutrosophic soft sets now 

become the most useful mathematical tools to deal with the 

problems which involves the indeterminate and 

inconsistent informations. 

       Similarity measure is an important topic in the fuzzy 

set theory. The similarity measure indicates the similar 

degree between two fuzzy sets. In [23] P. Z.Wang first 

introduced the concept of similarity measure of fuzzy sets 

and gave a computational formula. Science then, similarity 

measure of fuzzy sets has attracted several researchers 

([3],[4],[5],[6],[7],[9],[10],[12],[13],[16],[17],[18],[22],[24

],[25],[26]) interest and has been investigated more. 

Similarity measure of fuzzy sets is now being extensively 

applied in many research fields such as fuzzy clustering, 

image processing, fuzzy reasoning, fuzzy neural network, 

pattern recognition, medical diagnosis , game theory, 

coding theory and several problems that contain 

uncertainties. 

        Similarity measure of  fuzzy values[5], vague 

sets[6], between vague sets and between elements[7], 

similarity measure of soft sets[12], similarity measure of 
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intuitionistic fuzzy soft sets[4], similarity measures of 

interval-valued fuzzy soft  sets  have been studied by 

several researchers. Recently Said Broumi and Florentin 

Smarandache introduced the concept of several similarity 

measures of neutrosophic sets[3] , Jun Ye introduced the 

concept of similarity measures between interval 

neutrosophic sets[26] and A. Mukherjee and S. Sarkar 

intoduced similarity measures for neutrosophic soft sets 

[18]. In this paper the Hamming and Euclidean distances 

between two interval valued neutrosophic soft sets(IVNS 

sets) are defined and similarity measures between two 

IVNS sets based on distances are proposed. Similarity 

measures between two IVNS sets  based on set theoretic 

approach also proposed in this paper. A decision making 

method is established based on the proposed similarity 

measures. An illustrative example demonstrates the 

application of proposed decision making method in pattern 

recognition problem.  

The rest of  the paper is organized as --- section 2: some 
preliminary basic definitions are given in this section. In 

section 3 similarity measures between two IVNS sets is de-
fined with example. In section 4 similarity measures be-
tween two IVNS sets based on set theoretic approach is de-
fined with example, weighted distances , similarity 
measures based on weighted distances is defined. Also 
some properties of similarity measures are studied. In sec-

tion 5  a decision making method is established with an 
with an example in pattern recognition problem. In Section 
6 a comparative study of similarity measures is given. Fi-
nally in section 7 some conclusions of the similarity 
measures between IVNS sets and the proposed decision 
making method are given.  

2 Preliminaries 

     In this section we briefly review some basic definitions 

related to interval-valued neutrosophic soft sets which will 

be used in the rest of the paper. 

Definition 2.1[27] Let X  be a non empty collection of
objects denoted by x. Then a fuzzy set (FS for short)   in X 
is a set of ordered pairs having the form 

   , :x x x X


    , 
where the function  : 0,1X   is called the 

membership function or grade of membership (also degree of 
compatibility or degree of truth) of x in  .The interval M = 
[0,1] is called membership space. 

Definition 2.2[28] Let D[0, 1] be the set of closed sub-
intervals of the interval [0, 1]. An interval-valued fuzzy set in 

X is an expression A given by 

  ( , ( )) :AA x M x x X  ,where MA:X→D[0,1].  

Definition 2.3[1] Let X be a non empty set. Then an 
intuitionistic fuzzy set (IFS for short) A is a set having the 

form  A={(x, A(x), A(x)): xX}  where the functions A: 
X[0,1] and A: X[0,1] represents the degree of 
membership and the degree of non-membership respectively 
of each element xX and 0A(x)+A(x)1 for each xX. 

Definition 2.4[2] An interval valued intuitionistic  fuzzy 

set A over a universe set U is defined as the object of the 
form A={<x, A(x), A(x)>: xU)}, where A(x): 
UD[0,1] and A(x): UD[0,1] are functions such that 
the condition: xU, supA(x)+supA(x)1 is 
satisfied( where D[0,1] is the set of all closed subintervals 
of  [0,1]). 

Definition 2.5[11,14] Let U be an initial universe and E 
be a set of parameters. Let P(U) denotes the power set of U 
and A  . Then the pair (F,A) is called a soft set over U, 
where F is a mapping given by F:A→P(U). 

Definition 2.6[19,20] A neutrosophic set A on the 

universe of discourse X is defined as 

{( , ( ), ( ), ( )), }
A A A

A x T x I x F x x X  where T, I, F : 

] 0,1 [X    and  0 ( ) ( ) ( ) 3
A A A

T x I x F x
 

     . 

   From philosophical point of view, the neutrosophic set 

takes the value from real standard or non-standard subsets 

of ] 0,1 [ 
. But in real life application in scientific and 

engineering problems it is difficult to use neutrosophic set 

with value from real standard or non-standard subset of 

] 0,1 [ 
. Hence we consider the neutrosophic set which 

takes the value from the subset of [0,1] that is  

0 ( ) ( ) ( ) 3
A A A

T x I x F x    . 

       Where TA(x) is called truth-membership function,  

IA(x) is called an indeterminacy-membership function and 

FA(x) is called a falsity membership function  

Definition 2.7[15] Let U be the universe set and E be the 

set of parameters.  Also let A  E and P(U) be the set of 

all neutrosophic sets of U. Then the collection (F, A) is 

called neutrosophic soft set over U, where F is a mapping 

given by F: A   P(U). 

Definition 2.8[21] Let U be a space of points (objects), 

with a generic element in U. An interval value 

neutrosophic set (IVN-set) A in U is characterized by truth 

membership function TA, a indeterminacy-membership 

function IA and a falsity- membership function FA. For 

each point u  ; TA, IA and FA   [   ] .
Thus a IVN-set A over U is represented as 

{( ( ), ( ), ( )) : }
A A A

A T u I u F u u U   

Where 0 sup( ( ) sup ( ) sup ( ) 3
A A A

T u I u F u    and 

( ( ), ( ), ( ))
A A A

T u I u F u  is called interval value 

neutrosophic number for all u    . 
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Definition 2.9[8] Let U be an initial universe set, E be a 

set of parameters and A  E. Let IVNS(U)  denotes the set 

of all interval value neutrosophic subsets of U. The 

collection (F,A) is termed to be the interval valued 

neutrosophic soft set over U, where F is a mapping  given 

by F: A → IVNS(U).  

3 Similarity measure between two IVNS sets 
based on distances 

    In this section we define Hamming and Euclidean 

distances between two interval valued neutrosophic soft 

sets and proposed similarity measures based on theses 

distances. 

Definition 3.1 Let  
1 2 3
, , , .......,

n
U x x x x  be an initial 

universe and  
1 2 3
, , , .......,

m
E e e e x  be a set of 

parameters. Let IVNS(U)  denotes the set of all interval 

valued neutrosophic subsets of U. Also let (N1,E) and 

(N2,E) be two interval valued neutrosophic soft sets over U, 

where N1 and N2 are mappings given by N1,N2: E → 

IVNS(U). We define the following distances between (N1, 

E) and (N2, E) as follows:

1. Hamming Distance:


1 2

1 2

1 1

1
( , ) ( )( ) ( )( )

6

n m

H N i j N i j

i j

D N N T x e T x e
 

  


1 2 1 2

( )( ) ( )( ) ( )( ) ( )( )
N i j N i j N i j N i j

I x e I x e F x e F x e  

2. Normalized Hamming distance:


1 2

1 2

1 1

1
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3. Euclidean distance:
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4. Normalized Euclidean distance:
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Where 

 
1 1 1

1
( )( ) inf ( )( ) sup ( )( )

2
N i j N i j N i j

T x e T x e T x e 

 
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2
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Definition 3.2  Let U be universe and E be the set of pa-

rameters and (N1,E) , (N2,E) be two interval valued neutro-

sophic soft sets over U. Then based on the distances de-

fined in definition 3.1 similarity measure between (N1,E) 

and (N2,E) is defined as 

SM(N1,N2) = 

1 2

1

1 ( , )D N N
 ………… (3.1) 

Another similarity measure of (N1,E) and (N2,E) can also 

be defined as  

SM(N1,N2) = 1 2D(N ,N )
e


………………. (3.2) 

      Where D(N1,N2) is the distance between the interval 

valued neutrosophic soft sets (N1,E) and (N2,E) and   is 

a positive real number, called steepness measure. 

Definition 3.3 Let U be universe and E be the set of pa-

rameters and (N1,E) , (N2,E) be two interval valued neutro-

sophic soft sets over U. Then we define the following dis-

tances between (N1,E) , (N2,E) as follows: 


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1
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  ……………… (3.3) 

and 


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1
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

  ……………… (3.4) 

      Where p > 0. If p = 1 then equation (3.3) and (3.4) are 

respectively reduced to Hamming distance and Normalized 

Hamming distance. Again if p = 2 then equation (3.3) and 

(3.4) are respectively reduced to Euclidean distance and 

Normalized Euclidean distance. 

56



Neutrosophic Sets and Systems, Vol. 6, 2014 

Anjan Mukherjee and  Sadhan Sarkar, Several Similarity Measures of Interval Valued Neutrosophic Soft Sets and Their 

Application in Pattern Recognition Problems

The weighted distance is defined as


1 21 2

1 1

1
( , ) ( )( ) ( )( )
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N i j N i j

i j

w

iD N N T x e T x ew
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
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
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

  ……………….(3.5) 

Where w = (w1,w2,w3,….,wn)
T  is the weight vector of xi (i

= 1,2,3, …. ,n) and p > 0. Especially, if  p = 1 then (3.5) is 

reduced to the weighted Hamming distance and if  p = 2, 

then (3.5) is reduced to the weighted Euclidean distance. 

Definition 3.4 Based on the weighted distance between 

two interval valued neutrosophic soft sets (N1,E) and 

(N2,E) given by equation (3.6) , the similarity  measure be-

tween (N1,E) and (N2,E)) is defined as          

   SM(N1,N2) = 

1 2

1

1 ( , )
w

D N N
………..(3.6)

Example 3.5 Let U={x1,x2,x3} be the universal set and 

E={e1,e2} be the set of parameters. Let (N1,E) and (N2,E) 

be two interval-valued neutrosophic soft sets over U such 

that their tabular representations are as follows: 

N1 e1 e2

x1 [0.1,0.3],[0.3,0.6], 
[0.8,0.9] 

[0.7,0.8],[0.6,0.7], 
[0.4,0.5] 

x2 [0.4,0.5],[0.2,0.3], 
[0.1,0.2] 

[0.6,0.8],[0.4,0.5], 
[0.5,0.6] 

x3 [0.3,0.5],[0.3,0.4], 
[0.2,0.4] 

[0.9,1.0],[0.4,0.5], 
[0.6,0.7] 

Table 1: tabular representation of (N1,E) 

N2 e1 e2

x1 [0.2,0.3],[0.4,0.5], 
[0.7,0.9] 

[0.7,0.8],[0.5,0.7], 
[0.3,0.5] 

x2 [0.3,0.5],[0.2,0.4], 
[0.4,0.6] 

[0.6,0.7],[0.3,0.5], 
[0.4,0.6] 

x3 [0.4,0.5],[0.3,0.4], 
[0.7,0.8] 

[0.8,0.9],[0.2,0.5], 
[0.5,0.8] 

Table 2: tabular representation of (N2,E) 

Now by definition 3.1 the Hamming distance between 
(N1,E) and (N2,E) is given by DH(N1,N2) = 0.25 and hence 
by equation (3.1) similarity measure between (N1,E) and 
(N2,E) is given by SM(N1,N2) = 0.80 . 

4. Similarity measure between two ivns sets
based on set theoretic approach 

Definition 4.1 Let  1 2 3
, , ,.......,

n
U x x x x  be an initial 

universe and  1 2 3
, , ,.......,

m
E e e e x  be a set of 

parameters. Let IVNS(U)  denotes the set of all interval 

valued neutrosophic subsets of U. Also let (N1,E) and 

(N2,E) be two interval valued neutrosophic soft sets over U, 

where N1 and N2 are mappings given by N1,N2: E → 

IVNS(U). We define similarity measure SM(N1,N2) 

between (N1,E) and (N2,E) based on set theoretic approach 

as follows:  

   SM(N1,N2) =  
1 2

1 1
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Example 4.2 Here we consider example 3.5. Then by 

definition 4.1 similarity measure measure between (N1,E) 

and (N2,E) is given by  

SM(N1,N2) = 0.86 . 

Theorem 4.3 If SM(N1,N2) be the similarity measure 

between two IVNSS (N1,E) and (N2,E) then

(i) SM(N1,N2) = SM(N2,N1) 

(ii) 0              

(iii) SM(N1,N2)  = 1 if and only if (N1,E) = (N2,E) 

Proof: Immediately follows from definitions 3.2 and 4.1. 

Definition 4.4 Let (N1,E) and (N2,E) be two IVNSS over 

U. Then (N1,E) and (N2,E) are said be α -similar , denoted 

if by 
1 2

( , ) ( , )N E N E


 and only if SM((N1,E),(N2,E)) > α 

for α   (0,1). We call the two IVNSS significantly similar 

if SM((N1,E),(N2,E)) > 
 

 
 . 

Example 4.5 In example 3.5 SM(N1,N2) = 0.80 >  0.5 . 

Therefore the IVNSS (N1,E) and (N2,E) are significantly 

similar

 

5  Application in pattern recognition problem 

      In this section we developed an algorithm based on 

similarity measures of two interval valued neutrosophic 

soft sets based on distances for possible application in 

pattern recognition problems. In this method we assume 

that if similarity between the ideal pattern and sample 

pattern is greater than or equal to 0.7(which may vary for 
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different problem) then the sample pattern belongs to the 

family of ideal pattern in consideration.

The algorithm of this method is as follows: 

Step 1: construct an ideal IVNSS (A, E) over the universe 

U. 

Step 2: construct IVNS Sets (Ai, E), i = 1, 2, 3, … , n,  

over the universe U for the sample patterns which are to 

recognized. 

Step 3: calculate the distances of (A, E) and (Ai, E). 

Step 4: calculate similarity measure SM(A, Ai) between (A, 

E) and (Ai, E).

Step 5: If SM(A, Ai) ≥ 0.7 then the pattern Ai is to be 

recognized to belong to the ideal Pattern A and if SM(A, 

Ai) < 0.7 then the pattern Ai is to be recognized not to 

belong to the ideal Pattern A. 

Example 5.1 Here a fictitious numerical example is given 

to illustrate the application of similarity measures between 

two interval valued neutrosophic soft sets in pattern 

recognition problem. In this example we take three sample 

patterns which are to be recognized. 

Let U = {x1,x2,x3} be the universe and E = {e1,e2,e3} be the 

set of parameters. Also let (A,E) be IVNS set of the ideal 

pattern and (A1,E), (A2,E), (A3,E) be the IVNS sets of three 

sample patterns. 

Step 1: Construct an ideal IVNS Set (A,E) over the 

universe U. 

A e1 e2 

x1 [0.6,0.7],[ 0.1,0.2], 
[0.4,0.5] 

[0.8,0.9],[0.2,0.3], 
[0.5,0.6] 

x2 [0.5,0.6],[0.0,0.1], 
[0.3,0.4] 

[0.2,0.4],[0.1,0.2], 
[0.6,0.7] 

x3 [0.7,0.8],[0.3,0.4], 
[0.2,0.3] 

[0.7,0.8],[0.4,0.5], 
[0.3,0.5] 

e3 

[0.5,0.6],[0.1,0.3], 

[0.6,0.8] 

[0.4,0.5],[0.2,0.3], 
[0.5,0.6] 

[0.7,0.8],[0.0,0.2], 
[0.5,0.7] 

Table 3: tabular representation of (A,E) 

Step 2: Construct IVNS Sets (A1,E), (A2,E), (A3,E) over 

the universe U for the sample patterns which are to 

recognized. 

A1 e1 e2 

x1 [0.2,0.3],[ 0.4,0.5], 
[0.6,0.7] 

[0.2,0.3],[0.6,0.7], 
[0.8,1.0] 

x2 [0.1,0.2],[0.6,0.7], 

[0.7,0.9] 

[0.8,0.9],[0.4,0.5], 

[0.2,0.3] 

x3 [0.3,0.4],[0.0,0.1], 
[0.7,0.8] 

[0.1,0.2],[0.2,0.3], 
[0.7,0.8] 

e3 

[0.8,1.0],[0.5,0.6], 

[0.1,0.2] 

[0.0,0.1],[0.6,0.7], 
[0.8,0.9] 

[0.1,0.2],[0.3,0.4], 
[0.2,0.3] 

Table 4: tabular representation of (A1,E) 

A2 e1 e2 

x1 [0.6,0.8],[0.15,0.25], 
[0.3,0.5] 

[0.75,0.85],[0.1,0.2], 
[0.4,0.5] 

x2 [0.4,0.6],[0.0,0.2], 
[0.4,0.5] 

[0.3,0.4],[0.0,0.2], 
[0.5,0.7] 

x3 [0.6,0.8],[0.2,0.3], 
[0.2,0.3] 

[0.6,0.75],[0.3,0.4], 
[0.4,0.5] 

e3 

[0.4,0.55],[0.2,0.3], 

[0.7,0.9] 

[0.4,0.5],[0.15,0.25], 
[0.4,0.6] 

[0.65,0.85],[0.1,0.2], 
[0.4,0.6] 

Table 5: tabular representation of (A2,E) 

A2 e1 e2 

x1 [0.5,0.7],[0.1,0.3], 
[0.45,0.6] 

[0.7,1.0],[0.1,0.25], 
[0.5,0.7] 

x2 [0.5,0.6],[0.0,0.2], 
[0.2,0.4] 

[0.3,0.5],[0.1,0.3], 
[0.6,0.8] 

x3 [0.7,0.9],[0.1,0.35], 
[0.1,0.35] 

[0.75,0.9],[0.2,0.4], 
[0.35,0.6] 

e3 

[0.55,0.7],[0.2,0.3], 

[0.6,0.8] 

[0.4,0.6],[0..2,0.4], 
[0.5,0.7] 

[0.6,0.7],[0.1,0.3], 
[0.4,0.6] 

Table 6: tabular representation of (A3,E) 
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Step 3: Calculate the Hamming distances of (A, E) and (Ai, 

E) for i = 1, 2, 3.

By definition 3.1 the Hamming distances between (A,E) 

and (Ai,E) for i = 1,2,3 are given by 

DH(A,A1) =  1.825 

DH(A,A2) =  0.254 

DH(A,A3) =  0.279 

Step 4: Calculate similarity measures SM(A,Ai) between 

(A, E) and (Ai, E) for i = 1, 2, 3. 

By equation 3.1 similarity measures between (A,E) and 

(Ai,E) for i = 1,2,3 using Hamming distance are given by 

SM(A,A1) = 0.35 

SM(A,A2) = 0.80 

SM(A,A3) = 0.78 

Again by definition 4.1 similarity measures between (A,E) 

and (Ai,E) for i = 1,2,3 are given by 

SM(A,A1) = 0.39 

SM(A,A2) = 0.87 

SM(A,A3) = 0.86 

Step 5: Here we see that SM(A,A1) < 0.7 , SM(A,A2) > 0.7 

and SM(A,A3) > 0.7 . 

      Hence the sample patterns whose corresponding IVNS 

sets are represented by (A2,E) and (A3,E) are recognized as 

similar patterns of the family of ideal pattern whose IVNS 

set is represented by (A,E) and the pattern whose IVNS set 

is represented by (A1,E) does not belong to the family of 

ideal pattern (A1,E). Here we see that if we use similarity 

measures based on set theoretic approach then also we get 

the same results.  

6 Comparison of different similarity measures 

         In this section we make comparative study among 

similarity measures proposed in this paper. Table 7 shows 

the comparison of similarity measures between two IVNS 

sets based on distance (Hamming distance) and similarity 

measure based on set theoretic approach as obtained in 

example 3.5, 4.2 and 5.1 .  

Table 7:  comparison of similarity measures 

Table 7 shows that each method has its own measuring but 

the results are almost same. So any method can be applied 

to evaluate the similarity measures between two interval 

valued neutrosophic soft sets. 

Conclusions 
      In this paper we have defined several distances 
between two interval valued neutrosophoic soft sets and 
based on these distances we proposed similarity measure 

between two interval valued neutrosophic soft sets. We 
also proposed similarity measure between two interval 
valued neutrosophic soft sets based on set theoretic 
approach. A decision making method based on similarity 
measure is developed and a numerical example is 
illustrated to show the possible application of similarity 

measures between two interval valued neutrosophic soft 
sets for a pattern recognition problem. Thus we can use the 
method to solve the problem that contain uncertainty such 
as problem in social, economic system, medical diagnosis, 
game theory, coding theory and so on. A comparative 
study of different similarity measures also done . 
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Abstract. Soft set theory is a general mathematical tool 

for dealing with uncertain, fuzzy, not clearly defined ob-

jects. In this paper we introduced soft neutrosophic 

groupoid and their generalization with the discuissionf of 

some of their characteristics. We also introduced a new 

type of soft neutrophic groupoid, the so called soft strong 

neutrosophic goupoid which is of pure neutrosophic 

character. This notion also found in all the other corre-

sponding notions of soft neutrosophic thoery. We also 

given some of their properties of this newly born soft 

structure related to the strong part of neutrosophic theory. 

Keywords: Neutrosophic groupoid, neutrosophic bigroupoid, neutrosophic N -groupoid, soft set, soft neutrosophic groupoid, soft

neutrosophic bigroupoid, soft neutrosophic N -groupoid.

1 Introduction 
 Florentine Smarandache for the first time introduced the 

concept of neutrosophy in  1995,   which is basically a

new branch of philosophy which actually studies the 

origin, nature, and scope of neutralities. The neutrosophic 

logic came into being by neutrosophy. In neutrosophic log-

ic each proposition is approximated to have the percentage 

of truth in a subset T , the percentage of indeterminacy in 

a subset I , and the percentage of falsity in a subset F . 

Neutrosophic logic is an extension of fuzzy logic. In fact 

the neutrosophic set is the generalization of classical set, 

fuzzy conventional set, intuitionistic fuzzy set, and interval 

valued fuzzy set. Neutrosophic logic is used to overcome 

the problems of impreciseness, indeterminate, and incon-

sistencies of date etc. The theory of neutrosophy is so ap-

plicable to every field of algebra. W.B. Vasantha Kan-

dasamy and Florentin Smarandache introduced neutro-

sophic fields, neutrosophic rings, neutrosophic vector 

spaces, neutrosophic groups, neutrosophic bigroups and 

neutrosophic N -groups, neutrosophic semigroups, neu-

trosophic bisemigroups, and neutrosophic  N -

semigroups, neutrosophic loops, nuetrosophic biloops, and 

neutrosophic N -loops, and so on. Mumtaz ali et al. intro-

duced nuetrosophic LA -semigroups. 

     Molodtsov introduced the theory of soft set. This math-

ematical tool is free from parameterization inadequacy, 

syndrome of fuzzy set theory, rough set theory, probability 

theory and so on. This theory has been applied successfully 

in many fields such as smoothness of functions, game the-

ory, operation research, Riemann integration, Perron inte-

gration, and probability. Recently soft set theory attained 

much attention of the researchers since its appearance and 

the work based on several operations of soft set introduced 

in  2,9,10 . Some properties and algebra may be found

in  1 .  Feng et al. introduced soft semirings in  5 . By

means of level soft sets an adjustable approach to fuzzy 

soft set can be seen in  6 . Some other concepts together

with fuzzy set and rough set were shown in  7,8 .

 This paper is about to introduced soft nuetrosophic 

groupoid, soft neutrosophic bigroupoid, and soft neutro-

sophic N -groupoid and the related strong or pure part of 

neutrosophy with the notions of soft set theory. In the pro-

ceeding section, we define soft neutrosophic groupoid, soft 

neutrosophic strong groupoid, and some of their properties 

are discussed. In the next section, soft neutrosophic 

bigroupoid are presented with their strong neutrosophic 

part. Also in this section some of their characterization 

have been made. In the last section soft neutrosophic N -

groupoid  and their corresponding strong theory have been 

constructed with some of their properties. 

2 Fundamental Concepts 

2.1 Neutrosophic Groupoid 

 Definition 2.1.1.  Let G be a groupoid, the groupoid gen-

erated by G and I i.e. G I is denoted  
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by G I  is defined to be a neutrosophic groupoid 

where I  is the indeterminacy element and 

termed as neutrosophic element. 

Definition 2.1.2. Let G I  be a neutrosophic 

groupoid.  A proper subset P  of G I is said to be a 

neutrosophic subgroupoid, if P  is a neutrosophic 

groupoid under the operations of  G I .  A neutro-

sophic groupoid G I  is said to have a subgroupoid if 

G I  has a proper subset which is a groupoid under 

the operations of G I . 

Theorem 2.1.3.  Let G I  be a neutrosophic 

groupoid. Suppose 1P  and 2P  be any two neutrosophic 

subgroupoids of G I , then 1 2P P , the union of 

two neutrosophic subgroupoids in general need not be a 

neutrosophic subgroupoid. 

Definition 2.1.4.  Let G I  be a neutrosophic 

groupoid under a binary operation  . P  be a proper sub-

set of G I . P  is said to be a neutrosophic ideal of 

G I  if the following conditions are satisfied. 

1. P  is a neutrosophic groupoid.

2. For all p P  and for all s G I   we have 

p s  and s p  are in P .

2.2 Neutrosophic Bigroupoid 

Definition 2.2.1. Let  ( (G), , )BN   be a non-empty set 

with two binary operations   and .  ( (G), , )BN   is 

said to be a neutrosophic bigroupoid if 

1 2(G)BN P P   where atleast one of  1( , )P   or 

2( , )P  is a neutrosophic groupoid and other is just a 

groupoid. 1P  and 2P  are proper subsets of (G)BN . 

If both 1( , )P   and 2( , )P  in the above definition are 

neutrosophic groupoids then we call  ( (G), , )BN   a 

strong neutrosophic bigroupoid. All strong neutrosophic 

bigroupoids are trivially neutrosophic bigroupoids. 

Definition 2.2.2. Let 1( (G) P ;: , )BN P    be a neu-

trosophic bigroupoid. A proper subset  ( , , )T   is said to 

be a neutrosophic subbigroupoid of (G)BN  if 

1)  1 2T T T   where 1 1T P T   and 

2 2T P T  and 

2) At least one of 1( , )T  or 2( , )T   is a neutrosophic 

groupoid.

Definition 2.2.3. Let 1( (G) P , , )BN P    be a neu-

trosophic strong bigroupoid. A proper subset  T  of 

( )BN S  is called the strong neutrosophic subbigroupoid if 

1 2T T T   with  1 1T P T   and 2 2T P T   and if 

both 1( , )T   and 2( , )T  are neutrosophic subgroupoids of  

1( , )P   and 2( , )P  respectively. We call 1 2T T T   to 

be a neutrosophic strong subbigroupoid, if atleast one of 

1( , )T   or 2( , )T  is a groupoid then 1 2T T T   is only 

a neutrosophic subgroupoid. 

Definition 2.2.4. Let 1 2( (G) P , , )BN P    be any 

neutrosophic bigroupoid. Let J  be a proper subset of 

(J)BN  such that 1 1J J P   and 2 2J J P   are 

ideals of 1P  and 2P  respectively. Then J  is called the 

neutrosophic biideal of (G)BN . 

Definition 2.2.5. Let ( (G), , )BN   be a strong neutro-

sophic bigroupoid where  1 2( ) PBN S P    with 

1( , )P   and 2( , )P  be any two neutrosophic groupoids. 

Let J  be a proper subset of (G)BN  where 1 2I I I 

with 1 1I I P   and 2 2I I P   are neutrosophic ide-

als of the neutrosophic groupoids 1P  and 2P  respectively. 

Then I  is called or defined as the strong neutrosophic 

biideal of (G)BN . 

Union of any two neutrosophic biideals in general is not a 

neutrosophic biideal. This is true of neutrosophic strong 

biideals. 

2.3 Neutrosophic N -groupoid 

Definition 2.3.1. Let 1 2{N(G), ,..., }   be a non-empty 

set with N -binary operations defined on it. We call 

( )N G  a neutrosophic N -groupoid ( N  a positive inte-

ger)  if the following conditions are satisfied. 

1) 1N(G) ... GNG    where each iG  is a proper 

subset of ( )N G  i.e. 
i jG G  or 

j iG G  if  

i j . 

2) (G , )i i  is either a neutrosophic groupoid or a 

groupoid for 1,2,3,...,i N . 
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If all the N -groupoids (G , )i i  are neutrosophic 

groupoids  (i.e. for  1,2,3,...,i N ) then we call ( )N G  

to be a neutrosophic strong N -groupoid. 

Definition 2.3.2. Let 

1 2 1 2N(G) {G .... , , ,..., }N NG G        be a neu-

trosophic N -groupoid. A proper subset 

1 2 1 2{P ....P , , ,..., }N NP P       of ( )N G  is said 

to be a neutrosophic N -subgroupoid if 

, 1,2,...,i iP P G i N    are subgroupiids of iG  in 

which atleast some of the subgroupoids are neutrosophic 

subgroupoids. 

Definition 2.3.3. Let 

1 2 1 2N(G) {G .... G , , ,..., }N NG        be a neu-

trosophic strong N -groupoid. A proper subset 

1 2 1 2{T .... T , , ,..., }N NT T        of ( )N G  is 

said to be a neutrosophic strong sub N -groupoid if each  

( , )i iT   is a neutrosophic subgroupoid of  (G , )i i  for  

1,2,...,i N  where i iT G T  . 

If only a few of the ( , )i iT   in T  are just subgroupoids of

(G , )i i , (i.e.  ( , )i iT   are not neutrosophic subgroupoids 

then we call T  to be a sub N -groupoid of ( )N G . 

Definition 2.3.4. Let 

1 2 1 2N(G) {G .... G , , ,..., }N NG        be a neu-

trosophic N -groupoid. A proper subset 

1 2 1 2{P .... , , ,..., }N NP P P        of ( )N G  is 

said to be a neutrosophic N -subgroupoid, if the following 

conditions are true, 

1. P  is a neutrosophic sub N -groupoid of

( )N G .

2. Each , 1,2,...,i iP G P i N    is an ideal of 

iG .

Then P  is called or defined as the neutrosophic N -ideal 

of the neutrosophic N -groupoid  ( )N G . 

Definition 2.3.5. Let 

1 2 1 2N(G) {G ....G , , ,..., }N NG       be a neutro-

sophic strong  N -groupoid. A proper subset 

1 2 1 2{J ....J , , ,..., }N NJ J       where 

t tJ J G   for  1,2,...,t N  is said to be a neutro-

sophic strong N -ideal of ( )N G  if the following condi-

tions are satisfied. 

1) Each it is a neutrosophic subgroupoid of

, 1,2,...,tG t N  i.e. It is a neutrosophic strong N-

subgroupoid of ( )N G . 

2) Each it is a two sided ideal of tG  for 1,2,...,t N . 

Similarly one can define neutrosophic strong N -left ideal 

or neutrosophic strong right ideal of  ( )N G . 

A neutrosophic strong N -ideal is one which is both a neu-

trosophic strong N -left ideal and N -right ideal of 

( )S N . 

2.4 Soft Sets 

Throughout this subsection U refers to an initial uni-

verse, E  is a set of parameters, ( )PU  is the power set of

U , and ,A B E . Molodtsov defined the soft set in the

following manner: 

Definition 2.4.1. A pair ( , )F A  is called a soft set over

U  where F is a mapping given by  : ( )F A PU .

In other words, a soft set over  U  is a parameterized fami-

ly of subsets of the universe  U . For  a A  , (a)F
may be considered as the set of  a -elements of the soft set

( , )F A  , or as the set of  a -approximate elements of the

soft set. 

Definition 2.4.2.  For two soft sets ( , )F A  and  ( , )H B
over U , ( , )F A  is called a soft subset of  ( , )H B  if

1. A B   and

2. ( ) ( )F a H a , for all  x A  .

This relationship is denoted by ( , ) ( , )F A H B . Simi-

larly ( , )F A  is called a soft superset of ( , )H B  if

( , )H B  is a soft subset of ( , )F A  which is denoted by

( , ) ( , )F A H B .

Definition 2.4.3.  Two soft sets ( , )F A  and ( , )H B  over

U are called soft equal if ( , )F A  is a soft subset of

( , )H B  and ( , )H B  is a soft subset of ( , )F A .

Definition 2.4.4.  Let ( , )F A  and ( , )K B  be two soft

sets over a common universe U such that  A B  .

Then their restricted intersection is denoted by 

( , ) ( , ) ( , )RF A K B H C  where ( , )H C  is de-

fined as  ( ) ( ) )H c F c c for all

c C A B  .

Definition 2.4.5.  The extended intersection of two soft 

sets  ( , )F A  and  ( , )K B  over a common universe U is

the soft set  ( , )H C  , where  C A B  , and for all

c C  , ( )H c  is defined as
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( ) if c ,

( ) ( ) if c ,

( ) ( ) if c .

F c A B

H c G c B A

F c G c A B

We write  ( , ) ( , ) ( , )F A K B H C .

Definition 2.4.6. The restricted union of two soft sets  

( , )F A  and ( , )K B  over a common universe U is the

soft set  ( , )H C , where  C A B  , and for all

c C  , ( )H c  is defined as  ( ) ( ) ( )H c F c G c

for all  c C  . We write it as
 

( , ) ( , ) ( , ).RF A K B H C
Definition 2.4.7. The extended union of two soft sets  

( , )F A  and ( , )K B  over a common universe U is the

soft set  ( , )H C , where  C A B  , and for all

c C  ,  ( )H c   is defined as

( ) if c ,

( ) ( ) if c ,

( ) ( ) if c .

F c A B

H c G c B A

F c G c A B

We write ( , ) ( , ) ( , )F A K B H C .

3 Soft Neutrosophic Groupoid and Their Properties 

3.1 Soft Neutrosophic Groupoid 

Definition 3.1.1. Let { , }G I   be a neutrosophic 
groupoid and ( , )F A  be a soft set over { , }G I  . 
Then ( , )F A  is called soft neutrosophic groupoid if and 
only if ( )F a  is neutrosophic subgroupoid of   

{ , }G I   for all a A . 

Example 3.1.2. Let  

10

0,  1,  2,  3,  ,  9,  ,  2 ,  ,  9 ,

 1  ,  2  ,  ,  9  9

I I I
Z I

I I I

 
 


 

   


 
 

be a neutrosophic groupoid where    is defined on 

10Z I    by 3 2 (mod10)a b a b    for all 

, 10a b Z I   . Let 1 2{ , }A a a  be a set of 

parameters. Then ( , )F A  is a soft neutrosophic groupoid 

over { 10 , }Z I    , where 

1( ) {0,5,5I,5 5I},F a  

2 10( ) (Z , )F a   . 

Theorem 3.1.3.  A soft neutrosophic groupoid over 

{ , }G I   always contain a soft groupoid over 

( , )G  . 

 Proof. The proof of this theorem is straightforward. 

Theorem 3.1.4. Let ( , )F A  and ( , )H A  be two soft neu-

trosophic groupoids over { , }G I  . Then their inter-

section ( , ) ( , )F A H A  is again a soft neutrosophic 

groupoid over { , }G I  . 

Proof. The proof is straightforward. 

Theorem 3.1.5. Let ( , )F A  and ( , )H B  be two soft neu-

trosophic groupoids over { , }G I  . If  A B   , 

then ( , ) ( , )F A H B  is a soft neutrosophic groupoid 

over { , }G I  . 

Remark 3.1.6. The extended union of two soft neutrosoph-

ic groupoids ( , )F A  and ( , )K B  over  a neutrosophic 

groupoid { , }G I   is not a soft neutrosophic 

groupoid over { , }G I  . 

Proposition 3.1.7. The extended intersection of two soft 

neutrosophic groupoids over a neutrosophic groupoid 

{ , }G I   is a soft neutrosophic groupoid over 

{ , }G I   . 

Remark 3.1.8. The restricted union of two soft neutro-

sophic groupoids ( , )F A  and ( , )K B  over  

{ , }G I   is not a soft neutrosophic groupoid over 

{ , }G I  . 

Proposition 3.1.9. The restricted intersection of two soft 

neutrosophic groupoids over { , }G I   is a soft neu-

trosophic groupoid over { , }G I  . 

Proposition 3.1.10. The AND  operation of two soft neu-

trosophic groupoids over { , }G I   is a soft neutro-

sophic groupoid over { , }G I  . 

Remark 3.1.11. The OR  operation of two soft neuto-

sophic groupoids over { , }G I   is not a soft nuetro-

sophic groupoid over { , }G I  . 

Definition 3.1.12. Let ( , )F A  be a soft neutrosophic 

groupoid over { , }G I  . Then ( , )F A  is called an 

absolute-soft neutrosophic groupoid over { , }G I   if 

( ) { , }F a G I   , for all a A . 

Theorem 3.1.13. Every absolute-soft neutrosophic 

groupoid over { , }G I   always contain absolute soft 
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groupoid over {G, } .  

Definition 3.1.14. Let ( , )F A  and ( , )H B  be two soft 

neutrosophic groupoids over { , }G I  . Then  

( , )H B  is a soft neutrosophic subgroupoid of ( , )F A , if 

1. B A .

2. ( )H a  is neutrosophic subgroupoid of ( )F a ,

for all a B . 

Example 3.1.15. Let 

4

0,1,2,3, ,2 ,3 ,1 ,1 2 ,1 3

2 ,2 2 ,2 3 ,3 ,3 2 ,3 3

I I I I I I
Z I

I I I I I I

   
   

      
 be a neutrosophic groupoid with respect to the operation 

  where   is defined as 2 (mod4)a b a b    for all 

4,a b Z I  . Let 1 2 3{ , , }A a a a  be a set of pa-

rameters. Then ( , )F A  is a soft neutrosophic groupoid 

over 4Z I , where 

1( ) {0,2,2 ,2 2 },F a I I   

2( ) {0,2,2 2I}F a   , 

3( ) {0,2 2 }F a I  . 

Let 1 2{ , } AB a a  . Then ( , )H B  is a soft neutro-

sophic subgroupoid of ( , )F A , where 

1( ) {0,2 2 },H a I 

2( ) {0,2 2 }H a I  . 

Definition 3.1.16. Let  ,G I   be a neutrosophic

groupoid and ( , )F A  be a soft neutrosophic groupoid 

over   ,G I  . Then ( , )F A  is called soft Lagrange

neutrosophic groupoid if and only if ( )F a  is a Lagrange 

neutrosophic subgroupoid of  ,G I   for all

a A . 

Example 3.1.17. Let 

4

0,1,2,3, ,2 ,3 ,1 ,1 2 ,1 3

2 ,2 2 ,2 3 ,3 ,3 2 ,3 3

I I I I I I
Z I

I I I I I I

   
   

      
 be a neutrosophic groupoid of order 16 with respect to the 

operation   where   is defined as 

2 (mod4)a b a b    for all 4,a b Z I  . Let 

1 2{ , }A a a  be a set of parameters. Then ( , )F A  is a 

soft Lagrange neutrosophic groupoid over 4Z I , 

where 

1( ) {0,2,2 ,2 2 },F a I I   

2( ) {0,2 2 }F a I  . 

Theorem 3.1.18. Every soft Lagrange neutrosophic 

groupoid over  ,G I   is a soft neutrosophic

groupoid over   ,G I   but the converse is not true.

We can easily show the converse by the help of example. 

 Theorem 3.1.19. If  ,G I   is a Lagrange neutro-

sophic groupoid, then ( , )F A  over  ,G I   is a

soft Lagrange neutrosophic groupoid but the converse is 

not true. 

 Remark 3.1.20. Let ( , )F A  and ( ,C)K  be two soft La-

grange neutrosophic groupoids over  ,G I  . Then

1. Their extended intersection ( , ) ( ,C)EF A K

may not be a soft Lagrange neutrosophic groupoid 

over  ,G I  .

2. Their restricted intersection  ( , ) ( ,C)RF A K

may not be a soft Lagrange neutrosophic groupoid

over  ,G I  .

3. Their AND  operation  ( , ) ( ,C)F A K  may

not be a soft Lagrange neutrosophic groipoid over

 ,G I  .

4. Their extended union ( , ) ( ,C)EF A K  may 

not be a soft Lagrange neutrosophic groupoid

over   ,G I  .

5. Their restricted union  ( , ) ( ,C)RF A K  may 

not be a soft Lagrange neutrosophic groupoid

over  ,G I  .

6. Their OR  operation ( , ) ( ,C)F A K  may not

be a soft Lagrange neutrosophic groupoid over

 ,G I  .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 3.1.21. Let  ,G I   be a neutrosophic

groipoid and ( , )F A  be a soft neutrosophic groupoid over  

 ,G I  . Then ( , )F A  is called soft weak Lagrange

neutrosophic groupoid if atleast one ( )F a  is not a La-
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grange neutrosophic subgroupoid of  ,G I   for

some a A . 

Example 3.1.22. Let 

4

0,1,2,3, ,2 ,3 ,1 ,1 2 ,1 3

2 ,2 2 ,2 3 ,3 ,3 2 ,3 3

I I I I I I
Z I

I I I I I I

   
   

      
 

be a neutrosophic groupoid of order 16 with respect to the 

operation   where   is defined as 

2 (mod4)a b a b    for all 4,a b Z I  . Let 

1 2 3{ , , }A a a a  be a set of parameters. Then ( , )F A  is 

a soft weak Lagrange neutrosophic groupoid over 

4Z I , where 

1( ) {0,2,2 ,2 2 },F a I I   

2( ) {0,2,2 2I}F a   , 

3( ) {0,2 2 }F a I  . 

Theorem 3.1.23. Every soft weak Lagrange neutrosophic 

groupoid over  ,G I   is a soft neutrosophic

groupoid over  ,G I   but the converse is not true.

Theorem 3.1.24. If  ,G I   is weak Lagrange neu-

trosophic groupoid, then ( , )F A  over  ,G I   is

also soft weak Lagrange neutrosophic groupoid but the 

converse is not true. 

Remark 3.1.25. Let ( , )F A  and ( ,C)K  be two soft 

weak Lagrange neutrosophic groupoids over 

 ,G I  . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft weak Lagrange neutrosophic 

groupoid over  ,G I  .

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft weak Lagrange neutrosophic 

groupoid over  ,G I  .

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft weak Lagrange neutrosophic groupoid over

 ,G I  .

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft weak Lagrnage neutrosophic groupoid over  

 ,G I  .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft weak Lagrange neutrosophic groupoid over 

 ,G I  .

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft weak Lagrange neutrosophic groupoid over

 ,G I  .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 3.126. Let  ,G I   be a neutrosophic

groupoid and ( , )F A  be a soft neutrosophic groupoid 

over   ,G I  . Then ( ,A)F  is called soft Lagrange

free neutrosophic groupoid if ( )F a  is not a lagrange neu-

trosophic subgroupoid of  ,G I   for all a A .

Example 3.1.27. Let 

4

0,1,2,3, ,2 ,3 ,1 ,1 2 ,1 3

2 ,2 2 ,2 3 ,3 ,3 2 ,3 3

I I I I I I
Z I

I I I I I I

   
   

      
 be a neutrosophic groupoid of order 16 with respect to the 

operation   where   is defined as 

2 (mod4)a b a b    for all 4,a b Z I  . Let 

1 2 3{ , , }A a a a  be a set of parameters. Then ( , )F A  is 

a soft Lagrange free neutrosophic groupoid over 

4Z I , where 

1( ) {0,2 ,2 2 },F a I I   

2( ) {0,2,2 2I}F a   . 

Theorem 3.1.28. Every soft Lagrange free neutrosophic 

groupoid over  ,G I   is trivially a soft neutrosoph-

ic groupoid over  ,G I   but the converse is not

true. 

Theorem 3.1.29. If  ,G I   is a Lagrange free neu-

trosophic groupoid, then ( , )F A  over  ,G I   is

also a soft Lagrange free neutrosophic groupoid but the 

converse is not true. 

Remark 3.1.30. Let ( , )F A  and ( ,C)K  be two soft La-

grange free neutrosophic groupoids over  ,G I  .

Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic groupoid 
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over  ,G I  .

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft Lagrange free neutrosophic groupoid 

over  ,G I  .

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft Lagrange free neutrosophic groupoid over

 ,G I  .

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft Lagrnage free neutrosophic groupoid over  

 ,G I  .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft Lagrange free neutrosophic groupoid over 

 ,G I  .

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange free neutrosophic groupoid over

 ,G I  .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 3.1.31.  ( , )F A  is called soft neutrosophic ide-

al over  ,G I   if ( )F a  is a neutrosophic ideal of

 ,G I  , for all  a A .

Theorem 3.1.32. Every soft neutrosophic ideal ( , )F A  

over  ,G I   is trivially a soft neutrosophic sub-

groupid but the converse may not be true. 

Proposition 3.1.33. Let ( , )F A  and ( , )K B  be two soft 

neutrosophic  ideals over  ,G I  . Then

1) Their extended intersection ( , ) ( , )EF A K B  is 

soft neutrosophic  ideal over  ,G I  .

2) Their restricted intersection  ( , ) ( , )RF A K B  is 

soft neutrosophic ideal over  ,G I  .

3) Their AND  operation ( , ) ( , )F A K B  is soft neu-

trosophic ideal over  ,G I  .

 Remark 3.1.34. Let ( , )F A  and ( , )K B  be two soft 

neutrosophic  ideal over  ,G I  . Then

1) Their extended union ( , ) ( , )EF A K B  is not soft 

neutrosophic  ideal over  ,G I  .

2) Their restricted union ( , ) ( , )RF A K B  is not soft 

neutrosophic  ideal over  ,G I  .

3) Their OR  operation ( , ) ( , )F A K B  is not soft

neutrosophic  ideal over  ,G I  .

 One can easily proved (1),(2),  and (3)  by the help of 

examples. 

Theorem 3.1.35. Let ( , )F A  be a soft neutrosophic ideal 

over  ,G I   and  {( , ) : i J}i iH B   is a non-

empty family of soft neutrosophic  ideals of ( , )F A . Then 

1. ( , )i i
i J

H B

  is a soft neutrosophic ideal of 

( , )F A . 

2. ( , )i i
i J

H B

  is a soft neutrosophic ideal of 

( , )
i J

F A

 . 

3.2 Soft Neutrosophic Strong Groupoid 

Definition 3.2.1. Let  ,G I   be a neutrosophic

groupoid and ( , )F A  be a soft set over  ,G I  .

Then ( , )F A  is called soft neutrosophic strong groupoid 

if and only if ( )F a  is a  neutrosophic strong subgroupoid 

of   ,G I   for all a A .

Example 3.2.2. Let 

4

0,1,2,3, ,2 ,3 ,1 ,1 2 ,1 3

2 ,2 2 ,2 3 ,3 ,3 2 ,3 3

I I I I I I
Z I

I I I I I I

   
   

      
 be a neutrosophic groupoid  with respect to the operation 

  where   is defined as 2 (mod4)a b a b    for all 

4,a b Z I  . Let 1 2 3{ , , }A a a a  be a set of pa-

rameters. Then ( , )F A  is a soft neutrosophic strong 

groupoid over 4Z I , where 

1( ) {0,2 ,2 2 },F a I I   

2( ) {0,2 2I}F a   . 

Proposition 3.2.3. Let ( , )F A  and ( ,C)K  be two soft 

neutrosophic strong groupoids over  ,G I  . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft neutrosophic strong groupoid over 

 ,G I  .
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2. Their restricted intersection  ( , ) ( ,C)RF A K

is a soft neutrosophic strong groupoid over

 ,G I  .

3. Their AND  operation  ( , ) ( ,C)F A K  is a

soft neutrosophic strong groupoid over

 ,G I  .

Remark 3.2.4. Let ( , )F A and (K,C)  be two soft neu-

trosophic strong groupoids over  ,G I  . Then

1. Their extended union ( , ) ( ,C)EF A K  is a 

soft neutrosophic strong groupoid over  

 ,G I  .

2. Their restricted union  ( , ) ( ,C)RF A K  is a 

soft neutrosophic strong groupoid over

 ,G I  .

3. Their OR  operation ( , ) ( ,C)F A K  is a soft

neutrosophic strong groupoid over

 ,G I  .

Definition 3.2.5. Let ( , )F A  and ( ,C)H  be two soft 

neutrosophic strong groupoids over  ,G I  . Then

( ,C)H  is called soft neutrosophic strong sublgroupoid of 

( , )F A , if 

1. C A .

2. ( )H a  is a neutrosophic strong subgroupoid of

( )F a  for all a A .

Definition 3.2.6. Let  ,G I   be a neutrosophic

strong groupoid and ( , )F A  be a soft neutrosophic 

groupoid over   ,G I  . Then ( , )F A  is called soft

Lagrange neutrosophic strong groupoid if and only if 

( )F a  is a Lagrange neutrosophic strong subgroupoid of 

 ,G I   for all  a A .

 Theorem 3.2.7. Every soft Lagrange neutrosophic strong 

groupoid over  ,G I   is a soft neutrosophic

groupoid over   ,G I   but the converse is not true.

Theorem 3.2.8. If  ,G I   is a Lagrange neutro-

sophic strong groupoid, then ( , )F A  over  ,G I 

is a soft Lagrange neutrosophic groupoid but the converse 

is not true. 

  Remark 3.2.9. Let ( , )F A  and ( ,C)K  be two soft La-

grange neutrosophic strong groupoids over  ,G I  .

Then 

1. Their extended intersection ( , ) ( ,C)EF A K

may not be a soft Lagrange neutrosophic strong

groupoid over  ,G I  .

2. Their restricted intersection  ( , ) ( ,C)RF A K  

may not be a soft Lagrange strong neutrosophic

groupoid over  ,G I  .

3. Their AND  operation  ( , ) ( ,C)F A K  may

not be a soft Lagrange neutrosophic strong

groupoid over  ,G I  .

4. Their extended union ( , ) ( ,C)EF A K  may 

not be a soft Lagrange neutrosophic strong 

groupoid over   ,G I  .

5. Their restricted union  ( , ) ( ,C)RF A K  may 

not be a soft Lagrange neutrosophic strong 

groupoid over  ,G I  .

6. Their OR  operation ( , ) ( ,C)F A K  may not

be a soft Lagrange neutrosophic strong groupoid

over   ,G I  .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 3.2.10. Let  ,G I   be a neutrosophic

strong groupoid and ( , )F A  be a soft neutrosophic 

groupoid over   ,G I  . Then ( , )F A  is called soft

weak Lagrange neutrosophic strong groupoid if atleast one 

( )F a  is not a Lagrange neutrosophic strong subgroupoid 

of  ,G I   for some a A .

Theorem 3.2.11. Every soft weak Lagrange neutrosophic 

strong groupoid over  ,G I   is a soft neutrosophic

groupoid over  ,G I   but the converse is not true.

Theorem 3.2.12. If  ,G I   is weak Lagrange neu-

trosophic strong groupoid, then ( , )F A  over 

 ,G I   is also soft weak Lagrange neutrosophic

strong groupoid but the converse is not true. 

Remark 3.2.13. Let ( , )F A  and ( ,C)K  be two soft 
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weak Lagrange neutrosophic strong groupoids over 

 ,G I  . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft weak Lagrange neutrosophic strong

groupoid over  ,G I  .

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft weak Lagrange neutrosophic strong

groupoid over  ,G I  .

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft weak Lagrange neutrosophic strong

groupoid over  ,G I  .

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft weak Lagrnage neutrosophic strong groupoid 

over   ,G I  .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft weak Lagrange neutrosophic strong

groupoid over  ,G I  .

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft weak Lagrange neutrosophic strong groupoid

over   ,G I  .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 3.2.14. Let L I  be a neutrosophic strong 

groupoid and ( , )F A  be a soft neutrosophic groupoid 

over  L I . Then ( ,A)F  is called soft Lagrange free 

neutrosophic strong groupoid if ( )F a  is not a Lagrange 

neutrosophic strong subgroupoid of  ,G I   for all

a A . 

 Theorem 3.2.14. Every soft Lagrange free neutrosophic 

strong groupoid over L I  is a soft neutrosophic 

groupoid over  ,G I   but the converse is not true.

Theorem 3.2.15. If  ,G I   is a Lagrange free neu-

trosophic strong groupoid, then ( , )F A  over 

 ,G I   is also a soft Lagrange free neutrosophic

strong groupoid but the converse is not true. 

Remark 3.2.16. Let ( , )F A  and ( ,C)K  be two soft La-

grange free neutrosophic strong groupoids over L I . 

Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic strong

groupoid over  ,G I  .

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft Lagrange free neutrosophic strong

groupoid over  ,G I  .

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft Lagrange free neutrosophic strong groupoid

over  ,G I  .

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft Lagrange free neutrosophic strong groupoid

over   ,G I  .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft Lagrange free neutrosophic groupoid over

 ,G I  .

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange free neutrosophic strong groupoid

over   ,G I  .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 3.2.17.  ( , )F A  is called soft neutrosophic 

strong ideal over  ,G I   if ( )F a  is a neutrosophic

strong ideal of  ,G I  , for all  a A .

Theorem 3.2.18. Every soft neutrosophic strong ideal 

( , )F A  over  ,G I   is trivially a soft neutrosophic

strong groupoid. 

Theorem 3.2.19. Every soft neutrosophic strong ideal 

( , )F A  over  ,G I   is trivially a soft neutrosophic

ideal. 

Proposition 3.2.20. Let ( , )F A  and ( , )K B  be two soft 

neutrosophic strong ideals over  ,G I  . Then

1. Their extended intersection ( , ) ( , )EF A K B

is soft neutrosophic strong ideal over

 ,G I  .

2. Their restricted intersection  ( , ) ( , )RF A K B

is soft neutrosophic strong ideal over

 ,G I  .

3. Their AND  operation ( , ) ( , )F A K B  is soft
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neutrosophic strong ideal over  ,G I  .

Remark 3.2.21. Let ( , )F A  and ( , )K B  be two soft neu-

trosophic strong ideal over  ,G I  . Then

1. Their extended union ( , ) ( , )EF A K B  is not 

soft neutrosophic strong ideal over 

 ,G I  .

2. Their restricted union ( , ) ( , )RF A K B  is not 

soft neutrosophic strong ideal over 

 ,G I  .

3. Their OR  operation ( , ) ( , )F A K B  is not

soft neutrosophic strong ideal over

 ,G I  .

 One can easily proved (1),(2),  and (3)  by the help of 

examples. 

Theorem 3.2.22. Let ( , )F A  be a soft neutrosophic 

strong ideal over  ,G I   and  {( , ) : i J}i iH B   is 

a non-empty family of soft neutrosophic strong  ideals of 

( , )F A . Then 

1. ( , )i i
i J

H B

  is a soft neutrosophic strong ideal of 

( , )F A . 

2. ( , )i i
i J

H B

  is a soft neutrosophic strong ideal of 

( , )
i J

F A

 . 

4 Soft Neutrosophic Bigroupoid and Their Properties 

4.1 Soft Neutrosophic Bigroupoid 

Definition 4.1.1. Let {B (G), , }N   be a neutrosophic  

bigroupoid and ( , )F A  be a soft set over {B (G), , }N  . 
Then ( , )F A  is called soft neutrosophic  bigroupoid if and 
only if ( )F a  is neutrosophic sub bigroupoid of 

{B (G), , }N   for all a A . 
Example 4.1.2. Let {B (G), , }N   be a neutrosophic 
groupoid with 1 2B (G)N G G  , where 

 1 10 10| 2 3 (mod10); ,G Z I a b a b a b Z I      
and 

 2 4 4| 2 (mod 4); ,G Z I a b a b a b Z I      .
 Let 1 2{ , }A a a  be a set of parameters. Then ( , )F A  is 
a soft neutrosophic bigroupoid over {B (G), , }N  , where 

1( ) {0,5,5 ,5 5 } {0,2,2 ,2 2 },F a I I I I   

2 10( ) ( , ) {0,2 2I}F a Z    . 

Theorem 4.1.3. Let ( , )F A  and ( , )H A  be two soft neu-

trosophic bigroupoids over {B (G), , }N  . Then their in-

tersection ( , ) ( , )F A H A  is again a soft neutrosophic 

groupoid over {B (G), , }N  . 

Proof. The proof is staightforward. 

Theorem 4.1.4. Let ( , )F A  and ( , )H B  be two soft neu-

trosophic groupoids over { , }G I  . If  A B   , 

then ( , ) ( , )F A H B  is a soft neutrosophic groupoid 

over { , }G I  . 

Proposition 4.1.5. Let ( , )F A  and ( ,C)K  be two soft 

neutrosophic bigroupoids over {B (G), , }N  . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft neutrosophic bigroupoid over 

{B (G), , }N  . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is a soft neutrosophic bigroupoid over 

{B (G), , }N  . 

3. Their AND  operation  ( , ) ( ,C)F A K  is a

soft neutrosophic bigroupoid over

{B (G), , }N  .

Remark 4.1.6. Let ( , )F A and (K,C)  be two soft neu-

trosophic biloops over {B (G), , }N  . Then 

1. Their extended union ( , ) ( ,C)EF A K  is not a 

soft neutrosophic bigroupoid over  

{B (G), , }N  . 

2. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft neutrosophic bigroupoid over 

{B (G), , }N  . 

3. Their OR  operation ( , ) ( ,C)F A K  is not a

soft neutrosophic bigroupoid over

{B (G), , }N  .

One can easily verify (1),(2), and (3) by the help of ex-

amples. 

Definition 4.1.7. Let ( , )F A  be a soft neutrosophic 

bigroupoid over {B (G), , }N  . Then  ( , )F A  is called 

an absolute soft neutrosophic bigroupoid over 

{B (G), , }N   if  ( ) {B (G), , }NF a    for all a A . 

Definition 4.1.8. Let ( , )F A  and ( ,C)H  be two soft 

neutrosophic bigroupoids over {B (G), , }N  . Then 

( ,C)H  is called soft neutrosophic sub bigroupoid of 
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( , )F A , if 

1. C A .

2. ( )H a  is a neutrosophic sub bigroupoid of

( )F a  for all a A .

Example 4.1.9. Let {B (G), , }N   be a neutrosophic 
groupoid with 1 2B (G)N G G  , where 

 1 10 10| 2 3 (mod10); ,G Z I a b a b a b Z I      
and 

 2 4 4| 2 (mod 4); ,G Z I a b a b a b Z I      .

Let 1 2{ , }A a a  be a set of parameters. Let ( , )F A  is a 
soft neutrosophic bigroupoid over {B (G), , }N  , where 

1( ) {0,5,5 ,5 5 } {0,2,2 ,2 2 },F a I I I I   

2 10( ) ( , ) {0,2 2I}F a Z    . 
Let 1{ } AB a  . Then ( , )H B  is a soft neutrosophic 
sub bigroupoid of ( , )F A , where 

1( ) {0,5} {0,2 2 }H a I   . 

Definition 4.1.10. Let {B (G), , }N   be a neutrosophic 

strong bigroupoid and ( , )F A  be a soft neutrosophic 

bigroupoid over  {B (G), , }N  . Then ( , )F A  is called 

soft Lagrange neutrosophic  bigroupoid if and only if 

( )F a  is a Lagrange neutrosophic sub bigroupoid of 

{B (G), , }N   for all  a A . 

Theorem 4.1.11. Every soft Lagrange neutrosophic 

bigroupoid over {B (G), , }N   is a soft neutrosophic 

bigroupoid over  {B (G), , }N   but the converse is not 

true. 

One can easily see the converse by the help of examples. 

 Theorem 4.1.12. If {B (G), , }N   is a Lagrange neutro-

sophic bigroupoid, then ( , )F A  over {B (G), , }N   is a 

soft Lagrange neutrosophic bigroupoid but the converse is 

not true. 

 Remark 4.1.13. Let ( , )F A  and ( ,C)K  be two soft La-

grange neutrosophic bigroupoids over {B (G), , }N  . 

Then 

1. Their extended intersection ( , ) ( ,C)EF A K

may not be a soft Lagrange neutrosophic 

bigroupoid over {B (G), , }N  . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

may not be a soft Lagrange neutrosophic 

bigroupoid over {B (G), , }N  . 

3. Their AND  operation  ( , ) ( ,C)F A K  may

not be a soft Lagrange neutrosophic  bigroupoid

over {B (G), , }N  .

4. Their extended union ( , ) ( ,C)EF A K  may 

not be a soft Lagrange neutrosophic bigroupoid 

over  {B (G), , }N  . 

5. Their restricted union  ( , ) ( ,C)RF A K  may 

not be a soft Lagrange neutrosophic  bigroupoid 

over {B (G), , }N  . 

6. Their OR  operation ( , ) ( ,C)F A K  may not

be a soft Lagrange neutrosophic bigroupoid over

{B (G), , }N  .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 4.1.14. Let {B (G), , }N   be a neutrosophic 

bigroupoid and ( , )F A  be a soft neutrosophic bigroupoid 

over  {B (G), , }N  . Then ( , )F A  is called soft weak 

Lagrange neutrosophic  bigroupoid if atleast one ( )F a  is 

not a Lagrange neutrosophic  sub bigroupoid of 

{B (G), , }N   for some a A . 

Theorem 4.1.15. Every soft weak Lagrange neutrosophic 

bigroupoid over {B (G), , }N   is a soft neutrosophic 

groupoid over {B (G), , }N   but the converse is not true. 

 Theorem 4.1.16. If {B (G), , }N   is weak Lagrange neu-

trosophic bigroupoid, then ( , )F A  over {B (G), , }N   is 

also soft weak Lagrange neutrosophic bigroupoid but the 

converse is not true. 

Remark 4.1.17. Let ( , )F A  and ( ,C)K  be two soft 

weak Lagrange neutrosophic bigroupoids over 

{B (G), , }N  . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft weak Lagrange neutrosophic 

bigroupoid over {B (G), , }N  . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft weak Lagrange neutrosophic 

bigroupoid over {B (G), , }N  . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft weak Lagrange neutrosophic bigroupoid

over {B (G), , }N  .

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft weak Lagrnage neutrosophic bigroupoid over  

{B (G), , }N  . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft weak Lagrange neutrosophic bigroupoid 

over {B (G), , }N  . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a
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soft weak Lagrange neutrosophic bigroupoid over  

{B (G), , }N  . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 4.1.18. Let {B (G), , }N   be a neutrosophic 

bigroupoid and ( , )F A  be a soft neutrosophic groupoid 

over  {B (G), , }N  . Then ( ,A)F  is called soft La-

grange free neutrosophic bigroupoid if ( )F a  is not a La-

grange neutrosophic  sub bigroupoid of {B (G), , }N   for 

all a A .  

Theorem 4.1.19. Every soft Lagrange free neutrosophic 

bigroupoid over {B (G), , }N   is a soft neutrosophic 

bigroupoid over {B (G), , }N   but the converse is not 

true. 

 Theorem 4.1.20. If {B (G), , }N   is a Lagrange free 

neutrosophic bigroupoid, then ( , )F A  over 

{B (G), , }N   is also a soft Lagrange free neutrosophic 

bigroupoid but the converse is not true. 

Remark 4.1.21. Let ( , )F A  and ( ,C)K  be two soft La-

grange free neutrosophic bigroupoids over {B (G), , }N  . 

Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic 

bigroupoid over {B (G), , }N  . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft Lagrange free neutrosophic 

bigroupoid over {B (G), , }N  . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft Lagrange free neutrosophic bigroupoid over

{B (G), , }N  .

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft Lagrange free neutrosophic bigroupoid over  

{B (G), , }N  . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft Lagrange free neutrosophic bigroupoid over 

{B (G), , }N  . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange free neutrosophic bigroupoid over

{B (G), , }N  .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 4.1.22.  ( , )F A  is called soft neutrosophic 

biideal over {B (G), , }N   if ( )F a  is a  neutrosophic 

biideal of {B (G), , }N  , for all  a A . 

Theorem 4.1.23. Every soft neutrosophic biideal ( , )F A  

over {B (G), , }N   is a soft neutrosophic bigroupoid. 

 Proposition 4.1.24. Let ( , )F A  and ( , )K B  be two soft 

neutrosophic biideals over {B (G), , }N  . Then 

1. Their extended intersection ( , ) ( , )EF A K B

is soft neutrosophic biideal over {B (G), , }N  . 

2. Their restricted intersection  ( , ) ( , )RF A K B

is soft neutrosophic biideal over {B (G), , }N  . 

3. Their AND  operation ( , ) ( , )F A K B  is soft

neutrosophic biideal over {B (G), , }N  . 

 Remark 4.1.25. Let ( , )F A  and ( , )K B  be two soft  

neutrosophic biideals over {B (G), , }N  . Then 

1. Their extended union ( , ) ( , )EF A K B  is not 

soft neutrosophic biideals over {B (G), , }N  . 

2. Their restricted union ( , ) ( , )RF A K B  is not 

soft neutrosophic biidleals over {B (G), , }N  . 

3. Their OR  operation ( , ) ( , )F A K B  is not

soft neutrosophic biideals over {B (G), , }N  . 

 One can easily proved (1),(2),  and (3)  by the help of 

examples 

Theorem 4.1.26. Let ( , )F A  be a soft neutrosophic biide-

al over {B (G), , }N   and  {( , ) : i J}i iH B   is a non-

empty family of soft neutrosophic biideals of ( , )F A . 

Then 

1. ( , )i i
i J

H B

  is a soft neutrosophic biideal of 

( , )F A . 

2. ( , )i i
i J

H B

  is a soft neutrosophic biideal of 

( , )
i J

F A

 . 

4.2 Soft Neutrosophic Strong Bigroupoid 

Definition 4.2.1. Let {B (G), , }N   be a neutrosophic  

bigroupoid and ( , )F A  be a soft set over {B (G), , }N  . 
Then ( , )F A  is called soft neutrosophic  strong 
bigroupoid if and only if ( )F a  is neutrosophic  strong 
sub bigroupoid of  {B (G), , }N   for all a A . 
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Example 4.2.2. Let {B (G), , }N   be a neutrosophic 
groupoid with 1 2B (G)N G G  , where

 1 10 10| 2 3 (mod10); ,G Z I a b a b a b Z I      
and 

 2 4 4| 2 (mod 4); ,G Z I a b a b a b Z I      . 
 Let 1 2{ , }A a a  be a set of parameters. Then ( , )F A  is 

a soft neutrosophic strong bigroupoid over {B (G), , }N  , 
where 

1( ) {0,5 5 } {0,2 2 },F a I I   

2( ) {0,5 } {0,2 2I}F a I   . 

Theorem 4.2.3. Let ( , )F A  and ( , )H A  be two soft neu-

trosophic strong bigroupoids over {B (G), , }N  . Then 

their intersection ( , ) ( , )F A H A  is again a soft neutro-

sophic strong bigroupoid over {B (G), , }N  . 

Proof. The proof is staightforward. 

Theorem 4.2.4. Let ( , )F A  and ( , )H B  be two soft neu-

trosophic strong bigroupoids over {B (G), , }N  . If  

A B   , then ( , ) ( , )F A H B  is a soft neutrosoph-

ic strong bigroupoid over {B (G), , }N  . 

Proposition 4.2.5. Let ( , )F A  and ( ,C)K  be two soft 

neutrosophic strong bigroupoids over {B (G), , }N  . 

Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft neutrosophic strong bigroupoid over 

{B (G), , }N  . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is a soft neutrosophic strong bigroupoid over 

{B (G), , }N  . 

3. Their AND  operation  ( , ) ( ,C)F A K  is a

soft neutrosophic strong bigroupoid over

{B (G), , }N  .

Remark 4.2.6. Let ( , )F A and (K,C)  be two soft neu-

trosophic strong bigroupoids over {B (G), , }N  . Then 

1. Their extended union ( , ) ( ,C)EF A K  is not a 

soft neutrosophic strong bigroupoid over  

{B (G), , }N  . 

2. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft neutrosophic strong bigroupoid over 

{B (G), , }N  . 

3. Their OR  operation ( , ) ( ,C)F A K  is not a

soft neutrosophic strong bigroupoid over

{B (G), , }N  .

One can easily verify (1),(2), and (3) by the help of ex-

amples. 

Definition 4.2.7. Let ( , )F A  and ( ,C)H  be two soft 

neutrosophic strong bigroupoids over {B (G), , }N  . 

Then ( ,C)H  is called soft neutrosophic strong sub 

bigroupoid of ( , )F A , if 

1. C A .

2. ( )H a  is a neutrosophic strong sub bigroupoid of

( )F a  for all a A .

Definition 4.2.8. Let {B (G), , }N   be a neutrosophic 

strong bigroupoid and ( , )F A  be a soft neutrosophic 

strong bigroupoid over  {B (G), , }N  . Then ( , )F A  is 

called soft Lagrange neutrosophic  strong bigroupoid if and 

only if ( )F a  is a Lagrange neutrosophic strong sub 

bigroupoid of {B (G), , }N   for all  a A . 

 Theorem 4.2.9. Every soft Lagrange neutrosophic strong 

bigroupoid over {B (G), , }N   is a soft neutrosophic 

strong bigroupoid over  {B (G), , }N   but the converse is 

not true. 

One can easily see the converse by the help of examples. 

Theorem 4.2.10. If {B (G), , }N   is a Lagrange neutro-

sophic strong bigroupoid, then ( , )F A  over 

{B (G), , }N   is a soft Lagrange neutrosophic strong  

bigroupoid but the converse is not true. 

 Remark 4.2.11. Let ( , )F A  and ( ,C)K  be two soft La-

grange neutrosophic strong bigroupoids over 

{B (G), , }N  . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

may not be a soft Lagrange neutrosophic strong 

bigroupoid over {B (G), , }N  . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

may not be a soft Lagrange neutrosophic strong  

bigroupoid over {B (G), , }N  . 

3. Their AND  operation  ( , ) ( ,C)F A K  may

not be a soft Lagrange neutrosophic  strong

bigroupoid over {B (G), , }N  .Their extended

union ( , ) ( ,C)EF A K  may not be a soft La-

grange neutrosophic strong bigroupoid over  

{B (G), , }N  . 

4. Their restricted union  ( , ) ( ,C)RF A K  may 

not be a soft Lagrange neutrosophic  strong 

bigroupoid over {B (G), , }N  . 
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5. Their OR  operation ( , ) ( ,C)F A K  may not

be a soft Lagrange neutrosophic strong

bigroupoid over  {B (G), , }N  . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 4.2.12. Let {B (G), , }N   be a neutrosophic 

strong bigroupoid and ( , )F A  be a soft neutrosophic 

strong bigroupoid over  {B (G), , }N  . Then ( , )F A  is 

called soft weak Lagrange neutrosophic  strong bigroupoid 

if atleast one ( )F a  is not a Lagrange neutrosophic  strong 

sub bigroupoid of {B (G), , }N   for some a A . 

Theorem 4.2.13. Every soft weak Lagrange neutrosophic 

strong bigroupoid over {B (G), , }N   is a soft neutro-

sophic strong bigroupoid over {B (G), , }N   but the con-

verse is not true. 

Theorem 4.2.14. If {B (G), , }N   is weak Lagrange neu-

trosophic strong bigroupoid, then ( , )F A  over 

{B (G), , }N   is also soft weak Lagrange neutrosophic 

strong bigroupoid but the converse is not true. 

Remark 4.2.15. Let ( , )F A  and ( ,C)K  be two soft 

weak Lagrange neutrosophic strong bigroupoids over 

{B (G), , }N  . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft weak Lagrange neutrosophic strong

bigroupoid over {B (G), , }N  . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft weak Lagrange neutrosophic strong 

bigroupoid over {B (G), , }N  . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft weak Lagrange neutrosophic strong

bigroupoid over {B (G), , }N  . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft weak Lagrnage neutrosophic strong 

bigroupoid over  {B (G), , }N  . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft weak Lagrange neutrosophic strong 

bigroupoid over {B (G), , }N  . 

6. Their OR  operation ( , ) ( ,C)F A K  is

not a soft weak Lagrange neutrosophi  strong bigroupoid 

over  {B (G), , }N  . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 4.2.16. Let {B (G), , }N   be a neutrosophic 

strong bigroupoid and ( , )F A  be a soft neutrosophic 

strong bigroupoid over  {B (G), , }N  . Then ( ,A)F  is 

called soft Lagrange free neutrosophic strong bigroupoid if 

( )F a  is not a Lagrange neutrosophic  strong sub 

bigroupoid of {B (G), , }N   for all a A . 

 Theorem 4.2.17. Every soft Lagrange free neutrosophic 

strong bigroupoid over {B (G), , }N   is a soft neutro-

sophic strong bigroupoid over {B (G), , }N   but the con-

verse is not true. 

 Theorem 4.2.18. If {B (G), , }N   is a Lagrange free 

neutrosophic strong bigroupoid, then ( , )F A  over 

{B (G), , }N   is also a soft Lagrange free neutrosophic 

strong bigroupoid but the converse is not true. 

Remark 4.2.19. Let ( , )F A  and ( ,C)K  be two soft La-

grange free neutrosophic strong bigroupoids over 

{B (G), , }N  . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic strong

bigroupoid over {B (G), , }N  . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft Lagrange free neutrosophic strong 

bigroupoid over {B (G), , }N  . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft Lagrange free neutrosophic strong

bigroupoid over {B (G), , }N  . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft Lagrange free neutrosophic strong bigroupoid 

over  {B (G), , }N  . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft Lagrange free neutrosophic strong

bigroupoid over {B (G), , }N  .

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange free neutrosophic strong bigroupoid

over  {B (G), , }N  . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 4.2.20.  ( , )F A  is called soft neutrosophic 

strong biideal over {B (G), , }N   if ( )F a  is a  neutro-
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sophic strong biideal of {B (G), , }N  , for all  a A .

Theorem 4.2.21. Every soft neutrosophic strong biideal 

( , )F A  over {B (G), , }N   is a soft neutrosophic strong 

bigroupoid. 

 Proposition 4.2.22. Let ( , )F A  and ( , )K B  be two soft 

neutrosophic strong biideals over {B (G), , }N  . Then 

1. Their extended intersection ( , ) ( , )EF A K B

is soft neutrosophic strong biideal over 

{B (G), , }N  . 

2. Their restricted intersection  ( , ) ( , )RF A K B

is soft neutrosophic strong biideal over 

{B (G), , }N  . 

3. Their AND  operation ( , ) ( , )F A K B  is soft

neutrosophic strong biideal over {B (G), , }N  . 

 Remark 4.2.23. Let ( , )F A  and ( , )K B  be two soft  

neutrosophic strong biideals over {B (G), , }N  . Then 

1. Their extended union ( , ) ( , )EF A K B  is not 

soft neutrosophic strong biideals over 

{B (G), , }N  . 

2. Their restricted union ( , ) ( , )RF A K B  is not 

soft neutrosophic strong biidleals over 

{B (G), , }N  . 

3. Their OR  operation ( , ) ( , )F A K B  is not

soft neutrosophic strong biideals over

{B (G), , }N  .

 One can easily proved (1),(2),  and (3)  by the help of 

examples 

Theorem 4.2.24. Let ( , )F A  be a soft neutrosophic 

strong biideal over {B (G), , }N   and  

{( , ) : i J}i iH B   is a non-empty family of soft neutro-

sophic strong biideals of ( , )F A . Then 

1. ( , )i i
i J

H B

  is a soft neutrosophic strong biideal 

of ( , )F A . 

2. ( , )i i
i J

H B

  is a soft neutrosophic strong biideal 

of ( , )
i J

F A

 . 

5 Soft Neutrosophic N-groupoid and Their Properties 

5.1 Soft Neutrosophic N-groupoid 

Definition 5.1.1. Let 

 1 2 1 2N(G) ... G , , ,...,N NG G        be a
neutrosophic  N-groupoid and ( , )F A  be a soft set over 

 1 2 1 2N(G) ... G , , ,...,N NG G       . Then 
( , )F A  is called soft neutrosophic  N-groupoid if and only 
if ( )F a  is neutrosophic sub N-groupoid of   

 1 2 1 2N(G) ... G , , ,...,N NG G        for all

a A . 
Example 5.1.2. Let  1 2 3 1 2 3N(G) G , , ,G G     
be a neutrosophic  3-groupoid, where 

 1 10 10| 2 3 (mod10); ,G Z I a b a b a b Z I       , 

 2 4 4| 2 (mod 4); ,G Z I a b a b a b Z I     
 and  3 12 12| 8 4 (mod12); ,G Z I a b a b a b Z I       . 

Let 1 2{ , }A a a  be a set of parameters. Then ( , )F A  is 
a soft neutrosophic  N-groupoid over 

 1 2 3 1 2 3N(G) G , , ,G G      , where

1( ) {0,5,5 ,5 5 } {0,2,2 ,2 2 } {0,2},F a I I I I    

2 10( ) ( , ) {0,2 2I} {0,2 I}F a Z     . 

Theorem 5.1.3. Let ( , )F A  and ( , )H A  be two soft neu-

trosophic N-groupoids over ( )N G . Then their intersec-

tion ( , ) ( , )F A H A  is again a soft neutrosophic N-

groupoid over ( )N G . 

Theorem 5.1.4. Let ( , )F A  and ( , )H B  be two soft neu-

trosophic N-groupoids over ( )N G . If  A B   , then 

( , ) ( , )F A H B  is a soft neutrosophic N-groupoid over 

( )N G . 

Proposition 5.1.5. Let ( , )F A  and ( ,C)K  be two soft 

neutrosophic N-groupoids over ( )N G . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft neutrosophic N-groupoid over ( )N G . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is a soft neutrosophic N-groupoid over ( )N G . 

3. Their AND  operation  ( , ) ( ,C)F A K  is a

soft neutrosophic N-groupoid over ( )N G .

Remark 5.1.4. Let ( , )F A and (K,C)  be two soft neu-

trosophic N-groupoids over ( )N G . Then 

1. Their extended union ( , ) ( ,C)EF A K  is not a 

soft neutrosophic N-groupoid over  ( )N G . 

2. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft neutrosophic N-groupoid over ( )N G . 

3. Their OR  operation ( , ) ( ,C)F A K  is not a

soft neutrosophic N-groupoid over  ( )N G .

One can easily verify (1),(2), and (3) by the help of ex-

amples. 
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Definition 5.1.5. Let ( , )F A  be a soft neutrosophic N-

groupoid over ( )N G . Then  ( , )F A  is called an absolute 

soft neutrosophic N-groupoid over  ( )N G  if  

( ) ( )F a N G  for all a A . 

Definition 5.1.6. Let ( , )F A  and ( ,C)H  be two soft 

neutrosophic N-groupoids over ( )N G . Then ( ,C)H  is 

called soft neutrosophic sub N-groupoid of ( , )F A , if 

1. C A .

2. ( )H a  is a neutrosophic sub bigroupoid of

( )F a  for all a A .

Example 5.1.7. Let  1 2 3 1 2 3N(G) G , , ,G G     
be a neutrosophic  3-groupoid, where 

 1 10 10| 2 3 (mod10); ,G Z I a b a b a b Z I      
,  

 2 4 4| 2 (mod 4); ,G Z I a b a b a b Z I     
and 

 3 12 12| 8 4 (mod12); ,G Z I a b a b a b Z I       . 

Let 1 2{ , }A a a  be a set of parameters. Then ( , )F A  is 
a soft neutrosophic N-groupoid over 

 1 2 3 1 2 3N(G) G , , ,G G      , where 

1( ) {0,5,5 ,5 5 } {0,2,2 ,2 2 } {0,2},F a I I I I    

2 10( ) ( , ) {0,2 2I} {0,2 I}F a Z     . 

Let 1{ } AB a  . Then ( , )H B  is a soft neutrosophic 

sub N-groupoid of ( , )F A , where 

1( ) {0,5} {0,2 2 } {0,2}H a I    . 

Definition 5.1.8. Let ( )N G  be a neutrosophic N-

groupoid and ( , )F A  be a soft neutrosophic N-groupoid 

over  ( )N G . Then ( , )F A  is called soft Lagrange neu-

trosophic  N-groupoid if and only if ( )F a  is a Lagrange 

neutrosophic sub N-groupoid of ( )N G  for all  a A .  

Theorem 5.1.9. Every soft Lagrange neutrosophic N-

groupoid over ( )N G  is a soft neutrosophic N-groupoid 

over  ( )N G  but the converse may not be true. 

One can easily see the converse by the help of examples. 

 Theorem 5.1.10. If ( )N G  is a Lagrange neutrosophic N-

groupoid, then ( , )F A  over ( )N G  is a soft Lagrange 

neutrosophic N-groupoid but the converse is not true. 

 Remark 5.1.11. Let ( , )F A  and ( ,C)K  be two soft La-

grange neutrosophic N-groupoids over ( ).N G  Then 

1. Their extended intersection ( , ) ( ,C)EF A K

may not be a soft Lagrange neutrosophic N-

groupoid over ( )N G . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

may not be a soft Lagrange neutrosophic N-

groupoid over ( )N G .

3. Their AND  operation  ( , ) ( ,C)F A K  may

not be a soft Lagrange neutrosophic  N-groupoid

over ( )N G .

4. Their extended union ( , ) ( ,C)EF A K  may

not be a soft Lagrange neutrosophic N-groupoid

over  ( )N G .

7. Their restricted union  ( , ) ( ,C)RF A K  may

not be a soft Lagrange neutrosophic  N-groupoid

over ( )N G .

8. Their OR  operation ( , ) ( ,C)F A K  may not

be a soft Lagrange neutrosophic N-groupoid over

( )N G .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 5.1.12. Let ( )N G  be a neutrosophic N-

groupoid and ( , )F A  be a soft neutrosophic N-groupoid 

over  ( )N G . Then ( , )F A  is called soft weak Lagrange 

neutrosophic  N-groupoid if atleast one ( )F a  is not a La-

grange neutrosophic  sub N-groupoid of ( )N G  for some 

a A . 

Theorem 5.1.13. Every soft weak Lagrange neutrosophic 

N-groupoid over ( )N G  is a soft neutrosophic N-groupoid 

over ( )N G  but the converse is not true. 

Theorem 5.1.14. If ( )N G  is weak Lagrange neutrosoph-

ic N-groupoid, then ( , )F A  over ( )N G  is also a soft 

weak Lagrange neutrosophic bigroupoid but the converse 

is not true. 

Remark 5.1.15. Let ( , )F A  and ( ,C)K  be two soft 

weak Lagrange neutrosophic N-groupoids over ( )N G . 

Then 

1. Their extended intersection ( , ) ( ,C)EF A K

may not be a soft weak Lagrange neutrosophic N-

groupoid over ( )N G .

2. Their restricted intersection  ( , ) ( ,C)RF A K

may not be a soft weak Lagrange neutrosophic N-

groupoid over ( )N G .

3. Their AND  operation  ( , ) ( ,C)F A K  may

not be a soft weak Lagrange neutrosophic N-

groupoid over ( )N G .
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4. Their extended union ( , ) ( ,C)EF A K  may

not be a soft weak Lagrnage neutrosophic N-

groupoid over  ( )N G .

5. Their restricted union  ( , ) ( ,C)RF A K  may 

not be a soft weak Lagrange neutrosophic N-

groupoid over ( )N G .

6. Their OR  operation ( , ) ( ,C)F A K  may not

be a soft weak Lagrange neutrosophic N-groupoid

over  ( )N G .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 5.1.16. Let ( )N G  be a neutrosophic N-

groupoid and ( , )F A  be a soft neutrosophic N-groupoid 

over  ( )N G . Then ( ,A)F  is called soft Lagrange free 

neutrosophic N-groupoid if ( )F a  is not a Lagrange neu-

trosophic  sub N-groupoid of ( )N G  for all a A . 

 Theorem 5.1.17. Every soft Lagrange free neutrosophic 

N-groupoid over ( )N G  is a soft neutrosophic N-groupoid 

over ( )N G  but the converse is not true. 

Theorem 5.1.18. If ( )N G  is a Lagrange free neutrosoph-

ic N-groupoid, then ( , )F A  over ( )N G  is also a soft La-

grange free neutrosophic N-groupoid but the converse is 

not true. 

Remark 5.1.19. Let ( , )F A  and ( ,C)K  be two soft La-

grange free neutrosophic N-groupoids over ( )N G . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic N-

groupoid over ( )N G . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is not a soft Lagrange free neutrosophic N-

groupoid over ( )N G .

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft Lagrange free neutrosophic N-groupoid

over ( )N G .

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft Lagrange free neutrosophic N-groupoid over

( )N G .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft Lagrange free neutrosophic N-groupoid

over ( )N G .

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange free neutrosophic N-groupoid over

( )N G .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 5.1.20.  ( , )F A  is called soft neutrosophic N-

ideal over ( )N G  if and only if ( )F a  is a  neutrosophic 

N-ideal of ( )N G , for all  a A . 

Theorem 5.1.21. Every soft neutrosophic N-ideal ( , )F A  

over ( )N G  is a soft neutrosophic N-groupoid. 

 Proposition 5.1.22. Let ( , )F A  and ( , )K B  be two soft 

neutrosophic N-ideals over ( )N G . Then 

1. Their extended intersection ( , ) ( , )EF A K B

is soft neutrosophic N-ideal over ( )N G . 

2. Their restricted intersection  ( , ) ( , )RF A K B

is soft neutrosophic N-ideal over ( )N G . 

3. Their AND  operation ( , ) ( , )F A K B  is soft

neutrosophic N-ideal over ( )N G .

 Remark 5.1.23. Let ( , )F A  and ( , )K B  be two soft  

neutrosophic N-ideals over ( )N G . Then 

1. Their extended union ( , ) ( , )EF A K B  is not a 

soft neutrosophic N-ideal over ( )N G . 

2. Their restricted union ( , ) ( , )RF A K B  is not 

a soft neutrosophic N-idleal over ( )N G . 

3. Their OR  operation ( , ) ( , )F A K B  is not a

soft neutrosophic N-ideal over ( )N G .

 One can easily proved (1),(2),  and (3)  by the help of 

examples 

Theorem 5.1.24. Let ( , )F A  be a soft neutrosophic N-

ideal over ( )N G  and  {( , ) : i J}i iH B   be a non-empty 

family of soft neutrosophic N-ideals of ( , )F A . Then 

1. ( , )i i
i J

H B

  is a soft neutrosophic N-ideal of 

( , )F A . 

2. ( , )i i
i J

H B

  is a soft neutrosophic N-ideal of 

( , )
i J

F A

 . 

5.2 Soft Neutrosophic Strong N-groupoid 

Definition 5.2.1. Let 

 1 2 1 2N(G) ... G , , ,...,N NG G        be a 
neutrosophic  N-groupoid and ( , )F A  be a soft set over 

 1 2 1 2N(G) ... G , , ,...,N NG G       . Then 
( , )F A  is called soft neutrosophic  strong N-groupoid if  

and only if ( )F a  is neutrosophic  strong sub N-groupoid 
of   1 2 1 2N(G) ... G , , ,...,N NG G        for all

a A . 

77



Neutrosophic Sets and Systems, Vol. 6, 2014 

 Mumtaz Ali, Florentin Smarandache, Muhammad Shabir, Soft Neutrosophic Groupoids and Their Generalization

Example 5.2.2. Let  1 2 3 1 2 3N(G) G , , ,G G     
be a neutrosophic  3-groupoid, where  

 1 10 10| 2 3 (mod10); ,G Z I a b a b a b Z I      
,  

 2 4 4| 2 (mod 4); ,G Z I a b a b a b Z I     
 and  

 3 12 12| 8 4 (mod12); ,G Z I a b a b a b Z I      
. 
 Let 1 2{ , }A a a  be a set of parameters. Then ( , )F A  is 
a soft neutrosophic  N-groupoid over 

 1 2 3 1 2 3N(G) G , , ,G G      , where 

1( ) {0,5 } {0,2 } {0,2 },F a I I I  

2( ) {0,5 5 } {0,2 2I} {0,2 2I}F a I      . 

Theorem 5.2.3. Let ( , )F A  and ( , )H A  be two soft neu-

trosophic strong N-groupoids over ( )N G . Then their in-

tersection ( , ) ( , )F A H A  is again a soft neutrosophic 

strong N-groupoid over ( )N G . 

Theorem 5.2.4. Let ( , )F A  and ( , )H B  be two soft neu-

trosophic strong N-groupoids over ( )N G . If  

A B   , then ( , ) ( , )F A H B  is a soft neutrosoph-

ic strong N-groupoid over ( )N G . 

Theorem 5.2.5. If ( )N G  is a neutrosophic strong N-

groupoid, then ( , )F A  over ( )N G  is also a soft neutro-

sophic strong N-groupoid. 

Proposition 5.2.6. Let ( , )F A  and ( ,C)K  be two soft 

neutrosophic strong N-groupoids over ( )N G . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft neutrosophic strong N-groupoid over 

( )N G . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

is a soft neutrosophic strong N-groupoid over 

( )N G . 

3. Their AND  operation  ( , ) ( ,C)F A K  is a

soft neutrosophic strong N-groupoid over

( )N G .

Remark 5.2.7. Let ( , )F A and (K,C)  be two soft neu-

trosophic strong N-groupoids over ( )N G . Then 

1. Their extended union ( , ) ( ,C)EF A K  is not a 

soft neutrosophic strong N-groupoid over  

( )N G . 

2. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft neutrosophic strong N-groupoid over 

( )N G . 

3. Their OR  operation ( , ) ( ,C)F A K  is not a

soft neutrosophic strong N-groupoid over

( )N G .

One can easily verify (1),(2), and (3) by the help of ex-

amples. 

Definition 5.2.8. Let ( , )F A  and ( ,C)H  be two soft 

neutrosophic strong N-groupoids over ( )N G . Then 

( ,C)H  is called soft neutrosophic strong sub N-groupoid 

of ( , )F A , if 

1. C A .

2. ( )H a  is a neutrosophic sub bigroupoid of

( )F a  for all a A .

Definition 5.2.9. Let ( )N G  be a neutrosophic strong N-

groupoid and ( , )F A  be a soft neutrosophic strong N-

groupoid over  ( )N G . Then ( , )F A  is called soft La-

grange neutrosophic strong N-groupoid if and only if 

( )F a  is a Lagrange neutrosophic sub N-groupoid of 

( )N G  for all  .a A  

 Theorem 5.2.10. Every soft Lagrange neutrosophic strong 

N-groupoid over ( )N G  is a soft neutrosophic N-groupoid 

over  ( )N G  but the converse may not be true. 

One can easily see the converse by the help of examples. 

Theorem 5.2.11. Every soft Lagrange neutrosophic strong 

N-groupoid over ( )N G  is a soft Lagrange neutrosophic 

N-groupoid over  ( )N G  but the converse may not be true. 

 Theorem 5.2.12. If ( )N G  is a Lagrange neutrosophic 

strong N-groupoid, then ( , )F A  over ( )N G  is a soft La-

grange neutrosophic strong N-groupoid but the converse is 

not true. 

  Remark 5.2.13. Let ( , )F A  and ( ,C)K  be two soft 

Lagrange neutrosophic strong N-groupoids over ( ).N G  

Then 

1. Their extended intersection ( , ) ( ,C)EF A K

may not be a soft Lagrange neutrosophic strong 

N-groupoid over ( )N G . 

2. Their restricted intersection  ( , ) ( ,C)RF A K  

may not be a soft Lagrange neutrosophic strong 

N-groupoid over ( )N G . 

3. Their AND  operation  ( , ) ( ,C)F A K  may

not be a soft Lagrange neutrosophic  strong N-

groupoid over ( )N G .

4. Their extended union ( , ) ( ,C)EF A K  may 

not be a soft Lagrange neutrosophic strong N-
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groupoid over  ( )N G . 

5. Their restricted union  ( , ) ( ,C)RF A K  may 

not be a soft Lagrange neutrosophic  strong N-

groupoid over ( )N G .

6. Their OR  operation ( , ) ( ,C)F A K  may not

be a soft Lagrange neutrosophic strong N-

groupoid over  ( )N G .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 5.2.14. Let ( )N G  be a neutrosophic strong N-

groupoid and ( , )F A  be a soft neutrosophic strong N-

groupoid over  ( )N G . Then ( , )F A  is called soft weak 

Lagrange neutrosophic strong  N-groupoid if atleast one 

( )F a  is not a Lagrange neutrosophic sub N-groupoid of 

( )N G  for some a A . 

Theorem 5.2.15. Every soft weak Lagrange neutrosophic 

strong N-groupoid over ( )N G  is a soft neutrosophic N-

groupoid over ( )N G  but the converse is not true. 

Theorem 5.2.16. Every soft weak Lagrange neutrosophic 

strong N-groupoid over ( )N G  is a soft weak Lagrange 

neutrosophic N-groupoid over ( )N G  but the converse is 

not true. 

 Remark 5.2.17. Let ( , )F A  and ( ,C)K  be two soft 

weak Lagrange neutrosophic strong N-groupoids over 

( )N G . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

may not be a soft weak Lagrange neutrosophic

strong N-groupoid over ( )N G .

2. Their restricted intersection  ( , ) ( ,C)RF A K  

may not be a soft weak Lagrange neutrosophic

strong N-groupoid over ( )N G .

3. Their AND  operation  ( , ) ( ,C)F A K  may

not be a soft weak Lagrange neutrosophic strong

N-groupoid over ( )N G .

4. Their extended union ( , ) ( ,C)EF A K  may

not be a soft weak Lagrnage neutrosophic strong

N-groupoid over  ( )N G .

5. Their restricted union  ( , ) ( ,C)RF A K  may

not be a soft weak Lagrange neutrosophic strong

N-groupoid over ( )N G .

6. Their OR  operation ( , ) ( ,C)F A K  may not

be a soft weak Lagrange neutrosophic strong  N-

groupoid over  ( )N G .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 5.2.18. Let ( )N G  be a neutrosophic strong N-

groupoid and ( , )F A  be a soft neutrosophic strong N-

groupoid over  ( )N G . Then ( ,A)F  is called soft La-

grange free neutrosophic strong N-groupoid if ( )F a  is 

not a Lagrange neutrosophic sub N-groupoid of ( )N G  for 

all a A .  

Theorem 5.2.19. Every soft Lagrange free neutrosophic 

strong N-groupoid over ( )N G  is a soft neutrosophic N-

groupoid over ( )N G  but the converse is not true. 

Theorem 5.2.20. Every soft Lagrange free neutrosophic 

strong N-groupoid over ( )N G  is a soft Lagrange neutro-

sophic N-groupoid over ( )N G  but the converse is not 

true. 

 Theorem 5.2.21. If ( )N G  is a Lagrange free neutro-

sophic strong N-groupoid, then ( , )F A  over ( )N G  is al-

so a soft Lagrange free neutrosophic strong N-groupoid but 

the converse is not true. 

Remark 5.2.22. Let ( , )F A  and ( ,C)K  be two soft La-

grange free neutrosophic N-groupoids over ( )N G . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic strong N-

groupoid over ( )N G . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange free neutrosophic strong N-

groupoid over ( )N G .

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft Lagrange free neutrosophic strong N-

groupoid over ( )N G .

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft Lagrange free neutrosophic strong N-

groupoid over  ( )N G .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft Lagrange free neutrosophic strong  N-

groupoid over ( )N G .

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange free neutrosophic stong N-groupoid

over  ( )N G .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 5.2.23.  ( , )F A  is called soft neutrosophic 

strong N-ideal over ( )N G  if and only if ( )F a  is a  neu-

trosophic strong N-ideal of ( )N G , for all  a A . 

Theorem 5.2.24. Every soft neutrosophic strong N-ideal 

79



Neutrosophic Sets and Systems, Vol. 6, 2014 

 Mumtaz Ali, Florentin Smarandache, Muhammad Shabir, Soft Neutrosophic Groupoids and Their Generalization

( , )F A  over ( )N G  is a soft neutrosophic N-groupoid. 

Theorem 5.2.25. Every soft neutrosophic strong N-ideal 

( , )F A  over ( )N G  is a soft neutrosophic N-ideal but the 

converse is not true. 

 Proposition 15. Let ( , )F A  and ( , )K B  be two soft 

neutrosophic strong N-ideals over ( )N G . Then 

1. Their extended intersection ( , ) ( , )EF A K B

is soft neutrosophic strong N-ideal over ( )N G . 

2. Their restricted intersection  ( , ) ( , )RF A K B

is soft neutrosophic strong N-ideal over ( )N G . 

3. Their AND  operation ( , ) ( , )F A K B  is soft

neutrosophicstrong  N-ideal over ( )N G .

 Remark 5.2.26. Let ( , )F A  and ( , )K B  be two soft  

neutrosophic strong N-ideals over ( )N G . Then 

1. Their extended union ( , ) ( , )EF A K B  is not a 

soft neutrosophic strong N-ideal over ( )N G . 

2. Their restricted union ( , ) ( , )RF A K B  is not 

a soft neutrosophic strong N-idleal over ( )N G . 

3. Their OR  operation ( , ) ( , )F A K B  is not a

soft neutrosophic strong N-ideal over ( ).N G

 One can easily proved (1),(2),  and (3)  by the help of 

examples 

Theorem 5.2.27. Let ( , )F A  be a soft neutrosophic 

strong N-ideal over ( )N G  and  {( , ) : i J}i iH B   be a 

non-empty family of soft neutrosophic strong N-ideals of 

( , )F A . Then 

1. ( , )i i
i J

H B

  is a soft neutrosophic strong N-ideal 

of ( , )F A . 

2. ( , )i i
i J

H B

  is a soft neutrosophic strong N-ideal 

of ( , )
i J

F A

 . 

Conclusion 

 This paper is an extension of neutrosphic groupoids to soft 

neutrosophic groupoids. We also extend neutrosophic  

bigroupoid, neutrosophic  N  -groupoid to soft neutrosoph

ic bigroupoid, and soft neutrosophic  N  -groupoid. Their

related properties and results are explained with many il-

lustrative examples. The notions related with strong part of 

neutrosophy also established within soft neutrosophic 

groupoids. 
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Abstract. Florentin Smarandache and Ştefan Vlăduţes-

cu the authors and coordinators of  the book “Communication 

Neutrosophic Routes”, published by  Education Publishing, 

Ohio, USA, on 2014, are two remarcable professors, with many 

researches in neutrosophical, communication, mathematic, litera-

ture domains, social sciences. Logic is a fundamental component 

of advanced computer classes. Reference is constantly being 

made to how the rules of logic are incorporated into the funda-

mental circuits of a computer. The logic used in these classes is 

known as classical or Boolean logic. Neutrosophic logic is an ex-

tension of classical logic, there are two intermediate steps be-

tween them. Neutrosophic logic is an idea generated by Florentin 

Smarandache. Like classical logic, it can be used in many ways, 

everywhere from statistics to quantum mechanics. Neutrosophy 

is more than just a form of logic however.  Neutrosophic emer-

gences are the unexpected occurrences of some major neutro-

sophic effects from the interaction of some minor qualitative el-

ements. 

Keywords: neutrosophy, multiverse of communication, neutrosophic communication routes

1 New ways of communication 

Will really do the Humanity arrived to insensibil-

ity limit where it is just reason, where the feeling defini-

tively lost its existential value? If it is true means that Al-

bert Camus was right: only logical solution is suicide. To 

run from the darkness of the death, of the nightmares that 

ourselves generate them on its behalf, we have some solu-

tions among which obvious suicide, or why not the opti-

mism of the life spectacle. Suicide is <anti-A>; authentic 

beside the optimism represented by the neutrosophic <A>. 

If we accept the suicide or the equivalent or the <anti-A> is 

such as we should accept to spite ours face. As Brâncuşi 

said that he is not creating the beauty, he only removes the 

idle material to be easier for us to identify the beauty be-

side him. As well in this study is defined (is removed) <an-

ti-A> for the it’s beauty and meaning, to be visible the 

beauty of our existence in front of its non-existence. Of the 

non-existence fears any existence, even the Universe itself, 

maybe only nonexistence itself is not afraid of itself, or 

maybe people who forget in their existence or do not know 

that they exist there. Likewise, we define (we remove) 

<anti-A> for the beauty and its meaning… to be visible the 

beauty of our existence in front of nonexistence 

(Smarandache F.) . 

The study “Communication Neutrosophic Routes” 

focuses on revealing the predominantly neutrosophic char-

acter of any communication and aesthetic interpretation. 

Neutrosophy, a theory grounded by Florentin 

Smarandache, is a coherent thinking of neutralities; differ-

ent from G.W. F. Hegel, neutrality is the rule, the contra-

diction is the exception; the universe is not a place of con-

tradictions, but one of neutralities; the material and signifi-

cant-symbolic universe consists predominantly of neutrali-

ty relationships. Any communication is accompanied by 

interpretation; sharply, aesthetic communication, by its 

strong ambiguous character, forces of the interpretation. 

Since, due to comprehension, description and explanation, 

the interpretation manages contradictions, understanding 

conflicts and roughness of reading, aesthetic interpretation 

is revealed as a deeply neutrosophic interpretation. 

Communication and aesthetic interpretation prev-

alently manage neutralities but contradictions. As authors 

asserts, any manifestation of life is a component of com-

munication, it is crossed by a communication passage. 

People irrepressibly generate meanings. As structuring 

domain of meanings, communication is a place where 

meanings burst out volcanically. Manifestations of life are 

surrounded by a halo of communicational meanings. Hu-

man material and ideatic existence includes a great poten-

tial of communication in continuous extension. The human 

being crosses the path of or is at the intersection of differ-

ent communicational thoroughfares. The life of human be-

ings is a place of communication. Consequently, any cog-

nitive or cogitative manifestation presents a route of com-

munication. People consume their lives relating by com-

municationally. Some communicational relationships are 

contradictory, others are neutral, since within the manifes-

tations of life there are found conflicting meanings and/or 

neutral meanings. 
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Communicational relations always comprise a set 

of neutral, neutrosophic meanings. Communication in gen-

eral is a human manifestation of life with recognizable pro-

file. Particularly, we talk about scientific communication, 

literary communication, pictorial communication, sculp-

tural communication, esthetic communication and so on, as 

specific manifestations of life. All these include coherent, 

cohesive and structural series of existential meanings 

which are contradictory and/or neutral, neutrosophic. It can 

be asserted that in any communication there are routes of 

access and neutrosophic routes. Any communication is 

traversed by neutrosophic routes of communication. 

2 Book content 

The book is structured in ten chapters, each one 

presenting and arguing the novelty of neutrosophic concept 

in different areas. The studies in this book are application 

of the thesis of neutrosophic routes of communication and 

highlight neutrosophic paths, trajectories, itineraries, direc-

tions and routes in different forms and types of communi-

cation. 

In Chapter 1, Florentin Smarandache and Ştefan 

Vlăduţescu develop the thesis of neutrosophic routes in the 

hermeneutics of text; they emphasize the fact that any text 

allows an infinity of interpretative routes: some based on 

linguistic-semiotic landmarks, others sustained by socio-

logic ideas, others founded by moral reference points, oth-

ers founded by esthetic aspects and so on. A neutrosophic 

route can always be found in a text, that is a route of neu-

tral elements, a thoroughfare of neutralities. 

Professors Ioan Constantin Dima and Mariana 

Man reveal, in Chapter 2, that is not insignificant for a sys-

tem to ensure that the events observed are representative 

for its universe, that they are observed in a precise, neutro-

sophic and coherent manner and that there are analysis pat-

terns, deeds scientifically established to enable valid esti-

mations and deductions. 

In Chapter 3, Alexandra Iorgulescu (Associate 

Professor at the University of Craiova, Romania) decodes 

the neutrosophic inflections of Seneca’s tragedies.  

Assistant Professor Alina Ţenescu (University of Craiova) 

analyzes, in Chapter 4, in the non-space in contemporary 

French novel. The non-space is identified as a neutrosophic 

neutrality, which allows an application of the methodology 

and hermeneutics of neutrosophy. Finally, there is revealed 

a richness of meaning that provides the neutrosophic ap-

proach. In Chapter 5, Mădălina Strechie (Senior Lecturer 

at the University of Craiova, Romania) illustrates the 

communication as a key source of neutrality in Ancient 

Rome communication. In Chapter 6, the contribution of 

Daniela Gîfu (Senior Lecturer at the University of Iaşi, 

Romania) gives relevance to the “religious humor” in the 

reference system created by the two mega-concepts 

launched and imposed by Florentin Smarandache, neu-

trosophy and paradoxism. In Chapter 7, prepared by Pro-

fessor Mihaela Gabriel Păun (a Romanian language and 

literature teacher), focuses on the neutrosophic determining 

of Romanian popular incidences in the brilliant sculptural 

work of Romanian artist Constantin Brâncuşi (an unstop-

pable spiritual-aesthetic river appeared out of everyday 

folk tributaries). In Chapter 8, Professors Maria Nowicka-

Skowron and Sorin Mihai Radu show that the major mo-

ments of reproduction are governed only by generally valid 

rules, and the main dimension of operating such an econ-

omy is the market and mechanisms of the market created 

in principle from the movement of prices according to the 

demand and supply ratio on the competitive market.  

In Chapter 9, Professors Janusz Grabara and Ion 

Cosmescu demonstrate that being aware of the role that an 

information system in the company plays and its impact on 

individual processes, this article presents an information 

system used in the selected company. In Chapter 10, Bian-

ca Teodorescu (from University of Craiova) shows that 

communication represents a category more enlarged than 

the information and has an ordinate concept; information is 

a part in the process of global communication.  

Conclusion 

The current book through its studies, represents a novelty 

in the field, a proof that neutrosophy is a domain of science 

that can be applied in any domain as interpretation of neu-

trality, a point of reference for students, master, doctoral, 

presenting ideas, principles, connections, relationships, in-

terpretations of various fields as specificity, space and 

time. 

ACKNOWLEDGMENT 

This work was partially supported by the grant number 

33C/2014, awarded in the internal grant competition of the 

University of Craiova. 

References 

[1]  Florentin Smarandache, Ştefan Vlăduţescu (2014). Commu-

nication Neutrosophic Routes. Columbus, OH: Educational 

Publishing. 

[2]  Florentin Smarandache, Ştefan Vlăduţescu (2014). Neutro-

sophic Emergences and Incidences in Communication and In-

formation. Saarbrucken: LAP Lambert Academic Publishing. 

[3]  Ștefan Vlăduțescu, International Letters of Social and Hu-

manistic Sciences 7 (2014) 8-13. 

[4] Florentin Smarandache, Ştefan Vlăduţescu (2013). Communi-

cation vs. Information, a Neutrosophic Solution. Neutrosoph-

ic Sets and Systems, 1.  

[5] Ștefan Vlăduțescu, International Letters of Social and Hu-

manistic Sciences 10 (2014) 100-106. 

[6] Smarandache, F. (1991). Only problems, not solutions!. 

Infinite Study. 

[7] Smarandache, F., & Dezert, J. (Eds.). (2006). Advances and 

Applications of DSmT for Information Fusion (Collected 

82



Neutrosophic Sets and Systems, Vol. 6, 2014 

Daniela Gîfu, Mirela Teodorescu, Neutrosophic routes in multiverse of communication

works), second volume: Collected Works (Vol. 2). Infinite 

Study. 

[8] Ștefan Vlăduțescu (2013). Principle of the Irrepressible 

Emergence of the Message. Jokull. 

[9] Florentin Smarandache, Ștefan Vlăduţescu (2012). Extension 

communication for solving the ontological contradiction 

between communication and information. Extensics in higher 

dimensions, 99-112. 

[10] M. Colhon (2013). Automatic Lexical Alignment between 

Syntactically Weak Related Languages. Application for Eng-

lish and Romanian. In Computational Collective Intelligence. 

Technologies and Applications (pp. 266-275). Springer Berlin 

Heidelberg.  

[11]  Ş. Vlăduţescu, E. M. Ciupercă (2013). Next Flood Level of 

Communication: Social Networks. Aachen: Shaker Verlag. 

[12] Smarandache, F. (1999). A Unifying Field in Logics: 

Neutrosophic Logic. Philosophy, 1-141. 

[13] Ioan Constantin Dima, Ştefan Vlăduţescu (2012). Persua-

sion elements used in logistical negotiation: Persuasive logis-

tical negotiation. Saarbrucken: LAP Lambert Academic 

Publishing. 

[14] Kandasamy, W. V., & Smarandache, F. (2003). Fuzzy 

cognitive maps and neutrosophic cognitive maps. Infinite 

Study. 

[15] Mirela Teodorescu, Ioan Constantin Dima, Daniela Gifu, In-

ternational Letters of Social and Humanistic Sciences 20 

(2014) 46-55. 

[16] Cerban, M. (2013). Rehabilitation of the Mother Tongue in 

Teaching EFL to Adult Learners. Procedia-Social and 

Behavioral Sciences, 70, 1696-1702. 

Received: August 2, 2014.   Accepted: August 22, 2014 

83



2014 

 
 
 

 
 

 
 

 
 

 

 

 

Information about the journal: 

Neutrosophic Sets and Systems has been created for publications on advanced studies in   neu-

trosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, and 

their applications in any field.  

The papers should be professional, in good English, containing a brief review of a problem and ob-

tained results.  

All submissions should be designed in MS Word format using our template file: 

http://fs.gallup.unm.edu/NSS/NSS-paper-template.doc 

To submit a paper, mail the file to the Editor-in-Chief. To order printed issues, contact the Editor-in-

Chief. This journal is non-commercial, academic edition. It is printed from private donations. 

The neutrosophics website at UNM is: http://fs.gallup.unm.edu/neutrosophy.htm 

The home page of the journal is accessed on http://fs.gallup.unm.edu/NSS 

Editor-in-Chief: 

Prof. Florentin Smarandache 

Department of Mathematics and Science 

University of New Mexico 

705 Gurley Avenue 

Gallup, NM 87301, USA 

E-mails: fsmarandache@gmail.com, smarand@unm.edu 

      $39.95 

http://fs.gallup.unm.edu/neutrosophy.htm
http://fs.gallup.unm.edu/NSS
mailto:fsmarandache@gmail.com
mailto:smarand@unm.edu



