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 Abstract. Even a single neuron may be able to produce significant lognormal features in 21 
its firing statistics due to noise in the charging ion current. A mathematical scheme 22 
introduced in advanced nanotechnology is relevant for the analysis of this mechanism in 23 
the simplest case, the integrate-and-fire model with white noise in the charging ion 24 
current. 25 

 26 

 27 

In a recent review [1] the wide occurrence of lognormal-like distributions in the structural 28 

organization parameters and the firing rate of neurons were surveyed and their assumed 29 

functionalities were explored. It was assumed that the lognormal distribution of firing 30 

rates is the consequence of the specially organized circuit connectivity and the high 31 

complexity of the nervous system. 32 
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 33 

The natural question emerges if the internal dynamics of single neurons is already able to 34 

produce a lognormal firing feature due to its inherent stochastic features.  35 

 36 

At the first look, such assumption looks rather unconventional. For example, several 37 

works study stochastic resonance with additive Gaussian noise [2,3] in the membrane 38 

potential. Due to the level-crossing properties of Gaussian noises, such models obviously 39 

result in a distribution of firing rates with no long-tail but exponential cutoff.  40 

 41 

Still, experimental observations of lognormal firing statistics on lower levels of 42 

hierarchical organizations [4] seem to justify the question. Below, we present a 43 

quantitative example how the combination of plausible statistical assumptions and the 44 

simplest neuron model can lead to the appearance of lognormal firing rate distribution on 45 

the level of single neurons. 46 

 47 

One of the well-known mathematical ways that lognormal distribution is obtained is a 48 

random walk on an axis with logarithmic scale (geometric random walk) resulting a 49 

growing Gaussian distribution over the axis, which is (due to the exponential stretch) 50 

equivalent to a lognormal distribution on the linear scale. Relevant applications of this 51 

model are stochastic stone cracking with fixed mean cracking fraction or its inverse 52 

process via coagulation/aggregation of nanoparticles [5]; both models result in lognormal 53 

size distribution.  54 

 55 

However, these old models cannot account for the lognormal distribution of nanoparticle 56 

sizes at advanced vapor based fabrication methods [6,7] where the growth is 57 

condensational (linear in time) and when coagulation/aggregation is avoided. The origin 58 

of lognormal distribution in such cases was explained by a lognormal residence time 59 

distribution in the growth zone (vapor zone) of nanoparticle fabrication. Proceeding 60 

through the zone with a Brownian motion superimposed on a constant drift velocity 61 

results in a lognormal-like residence time distribution whenever the drift is strong and the 62 

starting point of the zone has a reflecting boundary [6,7]. The discrete difference equation 63 
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describing the progression though the zone is given as: 64 

 65 

  x(k) = x(k −1)+δ +ζ (k) D  ,       (1) 66 

 67 

where k is discrete time (measured in computational steps);   x(k)  is the position 68 

coordinate of the growing particle, δ  is the drift velocity;   ζ (k)  is a random number with 69 

Gaussian (or other fast-cut-off, such as uniform) distribution, zero mean value, and unity 70 

variance; and D is the diffusion coefficient, which is the mean-square of the velocity 71 

noise resulting in the random-walk component superimposed on the drift. When the   ζ (k)  72 

random numbers are independent,   ζ (k)  represents a band-limited white noise thus the 73 

resulting random walk component is a Brownian motion.   74 

 75 

The motion described by Equation 1 begins at   x(0) = x0  and the first-passage time to the 76 

other end  xth  of the zone is a random variable  kth . When the   xth ≤ x(kth )  is first satisfied, 77 

the growth process stops and  kth  is recorded thus  kth  is the residence time in the growth 78 

zone, that is, time spent by the linear growth. Here the threshold coordinate is given as 79 

  xth = x0 + L , where  L  is the length of the growth zone. The starting point   x0  is a 80 

reflecting boundary, that is, the   x0 ≤ x(k)  condition is enforced during the whole motion. 81 

The condition of strong drift means that the drift is greater than the critical value  δ0 : 82 

 83 

 1< δ / δ0  ,           (2) 84 

 85 

where the critical drift depends on the strength of the noise and the length of the zone: 86 

 87 

  
δ0 =

D
L

 .          (3) 88 

 89 

In the case of  δ = δ0 , the noise-free drifting time through the system is equal to mean 90 
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first passage time due to the noise at zero drift. At strong drifts (Equation 2) the set  kth{ }  91 

of residence time distribution is lognormal and, because the particle size is a linear 92 

function of the residence time, lognormal particle size distribution is the result, see Figure 93 

1. 94 

 95 

                           96 
Figure 1. Histogram of density function (left), and cumulative distribution in log-Gaussian plot (right) of 97 
the sizes of 100 thousand nanoparticles by condensational growth, without coagulation, due to Brownian 98 
motion superimposed on linear drift in the growth zone (based on [6,7]). The log-Gaussian plot is much 99 
more efficient than the histogram to follow the behavior in the long tail and a straight line represents ideal 100 
lognormal distribution. Drift: 16.6 times the critical drift. 101 

 102 

To explain the observed lognormality in the single protein molecule detection scheme 103 

with fluorescent quantum dots, the same mathematical model was applied for quantum-104 

dot-marked-molecules drifting in a nanofluidic channel through a zone exposed to a laser 105 

beam. Even the additional photonic shot noise could not destroy the lognormal feature in 106 

the size distribution of photon bursts [8], see Figure 2. 107 

 108 

                              109 
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Figure 2. Histogram of density function (left), and cumulative distribution in log-Gaussian plot (right) of 110 
photon burst sizes in single molecule detection with quantum dots [8]. Even the additional photon shot 111 
noise in the model is unable to destroy the lognormal characteristic. Drift: 1.9 times the critical drift. 112 
 113 

There is a striking similarity between the model described above and the integrate-and-114 

fire model, the simplest dynamical neuron model, if we suppose that there is a band-115 

limited white noise in the ion current, see Figure 3 for its circuit representation.  116 

 117 

 118 
 119 

Figure 3. Circuit representation of the integrate-and-fire model: a capacitor is charged by a current 120 
generator from the initial potential level   U0  up to the threshold potential  Uth  where the firing takes place 121 

and the capacitor is discharged. In the noise-free case, the membrane potential   U (t)  is drifting with 122 

  δ = I0 / C  velocity up to the firing threshold, where   I0  is the charging ion current and C is the capacitance. 123 

The current noise   ΔI(t) , when it is a band-limited white noise with Gaussian or other amplitude density of 124 

fast cut-off, results in the sum of Brownian motion and a linearly drift in the membrane potential   U (t) . 125 

With a reflecting boundary at the initial potential value (or proper amplitude density of the noise to prohibit 126 
backward propagation events) this is the same mathematical model as the one leading to Figure 1 (see 127 
Equations 1-3). 128 
 129 

Thus it is straightforward to apply the model as follows. In the discrete-time model, the 130 

coordinate of the motion is the membrane potential U, the drift velocity of potential is δ , 131 

and D is the mean-square of the noise in the ion current: 132 

 133 

  U (k) =U (k −1)+δ +ζ (k) D  ,       (4)   134 

 135 

where k and   ζ (k)  are defined in the same way as in Equation 1. In accordance with 136 

Equations 2 and 3, the critical drift is given as: 137 
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 138 

  
δ0 =

D
Uth −U0

 ,           (5) 139 

 140 

where the initial potential value is   U0 =U (0)  and the potential threshold of firing is  Uth . 141 

The starting point   U0  is a reflecting boundary, that is, the   x0 ≤ x(k)  condition is enforced 142 

during the whole process. When the   Uth ≤U (kth )  is first satisfied, the neuron fires, the 143 

membrane potential is discharged and the whole charging process starts from the 144 

beginning. The actual  kth  value is recorded; it is the time interval between the former and 145 

the present firing events (inter-spike interval). Here we assumed that the 146 

firing/discharging process is negligibly short compared to the inter-spike interval. 147 

because Equations 1 and 4 and the mathematical conditions are identical, in the strong 148 

drift limit (see Equation 2), the set  kth{ }  has obviously lognormal distribution. 149 

Furthermore, because any power function of a lognormally distributed random variable is 150 

also lognormal, not only the inter-spike intervals but also the firing frequency will have 151 

lognormal-like distribution if the firing/discharging process is negligibly short compared 152 

to the inter-spike interval. 153 

 154 

Figure 4 shows the histogram obtained by computer simulations of the integrate-and-fire 155 

model with Equation 4 with   U0 = −60 mV ,   Uth = −40 mV , and relative drifts 156 

 δ / δ0 = 6 and 24 , respectively. Both the time and frequency data show the familiar 157 

skewed shape. 158 

 159 

 160 
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                             161 
 162 

Figure 4. Computer simulations of the integrate-and-fire model with white noise in the ion current causing 163 
a random walk (Brownian motion) superimposed on the linear drift of the potential. The same random walk 164 
model with special parameters used as in getting Fig. 1. The width and skewness of the resulting 165 
lognormal-like distribution depend on the relative drift, which is the drift normalized to the critical drift 166 
value. Because any power function of a lognormally distributed random variable has also lognormal 167 
distribution, the lognormal distribution of time intervals between firing implies a lognormal distribution of 168 
firing frequency (in the limit when the time spent for firing/discharging can be neglected). Drift (a) 6 times 169 
and (b) 24 times the critical drift. 170 
 171 

It is open question if the additive noise in the ion current is strong enough to yield the 172 

observed distribution of firing frequency of single neurons. However, models and 173 

observations [9] regarding the stochastic closing and opening of ion channels indicate 174 

that the noise can be sufficiently strong. It is also an open question and subject of future 175 

studies how much does the distribution deviate from lognormal in those cases when the 176 

noise spectrum is 1/f [10,11] instead of white and in the case of more advanced neuron 177 

models. 178 

 179 

Finally, we note that Longtin [12] studied stochastic resonance phenomena in the time 180 

distribution of firing events at sinusoidal excitation of the Fitzhugh-Nagumo neuron 181 

model. To introduce stochasticity, a white noise term was added to the time derivative of 182 

the potential. In the case of no sinusoidal excitation, a skewed density function 183 

(resembling lognormal) of the time intervals between firing events can be seen. However, 184 

this fact was not commented because it was considered only as the base line of 185 

observations and the paper was focusing on the induced periodicity and stochastic 186 

resonance at sinusoidal driving in the presence of noise.  187 
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