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Abstract 

Well-ordering of the Reals presents a major challenge in Set theory. 
Under the standard Zermelo Fraenkel Set theory (ZF) with the Axiom of 
Choice (ZFC), a well-ordering of the Reals is indeed possible. However 
the Axiom of Choice (AC) had to be introduced to the original ZF theory 
which is then shown equivalent to the well-ordering theorem. Despite 
the result however, no way has still been found of actually constructing 
a well-ordered Set of Reals. In this paper the author attempts to 
generate a well ordered Set of Reals without using the AC i.e. under ZF 
theory itself using the Axiom of the Power Set as the guiding principle. 

 

Introduction: 

In this paper, the author attempts a well-ordering of the Reals. Specifically the well-

ordering in achieved in the closed interval  1,0 . This does not in any way loose 

generality as the Set of Reals in the open interval  1,0  is equinumerous with the Set 

of Reals in   ,  via the tangent function  2tan  x . 

 

As stated, well-ordering of the Reals presents a major challenge in Set theory. The 
most popular version of Axiomatic Set theory is the Zermelo Fraenkel Set theory (ZF) 
with the Axiom of Choice (ZFC). Under this theory a well-ordering of the Reals is 
indeed possible. However, a new Axiom, the Axiom of Choice (AC) had to be 
appended to the original axioms of ZF theory for this purpose. The Axiom of Choice is 
shown to be equivalent to Zorn’s lemma and the well-ordering theorem [1]. The well-
ordering theorem simply states that every Set can be well-ordered. The Axiom of 
Choice, though largely accepted by most mathematicians still retains a few detractors 
as the AC can establish the existence of certain Sets without actually specifying any 
way of constructing them. Even for those whose unquestionably accept the AC, any 
proof given using just ZF theory is considered in some sense ‘superior’ to the same 
proof given using ZFC. Coming back to the problem at hand, it is to be realized that 
although a well-ordering of the Reals is possible in ZFC, this remains very much an in-
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principle concept. No way has still been found of actually constructing a well-ordered 
Set of Reals [2][3][4]. 

 

In this paper, the author makes two bold claims. Not only can a well-ordering of the 
Reals be achieved in ZF theory i.e. without using AC but further that a mechanical / 
procedural method is elucidated of actually constructing this elusive Set. The author 
attempts this feat using the Power Set Axiom. The Axiom of Power Set simply states 

that for any Set X , there is a Set Y  that contains every subset of X . To the author, 
this is a powerful Axiom, whose functionality to prove results has not been fully 
appreciated in the Set theoretic community. 

 

Tabular Power Set construction: 

We begin by first describing what will henceforth be referred to as the construction of 
the ‘Power Set table’. Construction of the Power Set table is a systematic / procedural 
method of generating Power Sets for any given Set. The method involves constructing 
a table in which the columns represent the elements of the Set (whose Power Set is 
to be constructed) and the rows represent the elements of the Power Set so 
constructed. In this context, the word construction is to be taken not just as in 
ordinary English but also a rigorous method of assembling of individual elements to 
from a Set. 

 

To understand the steps involved, we first take an example of a finite Set say with 

four elements a , b , c , d . There is a systematic way [5] of constructing the Power 
Set table in which the elements of the Set are listed in the first row and below each 

element is written the number 1  or 0  to indicate whether it is or not included in the 
corresponding subset, for e.g., 
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The Set of elements dcba ,,,  is given in the first to fourth columns. Below each 

column, a digit 0  or 1  is placed. The corresponding subset in the fifth column will 

contain the element if a 1  is indicated and will not contain the element if a 0  is 
indicated. The fifth column lists all possible subsets based on this exclusion / inclusion 

1/0  rule. It is to be realized that by all possible combinations of 0  and 1 ’s, one can 
generate all possible subsets of a given Set. A rigorous way to construct this table is to 

consider the 0 ’s and 1 ’s as binary digits and keep incrementing them each 

succeeding row. This way all combinations of 0 ’s and 1 ’s are systematically 
exhausted. 

A point of note: I am incrementing the binary digits in reverse i.e. binary addition is 
done from left to right rather than the traditional right to left, a variation which is 
useful when dealing with infinite Sets. 

The rules for incrementing are simple; 000  , 110  , 011   with 1  carried 
over to the element to the immediate right. One key realization is that the first 

element is the empty Set corresponding to all 0 ’s (in this case 0000) and the last 
element of our table is generated when all the elements of the Set are included giving 

all 1 ’s (in this case 1111). 

No. of columns of the table   No. of elements of the Set 4  
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No. of rows of the table   No. of all possible subsets (i.e. no. of elements of the 

Power Set) 1624   

To the author, this represents an elegant and rigorous method of generating all 
subsets of any given Set. 

 

We now extend the same procedure to the Set of Naturals [5]. We will construct a 
similar table as that for the finite Set but now enumerate the entire Set of Naturals. 

 

...},4,3,2,1{...111111

........................

}4{...001000

}3,2,1{...000111

}3,2{...000110

}3,1{...000101

}3{...000100

}2,1{...000011

}2{...000010

}1{...000001

{}...000000

...654321 subsets

 

 

No. of elements of the Set of   = 0  

No. of rows of the table   No. of all possible subsets of   (i.e. the Power Set of  ) 
02


    the Set of Reals 

 

Examining the table, we derive a Set X  consisting of each row to get… 
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(The subscripts are retained for clarity) 

The Set X  is constructed vide the following rules: 

1. The first element is all zero’s i.e. ...0000 4321  

2. Each succeeding element is the previous element incremented by binary addition. 
The binary addition is done from left to right rather than the traditional right to 

left. The rules being simple; 000  , 110  , 011   with 1  carried over to 
the element to the immediate right 

 

We can slightly modify Set X  into Set Y  by first dropping the subscripts and then by 
appending a decimal point (more appropriately, called a binary point) before each of 
the binary sequences to get all the Real numbers. 

 

}

...1111.0

...,

...,0010.0

...,1100.0

...,0100.0

...,1000.0

...,0000.0

{Y

 

 

A few points to note: 

 The numbers are in base 2  i.e. binary 

 0...0000.0   
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 11.0...1111.0   

 All elements of Set Y  are unique 

 The Set Y  contains possible combinations of 0 ’s and 1 ’s which can be put in a 

bijection with all the subsets of the Naturals, thus ensuring that all Reals in  1,0  

are covered 

 

In addition, the Set’s X  and Y  are ordered as for any two elements a  and b  it can 

be established that one and only one of the two conditions is fulfilled either ba   

i.e. a  precedes b  or ba  that is a  succeeds b . The reader should take note that 

the ordering defined by ‘ ’ is not the same as ‘ ’ as 01.01.0   but 01.01.0  . 

 

Further the Sets are also well-ordered as every one of its non-empty subsets contains 
a first element thus achieving our two-fold aim of generating a well-ordered Set of 
Reals using a mechanical procedure involving a Power Set table and further without 
using of any ‘Choice’ function, staying within ZF theory only. 

 

Conclusion: 

A well-ordering of the Reals is indeed possible using ZFC and associated theorems 
based on the AC, specifically the well-ordering theorem. However, no way has still 
been found of actually constructing a well-ordered Set of Reals. In this paper, the 
author establishes by the Power Set Axiom that there is indeed a way of generating a 
well-ordered Set of Reals using ZF theory only i.e. without use of the AC or the well-
ordering theorem. Further a systematic and mechanical procedure, by construction of 
a Power Set table, is given for generating the same. If restrictions on the non-
denumerablity of the Power Set columns are imposed, then at the very least an in-
principle method of well-ordering of the Reals is established using ZF theory only i.e. 
without use of the AC or the well-ordering theorem. 

 

A few possible objections answered: 

The author anticipates a few queries or reservations about his work which he will try 
to pre-answer. Please find below the same, put in a question / answer format… 

 

Q1. The columns of the Power Set table continue on indefinitely. Is this allowed? 

A1. To the best of the author’s knowledge, in both Cantorian and Axiomatic Set 
theory, this is indeed allowed. Indeed, Cantor envisaged infinity as an actual realized 
entity rather than a potential one [6], as was perceived earlier by Gauss and others. 
For e.g., Cantor, who originally discovered the ordinal numbers, used them to extend 
the finite counting numbers. A subset of the ordinals is given below: 

 ...,2...,,2,1,,...;3,2,1    
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In the same vein the columns of the Power Set table continue on till the Set so 

formed has cardinality 0  and if we restrict ourselves to the smallest transfinite 

ordinal, till the Set so formed had ordinal number  . 

 

Q2. Even if we accept that the number of columns being denumerable is OK, the 
number of rows of the Power Set table are non denumerable. So how is the Power 
Set table actually ever completed in its entirety? 

A2. Any non denumerable Set can never be enumerated; that much is obvious… 
Therefore, a complete enumeration of the Power Set table is not possible. But what 
has to be realized is that this is an inherent property of the Reals itself. It has no 
brook with any attempted well ordering. For e.g., if the query is just to write down 
(read enumerate) all Reals without any precondition of say well-ordering or any other 
requirement, it is still not possible to enumerate this Set because of its inherent non 
denumerablity. However, even if the author accepts the query as being a genuine 
problem with this method, still this paper represents a significant advancement in Set 
theory. The best way to illustrate this point is to make a comparison table, given 
below: 

 

 Earlier work… Author’s work… 

1. Consider ZFC theory which includes 
the Power Set Axiom 

Consider ZF theory which includes the 
Power Set Axiom 

2. ZFC theory also includes the AC (with 
AC implying the well-ordering 
theorem) 

ZF theory does not include the AC and 
therefore we cannot use the well-
ordering theorem 

3. Using the well-ordering theorem, a 
well-ordering of the Reals is possible. 
However, it remains an in-principle 
possibility as no way has still been 
found of actually constructing the Set 

Using the Power Set Axiom, a well-
ordering of the Reals can be similarly 
achieved by an in-principle 
construction of the above Power Set 
table. Although completion of the 
table is not possible because of the 
non-denumerablity of the Reals 

In essence, at the very least, an in-principle procedure for well-ordering of the Reals is 
achieved under ZF theory i.e. without using the AC and / or the well-ordering 
theorem. 
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