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Abstract—Cloud computing is continuously growing as a
business model for hosting information and communication tech-
nology applications. Although on-demand resource consumption
and faster deployment time make this model appealing for
the enterprise, other concerns arise regarding the quality of
service offered by the cloud. One major concern is the high
availability of applications hosted in the cloud. This paper
demonstrates the tremendous effect that the placement strat-
egy for virtual machines hosting applications has on the high
availability of the services provided by these applications. In
addition, a novel scheduling technique is presented that takes
into consideration the interdependencies between applications
components and other constraints such as communication delay
tolerance and resource utilization. The problem is formulated
as a linear programming multi-constraint optimization model.
The evaluation results demonstrate that the proposed solution
improves the availability of the scheduled components compared
to OpenStack Nova scheduler.

Index Terms—High availability, cloud applications, delay tol-
erance, scheduling algorithms, virtual machines, failure scope.

I. INTRODUCTION

Nowadays, the cloud is becoming the lifeblood of most
telecommunication network services and information technol-
ogy (IT) software applications [1] [2]. With the development
of the cloud market, cloud computing can be seen as an
opportunity for information and communications technology
(ICT) companies to deliver communication and IT services
over any fixed or mobile network with high performance
and secure end-to-end quality of service (QoS) for end users
[3]. Although cloud computing provides benefits to different
players in its ecosystem and makes services available anytime,
anywhere and in any context, other concerns arise regarding
the performance and quality of the services offered by the
cloud. One major concern is high availability (HA) of ap-
plications hosted in the cloud. Since these applications are
hosted by virtual machines (VMs) residing on physical servers,
their availability depends on that of the hosts [4] [5] [6].
When a hosting server fails, its VMs and their applications
become inoperative. The absence of application protection
plan has a tremendous effect on business continuity and IT
enterprises. According to Aberdeen Group, the cost of one
hour of downtime is $74,000 for small organizations and $1.1

million for larger ones [7]; excluding reputation damage that
can be significantly greater in the longer term. In addition,
the Ponemon Institute study shows that 91% of data centers
have experienced unplanned outages in 2011 and 2012 [8].
The solution to these failures is to develop a highly available
system that protects services, avoids downtime and maintains
business continuity.
High availability is an interesting concept that has attracted
several recent research studies. However, the way to attain
a certain availability baseline when scheduling VMs or ap-
plications changes from one research study to another. In
[9], the authors propose a placement approach to generate
VM configurations while maintaining high availability for
multi-tier applications and improving their performance. They
develop a replication strategy to maintain HA constraints based
on the mean time between failures (MTBF) while satisfying
latency demands to minimize performance degradation for
each application. In [10], the authors address the resource
allocation problem for deployment of multitier applications.
They aim to maximize total service level agreement (SLA)
profit while maintaining a certain level of availability. They
develop a non-linear programming model to achieve their
objective while guaranteeing a level of availability based on
a load-sharing fault-tolerance arrangement. Another attempt
that maximizes service availability by providing a failure-
resiliency plan is proposed in [11]. In [12], the authors address
applications components scheduling on a cloud infrastructure.
They propose a multi-objective scheduling approach that tends
to maximize resource utilization, minimize the cost of appli-
cation runtime and maximize applications availability through
a component replication approach.
Although these solutions try to maximize the cloud-service
availability, each approach focuses only on a few aspects of
availability. Some attempts tend to maximize availability with-
out considering redundancy models, while others ignore the
impact of mean time to failure (MTTF) or interdependency re-
lations and their associated constraints. To address these inade-
quacies, a scheduling solution is required that considers all the
factors affecting availability. This paper aims to demonstrate
the effect of applications placement strategy on the HA of the
services provided by the virtualized cloud to its end users. To
attain this objective, the cloud and the application models have



been captured in a unified modelling language (UML) model.
Also, we propose a novel scheduling technique that looks into
the interdependencies and redundancies between applications
components, their failure scopes, their communication delay
tolerance and resource utilization requirements. The technique
examines not only MTTF to measure the component downtime
and consequently its availability, but the analysis is based
on the mean time to repair (MTTR), recovery and outage
tolerance times as well. This scheduling is modeled as a mixed
integer linear programming (MILP) problem.
The main contributions of this work are to:
• Capture all the functionality and availability constraints

that affect application placement.
• Reflect availability constraints not only by failure rates

of applications components and scheduled servers, but
also by functionality requirements, which generate anti-
location and co-location constraints.

• Consider various interdependencies and redundancies
among applications components.

• Examine multiple failure scopes that might affect the
component itself, its execution environment and its de-
pendent components.

This paper is organized as follows. Section II describes the
system UML model, including cloud and application tree
structures. Section III defines the research methodology for
developing the MILP model. Section IV describes the simula-
tion environment and the results of this work. Finally, future
work and conclusions are presented in Section V.

II. SYSTEM MODELLING AND SCHEMATIZATION

Cloud schedulers that are agnostic of the intricacies of the
tenants application may result in suboptimal placements. In
these placements, redundant components may be placed too
close to each other rendering their existence obsolete because
a single failure can affect them all, or the delay constraints
can be violated, hindering application functionality. The HA-
aware scheduling in the cloud must consider details of both the
applications and the cloud infrastructure. We define a different
approach where we start by modeling the applications with
their functional and non-functional requirements. Then we
consider the cloud infrastructure model to be a constrained
solution space where we do the mapping between applications,
VMs, and servers to maximize the availability. To this end,
we modelled the cloud and the application using a unified
modelling language (UML) class diagram, as shown in Fig. 1.
With this model, we started with a specific cloud infrastructure
and a set of requested applications then we ended up by
generating an interface between the provider and user side
using VM mappings.

A. Cloud Provider Model
The proposed cloud architecture is captured in the UML
class diagram. At the root level, the cloud consists of data
center networks distributed across various geographical areas.
Each data center consists of multiple racks communicating
through aggregated switches. Each rack has a set of shelves

housing a large number of servers, which can have different
capacities and failure rates. Servers residing on the same rack
are connected with each other through the same network
device (the top of the rack switch). Finally, the VMs are
hosted on the servers. This tree structure determines the
network delay constraints and consequently the delay between
the communicating applications. This architecture divides the
cloud into five different latency zones, which will be further
discussed in Section III.
In the proposed tree structure, each node i has its own failure
rate (λ) and MTTR. The MTTF and MTTR parameters divide
the intra- and inter- data center networks into availability
zones. The availability avail of the host h depends not only on
its λ and MTTR, but on that of corresponding DC and rack R
as well. Each host h can be seen as (DC, R, S). In each zone,
the highly available host is selected as follows:

availh =
MTTFh

MTTFh +MTTRh
(1)

where


MTTFh = 1

λDC+λR+λs

MTTRh =MTTRDC +MTTRR +MTTRS

B. Applicationr Model
Applications are typically developed using a component based
architecture where each application is made up of one or
more components. The application combines its components′

functionalities to provide a higher level of service [13] [14]. To
maintain availability requirements, each component can have
one or more redundant components. The primary component
and its redundant ones are grouped into a dynamic redundancy
group. In this group, each component is assigned a specific
number of active and standby redundant components. As
shown in the UML model, each redundancy group is assigned
to at most one application, which consists of at least one
redundancy group.
As for the component, it belongs to one component type. A
component type represents an executable software deployment.
From this perspective, the component represents a running
instance of the component type. Components of the same type
have the same attributes defined in the component type class,
such as computational resources (CPU and memory) attributes.
Each component can be configured to depend on other compo-
nents. The dependency relation is captured at the type level and
can be configured using the delay tolerance, outage tolerance
and communication bandwidth attributes. The delay tolerance
determines the minimum required latency to maintain commu-
nication between sponsor and dependent components. As for
the outage tolerance or tolerance time, it is the time that the
dependent component can tolerate without the sponsor one.
The same association is used to describe the relation between
redundant components that need to synchronize their states.
Finally, each component type is associated with at least one
failure type. The list of failure types determines the failure
scope of each component type, its MTTF, MTTR, and recom-
mended recovery.



Fig. 1: Cloud-Application UML Class Diagram.

C. VM Mapping
Each component of the application model is scheduled on a
server in the cloud provider model using VM mappings. Each
VM can be hosted on one server and can have at least one
component instance running in it. Sudden failure events can
occur to cloud-application such as natural disaster, network or
runtime failures [15]. In order to deal with these events, the
inoperative VMs are switched off, and a failover group takes
over the control. The failover group consists of at least one
VM, which is a redundant VM of the inoperative one.
As mentioned earlier, the proposed HA-aware scheduling
technique searches for the optimum physical server to host the
requested component. Whenever a server is scheduled, a VM
is mapped to the corresponding component and to the chosen
server. Therefore, a component can reside on that VM.

III. HIGH AVAILABILITY MODEL

The VM placement solution generates mappings between
the cloud physical servers and VMs on which the tenants
applications are hosted while satisfying various constraints.
The HA-aware scheduling technique provides an efficient

and highly available allocation by satisfying the following
constraints:

1) Capacity Constraints: These are functional constraints,
which are satisfied by searching for servers that meet
the resource needs of each application. In the proposed
model, the computational resources consist of the CPU
and memory.

2) Network Delay Constraints: Using these constraints,
another list of servers is generated. These servers satisfy
the latency requirements to avoid service degradation
between communicating applications. It is assumed that
the delay requirements are divided into five delay types
(i.e., latency zones) as follows:

a) D0 Type: Requires that all communicating com-
ponents should be hosted on the same VM and
consequently on the same server.

b) D1 Type: Requires that all the communicating
components should be hosted on the same server.

c) D2 Type: Requires that all the communicating
components should be hosted on the same rack.

d) D3 Type: Requires that all the communicating



components should be hosted on the same DC.
e) D4 Type: Requires that all the communicating

components can be hosted across different data
centers but must be within the same cloud.

3) Availability Constraints: These constraints prune the
candidate servers generated by the capacity and delay
constraints to select the ones that maintain a high level
of application′s availability. In order to maximize the
HA of an application, three sub-constraints should be
satisfied:
a) Failure Rate Constraint: It determines that the se-

lected server should maximize component′s avail-
ability. In order to satisfy this constraint, the model
searches for the server with maximum MTTF and
minimum MTTR. Whenever it is found, then the
MTTFAc of the component C after being hosted
can be calculated as follows:

MTTFAc =
1

λc + λh
(2)

b) Dependency Constraint: This constraint is divided
into two sub-constraints:
Co-location Constraint: This is valid whenever the
tolerance time of the dependent component is lower
than the recovery time of its sponsor. When the
dependent component cannot tolerate the absence
of its sponsor, then the failure of its server, its
sponsor or sponsor′s server affects it. In order
to minimize its failure rate, both dependent and
sponsor should share same server.
Anti-location Constraint:: It requires that the de-
pendent component and its sponsor should be
placed on different servers. This is valid whenever
the tolerance time of the dependent component is
greater than the recovery time of its sponsor. By
considering this case, the MTTF of the application
will be maximized because of its inverse propor-
tionality relation with λ.

c) Redundancy Constraint: It basically prevents re-
dundant components of a primary one from re-
siding on the same server and requires that they
should be placed far away from each other as the
delay constraints allow.

With these constraints, we developed a MILP model that
minimizes components′ downtime while finding the optimal
physical server to host them.

A. Mathematical Formulation
This section introduces a MILP model to solve the HA-aware
placement problem. The proposed MILP model was solved
using the IBM ILOG CPLEX optimization solver.
1) Notations
Various parameters were used to solve the placement problem
and develop the MILP model.

a) Input Paramters
Let a virtual machine be denoted as V and a server as S.
Each VM consists of an application {A}, which consists of a

Notation Significance Representation

R Resource Type: CPU
or memory

Number of Cores and
MB of RAM

REDcc′
Redundancy matrix

of C and C’ {0,1}

DEPcc′
Dependency matrix

of C and C’ {0,1}

DELss′
Delay between S and

S’ second

OTc Outage tolerance of C hour

RTc Recovery time of C hour

DTc Delay tolerance of C hour

TABLE I: Variable Notations

specific number of components {C}, which are of component
types {CT}. Therefore, each application is a set of C and CT
and can be denoted as A ={C, CT}. This notation ensures that
whenever a set of components C of types CT is scheduled, its
corresponding application is considered hosted.
As for the computational resources, Lcr and LTsr denote the
set of resources, which can be memory or CPU of component
and server respectively. Table 1 shows the various parameters
notations used in the MILP model.

b) Decision Variables
The decision variables are defined as follow:

Xcs =

{
1 if S host C

0 otherwise
(3)

zc =

{
1 if DELss′ ≤ DTc
0 otherwise

(4)

2) MILP Model
The downtime represents a duration during which a system
is unavailable or fails to function. In this paper, the system
can be a component or a host. However, the downtime of C
does not only depend on the component itself (Downtimec),
but on its hosting server (Downtimes) as well. In order to
minimize the overall downtime of C, the objective function
of the formulated MILP model should minimize Downtimec
and Downtimes. The objective function and its constraints
are formulated as follows:

Objective Function:

min
∑
c

∑
s

(Downtimec +Downtimes)×Xcs

Subject to:

Capacity Constraints:∑
c

(Xcs × Lcr) ≤ LTsr ∀ s, r (5)

∑
s

Xcs = 1 ∀ c (6)

Xcs ∈ {0, 1} ∀ c, s (7)



Network Delay Constraints:

(Xc′s′ ×DELss′ −DTc) ≤M × zc′ ∀ c, c′, s, s′ (8)

Xcs − 1 ≤M × (1− zc′) ∀ c, c′, s (9)

zc′ ∈ {0, 1} ∀ c′ (10)

Redundancy Constraint:

Xcs+Xc′s ≤ 1 ∀ c, c′, s, REDcc′ (11)

Dependency Anti-location Constraint:

Xcs+Xc′s ≤ 2 ∀ c, c′, s, DEPcc′ (12)

Dependency Co-location Constraint:

Xcs+Xc′s ≤ 1 ∀ c, c′, s, DEPcc′ (13)

Boundary Constraint:

Downtimec, Downtimes ≥ 0 ∀ c, s (14)

As discussed earlier, the HA-aware placement of the applica-
tion is affected by capacity, delay and availability constraints.
Regarding capacity constraints, constraint (5) ensures that the
requested components resources must not exceed the available
resources of the selected destination server. Constraint (6)
determines that the component can be placed on at most
one physical server. Constraint (7) ensures that the decision
variable (Xcs) is a binary integer.
The delay constraints (8), (9), and (10) ensure that communi-
cating components will be placed on a server that satisfies
the required latency. These constraints are applied on the
dependency and redundancy communication relations between
scheduled components.
The availability constraint (11) reflects the anti-location con-
straint between a component and its redundant ones. Using
constraint (12), the dependent components should share the
same server in case their outage tolerance is smaller than the
recovery time of their sponsor component. The anti-location
constraint between dependent and sponsor components is
active in the contrary case as shown in (13). The boundary
constraint (14) specifies real positive values for downtimes of
C and S.

IV. MILP EVALUATION

To assess the MILP model, evaluations were conducted using
different data sets. The MTTF, MTTR and recovery time were
used as measures of the downtime and availability of various
components. To clarify the importance of the proposed model,
it was compared to OpenStack Nova scheduler algorithm [16].

A. Availability Analysis
As mentioned earlier, the availability availc of a component C
is inversely proportional to its downtime. Since the downtime
was generated in terms of hours per year, then the availability
is calculated as follows:

availc = (
8760− downtimec

8760
× 100) (15)

As for the downtime, it changes with delay types and can be
calculated in terms of λ, MTTR and/or RT of a component,
its corresponding DC, rack R and server S. Since our work
considers redundancy and failover solutions, then downtime
depends on λ and RT. For instance, the downtime in D4 and
D2 type is calculated as (16) and (17) respectively:

downtimeD4
c = (λc+λs+λDC+λR)×RTc (16)

downtimeD2
c = ((λc + λs)×RTc) + (λR ×RTR)

+ (λDC ×RTDC) (17)

B. Computational Complexity
Any scheduling problem can be defined as a triplet α | β
| γ. Starting with α, it represents the problem environment.
As for β and γ, they represent the problem constraints and
the objective to be optimized respectively [17]. This triplet
can take various fields depending on the scheduling type.
Since the proposed scheduling work has n components to
be assigned to m servers while minimizing downtime, it can
be formulated as special case of transportation problem. It
can be represented as Qm| pj |

∑
hj(Cj), where Qm indicates

that the problem environment consists of m different parallel
machines, pj determines that a job j can be processed using
one machine m and finally h(k) represents the cost function
to be optimized. This special case is known as the bipartite
matching or assignment problem. It is represented as bipartite
graph G = (n1, n2, a). This graph consists of two nodes n1 and
n2 connected using arc a. This arc a = {j, k} assigns node j of
set n1 to node k of set n2 and is represented by the decision
variable Xcs defined in Section III. This type of scheduling
problems is formulated using linear programming models, but
it is characterized by NP-hard complexity hierarchy. Because
of the NP-hardness of the proposed optimization model, it is
only feasible for small DC networks [18]. In the evaluated
small network, the number of variables generated in the
optimization solver is approximately 4000.

C. OpenStack Filter Scheduler
OpenStack is an open source cloud management system that
satisfies the needs of private and public clouds using com-
puting, networking and storage services [16]. Nova is one
of the computing components of OpenStack that schedules
VM based on a predefined instance type such as CPU or
RAM. Nova compute service provides different types of filters
and weights to host an instance. During the filtering stage,
the scheduler generates list of servers that are capable of
hosting the instance. Then weight and cost functions are
applied to this list to determine the best compute node for
it [19]. Nova supports other filters that can be used to support
HA placement such as availability zone, affinity and anti-
affinity filters, however, these existing filters are agnostic of
the delay tolerance and inter-VM dependencies, which means
they need to be extended. Also, the users have to manually
define the needed filter based on the instance properties
[19]. Alternatively, our proposed work eliminates the user
interference. It provides an automated process for deploying



Fig. 2: MILP vs OpenStack Scheduler.

VMs by considering functionality (resources and delay) and
availability (different types of dependencies) requirements.

D. Results
Both the optimization model and the OpenStack scheduler
were evaluated on a network consisting of 20 components,
2 DCs, 4 racks and 50 servers. The server and component
MTTFs were generated using an exponential distribution with
mean = 2000 hours for both [20]. As for the server and
component MTTR, a normal distribution was used with mean
= 3 and 0.05 hours and standard deviation = 1 and 0.016 hours
respectively [20] [21]. For server and component recovery
times, a normal distribution was used with mean = 0.05 and
0.008 hours and standard deviation = 0.016 and 0.002 hours re-
spectively. To evaluate the interdependencies and redundancies
between components, the proposed MILP was evaluated on
two real-time Web applications. The Web applications include
two types of dependencies among the components: (1) the
synchronization dependency between the active component
and its replicas, and (2) the functional dependencies where
the App server depends on database server and sponsors the
HTTP server.
1) MILP vs OpenStack Nova Scheduler
The MILP model was compared to the core and RAM filters
in Nova scheduler in order to show the impact of availability

constraints on the downtime of components per year. Using
these filters, only servers with sufficient RAM and CPU cores
are eligible for hosting VMs. Fig. 2 shows the downtime
difference between MILP model and OpenStack scheduler for
different delay zones. Since these filters do not consider delay
requirements, they generated similar results for all delay types.
As the delay zones widen the solution space for the compo-
nents placement, the difference between OpenStack scheduler
and MILP increases gradually. Using the HA-aware MILP
model, the downtime of component is reduced by 35%, 39%
and 52% for D0/D1, D2 and D3 types respectively. As for
D4 type, it allows scheduling component on any server in the
cloud and allows placing primary and redundant components
on two different DCs. In this case, if the server, rack or DC
of component C fails, C will be down until it fails over to
its redundant. Therefore, the downtime of a C is calculated
using (16). But sometimes a sponsor component can affect
the downtime of its dependents if the latter cannot tolerate its
failure. In any case, the downtime is reduced significantly by
97% using the HA-aware technique in D4 type.

2) Availability Improvement within MILP Model
Although the MILP model maximizes the availability of com-
ponents, its results change among different delay zones. Since
D0 and D1 types require placement of components in the



Fig. 3: Availability Improvement among Delay Zones.

same server, then the solution space of the selection process is
limited. Consequently, the availability is affected and depends
on the recovery time of the hosting server, rack and DC.
However, the availability is highly improved in D4 because it
depends only on the recovery time of the hosted component.
Additionally, this delay zone eliminates the restrictions on
the locations of the components. Fig. 3 shows the difference
between downtime among the 5 delay zones. Compared to
D4 results, the availability of components is reduced as more
restrictions are added on the servers location.

V. CONCLUSION

Unexpected cloud-services outages can have a profound im-
pact on business continuity and IT enterprises. The key to
achieving availability requirements is to develop an approach
that is immune to failure while considering real-time inter-
dependencies and redundancies between applications. This
paper has addressed the problem environment from different
vantage points to generate highly available optimal placement
for the requested applications. The proposed MILP model
minimizes the downtime of applications, but its computational
complexity limits the evaluation on large networks. Therefore,
this model will be associated with a heuristic solution in the
future work. The heuristic will solve the scheduling problem
in polynomial time while satisfying all QoS and SLA require-
ments and differentiating between mission critical and standard
applications. Also, the proposed approach will be extended to
include multiple objectives such as maximizing the HA of
applications′ components and maximizing resource utilization
of the infrastructure used.
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