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Abstract: The Sagnac effect could not have been exactly explained with consistency under the theory 

of special relativity (TSR). The conundrum of TSR has been completely solved fully in the relativistic 

context. Special relativity is reformulated without the postulates of the relativity principle and the light 

velocity constancy, employing a complex Euclidean space (CES), which is an extension of Euclidean 

space from the real number to the complex number. In the reformulation, the relativity in the 

representation and the light velocity constancy are obtained as properties that isotropic space-time 

spaces have. The coordinate systems each have perpendicular axes in CES and the relativistic 

transformation has the form of rotation. These characteristics of the formulation pave the way for the 

relativistic approach to circular motion. The relativistic transformation from the inertial frame to the 

circular frame is shown to have the same representation as that from the circular to the inertial, which 

implies that circular motions can be described relative to linear motions and vice versa. The difference 

between the arrival times of two light beams in the Sagnac experiment can be exactly found by the 

circular approach presented, which shows that the non-relativistic and relativistic analysis results are 

the same within a first order approximation. The circular approach can also be applied to the analysis 

of the Hafele–Keating (HK) experiment. The analysis of Hafele and Keating appears to exploit the 

results of this paper, though circular motions were treated as liner motions. The relativistic approach 

for circular motion, which is formulated without any postulates, can lead to propound understanding of 

relativity and true space-time spaces. These issues are examined. 

 

(Keywords: Circular motion, Sagnac effect, Special relativity, True space-time spaces, Paradoxes, 

Complex space) 
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I. INTRODUCTION 

The theory of special relativity (TSR) [1–5] has been formulated based on the two postulates, the 

principle of relativity and the constancy of light velocity, which result in the Lorentz transformation 

between inertial frames. The Sagnac effect [6–10], which is a phenomenon of interference 

encountered on a rotating plate, seems to show the inconsistency of TSR with the reality. The 

experiment results appear to be in agreement with the non-relativistic analysis, seemingly violating the 

postulate that the light speed is constant irrespective of the velocity of an emitting source. Though 

some relativistic explanations on the Sagnac effect [e.g., 7] have been given, they do not present exact 

analyses with rigorous theoretical derivations. The arguments on the inconsistency of TSR [e.g., 9] 

still remain. 

This paper completely solves the Sagnac effect in the relativistic context, introducing a complex 

Euclidean space (CES) in which time is represented as an imaginary number. Special relativity is 

reformulated in CES without any postulates except the isotropy of inertial space-time spaces [11]. In 

the reformulation, the relativity, which means that relativistic representations between inertial frames 

have the same form, and the light velocity constancy are obtained as properties that isotropic space-

time spaces have. The relativistic transformation can be regarded as a mapping from one time-space 

coordinate system S  to the other 'S . In the Minkowski space [23], the time and space axes of one 

coordinate system, say 'S , are not perpendicular to each other though those of the other, say S , are 

so. In CES, each axis of both coordinate systems is perpendicular to the corresponding one and the 

relativistic transformation is formulated in the form of rotation. These characteristics of the CES 

formulation shed light on the relativistic approach to circular motion. 

In the relativistic approach to circular motion, which will also be called the circular approach, four 

coordinate systems S , S
~

, '
~
S , and 'S  are exploited. The coordinate systems S

~
 and '

~
S  with a 

tilde are rotating while the other ones with no tilde is fixed. The Lorentz transformation from the 

inertial to the circular is made in the tilde coordinate systems so that the unprimed is relativistically 

converted to the primed. The transformation results are represented in a time-independent coordinate 

system 'S . The relativistic transformation from the circular to the inertial, in which the primed is 

relativistically converted to the unprimed, has the same form as the reverse one, from the inertial to the 

circular. In other words, the relativity between the circular and inertial frames holds in terms of the 

representation. Moreover the linear velocities   and '  have the same magnitude and opposite 

directions, i.e.,  '  where cr /   ( cr /'''    in the primed) with r  and   ( 'r and 

' ) denoting a radius and an angular velocity, respectively, in S  ( 'S ) and c  denotes a light speed 

in vacuum. 

In the Sganac experiment, the effect of the difference between the travel times of two light beams is 
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measured. The circular approach allows us to exactly find the time difference seen through the Lorentz 

lens, which is shown to be, to a first-order approximation, identical with that by the non-relativistic 

analysis. The circular approach can also be applied to the analysis of the Hafele–Keating (HK) 

experiment [12, 13]. The analysis of Hafele and Keating has been known to be consistent with the 

experiment results. Surprisingly, their analysis, except for part of general relativity, appears to exploit 

the results of the circular approach, though circular motions were dealt with as linear motions. 

Inertial frames are associated with linear motions. For convenience, the word ‘linear’ in place of 

‘inertial’ is often used such as linear frame and linear motion. It is contrasted with ‘circular’. The 

terminology ‘linear inertial frame’ is also used to distinguish it and ‘circular inertial frame’, which is 

addressed in Section IV. 

Following this Introduction, Section II presents the reformulation of special relativity in CES. In 

Section III, based on the reformulation, the relativistic approach for circular motion is dealt with and 

time differences in the Sagnac experiment are analyzed. The relativistic approaches presented are 

formulated without any postulates except the isotropy, which may lead to profound understanding of 

postulates, paradoxes, relativity, and true space-time spaces. Section IV examines these issues, and is 

followed by Conclusions.  

 

II. SPECIAL RELATIVITY IN COMPLEX EUCLIDEAN SPACE 

The TSR was derived under the postulates of the relativity principle and the light velocity constancy 

[1]. Here, we reformulate special relativity without the postulates. To this end, we introduce a 

coordinate system S  with an imaginary time axis of ti   where 2/1)1(i  and t  denotes 

time. The constant   represents the ratio of time to space in S . For a point ),( xp   in S , the 

scalar quantity ),( xd  , which represents the distance between the point and the coordinate origin, is 

defined as  

                  2/122 )()(),( xpdxd   .                        (2.1) 

In the Minkowski time-space which employs the real time axis, the distance is expressed as 

2/122 )()( ctxpd  .  

An observer 'O  is moving along the x -axis with a constant velocity of v  with respect to O  

who is located at 0x . When 0 , the two observers O  and 'O  meet. At 0  , 'O  is at 

),( 000 xp   where  /00 ivx  . As time passes, O  goes along the  -axis while 'O  follows 

the ' -line which is the line crossing the coordinate origin and 0p , as shown in Fig. 1. In fact, the 

 -axis is the set of observation points of O , the observation line of O . The ' -line is the set of 
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observation points of 'O , the observation line of 'O . Therefore the ' -line is the time axis for 'O  

and can be written as ''' ti  . In Fig. 1, the x -axis is located perpendicular to the  -axis in a 

counter clockwise direction. Accordingly, the space axis, 'x -axis, for 'O  is set. Space-time spaces 

are assumed to be isotropic in inertial frames so that  ' . The coordinate system with the ' - and 

'x -axes is denoted by 'S , the primed one. 

The coordinates of an arbitrary point ),( xp   can be expressed in vector form as Tx],[p  

where T  stands for the transpose. As seen in Fig. 1,   and p  represent the angles between the 

 - and ' -axes and between the  -axis and p , respectively. Since   and '  are complex 

numbers, the angles also become complex numbers. For a complex number  , the trigonometric 

functions cos  and sin  are defined as 2/)(cos  ii ee   and sin )2/()( iee ii   . 

It is straightforward to show that 1sincos 22   . When   is given as shown in Fig. 1, the 

trigonometric functions can be expressed as  

))(/(
)1(

1
cos 002/12

pd


 


                         (2.2) 

))(/(
)1(

sin 002/12
pdx

i






                         (2.3) 

where  /v . The vector p  can be written in polar form as T
pp s ]in,[cos|||| pp   where 

)(|||| pdp . From Fig. 1, the coordinate vector p  is represented in 'S  as 

                          











)(sin

)(cos
||||'




p

p
pp .                            (2.4) 

Exploiting the sum and difference identities in trigonometric function [14], (2.4) is expressed as [11] 

                                pTp )(' 2 L                                  (2.5) 

where 

                          














cossin

sincos
)(2LT .                           (2.6) 

Even if  , ' , x , and 'x  are changed to x , 'x ,  , and ' , respectively, (2.5) is the same, 

which implies that space and time have the relationship of duality. The matrix )(2 LT  is the 2x2  

Lorentz transformation matrix in CES. It is straightforward to see that )()( 22  T
LL TT   and 

ITT )()( 22  L
T

L  where I  is an identity matrix. The relationship (2.5) can be written in 

differential form as pTp dd L )(' 2   where pd  and 'pd  are differential vectors. It is easy to see 
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that 

22 ||||||'|| pp dd                                 (2.7) 

which implies that the transformation preserves the distance. 

Describing the motion of O  from the perspective of 'O , the observer O  is moving with a 

velocity of v  along the 'x -axis in 'S . In Fig. 1, if the point for p  is p , the position of the 

point 'p  for 'p , which is obtained as (2.5), is different from the position of p  since p  is a 

complex number. For example, when )tan,( 000 p , it is represented in 'S  as 

)0,cos/(' 00 p , which is located at a position different from 0p , as shown in Fig. 1. Let the 

point that is located between the x - and ' -axes in Fig. 1 represent that for 'p . It is easy to see 

form Fig. 1 that p  is written as 

')(2 pTp  L .                             (2.8) 

The comparison of (2.5) and (2.8) leads to the relativity that the relativistic representations between 

inertial frames have the same form. In TSR, the Lorentz transformation has been derived in the real 

number with the postulate of the relativity principle. In the CES approach, the relativity is a property 

derived from the space-time isotropy, which means that  ' . When the space-time space is of 

isotropy, the observation lines of observers in linear motion have the same characteristics, which 

enables inertial frames to have the relativity. In fact, the relativity is one of properties that isotropic 

space-time spaces inherently have and the isotropy of space-time spaces is more fundamental than the 

relativity. 

Distances are preserved as in (2.7). It is well known that a moving clock runs at a slower rate than a 

clock at rest, which is due to the property of distance preservation. The moving clock corresponds to 

the clock on an observation line. In Fig. 1, the squared distance between 2p  and 1p  on the O ’s 

observation line is written as 222 |||| ddds  p  where 12 ppp d  and 12  d  with 

T
kk ]0,[p , 2,1k . In this case the O ’s clock is the moving clock. The kp  is expressed in 'S  

as T
kkk ]sin,cos['  p  and 2'ds  is given by )''(||'||' 2222 dxddds  p  where 

''' 12 ppp d . From 22' dsds  , the time interval |'| d  is written as 2/122 |'||'| dxdd   , 

which can be rewritten as  cos|||'| dd   so that || d  is smaller than |'| d . In case '1p  and 

'2p  are on the observation line of 'O , on the contrary, |'| d  becomes smaller than || d . The 

differential vector on an observation line has zero spatial components and thus the absolute value of its 

norm corresponds to the time interval. However, the corresponding one in the other coordinate system 

has nonzero spatial components. As a result of it, the clock on an observation line runs slower than the 
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other.  

The time dilation of clocks on observation lines can also be seen directly from (2.5) and (2.8). The 

observation line of 'O  is represented in S  as )tan,( p . Substituting this vector into (2.5), 

the time coordinate of 'p  is given by 




cos
' .                                 (2.9) 

The observation line of O  is represented in 'S  as )tan','('  p . Substituting it into (2.8), 

the time coordinate of p  is given by 




cos

'
 .                                (2.10) 

If either 0|||| pd  or 0||'|| pd , the other, from (2.7), is also zero. The differential distance 

|||| pd  becomes zero when dtdx / , which represents a velocity, is equal to  . In the isotropic space-

time spaces, the value of   corresponds to an invariant speed. It is known (or postulated) that the 

light speed is invariant in inertial frames, and then c . The slope of the line crossing the origin 

and the point p  in Fig. 1 is ptan . The velocity of an object on the line is given by 

pp icv tan/  , which is represented in 'S , by the sum and difference identities, as  

2/1

//
)tan(/'

cvv

cvcv
icv

p

p
pp 


  .                    (2.11) 

It is shown in (2.11) that 'pv  becomes c  when cvp  . The invariant speed is also one of 

properties that the isotropic space-time spaces inherently have. The speed that has the same value as 

  becomes invariant and it is the light speed. 

The formulation in CES provides some profound points in the fundamental concepts, which can be 

summarized as follows: 

1) The special relativity in CES has been formulated without any postulates except the isotropy of 

space-time spaces. The isotropy means that the scale ratios of time to space in space-time spaces with 

units are the same. The inherent value of the scale ratio   appears to be one in unit-less time-space 

before the manifestation. 

2) The relativity is obtained as one of the properties that the isotropic space-time spaces have. It is not 

identical with the postulation of the relativity principle in TSR. The former means that the relativistic 

representations between inertial frames have the same form as (2.5) and (2.8), but not the equivalence 

between them. The light velocity constancy is also obtained as a property. The isotropy of spaces 

allows them to have an invariant speed. If they are not isotropic so that  ' , the speeds are 

different even though 0||'|| pd  when 0|||| pd . The isotropic spaces have an invariant speed of 
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 . 

3) The coordinate system 'S  obtained form S  according to (2.5) is just for the observer 'O . In 

other words, there is just one observation line, the one for 'O , and any '' 1xx  ( 0 ) in Fig. 1 are 

not observation lines. The coordinate system 'S  shows how the observer sees the world, in 

connection with the view that O  sees. 

4) Time and space are in the duality relationship. One is represented in the real number while the other 

is represented in the imaginary number. 

5) The CES formulation can deal with an inertial frame moving faster than c . When cv  , the roles 

of space and time are interchanged. 

As a matter of fact, the Lorentz transformation with the imaginary time is older than that with the 

real number and was already used by Poincare [3]. However, the old formulation may be nothing more 

than a mathematical manipulation. The CES approach is based on the concept of the observation line 

and derives the Lorentz transformation without any postulates except the isotropy. It enables us to get 

insight into the fundamental concepts, as presented above. 

 

III. CIRCULAR MOTION AND RELATIVISTIC APPROACH 

Here, we extend the CES to 3-dimension (3-D), including the y - and 'y -axes. Unprimed and 

primed coordinate systems are related by the Lorentz transformation. In addition to S  and 'S , 

coordinate systems S
~

 and '
~
S  are introduced to handle circular motions. The observers of S , S

~
, 

'
~
S , and 'S  are denoted by O , O

~
, '

~
O , and 'O , respectively. Motions between O  and '

~
O  are 

dealt with. The velocity directions of O
~

 and '
~
O  always correspond to the x~ -axis of S

~
 and '~x -

axis of '
~
S , respectively. 

 

A. Framework for Relativistic Approach 

The unprimed and primed coordinate systems S , S
~

, '
~
S , and 'S  are shown in Fig. 2, where the 

radius of the sphere, though part of it is shown, is one. For convenience, negative parts of the  - 

and ' -axes are displayed and the x~ -axis is rotated by   with respect to the x -axis. The ~ - and 

x~ -axes and the '~ - and '~x -axes lie on the same plane as the axes of S  and 'S  in Fig. 1 are on 

the same plane.  

The observer O
~

 is moving with a velocity of cv /  in the direction of x~ -axis when seen by 

O . Given a coordinate vector Tyx ]~,~,~[~ p  in S
~

, the Lorentz-transformed vector 
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Tyx ]'~,'~,'~['~ p  in '
~
S  is written as 

pTp ~)('~ L                                 (3.1) 

where )(LT  is the 3 x 3 Lorentz transformation matrix 


















100

0cossin

0sincos

)( 


LT .                          (3.2) 

A problem in the representation into S
~

 and '
~
S  is that if their axes are rotating it is meaningless to 

represent coordinates in them. Hence, it is necessary to represent coordinates in another coordinate 

systems which are time-independent.  

The coordinates of p~  can be readily converted into a time-independent coordinate system S . 

Considering the representation of p~  into S , (3.1) is rewritten as 

pATpAATp )()(~))()()(('~ 1  LL                       (3.3) 

where )(A  is a rotation matrix, which given by 























cossin0

sincos0

001

)(A                            (3.4) 

and p~  and p  are related by 

pAp )(~  .                                 (3.5) 

The inverse of )(A  is given by )( A . Form (3.5), '~)()( pTAp   L , which can be 

rewritten as 

')'(')()(

'~))'(')'(')(()( 1

pATA

pAATAp





 

L

L                      (3.6) 

where 

'~)'('' 1 pAp  .                               (3.7) 

A time-independent coordinate system in the primed is denoted by 'S . In (3.7), )'(' 1 A  converts 

'
~
S -coordinates into 'S -coordinates. It can be assumed without loss of generality that when 0 , 

0'  so that the ' - and 'x -axes of 'S  can be placed in the same plane as the  - and x -axes 

of S , as in Fig. 2 where the y - and 'y -axes are overlapped. If 0 , 'S  corresponds to S . The 

'S  is the primed coordinate system corresponding to the unprimed S .  

To find )'(' A , we use Fig. 2. Recall that the Lorentz transformation has been already done, and 
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the remaining task is to find the difference in the orientation between 'S  and '
~
S  to obtain ' , 

which can be a single variable or a vector with multiple variables. In Fig. 2, the '~y -axis lies on the 

x - y  plane and the locus of the '~x -axis forms a cone as   increases from zero to 2 . It is 

obvious that if the '~x -axis is rotated by 'u  on the surface of the cone, '
~
S  exactly overlaps 'S . 

Fig. 3 clearly shows the orientation of '
~
S  with respect to 'S . Note that ''~   . Since the radius of 

the sphere in Fig. 2 is equal to one, the azimuth angle 'u  is identical with the arc length between P  

and P
~

. To use Fig. 2 for the calculation of the arc length, we change the  -axis to a real axis, z -

axis. Accordingly,   becomes a real number z  and zcos  is given by 

2/12 )1(

1
cos





z .                             (3.8) 

In the coordinate system zS  with the z -axis, the coordinates of zP , which has the same position as 

the point P  in Fig. 2, are written as 

)sin,0,(cos),,( 111 zzz zyxP  .                       (3.9) 

The arc length is equal to 1x  and thus 'u  is given by 

zu  cos' .                               (3.10) 

Since relative motions between O  and '
~
O  are dealt with, '  should be used in accordance with 

the perspective of '
~
O  as   is used in accordance with the perspective of O  in the coordinate 

conversion of (3.5). Fig. 2 shows the coordinate systems from the perspective of the non-rotation (O  

and 'O ). According to the perspective of the rotation ( '
~
O  and O

~
), S  and 'S  are rotated by 

  and 'u  respectively. Thus '  is obtained as 

zu  cos''  .                           (3.11) 

If 0z ,  ' . For 0z , |||'|   . 

As )'(' A  is also a rotation matrix, )'()'('  AA  . Using this relationship, (3.3) and (3.7), 

we have 

pTp ),(' LR                              (3.12) 

where  

)()()'(),(  ATAT LLR  .                       (3.13) 
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B. Circular/Linear Transformation 

1) Linear-to-Circular  

In the linear-to-circular, motions are described relative to O  or 'O . We have established a 

framework for the relativistic transformation of circular motion. Consider that   varies linearly with 

time: 

 c                                  (3.14) 

where cic /   and   is a constant. The x~ - and y~ -axes in Fig, 2 are rotating around the 

rotating center RC  with an angular velocity  . The observer O
~

 is located at a radius r  in S
~

, 

and the velocity of O
~

 is crir c /   in the x~ -axis direction. We use a notation sv  to 

denote the 2-D spatial vector of a space-time 3-D vector v , excluding the time component. The 

spatial vectors T
s yx ],[p  and T

s yx ]~,~[~ p  are related by 

sss pAp )(~                                (3.15) 

where )(sA  is a rotation matrix for spatial coordinates, 
















cossin

sincos
)(sA .                          (3.16) 

The direct transformation of the unprimed coordinates into the primed ones according to (3.12) can 

be applied to the trivial case where   is constant. In that case, with '  obtained as (3.11), we can 

represent '~p  into 'S . However, in case   is varying with time, the relativistic transformation 

should be handled with differential vectors which can be considered to be constant during an 

infinitesimal time interval d . In other words, the vectors in (3.1) and (3.7) should be replaced with 

differential vectors in such a way that 

)(~)()('  pTp dd L                            (3.17) 

)'(')'()'('  pAp dd                           (3.18) 

)'(')'()'('~  pAp  .                          (3.19) 

where )()()(  vvv  dd  for a vector )(v . Note that the new notation 'pd , not '~pd , has 

been introduced. The )('~ p  can be obtained as (3.19) only after )(' p  has been found. Let us 

explain the reason, which also explains why the differential vector )(~ pd , instead of )(~ p , should 

be used for the Lorentz transformation of (3.17). As S
~

 rotates, '
~
S  also does. For simplicity, 

suppose that the angular velocity of '
~
S  is constant. Fig. 4 illustrates the rotation of the '~x -axis with 

respect to 'x  and the differential angle between the axes is 'd , which is an angle shift during 'd . 
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Let '  be zero at 0' . During a time interval ''0 1  , where ''1  dN , the differential 

vector 'pd  changes from )'(' ddp  to )'(' 1pd  and the rotation angle '  increases from 'd  

to '1  where ''1  dN . Accordingly, for example, the differentials )'(' ddp  and )'(' 1pd  

should be converted in such a way that )'(')'()'('  ddddd pAp   and 

)'(')'()'(' 111  pAp dd  . If )'(' 1p  is calculated as )'(')'()'(' 111  pAp   after first 

integrating )'(' pd  to obtain )'(' 1p  or after directly finding )'(' 1p  from )'(~
1p  without 

using differential vectors, all differentials )'(' dkdp  for Nk   are incorrectly converted to the 

'S -coordinates. Therefore, differential vectors should be used and converted into 'S  as (3.18). 

Hereafter, for simplicity, we will drop the argument indicating time dependency in notations, if not 

necessary. The motion of O
~

 seen in S  can be described as  

T
s r ]cos,[sin  p .                           (3.20) 

The tilde vector for sp  is obtained by inserting (3.20) into (3.15) as  

T
s r],0[~ p .                               (3.21) 

Equation (3.21) indicates that O
~

 is at rest on the y~ -axis of S
~

. Recall that t  . The velocity 

vector sp  of sp  is given by  

Ts
s r

dt

d
]sin,[cos 

p
p .                        (3.22) 

Representing sp  in S
~

, it is expressed by substituting (3.22) into (3.15) as  

T
s r ]0,[

~ p .                              (3.23) 

The angular velocity of O
~

 is in the x~ -axis direction, as seen in (3.23), and O
~

 rotates in the x~ -

axis direction that is perpendicular to the y~ -axis on which O
~

 is located. The Lorentz transformation 

in (3.17) should be made under the condition that the velocity has the same direction as the x~ -axis. 

Note that the velocity of O
~

 is in the x~ -axis direction, as required. 

Given TT
s ],[ pp   together with the initial condition that 0'  when 0 , the elements of 

TT
s ]','[' pp   are obtained as 

 cos'                                 (3.24) 

T
s r ]'cos,'[sin''  p                           (3.25) 

and '  is related to '  by 
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'''  c                                  (3.26) 

where  

z

r
r




cos

cos
'                                  (3.27) 




cos

cos
' zc

c                                 (3.28) 

with cic /''   . In (3.25), the initial condition that the phase of 'sp  is 2/  at 0'  was 

used. For derivation, refer to Appendix A. In case 0 , any relativistic things must not occur. It is 

not difficult to see that when 0 , 'p  is reduced to p . The coordinate vector TT
s ]~,[~ pp  , 

where sp~  is given by (3.21), represents the time axis of O
~

. Equation (3.24) implies that the clock 

of O
~

, which corresponds to a moving clock in the Lorentz transformation of (3.17) since p~  

represents the time axis of O
~

, runs slower than that of '
~
O . 

In the primed, '  is written as crri c /'''''   . From (3.27) and (3.28), 

cc rr  ''                               (3.29) 

which leads to 

 ' .                                (3.30) 

The   and '  are linear velocities. Though the angular velocities in 'S  and S  are different, the 

linear speeds are the same. 

The 'r  and 'c  are both functions of r  and  . It is easy to see that 1)( f  and )(f  is 

a monotonic increasing function where zf  cos/cos)(   and 1||0   . Hence rr '  and 

|||'|   , which indicate the radius increases and the angular speed decreases in 'S . The 

dependency of 'r  on the angular velocity  , the direction of which is perpendicular to the radial 

direction, the y~ -axis direction in S
~

, may be pointed out. The radial component does not change in 

the Lorentz transformation process, but comes to change due to the coordinate conversion of 'pd  

form '
~
S  to 'S . For details, refer to Appendix A.  

The spatial vectors 'sp  and '~
sp  are related by ')'('~

sss pAp  . The position vector of '
~
O  is 

given by 

T
s r ]',0['~ p .                             (3.31) 

Equation (3.31) indicates that '
~
O  is at rest on the '~y -axis of '

~
S . The velocity 'sp  of 'sp  is 



 12

the same as (3.22) with r ,   and   changed to primed ones and it is represented in '
~
S  as 

T
s r ]0,''['

~ p . The velocity is in the '~x -axis direction. Accordingly '
~
O  rotates in the '~x -axis 

direction that is perpendicular to the '~y -axis on which '
~
O  is located, which is consistent with the 

requirement of the x~ -direction motion in the unprimed. 

In general, sp  can be expressed as 

T
cc

T
s

r

r

)](cos),(sin[

)]cos(),sin([

00

00







p
                   (3.32) 

where 00  c  and   0 . The spatial vector (3.32) has a phase of 2/  at 0  . 

Comparing (3.32) and (3.20), the latter is rotated by 0  relative to the former. The tilde vector sp~  

for (3.32) is written as  

T
sss r],0[)(~  pAp                            (3.33) 

where 0  . The velocity )/()(
~

dtd sss pAp   is given as (3.23). The relativistic 

transformation of TT
s ],[ pp   yields 

 cos'                                 (3.34) 

T
s r )]''cos(),''[sin('' 00  p                      (3.35) 

where z cos' 00  . The radius 'r  and the angular velocity 'c  are equal to (3.27) and (3.28), 

respectively. In (3.34), the initial condition was used that 0'  when 0 , and in (3.35) that the 

phase of 'sp  is 2/  when '' 0   with  cos' 00  . The derivations are presented in 

Appendix B. The vector 'sp  is represented in '
~
S as 

T
sss r],0[')''('~

0  pAp  .                       (3.36) 

 

2) Circular-to-Linear 

Motions are described relative to '
~
O  or O

~
, as shown in Fig. 5 where the linear velocity in 'S  of 

O  is assumed to be positive. From the point of view of '
~
O  who is at rest in '

~
S , an observer 'O  

located at a radius 'r  in 'S  is rotating with an angular velocity of ' , which leads to 

cr /'''   . Therefore, 'S  and S  become rotating coordinate systems whereas '
~
S  and S

~
 are 

fixed. The Lorentz transformation is performed from 'S  to S  for the motion in the 'x -axis 

direction and the resulting differential vector is converted into S
~

. The relativistic transformation 



 13

process from the primed to the unprimed is as follows: 

')( pTp dd L                                 (3.37) 

pAp dd )(~                                 (3.38) 

pAp ~)(                                 (3.39) 

where   is related to '  by 

'cos' z  .                              (3.40) 

In (3.40), the 'z -axis is a real axis that the imaginary ' -axis of '
~
S  is changed to, and 'cos z  is 

the same as (3.8) with   replace by ' . Fig. 5 is drawn from the point of view of the primed 

observer '
~
O  and p  is equal to  . 

The motion of 'O  can be described in '
~
S  as 

T
s r ]'cos,'[sin''~  p                           (3.41) 

where '''  c . The velocity vector of '~
sp  is expressed in 'S  as 

Ts
s r

dt

d
]0,''[

'

'~
)'('  

p
Ap                         (3.42) 

which implies that the angular velocity is in the 'x -axis direction.  

The coordinate vector of 'O  is given by Tr ]',0,'['  p . With the 'p , the relativistic 

transformation from the circular to the linear yields 

 cos'                                  (3.43) 

T
s r ]cos,[sin~  p                            (3.44) 

  c                                   (3.45) 

'                                    (3.46) 

where  

'cos

cos'

z

r
r




                                  (3.47) 

 



cos

cos' 'zc
c  .                             (3.48) 

Note that the linear speed does not vary. Comparing (3.43) – (3.48) for the circular-to-linear with the 

corresponding ones for the linear-to-circular, they have the same form. In that sense, the relativity 

between the circular and linear motions holds.  

Now, we have prepared tools for the relativistic approach to circular motion. Let’s go to tackle the 

conundrum, the Sagnac effect. 
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C. Analysis of Sagnac Effect 

In the Sagnac experiment, the coordinate system S  represents the one for a laboratory observer 

O . A circular plate is rotating around its center with an angular velocity   and the light detector 

'
~
O  is located at a radius r  when seen by O . The motion of '

~
O  in S  can be described as (3.20) 

with  ct   where cic / . At 0'  , two light beams leave a light source, 

which is located at the same place as the detector, and begin to travel on a circumference in different 

directions. The light signals traveling in the same direction as the plate rotation and in the opposite 

direction are denoted by p  and p , respectively. According to the non-relativistic analysis, the 

light beams p  and p  arrive at the detector at the instants [9] 

)1(

2



c

r
t                                  (3.49) 

where t  and t  denote the arrival times of p  and p , respectively, and cr / . The 

difference in the arrival time is calculated as  

)1(

4
)( 22

2






  c

r
tttd .                         (3.50) 

The time difference (3.50) corresponds to the one seen in S  under the assumption that the speeds of 

the light signals p  and p  are c  in S . 

  Let us find the time difference 'd  observed through the relativistic lens. We use the 

transformation for the circular-to-linear of Subsection III.B.2. In 'S , the rotated angle for 'd  is 

given by 

 ''' dc   .                                (3.51) 

Then, d  is expressed, from (3.40), as 

c

z
d 


 'cos'  .                              (3.52) 

Inserting (3.48) and (3.51) in (3.52), we have 


cos'

cos'' '
d

c

zcd
d t

t
t 




 .                       (3.53) 

In a different manner, the time difference can be directly found from (3.43). Replacement '  in 

(3.43) by cti d /'  results in (3.53). The time difference 'dt  is calculated by substituting (3.50) 

into (3.53) as 
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2/122

2

)1(

4
'








c

r
td .                             (3.54) 

Comparing (3.50) with (3.54), they are equal within the first-order approximation of  . 

 

IV. BEYOND POSTULATES AND PARADOXES 

A. Relativism in Circular Motion  

Debates on relativity in circular motions have a long history, including the famous Newton’s bucket. 

The core of the debate in Galileo’s relativity is whether or not the motion of O
~

, who is on a plate 

rotating relative to O  at rest in S , is an absolute one. In Einstein’s relativity, the principle of 

relativity, together with the light velocity constancy, is applied that ‘the laws of physics are the same 

in all inertial frames of reference’, which will be called the conventional principle of relativity (CPR). 

As the absolute motion (or the ether) could not be found the CPR has led to the equivalence of all 

inertial frames and to the perception that there are no preferred frames. The relativistic approach for 

circular motion results in the relativity in the sense that the relativistic representations between the 

circular and linear motions have the same form. Some relativist may say, “The relativity principle can 

also be applied to circular motions. It was validated again.” Probably, it would not. Instead, the 

circular approach may lead to deep understanding of the relativity.  

Let us tell a story, which is a fiction. Suppose that we don’t know any theoretical things of relative 

motion between circular and linear frames, though some experiment results such as time dilations 

were known. To explain the results, we made some postulates: 1) The principle of relativity (We 

cannot tell which one, seemingly circular or seemingly linear motion, is actually rotating. Motions are 

relative, and the circular and linear frames are equivalent.) and 2) The linear speed constancy, say 

(3.30). With the postulates, we established the theory of circular relativity, which perfectly and 

beautifully explained the experiment results. It has been very consistent with almost every experiment. 

Furthermore, an abundance of astonishing new scientific facts has been discovered from it. Great 

advances in science and technology have been achieved based on our theory. We, circular relativists, 

now have big power and big authority. For a few experiment results which seem to contradict our 

theory, we explain if we can, or neglect if we cannot. Nobody can dare to challenge us.  

The relativity world looks magic. We, on a rotating plate, did handshakes with our friends for ten 

seconds and one minute later, we hugged them for ten seconds. A linear inertial observer P says, “You 

did handshake for ten minutes and one hour later, you hugged for ten minutes.” Another person, who 

is in linear motion relative to P, tells another story. Who is right? The postulation-based circular 

relativity may say that the ten-minute handshake and ten-minute hugging seen by P are equivalent to 

our true action. 
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In the Sagnac experiment the time difference can be obtained by (3.24) or (3.43). If the postulate 

that the circular and linear frames are equivalent according to the relativity principle is applied, some 

problems are caused. Suppose that the time difference '1d  is obtained from 1d  in accordance 

with (3.24). According to the relativity principle, (3.43) also must be able to be equally applied. The 

cos  is the same irrespective of the use of (3.24) or (3.43) since |'|||   . With 

 cos' 11 dd  , (3.43) gives 1
2

12 cos ddd   . As the calculation repeats 

continuously, the time difference tends to infinity! On the contrary, in case the time difference '1d  

is obtained from 1d  in accordance with (3.43),  cos/' 11 dd  . Then, 2d  is computed, 

by substituting the '1d  into (3.24), as 1
2

12 cos/' ddd   . As the calculation continues, 

it goes to zero! Similar problems occur in liner inertial frames as well. Let’s look into the twin paradox. 

 

B. Twin Paradoxes  

Our twin, 'O , left us for a space trip when 0'  . Suppose that the coordinate systems S  

and 'S  are related by (2.5) or (2.8), taking no account of the acceleration. After the space trip, 'O  

comes back to the Earth instantaneously from a point '0 , )0,'(' 00 p , in Fig. 6. It should be noted 

in Fig. 6 that the plane of S  overlaps the plane of 'S , and for example, the point 1p’ is denoted as 

p'1p  in S  and as 'p'1p  in 'S . From the perspective of 'O , we, O , are moving with a velocity of 

 . Accordingly our coordinates in 'S  are given by )tan','( 00   , which corresponds to 

)0,( 1n1 p , the coordinates of the point n1  in S , where  cos/'01  . In contrast, from our 

perspective, 'O  is moving with a velocity of   and 'O  is currently at )tan,( 00p'1 p , the 

point p'1  in S . Which point, )0,( 00 p , n1p , or other point, does 'O  return to? Let us assume 

that 'O  moves to 0p , following the perspective of O . The time coordinates 0  and '0  are then 

related by  cos'00  . According to the CPR, inertial frames are equivalent so that both (2.9) and 

(2.10) must be able to be equally applied. If an object at 0p  moves instantaneously to 'S , it must 

move to the point 'p'1p  in 'S . Otherwise, if it moves to '0p , the equivalence between S  and 'S  

is violated, the symmetry being broken. The time coordinate of 'p'1p  is 

 cos' 0p'1  (  2
0 cos' ). As such instantaneous movement continues, it tends to infinity. On the 

other hand, in case 'O  moves to n1p , the continuation of the instantaneous movement makes it 

approach the coordinate origin. The equivalence between the primed and the unprimed, which 
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prohibits one frame from depending on the other, seems to cause the paradox and to be self-

contradictory. 

The CPR is inconsistent with the Lorentz transformation if what it does mean is that ‘inertial frames 

are equivalent’. If the frames of O  and 'O  in the twin paradox are equivalent, their clocks must be 

exactly in the same condition. The same laws of physics must be equally applied to the clock of O  as 

well as that of 'O . If the clock of 'O  indicates '0 -time passing after the departure, the clock of 

O  also must indicate '0 -time passing so that '00   . Suppose that at 0"'   , O  and 

'O  also meet another observer "O  who is moving with a different linear velocity " . According 

to the equivalence of CPR, "' 000   . Their clock rates are independent of motion, which implies 

Galileo’s relativity. Therefore, the CPR must mean that the laws of physics can be represented in the 

same form in all inertial frames, which, however, are not equivalent. 

Twin paradoxes exist also between the circular and linear frames when the relativity principle in the 

fiction is enforced. Let us introduce another version of twin paradox, nonlinear, circular one. Sadly, 

our twins A  and B  have gone to another galaxy, a planet at its edge. Fortunately we could also 

take a trip close to the galaxy. We admire the magnificent scenery of the giant galaxy beautifully 

rotating around its center with an angular velocity. We immediately found that the planet is located at 

a radius r from the center. And we saw that as soon as they arrived at the planet, one of our twins, twin 

A , left with an entity, who is very lovely and very benevolent and is a pilot of an identified flying 

object (IFO), in the reverse direction of the galaxy rotation. When A  returned, we, O , saw our 

twins again. Who is the youngest? 

The angular velocities of A  and B  are ci aca /,    and ci bcb /,   , respectively. The 

travel times of A  and B  from the perspective of O  can be calculated as (3.24) with 

cr ,/2     and 2/12 )1(cos     where cr /    and ba, . Then the time 

ratios are given by   cos/'  . However, when the travel times are calculated as (3.43), the 

ratios are given by   1cos/'  . Which ones are right? Some circular relativist in the fiction 

may say, “There are no preferred frames, even between seemingly rotating and seemingly linear 

inertial frames. They are equivalent according to the relativity principle. The time ratios are all right. 

The confusion results from the ignorance about the relativity of simultaneity. Simultaneous events are 

valid only in each frame.” Then, it becomes another paradox, circular version. 

The mechanism causing the paradox between the circular and linear frames is exactly the same as 

that between the inertial frames. The paradox in the latter is caused by the equivalence of (2.9) and 

(2.10) and in the former by the equivalence of (3.24) and (3.43). In TSR, elapsed time in the unprimed 
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and in the primed must not be compared since both (2.9) and (2.10) cannot be satisfied at the same 

time, which led TSR to introduce the so called relativity of simultaneity.  

We need more paradoxes, do we? Here is another one, not associated with simultaneity. The 

observers O  and '
~
O  met at 0'  . From the perspective of O  who thinks that '

~
O  is in 

circular motion, the radius and the angular velocity of '
~
O  are given by (3.27) and (3.28), 

respectively. The '
~
O  thinks that O  is in circular motion. Applying the relativity principle, the 

radius and the velocity in S  are written, by substituting (3.27) and (3.28) into (3.47) and (3.48) 

respectively, as 2)cos/(cos zr   and 2)cos/(cos  zc  respectively, though the measurements 

of O  are r  and c . Which ones are right? The postulate seems to create paradoxes and 

contradictions, doesn’t it? The relativistic transformation for circular motion has been formulated 

without any postulates, which may lead us to resolve the paradoxes. 

 

C. True Space-Time Spaces 

In TSR, deep roots of paradoxes and contradictions lie in observation lines or misconceptions of the 

coordinate system 'S . Let us revisit the reformulation of special relativity in CES. Only the ' -axis 

in 'S  is an observation line, on which 'O  sees events. Any other lines '' 1xx  ( 0 ) are not 

observation lines. When S  is given, 'S  shows how 'O  sees the world from S . In TSR, all 

'' 1xx   seem to be regarded as observation lines. Let every '' 1xx   in Fig.1 be an observation line 

(according to the view of TSR). At 0'   , if 'O  meets O , any other objects in 'S  cannot 

meet any objects in S  and only one object is allowed to meet. This issue is also associated with 

simultaneity, and it is justified in TSR by the relativity of simultaneity. The situation, however, is 

different between the circular and linear motions.  

Objects that are at rest on a rotating plate belong to the same inertial frame, which is termed a 

circular inertial frame. Consider N  objects located at a radius 'r  that are at rest on a rotating plate, 

as in Fig. 7. Let the circular inertial frame '
~
S  for the objects be a true local space-time space that 

consists of observation lines, which will be discussed later. The position vector of the kth object '
~

kO  

can be written as T
kksk r ]'cos,'sin[''~

,  p  where 'k  is a constant. The relativistic 

transformation from the circular to the linear, according to the perspective of '
~

kO , can be performed 

using (3.37) – (3.39). The spatial vector sk ,p  is then given by T
kksk r ]cos,[sin,  p , as shown 

in Appendix C, where 'cos' zkk   . When '
~
O  meets O  at 0'  , these objects '

~
kO  in 
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'
~
S , which belong to the same circular inertial frame, can also meet respective objects kO  in the 

linear inertial frame, the spatial vectors of which are equal to sk ,p . Recall that the minus sign in the 

equation ‘ 'cos' zkk   ’ results from the fact that O  (or kO ) sees S
~

 rotating in the reverse 

direction of the rotation of 'S  that '
~
O  (or '

~
kO ) sees. Fig, 7 has been drawn from the perspective of 

'
~
O  so that the phases of sk ,p  and '~

,skp  have the same sign in the figure. Though in the circular 

motion any number of objects in the primed can meet respective ones in the unprimed at the same time, 

the number has to be only one in TSR. If 'r  is very large, the objects '
~

kO  are essentially on a line 

and in uniform linear motion relative to O . They can be moving even very fast as 'r  is very large, 

even if the angular velocity is near zero. As explained, these objects can meet respective objects in the 

same linear inertial frame at the same time. However, the equivalence of CPR does not allow it. 

Let us suppose that a linear inertial frame S  represents a true local space-time space and that 

multiple objects in the primed linear inertial frame actually meet respective ones in S  at the same 

time. Though the objects in the primed meet the corresponding ones in S  at 0 , each sees 

differently. Let primed objects 'O  and '1O  located at 0'x  and '' 1xx   meet unprimed ones 

O  and 1O  located at 0x  and 1xx  , respectively, as in Fig. 8. Even if S  represents a true 

space-time space, the primed coordinates can be obtained by the Lorentz transformation. The 

coordinate system '1S  of '1O   is related to the coordinate system 1S  of 1O  by (2.5) or (2.8) with 

the unprimed coordinate vector Tx ],[ )1()1()1( p  and the primed one Tx ]','[' )1()1()1( p  where 

 )1( . The coordinate vector of O  is expressed as Tx ],[ 1)1()1(  p  in 1S  and that of 'O  as 

Tx ]','[' 1)1()1(  p  in '1S . The primed vector ')1(p  when 'O  meets O  at 0)1(   is 

calculated as 

T
L

T xx ],0[)(]','[ 121)1(   T .                      (4.1) 

Equation (4.1) is rewritten as  sin' 1)1( x  and cos' 11 xx  , which imply that it seems to '1O  

that when  sin' 1)1( x , 'O  located at cos' 1)1( xx   met O , as shown in Fig. 8, though 

they actually met at 0' . In contrast, 'O  sees '1O  meet 1O  at  sin' 1x  though they 

actually meet at 0')1(  . Only the ' -axis of 'S  is the observation line, and 'S  shows how 

'O  sees the world from S .  

According to Feynman, the principle of relativity is described as [15, 5]: “if a space ship is drifting 

along at a uniform speed, all experiments performed in the space ship will appear the same as if the 
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ship were not moving, provided, of course, that one does not look outside. This is the meaning of the 

principle of relativity.” As long as one does not look outside, inertial frames may be equivalent in the 

restricted sense that the laws of physics are equally applied to every inertial frame. However, returns 

of twins correspond to ‘looking outside’. If one is looking outside, in other words, if the unprimed and 

primed observation lines are compared, the equivalence between them does not hold any more. Then, 

the twin paradox no longer becomes a paradox. In linear motions it may not be necessary to look 

outside because two observers go far away from each other. However, circular motions may force the 

observers to look outside because they can see the same outside again. We do not have to worry about 

losing the elegant Lorentz transformation even if the equivalence between inertial frames does not 

hold and true space-time spaces are introduced. Of course, the circular approach is also based on the 

Lorentz transformation in CES. We can use it, but with exact meaning.  

What is the true space-time space? An observation line includes a set of events that actually 

occurred to the corresponding observer. The events on observation lines are true events that actually 

occur. A true space-time space is a collection of observation lines. One observation line is a true 

space-time space restricted to the owner of it. Observation lines are like sets of imprints carved on 

space-time spaces regardless of motions. They cannot be changed by the observation or the 

representation in other coordinate systems. The representations of true events in a coordinate system 

disappear as soon as its observer leaves the coordinate system. However, the true events do not 

disappear. If either 'p  or p  represents a true event, the other can be dependently given by the 

Lorentz relationship. The word ‘proper’ has often been used such as ‘proper times’, which are found 

by following so called ‘world lines’. The world line, which probably corresponds to the observation 

line in basic meaning, can be called ‘the proper line’. We can replace ‘proper’ with ‘true’, can’t we? 

Though it seems to admit preferred frames and to violate the relativity principle in terms of the 

equivalence. Are there any other proper lines for a proper one?  

Experiments of twin paradox have already been done on rotating plates, the Hafele–Keating 

experiment. The analysis of Hafele and Keating has been known to be in good agreement with the 

experiment results [12, 13]. The analysis, except for part of general relativity, appears to exploit the 

results of this paper, though circular motions were treated as linear ones. In the HK experiment, three 

time measurements were obtained, one on the surface of Earth and the others from the planes traveling 

in the Earth rotation direction and in the opposite. We use the results of Subsection III.B.2 for the 

analysis of the HK experiment results. Since the flight altitudes are negligible as compared with the 

Earth radius, the three observers, '
~

0O , '
~

1O , and '
~

2O , can be considered to be rotating at an equal 

radius 'r  with different velocities where '
~

0O  denotes the Earth surface observer, and '
~

1O , and 

'
~

2O  the plane observers in the same and the opposite directions, respectively. The subscript number 
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will be used to indicate the observer with the same number so that for example, 'k , 2,,0 k , 

denotes the angular velocity of '
~

kO . In the HK analysis, the unprimed time is employed for 

comparison. The unprimed frame S  is a rest frame with respect to the Earth rotation. From (3.43), 

the time differences for the travels are written as 

lllll tttt )cos(cos''' 0
11

,0    ,  2,1l               (4.2) 

where 'lt , ',0 lt  and lt  denote the times measured, respectively, by '
~

lO , '
~

0O  and O , an observer 

of S , during the travel of '
~

lO . In (4.2), 2/12 ))'(1(cos  kk   where cr kk /'''   , 

2,,0 k . The unprimed times were not measured, and lt  seems to have been calculated as 

'/'2 ll vrt   where 'lv  is the ground speed of '
~

lO . 

 Four observers appear in the HK analysis. Thus, there are twelve relationships of relativity between 

them. The experiment results clearly show that there are no equivalences between them. The HK 

analysis for the time dilations only due to the circular motions with angular velocities indicates that 

0'1 t  and 0'2 t  [12], which are also seen from (4.2) by the circular approach. If (3.24), instead 

of (3.43), for the linear-to-circular is used, their signs change, i.e., 0'1 t  and 0'2 t . The 

observed times in (4.2) are true ones, recorded on the respective observation lines, which can be 

represented in other coordinate systems. The true events on the time axes of the coordinate systems 

'
~

kS , 2,,0 k , can be observed in S , and lt  in (4.2) indicates the travel time of '
~

lO  seen by 

O . As far as the travel times are concerned, lt  depends on 'lt . The experiment shows that (3.43) 

only is valid and so 'lt  cannot be obtained from lt  by applying (3.24). 

As mentioned above, if either 'p  or p  is a true event, the other can be dependently given. What 

if both 'p  and p  represent true events? In twin paradoxes, both of them represent true events. 

These cases can be resolved by discovering whose clock is the moving clock, which can be known 

through experiments. Time dilations, which imply that moving clocks run slow, have been well 

validated through quite a number of related experiments including the HK one [16]. However, the time 

dilation is incompatible with the equivalence of inertial frames since one clock is in motion relative to 

the other. The incompatibility causes the twin paradox, which is about whose clock is the actually 

moving clock with respect to the other. It is the clock that shows a time dilation relative to the other 

when elapsed time intervals are compared.  

The HK experiment clearly shows whose clocks are the actually moving clocks relative to others. 

As mentioned in Section II, a moving clock is the one on an observations line. The coordinates on an 

observation line have zero spatial components, or its differential spatial vector is zero so that the 
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relativistic transformation for the differential vector is written in 2-D as T
L dd ]0,[)(' 2 Tp   or 

T
L dd ]0,'[)(2 Tp  , which leads to  cos' dd   or  cos'dd  . In the circular approach 

also, differential times are given by the same equations as in linear inertial frames. In the HK 

experiment, the travel times when only considering the effect of special relativity can be obtained from 

the same equations as well. Hence, equivalently the observation lines of '
~

0O , '
~

1O , and '
~

2O  can be 

depicted as in Fig. 9. The ')(k -axis, 2,,0 k , is the time axis for '
~

kO . The plane observer '
~

lO , 

2,1l , who is at the point )(0 l , instantaneously moves to '
~

0O . If their relative motions are 

equivalent, the elapsed time intervals must be all equal. Even though the travels of '
~

1O  and '
~

2O  are 

symmetric with respect to '
~

0O , '1  and '2  are different. The problem of the twin paradox is 

where, the point 1 or 2 in Fig. 9, '
~

0O  is on the observation line at the instant that each '
~

lO  does 

instantaneous movement. The movement to the point 1 (point 2) implies that the clock of '
~

lO  ran at a 

faster (slower) rate than the clock of '
~

0O . According to the HK experiment, '
~

1O  moves to the point 

2  while '
~

2O  moves to the point 1 . If an object on the ')0( -axis instantaneously moves to the 

')( l -axis, it does to the point )(0 l . There is no paradox. 

Inertial frames are equivalent, provided that they do not look outside. However, when looking 

outside, for example, comparing time passing, the inertial frames are not equivalent as experiments 

show different elapsed time intervals. In general relativity, the acceleration is described as ‘with 

respect to something’, say acceleration with respect to a tangent plane. In special relativity also, 

relative motions should be described as ‘with respect to something’. If 'O ’s time runs slower than 

O ’s time, it implies the motion of 'O  with respect to O . As a matter of fact, the formulation of 

special relativity in Section II, which uses Fig.1 drawn from the perspective of O , implicitly implies 

the motion of 'O  with respect to O , though (2.5) has the same form as (2.8) so that their motions 

appear to be equivalent. As the acceleration in an accelerated motion tends to zero, it reduces to a 

uniform linear motion. When applying ‘with respect to something’ to special relativity, the 

inconsistency in describing the accelerated and the uniform motions disappears. Relative motions can 

be represented in the same form, even for circular motions, but they are not equivalent because their 

elapsed time intervals are different. On the contrary, if they are the same, the special relativity reduces 

to Galileo’s relativity. 

A true space-time space is a collection of observation lines. An observation line is a set of true 

events. Precisely speaking, a true space-time space is a collection of sets of events which occurred, 
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occur, and will occur on time axes of observers. We can imagine the true space of a linear inertial 

frame S  as follows. An observer O  located at x  is at rest in S . Let an event on the observation 

line of O  at time   be ),( xe  . The event ),( xe   is the event at ),( x  in the true space S . 

We can also imagine a true space in circular motion. Observers who are at rest on a rotating plate 

belong to the same circular inertial frame '
~
S . An observer '

~
O  is located at a spatial coordinate 

( ',' r ) in '
~
S  where '  is an azimuth angle. If an event on the observation line of '

~
O  at time '  

is )',','(  re , it is the event at )',','(  r  in the true space '
~
S . If all spatial points of '

~
S  

belong to a set  , say }''','''|)','{( 2121   rrrr , '
~
S  is a true space over  . A 

true space can have just one entry. In the HK experiment, the observation lines of '
~

0O , '
~

1O , and 

'
~

2O  are all respective true spaces. Their relative motions can also be described as ‘with respect to’, 

according to the HK experiment results, which indicate the motions of '
~

0O , '
~

1O  and '
~

2O  with 

respect to O , the motion of '
~

1O  with respect to '
~

0O  and so on. 

The person P says, “You did handshake for ten minutes and one hour later, you hugged for ten 

minutes.” We express our warm respect for P’s opinion because P is just saying what was seen, it’s 

true, and because we are one. The things ‘seen’ are P’s true events, belong to P’s observation line, and 

the ‘actions’ of the handshake and hugging are our true events, not P’s, which belong to our 

observation lines and which cannot be changed by others’ observation. We each are walking on each 

one’s own observation line on the Earth, engraving each life on each observation line. The Earth plane, 

which is a collection of these observation lines, is a true local space-time space irrespective of the 

motion of our Earth, Solar System, and Milky Way. We live in the true space. 

 

V. CONCLUSIONS 

The celebrated Sagnac experiment may have hidden precious treasures that can pave the way for 

relativistic approaches to circular motion and profound understandings of relativity. The presented 

formulations for circular motion, which have been obtained without any postulates, can allow us to 

deal with relativity problems without any restrictions. Relativity between circular and linear frames as 

well as between linear frames holds, but as a property derived, not a postulate. Motions are relative 

and they can be represented in the same form, even for circular motions. Relativity holds in terms of 

the representation. However, relative motions are not equivalent since their elapsed time intervals are 

different, as shown in the HK experiment.  

The reformulation of special relativity in CES is more fundamental than in the real number. Besides 

the points presented in Section II, it has shed light on the relativistic approach to circular motion. Now 
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it’s time to be free from, to go beyond the postulates and to look into them as properties. In the 

reformulation, the relativity between linear inertial frames is obtained as a property derived from the 

isotropy of the space-time spaces, i.e., the same  , the ratio of time to space in a manifested universe. 

When a speed is the same as the value of  , it becomes invariant from frame to frame. The relativity 

and the light velocity constancy are properties that the isotropic space-time spaces have. If they are 

postulates, they must be unconditionally accepted. As a result, paradoxes and contradictions may have 

been created in TSR. The application of TSR may be limited under the postulates, maybe with 

paradoxes, since it has been derived from them. However, the CES formulation can be applied without 

the limitation. 

A true space-time space is a collection of observations lines, which are sets of true events. True 

events cannot be changed by the observation or the representation of other frames though they are 

differently seen. In circular motion, a true space consists of observation lines of objects at rest on a 

rotating plate. The basic motion in universes, macroscopic and microscopic, is circular. The relativistic 

approach for circular motions may provide a very important base for deep understanding of them. It 

can allow us to see the Solar System and galaxies with the eyes of an observer at rest with respect to 

their motions. Though we are also in various circular motions, we live in the true space-time space, 

maybe coming into a circular age from the linear age. 

 

APPENDIX A 

With T
s r ]cos,[sin  p  given, the tilde vector sp~  is written as T

s r],0[~ p . Then sdp~  

becomes a zero vector so that  

Tdd ]0,0,[~ p .                              (A.1) 

Recall that ''~   . Substituting (A.1) into (3.17), it follows that 

 cos' dd                                  (A.2) 











0

sin
'

d
d sp .                             (A.3) 

Under the initial condition that 0'  when 0 , the integration of (A.2) leads to (3.24).  

Note that the '~y -component of 'sdp  is zero, which implies that the Lorentz transformation does 

not change the radial component of sdp~ . From  c  and (3.11), we have 

zc

d
d




cos

'
 .                              (A.4) 

The differential vector 'sdp  is obtained, by using (A.3), (A.4) and (3.18), as 
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



















'sin'

'cos'
'

'sin'

'cos'

cos

sin
'










d

d
r

d

d
d

zc
sp

                         (A.5) 

where 'r  is given as (3.27), with the use of  cos)//(cos/sin rriic  . Integrating 

(A.5) with respect to '  and using the initial condition that the phase of 'sp  is 2/  at 0' , 

we have (3.25). Though the Lorentz transformation does not change the radial component, the 

coordinate conversion from '
~
S  to 'S  results in the change of it. 

Using (A.2) and (A.4), we have 

zc

d
d




cos

cos'
'  .                              (A.6) 

Then 







cos

cos

'

'
' zc

c d

d
 .                           (A.7) 

 

APPENDIX B 

Let   be 0  . The variable  ( 0  ) can be expressed as 

  c .                                 (B.1) 

The vector sp  is written as T
s r ]cos,sin[  p and the tilde vector sp~  is given by (3.33). 

Then sdp~  becomes a zero vector. It is obvious that  dd  . The differential vector can be written 

as 

Tdd ]0,0,[~ p .                              (B.2) 

Substituting (B.2) in (3.17), it follows that 

 cos' dd                                  (B.3) 











0

sin
'

d
d sp .                             (B.4) 

The integration of 'd  under the initial condition that 0'  when 0  leads to (3.34).  

We introduce a variable '  defined as ''' 0   where z cos' 00  . It is clear that 

 dd   and ''  dd  . The differential 'd  can be written from (3.11) as 

zdd  cos'  .                             (B.5) 

From (B.1) and (B.5) 
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zc

d
d




cos

'
 .                             (B.6) 

Inserting (B.6) into (B.3), we have 

 
zc

d
d




cos

cos'
'  .                             (B.7) 

Then 













cos

cos

'

'

'

'

'

'
' zc

c d

d

d

d

d

d
 .                    (B.8) 

Finally, let us derive (3.35). As sp~  is obtained as sss pAp )(~  , the differentials 'sdp  and 

'sdp  are related by 

')'( sss dd pAp  .                           (B.9) 

Using (B.4), (B.6) and (B.9), we have 











'sin'

'cos'
''




d

d
rd sp                           (B.10) 

where 'r  is given as (3.28), with the use of  cos)//(cos/sin rriic  . The initial 

condition is that the phase of 'sp  is 2/  at '' 0   where  cos' 00  . Inserting 

c /00   and z cos/'00   into  cos' 00   and using (B.8), it is written as 

'/')cos/(cos'' 000 czc   . Integrating (B.10) with respect to '  and applying the 

initial condition at '/'' 0 c  , it yields (3.35). 

 

APPENDIX C 

Let us introduce a coordinate system 'kS  the coordinate vector of which is represented as 

T
kk yx ]',','[' )()( p  where ''')( kk    with '/'' ckk   . A variable ''')( kk    is 

defined as 

''' )()( kck   .                              (C.1) 

From the point of view of '
~

kO , an observer 'kO  located at a radius 'r  in 'kS  is rotating with an 

angular velocity of 'c . The motion of 'kO  can be described in '
~
S  as 

T
kksO r

k
]'cos,'sin[''~

)()(,'  p .                      (C.2) 

Note that when 0' , '~'~
,,' sksOk

pp   so that '
~

kO  meets 'kO . The vector '~
,' sOk

p  is represented in 
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'kS  as 

 T
sOkssO r

kk
]',0['~)'(' ,')(,'  pAp  .                     (C.3) 

Then ',' sOk
dp  becomes a zero vector so that  

T
kO dd

k
]0,0,'[' )(' p .                           (C.4) 

The differential vector ''kOdp  is Lorentz-transformed into kS  where kS  is the unprimed 

coordinate system corresponding to 'kS . The coordinate vector of kS  is denoted as 

T
kk yx ],,[ )()( p  where kk  )(  with  cos'kk  . The transformed differential vector is 

converted into S
~

. Using (3.37) and (3.38), and similarly following the related derivation in Appendix 

A with the appropriate change of symbols, we have 

T
kkr

skO
]cos,[sin~

)()(,'
 p                        (C.5) 

where kkck   )()(  with 'cos' zkk   . The initial condition was used in (C.5) that 

the phase of 
skO ,'

~p  is 2/  when 0)( k . The vector 
skO ,'

~p  is represented in 'S , not 'kS , as 

T
kksOssk r

k
]cos,[sin~)( ,',   pAp .                  (C.6) 
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FIGURE CAPTIONS 

 

Fig. 1. Coordinate systems S  and 'S  in CES. 

Fig. 2. Coordinate systems S , S
~

, '
~
S , and 'S  for the relativistic transformation from the unprimed 

to the primed. 

Fig. 3. The orientation of '
~
S  with respect to 'S . 

Fig. 4. Rotation of the '~x -axis with time progress. 

Fig. 5. Coordinate systems S , S
~

, '
~
S , and 'S  for the relativistic transformation from the primed to 

the unprimed. 

Fig. 6. Observation lines for twin paradox. 

Fig. 7. Objects on a rotating plate that meet respective objects in a linear frame. 

Fig. 8. Coordinate systems of 'O  and '1O , who meet O  and 1O , respectively, at 0 . 

Fig. 9. Equivalent observation lines of '
~

0O , '
~

1O  and '
~

2O  in the HK experiment. 
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Fig. 1. Coordinate systems S  and 'S  in CES. 
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Fig. 2. Coordinate systems S , S
~

, '
~
S , and 'S  for the relativistic transformation from the unprimed 

to the primed. 
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Fig. 3. The orientation of '
~
S  with respect to 'S . 
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Fig. 4. Rotation of the '~x -axis with time progress. 
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Fig. 5. Coordinate systems S , S
~

, '
~
S , and 'S  for the relativistic transformation from the primed to 

the unprimed. 
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Fig. 6. Observation lines for twin paradox. 
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Fig. 7. Objects on a rotating plate that meet respective objects in a linear frame. 

 

x

'x


', OO

'



1xx 

', 11 OO


')1(

')1(x





 

Fig. 8. Coordinate systems of 'O  and '1O , who meet O  and 1O , respectively, at 0 . 
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Fig. 9. Equivalent observation lines of '
~

0O , '
~

1O  and '
~

2O  in the HK experiment. 
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