






Preface

In recent times the we witnessed an explosion of Number Theory prob-
lems that are solved using mathematical software and powerful comput-
ers. The observation that the number of transistors packed on integrated
circuits doubles every two years made by Gordon E. Moore in 1965 is still
accurate to this day. With ever increasing computing power more and
more mathematical problems can be tacked using brute force. At the same
time the advances in mathematical software made tools like Maple, Math-
ematica, Matlab or Mathcad widely available and easy to use for the vast
majority of the mathematical research community. This tools don’t only
perform complex computations at incredible speeds but also serve as a
great tools for symbolic computation, as proving tools or algorithm de-
sign.

The online meeting of the two authors lead to lively exchange of ideas,
solutions and observation on various Number Theory problems. The ever
increasing number of results, solving techniques, approaches, and algo-
rithms led to the the idea presenting the most important of them in in
this volume. The book offers solutions to a multitude of η–Diophantine
equation proposed by Florentin Smarandache in previous works [Smaran-
dache, 1993, 1999b, 2006] over the past two decades. The expertise in tack-
ling Number Theory problems with the aid of mathematical software such
as [Cira and Cira, 2010], [Cira, 2013, 2014a, Cira and Smarandache, 2014,
Cira, 2014b,c,d,e] played an important role in producing the algorithms
and programs used to solve over 62 η–Diophantine equation. There are
numerous other important publications related to Diophantine Equations

iii



iv

that offer various approaches and solutions. However, this book is differ-
ent from other books of number theory since it dedicates most of its space
to solving Diophantine Equations involving the Smarandache function. A
search for similar results in online resources like The On-Line Encyclopedia
of Integer Sequences reveals the lack of a concentrated effort in this direction.

The brute force approach for solving η–Diophantine equation is a well
known technique that checks all the possible solutions against the problem
constrains to select the correct results. Historically, the proof of concept
was done by Appel and Haken [1977] when they published the proof for
the four color map theorem. This is considered to be the the first theorem
that was proven using a computer. The approach used both the computing
power of machines as well as theoretical results that narrowed down infi-
nite search space to 1936 map configurations that had to be check. Despite
some controversy in the ’80 when a masters student discovered a series
of errors in the discharging procedure, the initial results was correct. Ap-
pel and Haken went on to publish a book [Appel and Haken, 1989] that
contained the entire and correct prof that every planar map is four-colorable.

Recently, in 2014 an empirical results of Goldbach conjecture was pub-
lished in Mathematics of Computation where Oliveira e Silva et al. [2013],
[Oliveira e Silva, 2014], confirm the theorem to be true for all even num-
bers not larger than 4× 1018.

The use of Smarandache function η that involves the set of all prime
numbers constitutes one of the main reasons why, most of the problems
proposed in this book do not have a finite number of cases. It could be
possible that the unsolved problems from this book could be classified in
classes of unsolved problems, and thus solving a single problem will help
in solving all the unsolved problems in its class. But the authors could not
classify them in such classes. The interested readers might be able to do
that. In the given circumstances the authors focused on providing the most
comprehensive partial solution possible, similar to other such solutions in
the literature like:

• Goldbach’s conjecture. In 2003 Oliveira e Silva announced that all
even numbers ≤ 2 × 1016 can be expressed as a sum of two primes.
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In 2014 the partial result was extended to all even numbers smaller
then 4× 1018, [Oliveira e Silva, 2014].

• For any positive integer n, let f(n) denote the number of solutions
to the Diophantine equation 4/n = 1/x+ 1/y+ 1/z with x, y, z posi-
tive integers. The Erdős-Straus conjecture, [Obláth, 1950, Rosati, 1954,
Bernstein, 1962, Tao, 2011], asserts that f(n) ≥ 1 for every n ≥ 2.
Swett [2006] established that the conjecture is true for all integers for
any n ≤ 1014. Elsholtz and Tao [2012] established some related re-
sults on f and related quantities, for instance established the bound
f(p)� p3/5 +O

(
1/ log(log(p))

)
for all primes p.

• Tutescu [1996] stated that η(n) 6= η(n+ 1) for any n ∈ N∗. On March
3rd, 2003 Weisstein published a paper stating that all the relation is
valid for all numbers up to 109, [Sondow and Weisstein, 2014].

• A number n is k–hyperperfect for some integers k if n = 1 + k · s(n),
where s(n) is the sum of the proper divisors of n. All k–hyperperfect
numbers less than 1011 have been computed. It seems that the con-
jecture ”all k–hyperperfect numbers for odd k > 1 are of the form p2 · q,
with p = (3k + 4)/4 prime and q = 3k + 4 = 2p + 3 prime” is false
[McCranie, 2000].

This results do not offer the solutions to the problems but they are impor-
tant contributions worth mentioning.

The emergence of mathematical software generated a new wave of
mathematical research aided by computers. Nowadays it is almost impos-
sible to conduct research in mathematics without using software solutions
such as Maple, Mathematica, Matlab or Mathcad, etc. The authors used
extensively Mathcad to explore and solve various Diophantine equations
because of the very friendly nature of the interface and the powerful pro-
gramming tools that this software provides. All the programs presented
in the following chapters are in their complete syntax as used in Mathcad.
The compact nature of the code and ease of interpretation made the choice
of this particular software even more appropriate for use in a written pre-
sentation of solving techniques.



vi

The empirical search programs in this book where developed and exe-
cuted in Mathcad. The source code of this algorithms can be interpreted as
pseudo code (the Mathcad syntax allows users to write code that is very
easy to read) and thus translated to other programming languages.

Although the intention of the authors was to provide the reader with
a comprehensive book some of the notions are presented out of order. For
example the book the primality test that used Smarandache’s function is
extensively used. The first occurrences of this test preceded the definition
the actual functions and its properties. However, overall, the text covers
all definition and proves for each mathematical construct used. At the
same time the references point to the most recent publications in literature,
while results are presented in full only when the number of solutions is
reasonable. For all other problems, that generate in excess of 100 double,
triple or quadruple pairs, only partial results are contained in the sections
of this book. Nevertheless, anyone interested in the complete list should
contact the authors to obtain a electronic copy of it. Running the programs
in this book will also generate the same complete list of possible solutions
for any odd the problems in this book.
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Introduction

A Diophantine equation is a linear equation ax + by = c where
a, b, c ∈ Z and the solutions x and y are also integer numbers. This equa-
tion can be completely solved by the well known algorithm proposed by
Brahmagupta [Weisstein, 2014b].

In 1900, Hilbert wondered if there is an universal algorithm that solves
the Diophantine equation, but Matiyasevich [1970] proved that such an
algorithm does not exist for the first order solution.

The function η relates to each natural number n the smallest natural
number m such that m! is a multiple of n. In this book we aim to find ana-
lytical or empirical solutions to Diophantine and η–Diophantine equation,
namely Diophantine equation that contain the Smarandache’s η function,
Smarandache [1980b].

An analytical solution implies a general solution that completely
solves the problem. For example, the general solution for the equation a ·
x−b·y = c, with a, b, c ∈ N∗ is xk = b·k+x0 and yk = a·k+y0, where (x0, y0)
is a particular solution, and k is an integer, k ≥ max {d−x0/be, d−y0/ae}.

By and empirical solution we understand a set of algorithms that de-
termine the solutions of the Diophantine equation within a finite domain
of integer numbers, dubbed the search domain to dimension d. For ex-
ample, the η–Diophantine equation η(m · x + n) = x over the valid
search domain of dimension d = 3, the solutions could be the triplets
(m,n, x) ∈ Dc = {1, 2, . . . , 1000} × {1, 2, . . . 1000} × {1, 2, . . . , 999}.

The first chapter introduces concepts about prime numbers, primality
tests, decomposition algorithms for natural numbers, counting algorithms

xiv
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for all natural numbers up to a real one, etc. This concepts are fundamental
for validating the empirical solutions of the η–Diophantine equations.

The second chapter introduces the function η along side its known
properties. This concepts allow the description of Kempner [1918] algo-
rithm that computes the η function. The latter sections contain the set of
commands and instructions that generate the file η.prnwhich contains the
η(n) values for n = 1, 2, . . . , 106.

The third chapter describes the division functions σ0, σ1, usually de-
noted by σ, σ2 and s. The σ0(n) function counts the number of divisors of
n, while σ(n) = σ1(n) returns the sun of all those divisors. Consequently
σ2(n) computed the sum of squared divisors of n while, in general σk(n)
add all divisors to the power of k. We call divisors of n all natural numbers
that divide n including 1 and n, thus the proper divisors are considered all
natural divisors excluding n itself. In this case the function s(n) = σ(n)−n
is , in fact, the sun of all proper divisors. Along side the the definition, this
third chapter also contains the properties and computing algorithms that
generate the files σ0.prn, σ1.prn, σ2.prn, s.prn that contain all the values
for functions σ0(n), σ(n), σ2(n) and s(n) for n = 1, 2, . . . , 106. The last
section describes the k–perfect numbers.

Euler’s totient function also known as the ϕ function that counts the
natural numbers less than or equal to n that are relatively prime is de-
scribed in chapter 4. As an example, for n = 12 the relatively prime fac-
tors are 1, 5, 7, and 11 because (1, 12) = 11, (5, 12) = 1, (7, 12) = 1, and
(11, 12) = 1, thus ϕ(12) = 4. The chapter also describes the most impor-
tant properties of this function. The latter section of the chapter contain the
algorithm that generates the file ϕ.prn that contains the values of the func-
tion ϕ for n raging from 1, 2, . . . , 106. Also, in this chapter the describes
a generalization of Euler theorem relative to the totient function ϕ and
the algorithm the computes the pair (s,ms) that verifies the Diophantine
equation aϕ(ms) ≡ as (mod m), where a,m ∈ N∗.

In chapter 5 we define a function L which will allow us to (separately
or simultaneously) generalize many theorems from Number Theory ob-

1where (m,n) is gcd(m,n) that is the greatest common divisor of n and m
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tained by Wilson, Fermat, Euler, Gauss, Lagrange, Leibniz, Moser, and
Sierpinski.

Various analytical solutions to Diophantine equations such as: the sec-
ond degree equation, the linear equation with n unknown, linear systems,
the n degree equation with one unknown, Pell general equation, and the
equation x2 − 2y4 = 1. For each of this cases, in chapter six we present
symbolic computation that ensure the detection of the solutions for the
particular Diophantine equations.

Chapter seven describes the solutions to the η–Diophantine equations
using the search algorithms in the search domains.

The Conclusions and Index section conclude the book.



Chapter 1

Prime numbers

A prime number (or a prime) is a natural number greater than 1 that
has no positive divisors other than 1 and itself. A natural number greater
than 1 that is not a prime number is called a composite number. For exam-
ple, 7 is prime because 1 and 7 are its only positive integer factors, whereas
10 is composite because it has the divisors 2 and 5 in addition to 1 and 10.
The fundamental theorem of Arithmetics, [Hardy and Wright, 2008, p. 2-
3], establishes the central role of primes in the Number Theory: any integer
greater than 1 can be expressed as a product of primes that is unique up to
ordering. The uniqueness in this theorem requires excluding 1 as a prime
because one can include arbitrarily many instances of 1 in any factoriza-
tion, e.g., 5, 1 · 5, 1 · 1 · 5, etc. are all valid factorizations of 5, [Estermann,
1952, Vinogradov, 1955].

The property of being prime (or not) is called primality. A simple but
slow method of verifying the primality of a given number n is known as
trial division. It consists of testing whether n is a multiple of any integer
between 2 and b

√
nc. The floor function bxc, also called the greatest integer

function or integer value [Spanier and Oldham, 1987], gives the largest
integer less than or equal to x. The name and symbol for the floor function
were coined by Iverson, [Graham et al., 1994]. Algorithms much more
efficient than trial division have been devised to test the primality of large
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numbers. Particularly fast methods are available for numbers of special
forms, such as Mersenne numbers. As of April 2014, the largest known
prime number 257885161− 1 has 17425170 decimal digits [Caldwell, 2014a].

There are infinitely many primes, as demonstrated by Euclid around
300 BC. There is no known useful formula that sets apart all of the prime
numbers from composites. However, the distribution of primes, that is to
say, the statistical behavior of primes in the large, can be modelled. The
first result in that direction is the prime number theorem, proven at the end
of the 19th century, which says that the probability that a given, randomly
chosen number n is prime is inversely proportional to its number of digits,
or to log(n).

Many questions around prime numbers remain open, such as Gold-
bach’s conjecture, and the twin prime conjecture, Diophantine equations
that have integer functions. Such questions spurred the development of
various branches of the Number Theory, focusing on analytic or algebraic
aspects of numbers. Prime numbers give rise to various generalizations in
other mathematical domains, mainly algebra, such as prime elements and
prime ideals.

1.1 Generating prime numbers

The generation of prime numbers can be done by means of several
deterministic algorithms, known in the literature, as sieves: Sieve of Er-
atosthenes, Sieve of Euler, Sieve of Sundaram, Sieve of Atkin, etc. In this
volume we will detail only the most efficient prime number generating
algorithms.

The Sieve of Eratosthenes is an algorithm that allows the generation of
all prime numbers up to a given limit L ∈ N∗. The algorithm was given by
Eratosthenes around 240 BC.

Program 1.1. Let us consider the origin of vectors and matrices 1, which
can be defined in Mathcad by assigning ORIGIN := 1. The Sieve of Er-
atosthenes in the linear variant of Pritchard, presented in pseudo code in
the article [Pritchard, 1987], written in Mathcad is:
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CEP (L) := for k ∈ 1..L
is primek ← 1

k ← 2
while k2 ≤ L
j ← k2

while j ≤ L
is primepj ← 0
j ← j + k

k ← k + 1
j ← 1
for k ∈ 1..L

if is primek=1
primej ← k
j ← j + 1

return prime

It is well known that the segmented version of the Sieve of Eratosthenes,
with basic optimizations, uses O(L) operations and

O

(√
L

log(log(L))

log(L)

)
bits of memory, [Pritchard, 1987, 1994].

The linear variant of the Sieve of Eratosthenes implemented by
Pritchard, given by the code 1.1, has the inconvenience that is repeats use-
lessly operations. For example, for L = 25, in table (1.1) is given the binary
vector is prime which contains at each position the values 1 or 0. On the
first line is the index of the vector.

1. Initially, all the positions of vector is prime have the value 1.

2. For q = 2 the algorithm puts 0 on all the positions is primek multiple
of 2, for k ≥ q2 = 4.

3. For q = 3 the algorithm puts 0 on all the positions is primek multiple
of 3, for k ≥ q2 = 9, which means positions 9, 12, 15, 18, 21 and 24
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q\is prime 1 2 3 4 5 6 7 8 9 10 11 12
0 1 1 1 1 1 1 1 1 1 1 1

2 0 0 0 0 0
3 0 0
4
5

0 1 1 0 1 0 1 0 0 0 1 0

13 14 15 16 17 18 19 20 21 22 23 24 25
1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0
0 0 0 0

0 0 0
0

1 0 0 0 1 0 1 0 0 0 1 0 0

Table 1.1: The vector is prime in the code 1.1

but positions 12, 18 and 24 were already annulated in the previous
step.

4. For q = 4 the algorithm puts 0 on all the positions is primek multiple
of 4, for k ≥ q2 = 16, which means positions 16, 20, 24, but these
positions were annulated also in the second step, and on position 24
is taken 0 for the third time.

5. For q = 5 one takes is primeq2 = 0.

Eventually, vector is prime is read. The index of vector is prime,
which has the value 1, is a prime number. If we count the number of at-
tributing the value 0, we remark that this operation was made 21 time. It
is obvious that these repeated operations make the algorithm less efficient.
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Program 1.2. This program is a better version of program 1.1 because it
puts 0 only on the odd positions of the vector is prime.

CEPi(L) := for k ∈ 3, 5..L
is primek ← 1

for k ∈ 3, 5..f loor(
√
L)

for j ∈ k2, k2 + 2k..L
is primej ← 0

prime1 ← 2
j ← 2
for k ∈ 1, 3..L

if is primek=1
primej ← k
j ← j + 1

return prime

Program 1.3. This program is a better version of program 1.2 because it
uses a minimal memory space.

CEPm(L) := λ← floor
(
L
2

)
for k ∈ 1..λ

is primek ← 1

for k ∈ 3, 5..f loor(
√
L)

for j ∈ k2, k2 + 2k..L
is prime j−1

2
← 0

prime1 ← 2
j ← 2
for k ∈ 1..λ− 1

if is primek=1
primej ← 2 · k + 1
j ← j + 1

return prime

Even the execution time of the program 1.3 is a little longer than of the
program 1.2, the best linear variant of the Sieve of Eratosthenes is the pro-
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gram 1.3, as it provides an important memory economy (11270607 mem-
ory locations instead of 21270607, the amount of memory locations used
by programs 1.1 and 1.2).

Program 1.4. The program for the Sieve of Eratosthenes, Pritchard variant,
was improved in order to allow the number of repeated operations to di-
minish. The improvement consists in the fact that attributing 0 is done for
only odd multiples of prime numbers. The program has a restriction, but
which won’t cause inconveniences, namely L must be a integer greater
than 14.

CEPb(L) := for k ∈ 3, 5..L
is primek ← 1

prime← (2 3 5 7)T

i← last(prime) + 1
for j ∈ 9, 15..L
is primej ← 0

k ← 3
s← (primek−1)

2

t← (primek)
2

while t ≤ L
for j ∈ t, t+ 2 · primek..L
is primej ← 0

for j ∈ s+ 2, s+ 4..t− 2
if is primej = 1
primei ← j
i← i+ 1

s← t
k ← k + 1
t← (primek)

2

for j ∈ s+ 2, s+ 4..L
if is primej=1
primei ← j
i← i+ 1

return prime
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We remark that it is not necessary to put 0 on each positions
(primek)

2 + primek, as in the original version of the program 1.1, because
the sum of two odd numbers is an even number and the even positions are
not considered. In this moment of the program we are sure that the posi-
tions from (primek−1)

2 + 2 to (primek)
2 − 2 of the vector is prime (from

2 in 2) which were left on 1 (which means that their indexes are prime
numbers), can be added to the prime numbers vector. Hence, instead of
building the vector prime at the end of the markings, we do it in interme-
diary steps. The advantage consists on the fact that we have a list of prime
numbers which can be used to obtain the other primes, up to the given
limit L.
Program 1.5. The program that improves the program CEPb by halving the
used memory space.

CEPbm(L) := λ← floor
(
L
2

)
for k ∈ 1..λ
is primek ← 1

prime← (2 3 5 7)T

i← last(prime) + 1
for j ∈ 4, 7..λ
is primej ← 0

k ← 3
s← (primek−1)

2

t← (primek)
2

while t ≤ L
for j ∈ t, t+ 2 · primek..L
is prime j−1

2
← 0

for j ∈ s+ 2, s+ 4..t− 2
if is prime j−1

2
= 1

primei ← j
i← i+ 1

s← t
k ← k + 1
t← (primek)

2
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for j ∈ s+ 2, s+ 4..L
if is prime j−1

2
=1

primei ← j
i← i+ 1

return prime

The performances of the 5 programs can be observed on the following
execution sequences (the call of the programs have been done on the same
computer and in similar conditions):

1. Call of the program CEP1.1, i.e. the Sieve of Eratosthenes in the lin-
ear version of Pritchard

L := 2 · 107 t0 := time(0) p := CEP (L) t1 := time(1)

(t1 − t0)sec = 28.238s last(p) = 1270607 plast(p) = 19999999 ,

2. Call of the program CEPm1.3,

L := 2 · 107 t0 := time(0) p := CEPm(L) t1 := time(1)

(t1 − t0)sec = 10.920s last(p) = 1270607 plast(p) = 19999999 .

3. Call of the program CEPi1.2,

L := 2 · 107 t0 := time(0) p := CEPi(L) t1 := time(1)

(t1 − t0)sec = 7.231s last(p) = 1270607 plast(p) = 19999999 ,

4. Call of the program CEPb1.4,

L := 2 · 107 t0 := time(0) p := CEPb(L) t1 := time(1)

(t1 − t0)sec = 5.064s last(p) = 1270607 plast(p) = 19999999

5. Call of the program CEPbm1.5,

L := 2 · 107 t0 := time(0) p := CEPb(L) t1 := time(1)

(t1 − t0)sec = 7.133s last(p) = 1270607 plast(p) = 19999999
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In the comparative table 1.2 are presented the attributions of 0, the exe-
cution times on a computer with a processor Intel of 2.20GHz with RAM of
4.00GB (3.46GB usable) and the number of memory units for the programs
1.1, 1.3, 1.2, 1.4 and 1.5.

program Attributions of 0 Execution time Memory used
1.1 71 760 995 28.238 sec 21 270 607
1.3 35 881 043 10.920 sec 11 270 607
1.2 35 881 043 7.231 sec 21 270 607
1.4 18 294 176 5.064 sec 21 270 607
1.5 18 294 176 7.133 sec 11 270 607

Table 1.2: Comparative table

The Sieve of Sundaram is a simple deterministic algorithm for finding
the prime numbers up to a given natural number. This algorithm was
presented by Sundaram and Aiyar [1934]. As it is known, the Sieve of
Sundaram usesO(L log(L)) operations in order to find the prime numbers
up to L. The algorithm of the Sieve of Sundaram in pseudo code Mathcad
is:

CS(L) := m← floor

(
L

2

)
for k ∈ 1..m

is primek ← 1
for k ∈ 1..m

for j ∈ 1..ceil

(
m− k

2 · k + 1

)
is primek+j+2·k·j ← 0

prime1 ← 2
j ← 1
for k ∈ 1..m

if is primek=1
j ← j + 1
primej ← 2 · k + 1
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Figure 1.1: The ratio of the numbers of operations

return prime

The Call of the program CS

L := 2 · 107 t0 := time(0) p := CS(L) t1 := time(1)

(t1 − t0)sec = 32.706s last(p) = 1270607 plast(p) = 19999999

Until recently, i.e. till the appearance of the Sieve of Atkin, [Atkin
and Bernstein, 2004], the Sieve of Eratosthenes was considered the most
efficient algorithm that generates all the prime numbers up to a limit
L. The figure 1.1 emphasize the graphic representation of the ratio be-
tween the number of operations needed for the Sieve of Eratosthenes,
OE(L) := O(L · log(log(L))), and the number of operations needed for
the Sieve of Atkin, OA(L) := O(L/ log(log(L))), for L = 102, 103, . . . , 1020.
In this figure one can see that the Sieve of Atkin is better (relative to the
number of operations needed by the program) then the Sieve of Eratos-
thenes, for L > 1010.

Program 1.6. The Sieve of Atkin in pseudo code presented in Mathcad is:

Atkin(L) := for k ∈ 5..L
is primek ← 0

for x ∈ 1..
√
L

for y ∈ 1..
√
L

n← 4x2 + y2

if n ≤ L ∧
(
mod(n, 12)=1 ∨mod(n, 12)=5

)
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is primen ← ¬is primen
n← 3x2 + y2

if n ≤ L ∧mod(n, 12)=7
is primen ← ¬is primen

n← 3x2 + y2

if x 6= y ∧ n ≤ L ∧mod(n, 12)=11
is primen ← ¬is primen

for n ∈ 5..
√
L

if is primen
for k ∈ 1..

⌊
L
n2

⌋
is primek·n2 ← 0

prime1 ← 2
prime2 ← 3
j ← 3
for n ∈ 5..L

if is primen
primej ← n

return prime

As it is known, this algorithm uses only O(L/ log(log(L))) simple op-
erations and O(L1/2+o(1)) memory locations, [Atkin and Bernstein, 2004].

Our implementation, in Mathcad, of Atkin’s algorithm contains some 
remarks that make the program have more performance than the original 
algorithm.

1. Except 2 all even numbers are not prime, it follows that, with the
initialization is prime2k ← 0 for k ∈ {2, 3, . . . , L/2}, there is no need
to change the values of these components. Consequently, we will
change only the odd components.

2. If j is odd then 4k2 + j2 is always odd. It follows that the sequence

j ∈
{

1, 3..
⌊√

L
⌋}

and k ∈

{
1, 2..

⌊√
L− j2

2

⌋}
(1.1)
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assures that the number 4k2 + j2 is always odd.

3. If j and k have different parities, Then 3k2 + j2 is odd. Then the
sequence

j ∈
{

1, 2, ..
⌊√

L
⌋}

and k0 = mod(j, 2) + 1 , k ∈

{
k0, k0 + 2..

⌊√
L− j2

3

⌋}
(1.2)

assures that 3k2 + j2 is odd.

4. If k > j and k and j have different parities, then 3k2−j2 is odd. Then
the sequence

j ∈
{

1, 2, ..
⌊√

L
⌋}

and k ∈

{
j + 1, j + 3..

⌊√
L+ j2

3

⌋}
(1.3)

assures that 3k2 − j2 is odd.

5. Similarly as in 1, we will eliminate only the perfect squares for odd
numbers ≥ 5, because only these are odd.

Program 1.7. AO program (Atkin optimized) of generating prime numbers
up to L.

AO(L) := is primeL ← 0

λ← floor
(√
L
)

for j ∈ 1..ceil(λ)

for k ∈ 1..ceil

(√
L−j2
2

)
n← 4k2 + j2

m← mod(n, 12)
is primen ← ¬is primen if n ≤ L ∧ (m=1 ∨m=5)

for k ∈ 1..ceil

(√
L−j2

3

)
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n← 3k2 + j2

is primen ← ¬is primen if n ≤ L ∧mod(n, 12)=7

for k ∈ j + 1..ceil

(√
L+j2

3

)
n← 3k2 − j2
is primen ← ¬is primen if n ≤ L ∧mod(n, 12)=11

for j ∈ 5, 7..λ

for k ∈ 1, 3.. L
j2
if is primej

is primek·j2 ← 0
prime1 ← 2
prime2 ← 3
for n ∈ 5, 7..L

if is primen
primej ← n
j ← j + 1

return prime

In this program function ceil was used (which means d·e) instead of func-
tion floor (which means b·c) in formulas (1.1), (1.2) and (1.3), in order to
avoid errors of floating comma which could determine the loss of cases at
limit L, for example, when L is a perfect square.

1. Call of the program 1.6 the Sieve of Atkin

L := 2 · 107 t0 := time(0) p := Atkin(L) t1 := time(1)

(t1 − t0)s = 23.531s plast(p) = 19999999 last(p) = 1270607 ,

2. Call of the program 1.7 the optimized Sieve of Atkin

L := 2 · 107 t0 := time(0) p := AO(L) t1 := time(1)

(t1 − t0)s = 19.45s plast(p) = 19999999 last(p) = 1270607 ,

There exists an implementation for the Sieve of Atkin, due to Bernstein
[2014] under the name Primgen. Primegen is a library of programs for fast
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generating prime numbers, increasingly. Primegen generates all 50847534
prime numbers up to 109 in only 8 seconds on a computer with a Pentium
II-350 processor. Primegen can generate prime numbers up to 1015.

1.2 Primality tests

A central problem in the Number Theory is to determine weather an
odd integer is prime or not. The test than can establish this is called pri-
mality test.

Primality tests can be deterministic or non-deterministic. The de-
terministic ones establish exactly if a number is prime, while the non-
deterministic ones can falsely determine that a composite number is
prime. These test are much more faster then the deterministic ones. The
numbers that pass a non-deterministic primality test are called probably
prime (this is denoted by prime?) until their primality is deterministically
proved. A list of probably prime numbers are Mersenne’s numbers, [Cald-
well, 2014b]:

M43 = 230402457 − 1, Dec. 2005 – Curtis Cooper and Steven Boone,

M44 = 232582657 − 1, Sept. 2006 – Curtis Cooper and Steven Boone,

M45 = 237156667 − 1, Sept. 2008 – Hans-Michael Elvenich,

M46 = 242643801 − 1, Apr. 2009 – Odd Magnar Strindmo,

M47 = 243112609 − 1, Aug. 2008 – Edson Smith,

M48 = 257885161 − 1, Jan. 2013 – Curtis Cooper.

1.2.1 The test of primality η

As seen in Theorem 2.3, we can use as primality test the computing of
the value of η function. For n > 4, if relation η(n) = n is satisfied, it follows
that n is prime. In other words, the prime numbers (to which number 4
is added) are fixed points for η function. In this study we will use this
primality test.
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Program 1.8. The program for η primality test. The program returns the
value 0 if the number is not prime and the value 1 if the number is prime.
File η.prn is read and assigned to vector η .

ORIGIN := 1 η := READPRN(” . . . \η.prn”)

Tpη(n) := return ”Error n < 1 or not integer” if n < 1 ∨ n 6= trunc(n)
if n > 4
return 0 if ηn 6= n
return 1 otherwise
otherwise
return 0 if n=1 ∨ n=4
return 1 otherwise

By means of the program 1.8 was realized the following test.

n := 499999 k := 1..n vk := 2 · k + 1

last(v) = 499999 v1 = 3 vlast(v) = 999999

t0 := time(0) wk := Tpη(vk) t1 := time(1)

(t1 − t0)sec = 0.304s
∑

w = 78497 .

The number of prime numbers up to 106 is 78798, and the sum of non-zero
components (equal to 1) is 78797, as 2 was not counted as prime number
because it is an even number. We remark that the time needed by the
primality test of all odd numbers is 0.304s a much more better time than
the 8s necessary for the primality test 1.11 on a computer with an Intel
processor of 2.20GHz with RAM of 4.00GB (3.46GB usable).

1.2.2 Deterministic tests

Proving that an odd number n is prime can be done by testing sequen-
tially the vector p that contains prime numbers.

The browsing of the list of prime numbers can be improved by means
of the function that counts the prime numbers [Weisstein, 2014e]. Tradi-
tionally, by π(x) is denoted the function that indicates the number of prime
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numbers p ≤ x, [Shanks, 1962, 1993, p. 15]. The notation for the function
that counts the prime numbers is a little bit inappropriate as it has nothing
to do with π, The universal constant that represents the ratio between the
length of a circle and its diameter. This notation was introduced by the
number theorist Edmund Landau in 1909 and has now become standard,
[Landau, 1958] [Derbyshire, 2004, p. 38]. We will give a famous result
of Rosser and Schoenfeld [1962], related to function π(x). Let functions
πs, πd : (1,+∞)→ R+ given by formulas

πs(x) =
x

ln(x)

(
1 +

1

2 ln(x)

)
(1.4)

and

πd(x) =
x

ln(x)

(
1 +

3

2 ln(x)

)
. (1.5)

Theorem 1.9. Following inequalities

πs(x) < π(x) < πd(x) , (1.6)

hold, for all x > 1, the right side inequality, and for all x ≥ 59 the left side
inequality.

Proof. See [Rosser and Schoenfeld, 1962, T. 1].

Let functions f, πm, πM : N∗ → N∗ be defined by formulas:

f(n) =

⌊
n

ln(n)

(
1 +

1

2 ln(n)

)⌋
,

πm(n) =


f(n)− 2 if n < 11

f(n)− 1 if 11 ≤ n ≤ 39

f(n) if n > 39

, (1.7)

πM (n) =

⌈
n

ln(n)

(
1 +

3

2 ln(n)

)⌉
, (1.8)
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where b·c is the lower integer part function and d·e is the upper integer
part function. As a consequence of Theorem 1.9 we have

Theorem 1.10. Following inequalities

πm(n) < π(x) < πM (n) (1.9)

hold, for all n ∈ 2N∗ + 1, where by 2N∗ + 1 is denoted the set of natural odd
numbers.

Proof. As function πd(n) ≤ πM (n) for all n ∈ N∗, it results, according to
Theorem 1.9, that the right side inequality is true for all n ∈ N∗, hence,
also for n ∈ 2N∗ + 1.

Figure 1.2: Functions πM (n), π(n) and πm(n)

As πm(n) ≤ πs(n) for all n ∈ N∗, and the left side inequality (1.6) holds
for all n ≥ 59, it follows that the left side inequality (1.9) holds for all
n ≥ 59.
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For n ∈ {3, 5, 7, . . . , 59}we have:

π(3)− πm(3) = 1
π(5)− πm(5) = 1
π(7)− πm(7) = 2
π(9)− πm(9) = 1

π(11)− πm(11) = 1
π(13)− πm(13) = 1
π(15)− πm(15) = 1
π(17)− πm(17) = 1
π(19)− πm(19) = 2
π(21)− πm(21) = 1
π(23)− πm(23) = 2
π(25)− πm(25) = 2
π(27)− πm(27) = 1
π(29)− πm(29) = 2

π(31)− πm(31) = 2
π(33)− πm(33) = 2
π(35)− πm(35) = 1
π(37)− πm(37) = 2
π(39)− πm(39) = 1
π(41)− πm(41) = 1
π(43)− πm(43) = 2
π(45)− πm(45) = 1
π(47)− πm(47) = 2
π(49)− πm(49) = 1
π(51)− πm(51) = 1
π(53)− πm(53) = 1
π(55)− πm(55) = 1
π(57)− πm(57) = 1
π(59)− πm(59) = 1

(1.10)

we analyze table 1.10 (see also 1.2) we can say that the left side inequality
(1.9) holds for all n ∈ 2N∗ + 1.

Theorem 1.10 allows us to find a lower and an upper margin for the
number of prime numbers up to the given odd number. Using the bisec-
tion method, one can efficiently determine if the given odd numbers is in
the list of prime numbers or not.

The function that counts the maximum number of necessary tests for
the bisection algorithm to decide if number N is prime, is given by the
formula:

nt(N) = dlog2
(
πM (N)− πm(N)

)
e (1.11)

The algorithm is efficient. For example, for numbers N , 107 < N < 108,
the algorithm will proceed between 16 and 19 necessary tests for the bisec-
tion algorithm, at the worst (see figure 1.3).

For all programs we have considered ORIGIN := 1 . By means of the
algorithm 1.4 (The Sieve of Eratosthenes, Pritchard’s improved version)
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Figure 1.3: The graph of function nt(10n) for n = 2, 3, . . . , 8

and of command
p := CEPb(2 · 107)

all prime numbers up to 2 · 107 are generated in vector p.

Program 1.11. The program is an efficient primality test for N . A binary
search is used (the bisection algorithm), i.e., if N , which finds itself be-
tween the prime numbers p` and pr, is in the list of prime numbers p.

Cb(N, `, r) := while ` < r

M ← `+ r

2
m← ceil (M)
return 1 if N=pm
`← m if N > pm
r ← floor (M) if N < pm

return 0

The subprogram 1.11 calls the components pk of the vector that contains
the prime numbers. If N is prime, the subprogram returns 1, if N is not
prime, it returns 0. The necessary time to test the primality of all odd
numbers up to 106 is 8.283sec on a 2.2 GHz processor.
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Other deterministic tests:

1. Pepin’s test or the p−1 test. If we study attentively a list that contains
the greatest known prim numbers, p, we will remark that most of
them has a particular form, namely, p− 1 or p+ 1 and can be decom-
posed very fast. This result is not unexpected as there exist deter-
ministic primality tests for such numbers. In 1891, Lucas, [Williams,
1998], has converted the Fermat’s Little Theorem into a practical pri-
mality test, improved afterwards by Kraitchik and Lehmer [Brillhart
et al., 1975], [Dan, 2005].

2. n+1 tests or Lucas-Lehmer test for Mersenne numbers. Approxi-
mately half of the prime numbers in the list that contains the greatest
known prim numbers are of the form N − 1, where N can be easily
factorized.

Program 1.12. The program for Lucas-Lehmer algorithm is:

LL(n) := return ”Error n < 3 or n > 53” if n ≤ 2 ∨ n ≥ 54
M ← 2n − 1
f ← Fa(n)
return (M ”is not prime”) if (f1,1)

2 < n
s← 4
for k ∈ 1..n− 2
S ← s2 − 2
s← mod(S,M)

return ”Error” if floor
(
S
M

)
·M + s 6= S

return (M ”is prime”) if s=0
return (M ”is prime”) otherwise

Run examples:

LL(11) = (2047 ”is not prime”) LL(13) = (8191 ”is prime”)

LL(19) = (524287 ”is prime”) LL(23) = (8388607 ”is not prime”) .
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3. The Miller-Rabin test. If we apply the Miller’s test for numbers lesser
than 2.5 · 1010 but different from 3215031751, and they pass the test
for basis 2, 3, 5 and 7, they are prime. Similarly, if we apply a test
in seven steps, the previously obtained results allow to verify the
primality of all prime numbers up to 3.4 · 1014. If we choose 25 itera-
tions for Miller’s algorithm applied to a number, the probability that
this is not composite is lesser than 2−50. Hence, the Miller-Rabin test
becomes a deterministic test for numbers lesser than 3.4 · 1010,[Dan,
2005].

Program 1.13. The program for Miller-Rabin test is:

MR(n) := return ”Error n < 2 or n even” if n < 2 ∨mod(n, 2) = 1
s← 0
t← n− 1
while mod(t, 2) = 0
s← s+ 1
t← t

2

λ←
√
n
2

for k ∈ 1..25
b← 2 + 2 · floor(rnd(λ)) + 1
y ← RRP (b, t, n)
if y 6= 1 ∧ y 6= n− 1
j ← 1
while j ≤ s− 1 ∧ j 6= n− 1
y ← mod(y2, n)
return 0 if y=1
j ← j + 1

return 0 if y 6= n− 1
return 1

The test of the program ha been made for n = 247−1 > 3.4 ·1010 and
cu n = 219 − 1.

MR(247 − 1) = 0 MR(219 − 1) = 1
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n = 247 − 1 is indeed a composite number

Fa(247 − 1) =

 2351 1
4513 1

13264529 1

 ,

and 219−1 = 524287 is a prime number. For factorization of a natural
numbers has been done with the programs Fa, 1.29, emphasized in
Section 1.3.1 .

The program MR calls the program RRP for repeatedly squaring
modulo m, i.e. it calculates mod(bn,m) for great numbers.

RRP (b, n,m) := N ← 1
return N if n=0
A← b
a← Cb2(n)
N ← b if a0=1
for k ∈ 1..last(a)
A← mod(A2,m)
N ← mod(A ·N,m) if ak=1

return N

The test of this program has been made on following example:

RRP (5, 596, 1234) = 1013 ,

provided in the paper [Dan, 2005, p. 60]. Concerning this program, it
calls a program for finding the digits of basis 2 for a decimal number.

Cb2(n) := j ← 0
c0 ← n

while trunc
(cj

2

)
=0

rj ← mod(cj , 2)
j ← j + 1
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cj ← trunc
(cj−1

2

)
rj ← cj
return r

The test of this program is made by following example:

Cb2(107) =



1
1
0
1
0
1
1


.

4. AKS test. Agrawal, Kayal and Saxena, [Agrawal et al., 2004], have
found a deterministic algorithm, relative easy, that isn’t based on
any unproved statement. The idea of AKS test results form a simple
version of the Fermat’s Little Theorem . The AKS algorithm is:

INPUT a natural number > 2;
OUTPUT 0 if n is not prime, 1 if n is prime;

1. If n is of the form ab, with b > 1, then return: n is not prime and
stop the algorithm.

2. Let r ← 2.
3. As long as r < n; execute:

3.1. If (n, r) 6= 1, return: n is not prime and stop the algorithm.
3.2. If r ≥ 2 and it is prime, then execute: let q be the great-

est factor ofr − 1, then, if q > 4
√
r lg(n) and n(r−1)/q 6= 1

(mod r), then go to item 4.
3.3. Let r ← r + 1.

4. For a from 1 to 2
√
r lg(n), execute:

4.1. If (x − a)n 6= xn − a (mod xr − 1, n), then return: n is not
prime and stop the algorithm.

5. Return: n is prime and stop the algorithm.
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1.2.3 Smarandache’s criteria of primality

In this section we present four necessary and sufficient conditions for
a natural number to be prime, [Smarandache, 1981b].

Definition 1.14. We say that integers a are b congruent modulo m(
denoted a ≡ b (mod m)

)
if and only if m | a − b

(
i.e. m divides a − b

)
or a− b = k ·m, where k ∈ Z, k 6= 1 and k 6= m

(
i.e. m is a proper factor of

a− b
)
. Therefore, we have

a ≡ b (mod m)⇔ mod(a− b,m) = 0 , (1.12)

where mod(x, y) is the function that returns the rest of the division of x by
y, with x, y ∈ Z.

In 1640 Fermat shows without demonstrate the following theorem:

Theorem 1.15 (Fermat). If a ∈ N and p is prime and p - a, then

ap−1 ≡ 1 (mod p) .

The first proof of the this theorem was given in 1736 by Euler.

Theorem 1.16 (Wilson). If p is prime, then

(p− 1)! + 1 ≡ 0 (mod p) .

The theorem Wilson 1.16 was published by Waring [1770], but it was
known long before even Leibniz.

Theorem 1.17. Let p ∈ N∗, p ≥ 3, then p is prime if and only if

(p− 3)! ≡ p− 1

2
(mod p) . (1.13)

Proof.
Necessity: p is prime ⇒ (p − 1)! ≡ −1 (mod p) conform to Wilson’s

theorem 1.16. It results that (p−1)(p−2)(p−3)! ≡ −1 (mod p), or 2(p−3)! ≡
p − 1 (mod p). But p being a prime number ≥ 3 it results that (2, p) = 1
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and (p − 1)/2 ∈ Z. It has sense the division of the congruence by 2, and
therefore we obtain the conclusion.

Sufficiency: We multiply the congruence (p − 3)! ≡ (p − 1)/2 (mod p)
with (p − 1)(p − 2) ≡ 2 (mod p), [Popovici, 1973, pp. 10-16], and it results
that (p − 1)! ≡ −1 (mod p) from Wilson’s theorem 1.16, which makes that
p is prime.

Program 1.18. The primality criterion (1.13), given by Theorem 1.17 can be
implemented in Mathcad as follows:

CSP1(p) := return − 1 if p < 3 ∨ p 6= trunc(p)

return 1 if mod

[
(p− 3)!− p− 1

2
, p

]
=0

return 0 otherwise

The call of this criterion using the symbolic computation is:

CSP1(2) → −1 ,
CSP1(3.5) → −1 ,
CSP1(61) → 1 ,
CSP1(87) → 0 ,
CSP1(127) → 1 ,
CSP1(1057) → 0 ,

where 1 indicates that the number is prime, 0 the contrary and −1 error,
i.e. p < 3 or p is not integer.

Lemma 1.19. Let m be a natural number > 4. Then m is a composite number if
and only if (m− 1)! ≡ 0 (mod m).

Proof.
The sufficiency is evident conform to Wilson’s theorem 1.16.
Necessity: m can be written as m = pα1

1 · p
α2
2 · · · pαss where pi prime

numbers, two by two distinct and αi ∈ N∗, for any i ∈ Is = {1, 2, . . . , s}.
If s 6= 1 then pαii < m, for any i ∈ Is. Therefore pα1

1 · p
α2
2 · · · pαss are

distinct factors in the product (m− 1)!, thus (m− 1)! ≡ 0 (mod m).
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If s = 1 then m = pα with α ≥ 2 (because non-prime). When α = 2
we have p < m and 2p < m because m > 4. It results that p and 2p are
different factors in (m − 1)! and therefore (m − 1)! ≡ 0 (mod m). When
α > 2, we have p < m and pα−1 < m, and p and pα−1 are different factors
in product (m− 1)!.

Therefore (m− 1)! ≡ 0 (mod m) and the lemma is proved for all cases.

Theorem 1.20. Let p be a natural number p > 4. Then p is prime if and only if

(p− 4)! ≡ (−1)[
p
3 ]+1 ·

[
p+ 1

6

]
(mod p) , (1.14)

where [x] is the integer part of x, i.e. the largest integer less than or equal to x.

Proof.
Necessity: (p − 4)!(p − 3)(p − 2)(p − 1) ≡ −1 (mod p) from Wilson’s

theorem 1.16, or 6(p− 4)! ≡ 1 (mod p); p being prime and greater than 4, it
results that (6, p) = 1. It results that p = 6k ± 1, with k ∈ N∗.

1. If p = 6k − 1, then 6 | (p + 1) and (6, p) = 1, and dividing the
congruence 6(p − 4)! ≡ p + 1 (mod p), which is equivalent with the
initial one, by 6 we obtain:

(p− 4)! ≡ p+ 1

6
≡ (−1)[

p
3 ]+1 ·

[
p+ 1

6

]
(mod p) .

2. If p = 6k + 1, then 6 | (1 − p) and (6, p) = 1, and dividing the
congruence 6(p − 4)! ≡ 1 − p (mod p) , which is equivalent to the
initial one, by 6 it results:

(p− 4)! ≡ 1− p
6
≡ −k ≡ (−1)[

p
3 ]+1 ·

[
p+ 1

6

]
(mod p) .

Sufficiency: We must prove that p is prime. First of all we’ll show that
p 6= M6. Let’s suppose by absurd that p = 6k, k ∈ N∗. By substituting
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in the congruence from hypothesis, it results (6k − 4)! ≡ −k (mod 6k).
From the inequality 6k−5 ≥ k for k ∈ N∗, it results that k | (6k−5)!. From
22 | (6k−4), it results that 2k | (6k−5)!(6k−4). Therefore 2k | (6k−4)! and
2k | 6k, it results (conform with the congruencies’ property), [Popovici,
1973, pp. 9-26], that 2k | (−k), which is not true; and therefore p 6=M6.

From (p − 1)(p − 2)(p − 3) ≡ −6 (mod p) by multiplying it with the
initial congruence it results that:

(p− 1)! ≡ (−1)[
p
3 ] · 6 ·

[
p+ 1

6

]
(mod p) .

Let’s consider lemma 1.19, for p > 4 we have:

(p− 1)! ≡
{

0 (mod p) if p is not prime;
−1 (mod p) if p is prime;

1. If p = 6k + 2⇒ (p− 1)! ≡ 6k 6≡ 0 (mod p) .

2. If p = 6k + 3⇒ (p− 1)! ≡ −6k 6≡ 0 (mod p) .

3. If p = 6k + 4⇒ (p− 1)! ≡ −6k 6≡ 0 (mod p) .

Thus p 6= M6 + r with r ∈ {0, 2, 3, 4}. It results that p is of the form:
p = 6k ± 1, k ∈ N∗ and then we have: (p− 1)! ≡ −1 (mod p), which means
that p is prime.

Program 1.21. The primality criterion (1.14), given by Theorem 1.20 can be
implemented in Mathcad as follows:

CSP2(p) := return − 1 if p < 5 ∨ p 6= trunc(p)

m← trunc
(p

3

)
+ 1

n← trunc

(
p+ 1

6

)
return 1 if mod [(p− 4)!− (−1)m · n, p] =0
return 0 otherwise
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The call of this criterion using the symbolic computation is:

CSP2(4) → −1 ,
CSP2(5.5) → −1 ,
CSP2(61) → 1 ,
CSP2(87) → 0 ,
CSP2(127) → 1 ,
CSP2(1057) → 0 ,

where 1 indicates that the number is prime, 0 the contrary and −1 error,
i.e. p < 5 or p is not integer.

Theorem 1.22. If p is a natural number p ≥ 5, then p is prime if and only if

(p− 5)! ≡ r · h+
r2 − 1

24
(mod p) , (1.15)

where
h =

[ p
24

]
and r = p− 24h .

Proof.
Necessity: if p is prime, it results that:

(p− 5)!(p− 4)(p− 3)(p− 2)(p− 1) ≡ −1 (mod p)

or
24(p− 5)! ≡ −1 (mod p) .

But p could be written as p = 24h + r, with r ∈ {1, 5, 7, 11, 13, 17, 19, 23},
because it is prime. It can be easily verified that

r2 − 1

24
∈ {0, 1, 2, 5, 7, 12, 15, 22} ⊂ Z .

24(p− 5)! ≡ −1 + r(24h+ r) ≡ 24rh+ r2 − 1 (mod p)

Because (24, p) = 1 and 24 | (r2 − 1) we can divide the congruence by 24,
obtaining:

(p− 5)! ≡ rh+
r2 − 1

24
(mod p) .
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Sufficiency: p can be written p = 24h + r , h, r ∈ N, 0 ≤ r < 24. Multi-
plying the congruence (p − 4)(p − 3)(p − 2)(p − 1) ≡ 24 (mod p) with the
initial one, we obtain: (p− 1)! ≡ r(24h+ r)− 1 ≡ −1 (mod p).

Program 1.23. The implementation of the primality criterion (1.15) given
by Theorem 1.22 is:

CSP3(p) := return − 1 if p < 5 ∨ p 6= trunc(p)

h← trunc
( p

24

)
r ← p− 24 · h

return 1 if mod

[
(p− 5)!−

(
r · h+

r2 − 1

24

)
, p

]
=0

return 0 otherwise

The call of this criterion using the symbolic computation is:

CSP3(4) → −1 ,
CSP3(5.5) → −1 ,
CSP3(61) → 1 ,
CSP3(87) → 0 ,
CSP3(127) → 1 ,
CSP3(1057) → 0 ,

where 1 indicates that the number is prime, 0 the contrary and −1 error,
i.e. p < 5 or p is not integer.

Theorem 1.24. Let’s consider p = (k−1)! ·h±1, with k > 2 a natural number.
Then p is prime if and only if

(p− k)! ≡ (−1)k+[ ph ]+1 · h (mod p) . (1.16)

Proof.
Necessity: If p is prime then, according to Wilson’s theorem 1.16, results

that (p − 1)! ≡ −1 (mod p) ⇔ (−1)k−1(p − k)!(k − 1)! ≡ −1 (mod p) ⇔
(p− k)!(k − 1)! ≡ (−1)k (mod p). We have:

((k − 1)!, p) = 1 . (1.17)
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(A) p = (k − 1)! · h− 1.

(a) k is an even number ⇒ (p − k)!(k − 1)! ≡ 1 + p (mod p), and
because of the relation (1.17) and (k − 1)! | (1 + p), by dividing
with (k − 1)! we have: (p− k)! ≡ h (mod p).

(b) k is an odd number ⇒ (p − k)!(k − 1)! ≡ −1 − p (mod p), and
because of the relation (1.17) and (k−1)! | (−1−p), by dividing
with (k − 1)! we have: (p− k)! ≡ −h (mod p).

(B) p = (k − 1)! · h+ 1.

(a) k is an even number ⇒ (p − k)!(k − 1)! ≡ 1 − p (mod p), and
because (k − 1)! | (1 − p) and of the relation (1.17), by dividing
with (k − 1)! we have: (p− k)! ≡ −h (mod p).

(b) k is an odd number ⇒ (p − k)!(k − 1)! ≡ −1 + p (mod p), and
because (k−1)! | (−1+p) and of the relation (1.17), by dividing
with (k − 1)! we have (p− k)! ≡ h (mod p).

Putting together all these cases, we obtain: if p is prime, p = (k−1)! ·h±1,
with k > 2 and h ∈ N∗, then the relation (1.16) is true.

Sufficiency: Multiplying the relation (1.16) by (k − 1)! it results that:

(p− k)!(k − 1)! ≡ (k − 1)! · h · (−1)[
p
h ]+1 · (−1)k (mod p) .

Analyzing separately each of these cases:

(A) p = (k − 1)! · h− 1 and

(B) p = (k − 1)! · h+ 1, we obtain for both, the congruence:

(p− k)!(k − 1)! ≡ (−1)k (mod p)

which is equivalent (as we showed it at the beginning of this proof) with
(p− 1)! ≡ −1 (mod p) and it results that p is prime.

Program 1.25. The implementation of the primality criterion given by (1.16)
using the symbolic computation is:
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CSP4(p) := return − 1 if p < 2 ∨ p 6= trunc(p)
return 1 if p=2
h← 0
j ← 3
while (j − 1)! ≤ p+ 1
if mod[p+ 1, (j − 1)!]=0

h← p+ 1

(j − 1)!
k ← j

j ← j + 1
return 0 if h=0

return 1 if mod
[
(p− k)!− (−1)k+trunc(

p
h)+1 · h, p

]
=0

return 0 otherwise

The test of the program 1.25 has been done as follows. We know that
we have 24 odd prime numbers up to 99. Vector I of odd numbers from 3
to 99 was generated with the sequence:

ORIGIN := 2 j := 2..50 Ij := 2 · j − 1 .

For each component of vector I program 1.25 was called and the result
was assigned to vector v. As the values of vector v are 1 for prime numbers
and 0 for non-prime numbers, it follows that the sum of the components of
vector v will give the number of prime numbers. If this sum is 24, it follows
that criterion 1.16 and program 1.25 are correct for all odd numbers up to
99.

vj := CSP4(Ij)
∑

v = 24 .

The call of this criterion using the symbolic computation is:

CSP4(1) → −1 ,
CSP4(2) → 1 ,
CSP4(3.5) → −1 ,
CSP4(47) → 1 ,
CSP4(147) → 0 ,
CSP4(149) → 1 ,
CSP4(150) → 0 .
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where 1 indicates that the number is prime, 0 the contrary and −1 error,
i.e. p < 2 or p is not integer.

1.3 Decomposition product of prime factors

The factorization problem of integers is: given a positive integer n let
find its prime factors, which means the pairs (pi, αi), pi are distinct prime
numbers and αi are positive integers, such that n = pα1

1 · p
α2
2 · · · pαss .

In the Number Theory, the factorization of integers is the process of
finding the divisors of a given composite number. This seems to be a trivial
problem, but for huge numbers there doesn’t exist any efficient factoriza-
tion algorithm, the most efficient algorithm has an exponential complex-
ity, relative to the numbers of digits. Hence, a factorization experiment of
a number containing 200 decimal digits was successfully ended only af-
ter several months. In this experiment were used 80 computers Opteron
processor of 2.2 GHz, connected in a network of Gigabit type.

Many algorithms were conceived to determine the prime factors of a
given number. They can vary very little in sophistication and complexity.
It is very difficult to build a general algorithm for this ”complex” comput-
ing problem, such that any additional information about the number or its
factors can be often useful to save an important amount of time.

The algorithms for factorizing an integer n can be divided into two
types:

1. General algorithms. Algorithm trial division is:

INPUT n ∈ N, n ≥ 3, n is neither prime nor perfect square and b ∈ N∗.

OUTPUT Smallest prime factor n if it is < b, otherwise failure.

1. for q ∈ {2, 3, 5, 7, 11, . . . , p}, p ≤ b.
1.1. Return q if mod(n, q) = 0.
1.2. Otherwise continue.

2. Return failure.
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The number of steps for trial division is O ∼ ( 3
√
n) most of the time,

[Myasnikov and Backes, 2008].

2. Special algorithms. Their execution time depends on the special
properties of number n, as, for example, the size of the greatest prime
factor. This category includes:

(a) The rho algorithm of Pollard, [Pollard, 1975, Brent, 1980, Weis-
stein, 2014d];

(b) The p− 1 algorithm of Pollard [Cormen et al., 2001];

(c) The algorithm based on elliptic curves [Galbraith, 2012];

(d) The Pollard-Strassen algorithm [Pomerance, 1982, Hardy et al.,
1990, Weisstein, 2014f], which was proved to be the fastest fac-
torization algorithm. For a ∈ N we denote a = mod(a, n). Let c,
1 ≤ c ≤

√
n

F (x) = (x+ 1)(x+ 2) · · · (x+ c) ∈ Z[x]

and
f(x) = F (x) ∈ ZN [x]

then

c2! =
c∏

k=0

f(k · c) .

This algorithm has the following steps:

INPUT n ∈ N, n ≥ 3, n is neither prime, nor perfect square, b ∈ N∗.
OUTPUT If the smallest prime factor of n is < b, otherwise failure.

1. Compute c←
⌈√

b
⌉

.

2. Determine the coefficients of polynomial f ∈ ZN [x]:

f(x) =

c∏
k=1

(x+ k) .
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3. Compute gk ∈ {0, 1, . . . , n− 1} such that

gk = mod
(
f(k · c), n

)
for 0 ≤ k < c .

4.1. If gcd(gk, n) = 1 for ∀k ∈ {0, 1, . . . c− 1} then return
failure.

4.2. On the contrary, let

k = min {0 ≤ k < c; gcd(gk, n) > 1} .

5. Return min {d ; mod(n, d) = 0, k · c+ 1 ≤ d ≤ k · c+ c}.
Pollard’s and Strassen’s integer factoring algorithm works cor-
rectly and uses O(M(

√
b)M(log(n))(log(b) + log(log(n))) word

operations, where M is the time for multiplication, and space
forO(

√
b · log(n)) words, [Myasnikov and Backes, 2008, von zur

Gathen and Gerhard, 2013].
Program 1.26. This program uses the Schema of Horner [1819],
the fastest algorithm to compute the value of a polynomial,
[Cira, 2005]. The input variables are the vector a which defines
the polynomial amxm + am−1x

m−1 + . . .+ a1x+ a0 and x.

Horner(a, x) := m← last(a)
f ← am
for k ∈ m− 1..0
f ← f · x+ ak

return f

Program 1.27. Computation program for the coefficients of the
polynomial (x+ 1)(x+ 2) · · · (x+ c).

Prod(c) := v ← (1 1)T

return v if c=1
for k ∈ 2..c
v ← stack(0, v) + stack(k · v, 0)

return v
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Program 1.28. This program applies the Pollard-Strassen algo-
rithm for finding the smallest prime factor, not greater than b,
of number n.

PS(n, b) := c← ceil
(√
b
)

C ← Prod(c)
for k ∈ 0..c
ak ← mod(Ck, n)

for k ∈ 0..c− 1
gk ← mod(Horner(a,mod(k · c, n)), n)
dk ← gcd(gk, n)
return dk if dk > 1

return ”Fail”

This program calls programs 1.27 and 1.26. The program was
tested by means of following examples:

n := 143 b := floor(
√
n) = 11 PS(n, b) = 11

n := 667 b := floor(
√
n) = 25 PS(n, b) = 23

n := 4009 b := floor(
√
n) = 63 PS(n, b) = 19

n := 10097 b := floor(
√
n) = 100 PS(n, b) = 23

1.3.1 Direct factorization

The most easy method to find factors is the so-called ”direct search”. In
this method, all possible factors are systematically tested using a division
of testings to see if they really divide the given number. This algorithm is
useful only for small numbers (< 106).

Program 1.29. The program of factorization of a natural number. This pro-
gram uss the vector of prime numbers p generated by the Sieve of Eratos-
thenes, the fastest program that generates prime numbers up to a given
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limit. The Call of the Sieve of Eratosthenes, the program 1.4, is made us-
ing the sequence:

L := 2 · 107 t0 = time(0) p := CEPb(L) t1 = time(1)

(t1 − t0)s = 5.064s last(p) = 1270607 plast(p) = 19999999

Fa(m) := return (”m = ” m ” > that the last p2”) if m > (plast(p))
2

j ← 1
k ← 0
f ← (1 1)
while m ≥ pj
if mod (m, pj)=0
k ← k + 1

m← m

pj
otherwise
f ← stack[f, (pj , k)] if k > 0
j ← j + 1
k ← 0

f ← stack[f, (pj , k)] if k > 0
return submatrix(f, 2, rows(f), 1, 2)

We give a remark that can simplify the primality test in some cases.

Observation 1.30. If p is the first prime factor of n and p2 > q = n
p , then q is

a prime number. Hence, the decomposition in prime factors of number n
is p · q.

Proof. Let us suppose that q is a composite number, which means q =
a · b . As p is the first prime factor of n, it follows that a, b > p . Hence, a
contradiction is obtained, namely n = p · q = p · a · b > p3 > n. Therefore,
q is a prime number. Hence, the decomposition in prime factors of n is
p · q .
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Examples of factorization:

Fa(236 − 1) =



3 3
5 1
7 1

13 1
19 1
37 1
73 1

109 1


, Fa(320 − 1) =


2 4
5 2

11 2
61 1

1181 1

 ,

Fa(117 − 1) =


2 1
5 1
43 1

45319 1

 , Fa(711 − 1) =


2 1
3 1

1123 1
293459 1

 .

1.3.2 Other methods of factorization

1. The method of Fermat and the generalized method of Fermat are rec-
ommended for the case where n has two factors of similar extension.
For a natural number n, two integers are searched, x and y such that
n = x2− y2. Then n = (x− y)(x+ y) and we obtain a first decompo-
sition of n, where one factor is very small. This factorization may be
inefficient if the factors a and b do not have close values, it is possi-
ble to be necessary n+1

2 −
√
n verifications for testing if the generated

numbers are squares. In this situation we can use a generalized Fer-
mat ethod which applies better in such cases, [Dan, 2005].

2. The method of Euler of factorization can be applied for odd numbers
n that can be written as the sum of two squares in two different ways

n = a2 + b2 = c2 + d2

where a, c are even and c, d odd.
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3. The method of Pollard-rho or the Monte Carlo method. We suppose
that a great number n is composite. The simplest test, much more
faster than the method of divisions, is due to Pollard [1975]. It is also
called the rho method, or the Monte Carlo method. This test has a
special purpose, used to find the small prime factors for a composite
number.

For the Pollard-rho algorithm, a certain function f : Zn → Zn is
chosen, such that, for example, its values to be determined easily.
Hence, f is usually a polynomial function; for example f(x) = x2+a,
where a 6= {0, 2}.
Pollard-rho algorithm with the chosen function f(x) = x2 + 1, is:

INPUT: A composite number n > 2, which is not the power of a prime
number.

OUTPUT: A proper divisor of n.

1. Let a← 2 and b← 2.

2. For k = 1, 2, . . ., run:

2.1 Compute a← mod(f(a), n) and b← mod(f(b), n).
2.2 Compute d = (a− b, n).
2.3 If 1 < d < n, then return d proper divisor of n and stop the

algorithm.
2.4 If d = n, then return the message ”Failure, another function

must be chosen”.

4. Pollard p−1 method. This method has a special purpose, being used
for the factorization of numbers n which have a prime factor p with
the property that p − 1 is a product of prime factors smaller than a
relative small number. Pollard p− 1 algorithm is:

INPUT: A composite number n > 2, which is not the power of a prime
number.

OUTPUT: A proper divisor of n.
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1. Choose a margin B.

2. Choose, randomly, an a, 2 ≤ a ≤ n− 1 and compute d = (a, n).
If d ≥ 2, return d proper divisor of n and stop the algorithm.

3. For every prim q ≤ B, run:

3.1. Compute ` = [ln(n)/ ln(q)].

3.2. Compute a← mod
(
aq

`
, n
)

.

4. Compute d = (n− 1, a).

5. If d = 1 or d = n, then return the message ”E’sec”, else, return d
proper divisor of n and stop the algorithm.

1.4 Counting of the prime numbers

1.4.1 Program of counting of the prime numbers

If we have the list of prime numbers, we can, obviously, write a pro-
gram to count them up to a given number x ∈ N∗. We read the file of
prime numbers available on the site [Caldwell, 2014b] and we assign it to
vector p with the sequence:

p := READPRN(” . . . \Prime.prn”)

last(p) = 6 · 106 plast(p) = 104395301 .

Command last(p) states that vector p contains the first 6 · 106 prime num-
bers, and the last prime number of vector p is 104395301.

Program 1.31. Program for counting the prime numbers up to a natural
number x.

π(x) := for n ∈ 1..last(p)
if pn ≥ x
return n− 1 if pn > x
return n otherwise
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For example, let us count the prime numbers up to 10n, for n = 1, 2, . . . , 8.
This counting can be made by using following commands:

n := 1..8 π(10n) =



4
25
168
1229
9592
78498
664579
5761455


.

1.4.2 Formula of counting of the prime numbers

By means of Smarandache’s function we obtain a formula for counting
the prime numbers less or equal to n, [Seagull, 1995].

Theorem 1.32. If n is an integer ≥ 4, then

π(n) = −1 +
n∑
k=2

⌊
η(k)

k

⌋
(1.18)

Proof. Knowing the η(n) has the property that if p > 4 then η(p) = p if
only if p is prime, and η(n) < n for any n, and η(4) = 4 (the only exception
from the first rule), then⌊

η(k)

k

⌋
=

{
1 , if k is prime
0 , if k is not prime

.

We easily find an exact formula for the number of primes less than or equal
to n.

If we read the file η.prn and attribute to the values of the vector η the
sequence

ORIGIN := 1 η := READPRN(” . . . \η.prn”)
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then formula (1.18) becomes:

π(n) :=



return ”Error n < 1 or n /∈ Z” if n < 1 ∨ n 6= trunc(n)

return − 1 +
n∑
k=2

⌊ηk
k

⌋
if n ≥ 4

return 2 if n = 3

return 1 if n = 2

return 0 if n = 1
(1.19)

Using this formula, the number of primes up to n = 10, n = 102, . . . ,
n = 106 has been determined and the obtained results are:

π(10) = 4 π(102) = 25 π(103) = 168 π(104) = 1229

π(105) = 9592 π(106) = 78498 .



Chapter 2

Smarandache’s function η

The function that associates to each natural number n the smallest nat-
ural number m which has the property that m! is a multiple of n was con-
sidered for the first time by Lucas [1883]. Other authors who have con-
sidered this function in their works are: Neuberg [1887], Kempner [1918].
This function was rediscovered by Smarandache [1980a]. The function is
denoted by Smarandache with S or η, and on the site Wolfram MathWorld,
[Sondow and Weisstein, 2014], it is denoted µ. In this volume we have
adopted the notation η found in the paper [Smarandache, 1999b].

Therefore, function η : N∗ → N∗, η(n) = m, where m is the smallest
natural that has the property that n divides m!, (or m! is a multiple of
n) is known in the literature as Smarandache’s function. The values of the
function, for n = 1, 2, . . . , 18, are: 1, 2, 3, 4, 5, 3, 7, 4, 6, 5, 11, 4, 13, 7, 5, 6,
17, 6 obtained by means of an algorithm that results from the definition of
function η, as follows:

Program 2.1.

η(n) = for m = 1..n
return m if mod(m!, n)=0

The program 2.1 can not be used for n ≥ 19 as the numbers 19!, 20!,
. . . has much more than 17 decimal digits and in the classic computation

42
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Figure 2.1: η function

approach (without an arithmetics of random precisions [Uznanski, 2014])
will be generated errors due to the classic representation in the memory of
computers.

Kempner [1918], gave an algorithm to compute η(n) using the classic
factorization pα1

1 ·p
α2
2 · · · pαss with prime numbers of n, and the generalized

base (αi)[pi], for i = 1, s. Partial solutions for algorithms that compute η(n)
were given previously by Lucas and Neuberg, [Sondow and Weisstein,
2014] .

We give Kempner’s algorithm, that computes Smarandache’s function
η. At the beginning, let us define the recursive sequence

aj+1 = p · aj + 1 with j = 1, 2, . . . and a1 = 1 ,

where p is a prime number. This sequence represents the generalized base
of p. As a2 = p+ 1, a3 = p2 + p+ 1, . . . we can prove by induction that

aj = 1 + p+ . . .+ pj−1 =
pj − 1

p− 1
for ∀j ≥ 2 .
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The value of ν, such that aν ≤ α < aν+1, is given by the formula

ν = blogp
(
1 + α(p− 1)

)
c , (2.1)

where b·c is the function lower integer part. With the help Euclid’s algorithm
we can determine the unique sequences κi and ri, as follows

α = κν · aν + rν , (2.2)
rν = κν−1 · aν−1 + rν−1 , (2.3)

...
rν−(λ−2) = κν−(λ−1) · aν−(λ−1) + rν−(λ−1) , (2.4)
rν−(λ−1) = κν−λ · aν−λ . (2.5)

which means, until the rest rν−λ = 0. At each step κi is the integer part of
the ratio ri/ai and ri is the rest of the division. For example, for the first
step we have κν = bα/aνc and rν = α− κν · aν . Then, we have

η(pα) = (p− 1)α+
λ∑
i=ν

κi . (2.6)

In general, for
n = pα1

1 · p
α2
2 · · · p

αs
s , (2.7)

the value of function η is given by the formula:

η(n) = max {η(pα1
1 ), η(pα2

2 ), . . . , η(pαss )} , (2.8)

formula due to Kempner [1918].
Remark 2.2. If n ∈ N∗ has the decomposition in product of prime numbers
(2.7), where pi are prime numbers such that p1 < p2 < . . . < ps, and s ≥ 1,
then the Kempner’s algorithm of computing function η is

η(n) = max

{
p1 ·

(
α1[p1]

)
(p1)

, p2 ·
(
α2[p2]

)
(p2)

,

. . . , ps ·
(
αs[ps]

)
(ps)

}
, (2.9)
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where
(
α[p]

)
(p)

means that α is ”written” in the generalized base p (denoted
α[p]) and is ”read” in base p (denoted β(p), where β = α[p]), [Smarandache,
1999a, p.39].

On the site The On-Line Encyclopedia of Integer Sequences, [Sloane, 2014,
A002034], is given a list of 1000 values of function η, due to T. D. Noe. We
remark that on the site The On-Line Encyclopedia of Integer Sequences it is
defined η(1) = 1, while Ashbacher [1995] and Russo [2000] consider that
η(1) = 0.

2.1 The properties of function η

The greater values for function η are obtained for 4 and for the prime
numbers and are η(p) = p, [Sloane, 2014, A046022].

The smallest values for n are, [Sloane, 2014, A094371]:

η(n)

n
= 1,

1

2
,

1

3
,

1

4
,

1

6
,

1

8
,

1

12
,

3

40
,

1

15
,

1

16
,

1

24
,

1

30
, . . .

for the values [Sloane, 2014, A002034]:

n = 1, 6, 12, 20, 24, 40, 60, 80, 90, 112, 120, 180, . . .

This function is important because it characterize the prime numbers –
by the following fundamental property.

Theorem 2.3. Let p be an integer > 4. Then p is prime if and only if η(p) = p.

Proof. See [Smarandache, 1999a, p. 31].

Hence, the fixed points of this function are prime numbers (to which 4
is added). Due to this property, function η is used as a primality test.
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The formula (2.9) used to compute Smarandache’s function η allows
us to give several values of the function for particular numbers n

η(1) = 1 ,
η(n!) = n ,
η(p) = p ,
η(p1 · p2 · · · ps) = p1 · p2 · · · ps ,
η(pα) = p · α ,

(2.10)

where p and pi are distinct prime numbers with p1 < p2 < . . . < ps and
α ≤ p, [Kempner, 1918].

Other special numbers for which we can give the values of function η
are:

η(Pp) = Mp , (2.11)

where P2 = 6, P3 = 28, P5 = 496, P7 = 8128, . . . , [Sloane, 2014, A000396],
are the perfect numbers corresponding to the prime numbers 2, 3, 5, 7, . . . ,
andM2 = 22−1 = 3,M3 = 23−1 = 7,M5 = 25−1 = 31,M7 = 27−1 = 127,
. . . , [Sloane, 2014, A000668], are Mersenne numbers corresponding to the
prime numbers prime 2, 3, 5, 7, . . . , see the papers [Ashbacher, 1997, Ruiz,
1999a].

Function η has following properties:

η(n1 · n2) ≤ η(n1) + η(n2) , (2.12)

max {η(n1), η(n2)} ≤ η(n1 · n2) ≤ η(n1) · η(n2) , (2.13)

where n1, n2 ∈ N∗.
If p is a prime number and α ≥ 2 an integer, then

η
(
pp
α)

= pα+1 − pα + p . (2.14)

This result is due to Ruiz [1999b].
The case pα with α > p is more complicated to which applies the

Kempner’s algorithm.
According to formula (2.8), it results that for all n ∈ N∗ we have

η(n) ≥ gpf (n) , (2.15)
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where gpf (n) is the function the greatest prime factor of n. Therefore, η(n)
can be computed by determining gpf (n) and testing if n | gpf (n)! . If n |
gpf (n)! then η(n) = gpf (n), if n - gpf (n)! then η(n) > gpf (n) and we call
Kempner’s algorithm.

Let A ⊂ N∗ a set of strictly nondecreasing positive integers. We denote
by A(n) the number of numbers of the set A up to n. In what follows we
give the definition of the density of a set of natural numbers, [Guy, 1994,
p. 199].

Definition 2.4. We name density of a set A ⊂ N∗, the number

lim
n→∞

A(n)

n
,

if it exists.

For example, the density of the set of the even natural numbers is 1/2 be-
cause

lim
n→∞

bn2 c
n

=
1

2
.

The set of numbers n ∈ N∗ with the property that n - gpf (n)! has zero
density, such as Erdös [1991] supposed and Kastanas [1994] proved.

The first numbers with the property that n - gpf (n)! are: 4, 8, 12, 16, 18,
24, 25, 27, 32, 36, 45, 48, 49, 50, . . . [Sloane, 2014, A057109].

If we denote by N(x) the number of numbers n ∈ N∗ which have the
properties 2 ≤ n ≤ x and n - gpf (n)!, then we obtain the estimation

N(x)� x · e−
1
4

√
ln(x) , (2.16)

due to Akbik [1999], where the notation f(x) � g(x) means that there
exists c ∈ R+ such that |f(x)| < c · |g(x)|, ∀x. As

N(x)

x
� e−

1
4

√
ln(x) , and lim

x→∞
e−

1
4

√
ln(x) = 0 ,

we may say that the set has zero density.
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This result was later improved by Ford [1999] and by the authors
De Koninck and Doyon [2003] . Ford proposed following asymptotic for-
mula:

N(x) ≈
√
π
(
1 + ln(2)

)
4
√

23
4
√

ln(x)3 ln(ln(x))3 · x1−
1
u0 · ρ(u0) , (2.17)

where ρ(u) is the Dickman’s function, [Dickman, 1930, Weisstein, 2014a],
and u0 is defined implicitly by equation

ln(x) = u0

(
x

1

u20 − 1

)
. (2.18)

The estimation made in formula (2.17) was rectified by Ivić [2003], in
two consecutive postings,

N(x) = x

(
2 +O

(√
ln(ln(x))

ln(x)

))∫ x

2
ρ

(
ln(x)

ln(t)

)
ln(t)

t2
dt , (2.19)

or, by means of elementary functions

N(x) = x · exp

[
−
√

2 ln(x) ln(ln(x))

(
1 +O

(
ln(ln(ln(x)))

ln(ln(x))

))]
. (2.20)

Tutescu [1996] assumed that function η does not have the same value
for two consecutive values of the argument, which means

∀ n ∈ N∗ , η(n) 6= η(n+ 1) .

Weisstein published, on the 3rd of March 2004, [Sondow and Weisstein,
2014], the fact that he has verified this result, by means of a program, up
to 109.

Several numbers n ∈ N∗ may have the same value for η function, i.e.
function η is not injective. In table 2.1 we emphasize numbers n for which
η(n) = k.
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k n for which we have η(n) = k

1 1
2 2
3 3, 6
4 4, 8, 12, 24
5 5, 10, 15, 20, 30, 40, 60, 120
6 6, 16, 18, 36, 45, 48, 72, 80, 90, 144, 240, 360, 720

Table 2.1: Values n for which η(n) = k

Let a(k) be the smallest inverse of η(n), i.e. the smallest n for which
η(n) = k. Then a(k) is given by

a(k) = gpf (n)ω ,

where ω =
L∑
i=1

⌊
n− 1

gpf (k)i

⌋
, and L =

⌊
loggpf (k)(n− 1)

⌋
. (2.21)

This result was published by Sondow [2005]. For k = 1, 2, . . ., function
a(k) is equal to 1, 2, 3, 4, 5, 9, 7, 32, 27, 25, 11, 243, . . . as seen in [Sloane,
2014, A046021].

Some values of η(n) function are obtained for huge values of n. An
increasing sequence of great values of a(k) is 1, 2, 3, 4, 5, 9, 32, 243, 4096,
59049, 177147, 134217728, 31381059609, . . . , (see [Sloane, 2014, A092233]),
the sequence that corresponds to n = 1, 2, 3, 4, 5, 6, 8, 12, 24, 27, 32, 48, 54,
. . . (see [Sloane, 2014, A092232]).

In the process of finding number n for which η(n) = k, we remark that
n is a divisor of η(n)! but not of η(n − 1)!. Therefore, in order to find all
the numbers n for each η(n) has a value, we consider all n with η(n) = k,
where n is in the set of all divisors of k! minus the divisors of (k − 1)!. In
particular, b(k) of n for which η(n) = k, for k > 1 is

b(k) = σ0(k!)− σ0
(
(k − 1)!

)
, (2.22)

where σ0(m) is the divisors counting function of m. Hence, the number of
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integers n with η(n) = 1, 2, . . . are given by the sequence 1, 1, 2, 4, 8, 14, 30,
36, 64, 110, . . . (see [Sloane, 2014, A038024]).

Particularly, equation (2.22) shows that the inverse of Smarandache’s
function, a(n), exists always, as for each n there exist anm such that η(n) =
m
(
i.e. the smallest a(n)

)
, because

σ0(n!)− σ0
(
(n− 1)!

)
> 0 ,

for n > 1.
Sondow [2004] showed that η(n) appears unexpectedly in an irrational

limit for e and it suppose that the inequality n2 < η(n)! holds for ”almost
every n”, where ”almost every n” means the set of integers minus an excep-
tion set of zero density. The exception set is 2, 3, 6, 8, 12, 15, 20, 24, 30, 36,
40, 45, 48, 60, 72, 80, . . . , (see [Sloane, 2014, A122378]).

As equation gpf (n) = η(n), considered by Erdös [1991], Kastanas [1994]
for ”almost every n”, is equivalent with the inequality n2 < gpf (n)! for ”al-
most every n” of Sondow’s conjecture, it results that the conjecture of Erdös
and Kastanas is equivalent with Sondow’s conjectures. The exception set,
in this case, of zero density is: 2, 3, 4, 6, 8, 9, 12, 15, 16, 18, 20, 24, 25, 27, 30,
32, 36, . . . , (see [Sloane, 2014, A122380]).

D. Wilson, underlines, in the case where

I(n, p) =
n− Σ(n, p)

p− 1
, (2.23)

is a power of p prime in n!, where Σ(n, p) is the function sum in base p of n,
then following relation

a(n) = min
p|n

pI(n−1,p)+1 , (2.24)

hold, where the minimum is reached for every prime number p that di-
vides n. This minimum seems to be always attainable when p = gpf (n).

2.2 Programs for Kempner’s algorithm

In this section we emphasize Kempner’s algorithm by means of the
Mathcad programs necessary to the algorithm.
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Program 2.5. The function that counts the digits in base p of n

ncb(n, p) := return ceil(log(n, p)) if n > 1
return 1 otherwise

where the utility function Mathcad ceil(·) is the upper integer part func-
tion.

Program 2.6. The program that generates the generalized base p
(
denoted

by Smarandache [p]
)

for a number with m digits

a(p,m) := for i ∈ 1..m

ai ←
pi − 1

p− 1
return a

Program 2.7. The program that generates the base p
(
denoted by Smaran-

dache (p)
)

to write number α

b(α, p) := return (1) if p = 1
for i ∈ 1..ncb(α, p)
bi ← pi−1

return b

Program 2.8. The program of finding the digits of the generalized base [p]
for number n

Nbg(n, p) := m← ncb(n, p)
a← a(p,m)
return (1) if m=0
for i ∈ m..1

ci ← trunc

(
n

ai

)
n← mod (n, ai)

return c

Program 2.9. The program for Smarandache’s function
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η(n) := return ”Error n is not integer” if n 6= trunc(n)
return ”Error n < 1” if n < 1
return (1) if n=1
f ← Fa(n)

p← f 〈1〉

α← f 〈2〉

for k = 1..rows(p)
ηk ← pk ·Nbg(αk, pk) · b(αk, pk)

return max(η)

This program calls the program Fa(n) of factorization by prime numbers.
The program uses Smarandache’s remark 2.2 relative to Kempner’s algo-
rithm.

If we introduce number n as a product of prime numbers pi raised at
power αi (αi integer ≥ 0) it will result a variant of the program 2.9 which
can compute the values of η function for huge numbers.

Program 2.10. The program for computing the values of η function for huge
numbers.

ηs(f) := Prop← ”Matrix f is not at least one row with two columns”
return Prop if ¬(IsArray(f) ∧ rows(f) ≥ 1 ∧ cols(f)=2)

p← f 〈1〉

α← f 〈2〉

for k = 1..rows(p)
ηk ← pk ·Nbg(αk, pk) · b(αk, pk)

return max(η)

Program 2.11. Program that generates the matrix that contains al values n
for which η(n) = k.

EK(N) := for n ∈ 2..N
Kn ← η(n)

for q ∈ 2..max(K)
j ← 1
for k ∈ 2..N
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if Kk=q
EKq,j ← k
j ← j + 1

return EK

2.2.1 Applications

Several applications for the given programs are given in what follows:

1. Compute the values of η function for numbers n1, n2 given as products of
prime numbers raised at a positive integer power.

(a) Let n1 = 212 · 713 · 1123 = 895430243255334261261034, then

n1 :=

 2 12
7 13
11 23

 ηs(n1) = 242 .

(b) Let n2 = 333 · 555 · 751 · 1111 =

12589532854288041315477068297463914028063002 ,

then

n2 :=


3 33
5 55
7 51
11 11

 ηs(n2) = 315 ,

2. Find the number whose factorial ends in 1000 zeros.

To answer this question we remark that for n = 101000 we have
η(n)! = M ·101000 and this η(n) is the smallest natural number whose
factorial ends in 1000 zeros. We have η(n) = η(21000 · 51000), then

n :=

(
2 1000
5 1000

)
ηs(n) = 4005

and, hence, the number whose factorial ends in 1000 zeros is 4005.
The numbers 4006, 4007, 4008, 4009 have also the required property,
but 4010 has the property that its factorial has 1001 zeros.



54 CHAPTER 2. SMARANDACHE’S FUNCTION η

3. Determine all values n for which η(n) = 7.

With the help of program 2.11 we can generate the matrix that con-
tains all values n for which η(n) = k. Line 7 of the matrix is the
answer to the problem:

7 = η(n), for n = 7, 14, 21, 28, 35, 42, 56, 63, 70, 84, 105,

112, 126, 140, 168, 210, 252, 280, 315, 336, 420, 504, 560, 630,

840, 1008, 1260, 1680, 2520, 5040 .

2.2.2 Calculation the of values η function

Generating the file η.prn once and reading the generated file in Math-
cad documents that determine solutions of the Diophantine equations lead
to an important saving of the execution time for the program that searches
the solutions.

Program 2.12. The program by means of which the file η.prn is generated
is:

V alFS(N) := η1 ← 1
for n ∈ 2..N

ηn ← η(n)
return η

This program calls the program 2.9 which calculates the values of η func-
tion. The generating sequence of the file η.prn is:

t0 := time(0) WRITEPRN(”η.prn”) := V alFS(106) t1 := time(1)

(t1 − t0)sec = ”1 : 7 : 32.625”hhmmss

The execution time of generating the values of η function up to 106 exceeds
one hour on a computer with an Intel processor of 2.20GHz with RAM of
4.00GB (3.46GB usable).
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Figure 2.2: The graph of η function on the set {1, 2, . . . , 101}

We give the list of the first 400 and the last 256 values of η function:
1, 2, 3, 4, 5, 3, 7, 4, 6, 5, 11, 4, 13, 7, 5, 6, 17, 6, 19, 5, 7, 11, 23, 4, 10, 13, 9, 7, 29,
5, 31, 8, 11, 17, 7, 6, 37, 19, 13, 5, 41, 7, 43, 11, 6, 23, 47, 6, 14, 10, 17, 13, 53, 9,
11, 7, 19, 29, 59, 5, 61, 31, 7, 8, 13, 11, 67, 17, 23, 7, 71, 6, 73, 37, 10, 19, 11, 13,
79, 6, 9, 41, 83, 7, 17, 43, 29, 11, 89, 6, 13, 23, 31, 47, 19, 8, 97, 14, 11, 10, 101,
17, 103, 13, 7, 53, 107, 9, 109, 11, 37, 7, 113, 19, 23, 29, 13, 59, 17, 5, 22, 61, 41,
31, 15, 7, 127, 8, 43, 13, 131, 11, 19, 67, 9, 17, 137, 23, 139, 7, 47, 71, 13, 6, 29,
73, 14, 37, 149, 10, 151, 19, 17, 11, 31, 13, 157, 79, 53, 8, 23, 9, 163, 41, 11, 83,
167, 7, 26, 17, 19, 43, 173, 29, 10, 11, 59, 89, 179, 6, 181, 13, 61, 23, 37, 31, 17,
47, 9, 19, 191, 8, 193, 97, 13, 14, 197, 11, 199, 10, 67, 101, 29, 17, 41, 103, 23,
13, 19, 7, 211, 53, 71, 107, 43, 9, 31, 109, 73, 11, 17, 37, 223, 8, 10, 113, 227, 19,
229, 23, 11, 29, 233, 13, 47, 59, 79, 17, 239, 6, 241, 22, 12, 61, 14, 41, 19, 31, 83,
15, 251, 7, 23, 127, 17, 10, 257, 43, 37, 13, 29, 131, 263, 11, 53, 19, 89, 67, 269,
9, 271, 17, 13, 137, 11, 23, 277, 139, 31, 7, 281, 47, 283, 71, 19, 13, 41, 8, 34, 29,
97, 73, 293, 14, 59, 37, 11, 149, 23, 10, 43, 151, 101, 19, 61, 17, 307, 11, 103, 31,
311, 13, 313, 157, 7, 79, 317, 53, 29, 8, 107, 23, 19, 9, 13, 163, 109, 41, 47, 11,
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331, 83, 37, 167, 67, 7, 337, 26, 113, 17, 31, 19, 21, 43, 23, 173, 347, 29, 349, 10,
13, 11, 353, 59, 71, 89, 17, 179, 359, 6, 38, 181, 22, 13, 73, 61, 367, 23, 41, 37,
53, 31, 373, 17, 15, 47, 29, 9, 379, 19, 127, 191, 383, 8, 11, 193, 43, 97, 389, 13,
23, 14, 131, 197, 79, 11, 397, 199, 19, 10,
...
607, 389, 1669, 83311, 569, 1193, 83, 7351, 239, 55541, 1451, 193, 14489,

Figure 2.3: The graph of η function on the set
{

1, 2, . . . , 105
}

26309, 1531, 127, 2531, 1567, 2267, 2293, 999749, 43, 14081, 9613, 19603,
71411, 3389, 9257, 90887, 499879, 333253, 12497, 7517, 166627, 999763,
10867, 1709, 499883, 5779, 541, 999769, 5881, 2207, 249943, 999773, 829,
197, 199, 9007, 38453, 937, 877, 32251, 71413, 12343, 2659, 4877, 166631,
2557, 249947, 47609, 149, 76907, 131, 23251, 499897, 66653, 5101, 2309, 593,
521, 4999, 10099, 1319, 613, 29, 199961, 499903, 333269, 107, 999809, 46,
2053, 733, 333271, 229, 557, 41659, 10987, 317, 111091, 49991, 571, 2347,
8263, 113, 13331, 137, 7193, 27773, 5987, 7691, 1013, 124979, 1499, 15149,
199967, 5813, 1949, 4201, 3533, 2083, 14923, 3067, 827, 1381, 53, 55547, 2141,
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124981, 333283, 19997, 443, 11903, 999853, 499927, 1307, 23, 9173, 166643,
142837, 49993, 333287, 17239, 999863, 1543, 643, 71419, 739, 249967, 76913,
33329, 7873, 919, 269, 16127, 421, 859, 1447, 967, 337, 3571, 13697, 4273,
999883, 249971, 349, 499943, 142841, 563, 5347, 99989, 1277, 249973, 14083,
179, 15383, 124987, 333299, 9433, 3257, 101, 1721, 21737, 4219, 31247, 6451,
9803, 999907, 67, 461, 99991, 90901, 683, 52627, 499957, 107, 547, 999917,
18517, 1009, 431, 25639, 151, 449, 809, 47, 1901, 111103, 124991, 677, 33331,
999931, 223, 193, 38459, 881, 31, 8849, 499969, 2237, 173, 1733, 166657,
20407, 1033, 823, 499973, 76919, 3623, 87, 2857, 331, 62497, 999953, 761,
18181, 249989, 2801, 499979, 999959, 641, 999961, 13513, 811, 503, 4651, 139,
32257, 31249, 333323, 277, 6211, 197, 97, 29411, 199, 523, 90907, 821, 999979,
49999, 111109, 6329, 999983, 251, 28571, 38461, 1297, 22727, 52631, 271, 997,
2551, 333331, 21739, 199999, 499, 1321, 254, 37, 25 .



Chapter 3

Divisor functions σ

3.1 The divisor function σ

The divisor function of order k is given by the formula:

σk(n) =
∑
d|n

dk . (3.1)

For k = 0, we have function σ0(n) (see figure 3.1) which counts the
number of divisors of n. For example, 12 has 1, 2, 3, 4, 6, 12 as divisors
and, hence, their number is 6.

Figure 3.1: Function σ0(n)

58
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For k = 1 we have function σ1(n), (see figure 3.2) the function sum of
the divisors of n. For example, σ1(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28.

Function σ1(n), which gives the sum of the divisors of n, is usually
written without index, i.e. σ(n).

The function sum of the proper divisors of s, [Madachy, 1979], and is
given by the formula:

s(n) = σ(n)− n . (3.2)

For example, s(12) = 1 + 2 + 3 + 4 + 6 = 16.
For k = 2 function σ2(n) is the sum of the squares of the divisors. Fo

examples, σ2(12) = 12 + 22 + 32 + 42 + 62 + 122 = 210.
Let n be a natural number whose decomposition into prime factors is

n = pα1
1 · p

α2
2 · · · p

αs
s , (3.3)

where p1 < p2 < . . . ps are prime numbers, and αj ∈ N for j = 1, 2, . . . , s.

Theorem 3.1. For two positive natural numbers n and m, relative prime,
(n,m) = 1, then

σ(n ·m) = σ(n) · σ(m) . (3.4)

Proof. For each divisor dj of n ·m we have dj = nj1 ·mj2 , where nj1 |n and
mj2 |m. The numbers 1, n1, n2, . . . , n are the divisors of n and 1, m1, m2,
. . . , m are the divisors of m. Then we have

σ(n) = 1 + n1 + n2 + . . .+ n

and
σ(m) = 1 +m1 +m2 + . . .+m .

According to the previous relations we can write nj1(1 +m1 +m2 + . . .+
m) = nj1 ·σ(m). If we sum relative to nj1 it follows that (1+n1 +n2 + . . .+
n)σ(m) = σ(n) · σ(m), i.e. relation (3.4) holds.

We owe to Berndt, [Berndt, 1985, p. 94], [Weisstein, 2014c], next result.
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Figure 3.2: Function σ(n)
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Theorem 3.2. For every natural number n, whose decomposition into prime fac-
tors is (3.3), we have that

σ(n) =

s∏
j=1

p
αj+1
j − 1

pj − 1
. (3.5)

Proof. According to relations (3.3) and (3.4) it follows that

σ(n) = σ(pα1
1 )σ(pα2

2 ) · · ·σ(pαss ) .

The divisors of pαjj are 1, pj , p2j , . . . , pαjj , therefore, the sum of the divisors
of pαjj is

σ(p
αj
j ) = 1 + pj + p2j + . . .+ p

αj
j =

p
αj+1
j − 1

pj − 1
.

Hence, according to Proposition 3.1 we can state that

σ(n) = σ(pα1
1 · p

α2
2 · · · p

αs
r ) =

s∏
j=1

p
αj+1
j − 1

pj − 1
.

By generalizing formula (3.5) it results a relation for function σk. Func-
tion σk : N∗ → N, [Weisstein, 2014c], is given by the relations:

σ0(n) =
s∏
j=1

(αj + 1) (3.6)

and

σk(n) =

s∏
j=1

p
(αj+1)k
j − 1

pkj − 1
. (3.7)
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3.1.1 Computing the values of σk functions

Program 3.3. The program for computing the values of function σk, for
k = 0, 1, . . ..

σ(k, n) := f ← Fa(n)

return

rows(f)∏
j=1

(fj,2 + 1) if k=0

return

rows(f)∏
j=1

(fj,1)
(fj,2+1)k − 1

(fj,1)
k − 1

if k > 0

The program 3.3 calls the program 1.29 of factorization in product of prime
factors.

Program 3.4. The program by means of which the files σk.prn are gener-
ated is:

Gσ(k,N) := fϕ1 ← 1
for n ∈ 2..N

fσn ← σ(k, n)
return fσ

Obviously this program calls the program 3.3 for computing the values of
function σk. The sequence for generating the file σ0.prn is:

t0 := time(0) WRITEPRN(”σ0.prn”) := Gσ(0, 106) t1 := time(1)

(t1 − t0)sec = ”0 : 0 : 2.833”hhmmss

The sequences for generating the files σ1.prn and σ2.prn are similar.
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3.2 k–hyperperfect numbers

A number n ∈ N∗ is called k–hyperperfect if following identity

n = 1 + k
∑
j

dj

holds, or

n = 1 + k(σ(n)− n− 1) , n = 1 + k(s(n)− 1) ,

where σ(n) = σ1(n) is the function that represents sum of the divisors dj
of n and s(n) the sum of the proper divisors of n, where 1 < dj < n. After
rearranging, we obtain relation

kσ(n) = (k + 1)n+ k − 1

which, if it is verified, means that n is k–hyperperfect number. If k = 1 we
say that n is a perfect number.

The conjecture of McCranie [2000] states: the number n = p2q is a k–
hyperperfect number if k ∈ 2N∗ + 1, p = 3k+1

2 , q = 3k + 4, p and q prime
numbers.

If p and q are distinct odd prime numbers such that k(p + q) = pq − 1
for a k ∈ N∗, then n = pq is k–hyperperfect.

If k ∈ N∗ and p = k + 1 is prime, then, if there exists a j ∈ N∗ such that
q = pj − p+ 1 prime, then n = pj−1q is k–hyperperfect.

The first k-hyperperfect numbers are: 6, 21, 28, 301, 325, 496, 697, 1333,
. . . [Sloane, 2014, A034897], which correspond to the values of k: 1, 2, 1, 6,
3, 1, 12, 18, . . . . McCranie [2000] gave the list of all hyperperfect numbers
up to 1011.



Chapter 4

Euler’s totient function ϕ

Euler’s totient function, denoted ϕ, counts the number of factors rel-
ative prime to n, where 1 is considered relative prime to every natural
number. For example, factors relative prime to 36 are 1, 5, 7, 11, 13, 17, 19,
23, 25, 29, 31, 35 and, therefore, it results that ϕ(36) = 12. By convention,
we have ϕ(0) = 1.

Program 4.1. The program for computing the values of Euler’s totient func-
tion which applies the definition of the function is

ϕ(n) := return 1 if n=0
j ← 0
for k ∈ 1..n
j ← j + 1 if gcd(k, n)=1

return j

This program can not be used for computing the values of Euler’s totient
function for great numbers.

Function n− ϕ(n) is called cototient function.

64
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Figure 4.1: Euler’s totient function

4.1 The properties of function ϕ

For p prime number we have ϕ(p) = p− 1, and

ϕ(pα) = pα−1(p− 1) = pα
(

1− 1

p

)
.

Letm be a prime multiple of p. We define function ϕp(m) which counts
the positive integers ≤ m which are not divisible by p. As p, 2p, . . . , m

p p
have common factor p, it follows that

ϕp(m) = m− m

p
= m

(
1− 1

p

)
. (4.1)

Let q be another prime number that divides m, or let m be a multiple of
q. Then q, 2q, . . . , mq q have q common factor, but there exist also duplicate
common factors pq, 2pq, . . . , m

pqpq. Therefore, the number of terms that
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have to be subtracted from ϕp(m) to obtain ϕpq(m) is

m

q
− m

pq
=
m

q

(
1− 1

p

)
. (4.2)

Then, from (4.1) and (4.2) it results that

ϕpq(m) = m

(
1− 1

p

)
− m

q

(
1− 1

p

)
= m

(
1− 1

p

)(
1− 1

q

)
. (4.3)

Similarly, by mathematical induction it can be proved that if n is divisible
by p1, p2, . . . , ps, prime numbers (or n is a multiple of p1, p2, . . . , ps, prime
numbers), then we have

ϕ(n) = n
s∏

k=1

(
1− 1

pk

)
. (4.4)

We have an interesting identity, due to Olofsson [2004], regarding ϕ(n`)
and ϕ(n), given by relation

ϕ(n`) = n`−1ϕ(n) . (4.5)

Euler’s totient function satisfies the inequalityϕ(n) >
√
n for all n ∈ N∗

excepting 2 and 6, [Kendall and Osborn, 1965], [Mitrinović and Sándor,
1995, p. 9]. Consequently, ϕ(n) = 2 only for n = 3, n = 4 and n = 6. Also,
in the monograph [Sierpiński, 1988], was proved that ϕ(n) ≤ n−

√
n.

The solutions of the ϕ–Diophantine equation ϕ(n) = ϕ(n+ 1) are: 1, 3,
15, 104, 164, 194, 255, 495, 584, 975, . . . [Sloane, 2014, A003275].

In the search domain Dc =
{

1, 2, . . . , 1010
}

there exists only one solu-
tion n = 5186 = 25 · 34 for which the double identity ϕ(n) = ϕ(n + 1) =
ϕ(n+ 2) holds, [Guy, 2004, p. 139].

The smallest three close numbers (the difference between them is ≤ 6),
for which the double equality ϕ(n1) = ϕ(n2) = ϕ(n3) holds, are: 404471,
404473 and 404477. These numbers verify the equalities:

ϕ(404471) = ϕ(404473) = ϕ(404477) = 403200 .
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The smallest four close numbers (the difference between them is≤ 12),
for which the triple equality ϕ(n1) = ϕ(n2) = ϕ(n3) = ϕ(n4) hold, are:
25930, 25935, 24940 and 25942. They verify the equalities:

ϕ(25930) = ϕ(25935) = ϕ(25940) = ϕ(25942) = 10368 .

These results were published in [Guy, 2004, p. 139].
McCranie [2000] found the arithmetic progression ak = a0+k ·r, where

the first term is a0 = 583200 and r = 30 is the ratio, for which we have

ϕ(ak) = 155520 for all k = 0, 1, . . . , 5 .

Other arithmetic progressions with six consecutive terms, with a0 =
1166400 and r = 583200, which have the same property, are also known
[Sloane, 2014, A050518].

An interesting conjecture due to Guy [2004] has following predication.
If Goldach’s conjecture holds, then, for every m ∈ N∗, there exist the prime num-
bers p and q such that ϕ(p) + ϕ(q) = 2m. Erdös wondered if this statement
also holds for p and q not necessarily primes, but this ”relaxed” conjecture
remains unproved.

Guy [2004] considered the ϕ–σ–Diophantine equation ϕ(σ(n)) = n. F.
Helenius found 365 solutions, of which the first are: 2, 8, 12, 128, 240, 720,
6912, 32768, 142560, 712800, . . . , [Sloane, 2014, A001229].

4.1.1 Computing the values of ϕ function

Program 4.2. Considering formula (4.5), an efficient program for comput-
ing the values of function ϕ can be written.

ϕ(n) := return 1 if n=0 ∨ n=1
f ← Fa(n)
φ← n
for k ∈ 1..rows(f)

φ← φ ·
fk,1 − 1

fk,1
return φ
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This program calls the program 1.29 for factorization of a number.

Program 4.3. The program by means of which the file ϕ.prn is generated
is:

Gϕ(N) := fϕ1 ← 1
for n ∈ 2..N

fϕn ← ϕ(n)
return fϕ

This program calls the program 4.2 for computing the values of Euler’s
totient function. The sequence for generating the file ϕ.prn is:

t0 := time(0) WRITEPRN(”ϕ.prn”) := Gϕ(106) t1 := time(1)

(t1 − t0)sec = ”5 : 30 : 33.558”hhmmss

The execution time for generating the values of function ϕ up to 106 is of
5 hours and 30 minutes on a computer with an Intel processor of 2.20GHz
with RAM of 4.00GB (3.46GB usable).

4.2 A generalization of Euler’s theorem

In the sections which follow we will prove a result which replaces the
theorem of Euler: ”If (a,m) = 1, then aϕ(m) ≡ 1 (mod m)”, for the case
when a and m are not relatively primes.

One supposes that m > 0. This assumption will not affect the gener-
alization, because Euler’s indicator satisfies the equality: ϕ(m) = ϕ(−m),
[Popovici, 1973], and that the congruencies verify the following property:
a ≡ b (mod m)⇔ a ≡ b (mod −m), [Popovici, 1973, pp. 12–13].

In the case of congruence modulo 0, there is the relation of equality.
One denotes

(
a, b
)

= gcf(a, b) greatest common factor of the two integers a
and b, and one chooses

(
a, b
)
> 0. Note gcf is the same as gcd for numbers,

so
(
a, b
)

= gcf(a, b) = gcd(a, b).
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Lemma 4.4. Let be a an integer andm a natural number> 0. The exist d0,m0 ∈
N such that a = a0d0, m = m0d0 and

(
a0,m0

)
= 1.

Proof. It is sufficient to choose d0 =
(
a,m

)
. In accordance with the defi-

nition of the gcf (greatest common factor), the quotients of a0 and m0 of
a and m by their gcf are relatively primes, [Creangă et al., 1965, pp. 25–
26].

Lemma 4.5. With the notations of lemma 4.4, if d0 6= 1 and if: d0 = d10d1,
m0 = m1d1,

(
d10,m1

)
= 1 and d1 6= 1, then d0 > d1 and m0 > m1, and if

d0 = d1, then after a limited number of steps i one has d0 > di+1 =
(
di,mi

)
.

Proof.

(0)

{
a = a0d0 ;

(
a0,m0

)
= 1

m = m0d0 ; d0 6= 1
,

(1)

{
d0 = d10d1 ;

(
d10,m1

)
= 1

m0 = m1d1 ; d1 6= 1
.

From (0) and from (1) it results that a = a0d0 = a0d
1
0d1 therefore d0 = d10d1

thus d > d1 if d10 6= 1.
From m0 = m1d1 we deduct that m0 > m1. If d0 = d1 then m0 =

m1d0 = k · dz0, where z ∈ N∗ and d0 - k. Therefore m1 = k · dk−10 ; d2 =(
d1,m1

)
=
(
d0, k·dz−10

)
. After i = z steps, it results di+1 =

(
d0, k

)
< d0.

Lemma 4.6. For each integer a and for each natural number m > 0 one can
build the following sequence of relations:

(0)

{
a = a0d0 ;

(
a0,m0

)
= 1

m = m0d0 ; d0 6= 1
,

(1)

{
d0 = d10d1 ;

(
d10,m1

)
= 1

m0 = m1d1 ; d1 6= 1
,

. . . . . . . . .

(s− 1)

{
ds−2 = d1s−2ds−1 ;

(
d1s−2,ms−1

)
= 1

ms−2 = ms−1ds−1 ; ds−1 6= 1
,
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(s)

{
ds−1 = d1s−1ds ;

(
d1s−1,ms

)
= 1

ms−1 = msds ; ds 6= 1
.

Proof. One can build this sequence by applying lemma 4.4. The sequence
is limited, according to lemma 4.5, because after r1 steps, one has d0 > dr1 ,
and m0 > mr1 , and after r2 steps, one has dr1 > dr1+r2 and mr1 > mr1+r2 ,
etc., and the mi are natural numbers. One arrives at ds = 1 because if
ds 6= 1 one will construct again a limited number of relations (s + 1), . . . ,
(s+ r) with ds+r < ds.

Theorem 4.7. Let us have a,m ∈ Z, and m 6= 0. Then

aϕ(ms)+s ≡ as (mod m) ,

where s and ms, are the same ones as in the lemmas above.

Proof. Similar with the method followed previously, one can suppose m >
0 without reducing the generality. From the sequence of relations from
lemma 4.6, it results that:

(0) (1) (2) (3) (s)
a = a0d0 = a0d

1
0d1 = a0d

1
0d

1
1d2 . . . = a0d

1
0d

1
1 · · · d1s−1ds

and

(0) (1) (2) (3) (s)
m = m0d0 = m1d1d0 = m2d2d1d0 . . . = msdsds−1 · · · d11d0

and
msdsds−1 · · · d1d0 = d0d1 · · · ds−1dsms .

From (0) it results that d0 =
(
a,m

)
, and from (i) that di =

(
di−1,mi−1

)
, for

all i ∈ {1, 2, . . . , s}.

d0 = d10d
1
1d

1
2 · · · d1s−1ds ,

d1 = d11d
1
2d

1
3 · · · d1s−1ds ,

...
ds−1 = d1s−1ds ,

ds = ds .
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Therefore

d0d1d2 · · · ds−1ds = (d10)
1(d11)

2(d12)
3 · · · (d1s−1)s(d1s)s+1

= (d10)
1(d11)

2(d12)
3 · · · (d1s−1)s ,

because ds = 1.
Thus m = (d10)

1(d11)
2(d12)

3 · · · (d1s−1)s ·ms; therefore ms | m .

(s)(
ds,ms

)
=

(
1,ms

)
and

(
d1s−1,ms

)
= 1

(s− 1)
1 =

(
d1s−2,ms−1

)
=

(
d1s−2,msds

)
therefore

(
d1s−2,ms

)
= 1 ,

(s− 2)
1 =

(
d1s−3,ms−2

)
=

(
d1s−3,ms−1ds−1

)
=

(
d1s−3,msdsds−1

)
therefore

(
ds−3,ms

)
= 1 ,

...

1
(i+ 1)

=

(
d1i ,mi+1

)
=
(
d1i ,mi+2di+2

)
=
(
d1i ,mi+3di+3di+2

)
= . . .

=
(
d1i ,msdsds−1 · · · di+2

)
,

thus
(
d1i ,ms

)
= 1, and this is for all i ∈ {1, 2, . . . , s− 2} ,

...

(0)
1 =

(
a0,m0

)
=

(
a0, d1 · · · ds−1dsms

) ,
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thus
(
a0,ms

)
= 1 .

From the Euler’s theorem results that: (d1i )
ϕ(ms) ≡ 1 (mod ms) for all

i ∈ {0, 1, . . . , s}, aϕ(ms)0 ≡ 1 (mod ms), but

a
ϕ(ms)
0 = a

ϕ(ms)
0 (d10)

ϕ(ms)(d11)
ϕ(ms) · · · (d1s−1)ϕ(ms) ,

therefore aϕ(ms) ≡ 1 · · · 1︸ ︷︷ ︸
(s+1) times

(mod ms), then aϕ(ms) ≡ 1 (mod ms) . We

equivalence

a0(d
1
0)
s−1(d11)

s−2(d12)
s−3 · · · (d1s−2)1 · aϕ(ms)

≡ as0(d10)s−1(d11)s−2 · · · (d1s−2)1 · 1 (mod ms) .

If you multiply the (d10)
1(d11)

2(d12)
3 · · · (d1s−2)s−1(d1s−1)s we obtain:

as0(d
1
0)
s(d11)

s · · · (d1s−2)s(d1s−1)s · aϕ(ms)

≡ as0(d10)s(d11)s · · · (d1s−2)s(d1s−1)s
(
mod (d10)

1 · · · (d1s−1)s ·ms

)
,

but as0(d
1
0)
s(d11)

s · · · (d1s−1)s · aϕ(ms) and as0(d
1
0)
s(d11)

s · · · (d1s−1)s = as there-
fore aϕ(ms)+s ≡ as (mod m), for all a,m ∈ Z, m 6= 0.

Observation 4.8. If
(
a,m

)
= 1 then d = 1. Thus s = 0, and according the

theorem 4.7 one has aϕ(m0)+0 ≡ a0 (mod m) therefore aϕ(m0) ≡ 1 (mod m).
But m = m0d0 = m0 · 1 = m0. Thus aϕ(m) ≡ 1 (mod m), and one obtains
Euler’s theorem.

Observation 4.9. Let us have a and m two integers, m 6= 0 and
(
a,m

)
=

d0 6= 1, and m = m0d0 . If
(
d0,m0

)
= 1, then aϕ(m0)+1 ≡ a (mod m).

Which, in fact, it results from the theorem 4.7 with s = 1 and m1 = m0.
This relation has a similar to Fermat’s theorem: aϕ(p)+1 ≡ a (mod p) .

4.2.1 An algorithm to solve congruences

One will construct an algorithm to calculate s and ms of the theorem
4.7.
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Program 4.10. The program is:

S(a,m) := s← 0
ms ← m
d← gcd(a,ms)
while d 6= 1
s← s+ 1

ms ←
ms

d
d← gcd(d,ms)

return

(
s
ms

)
The program calls the function Mathcad gcd computation of the greatest
common divisor.

4.2.2 Applications

In the resolution of the exercises one uses the theorem 4.7 and the al-
gorithm to calculate s and ms.

Example 1: 6ϕ(ms) ≡ 6s (mod 105765). One thus applies the algorithm
to calculate s and ms and then the theorem 4.7:

a := 6 m := 105765(
s
ms

)
:= S(a,m) =

(
1

35255

)
φ := ϕ(ms) + s = 25601

mod(aφ,m) = 6 mod(as,m) = 6 ,

where we used the programs 4.10 and 4.2.
Example 2: 847ϕ(ms) ≡ as (mod 283618125). One thus applies the algo-

rithm to calculate s and ms and then the theorem 4.7:

a := 847 m := 283618125
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(
s
ms

)
:= S(a,m) =

(
5

16875

)
φ := ϕ(ms) + s = 9005

mod(aφ,m)→ 75 · 9601 mod(as,m)→ 75 · 9601 ,

where we used the programs 4.10 and 4.2.
Example 2: 847ϕ(ms) ≡ as (mod 283618125). One thus applies the algo-

rithm to calculate s and ms and then the theorem 4.7:

a := 847 m := 283618125(
s
ms

)
:= S(a,m) =

(
5

16875

)
φ := ϕ(ms) + s = 9005

mod(aφ,m)→ 75 · 9601 mod(as,m)→ 75 · 9601 ,

where we used the programs 4.10 and 4.2.
Example 3: 437ϕ(ms) ≡ as (mod 2058557375). One thus applies the algo-

rithm to calculate s and ms and then the theorem 4.7:

a := 437 m := 2058557375(
s
ms

)
:= S(a,m) =

(
3

300125

)
φ := ϕ(ms) + s = 205803

mod(aφ,m)→ 193 · 233 mod(as,m)→ 193 · 233 ,

where we used the programs 4.10 and 4.2.
Example 4: 4433ϕ(ms) ≡ as (mod 789310951). One thus applies the algo-

rithm to calculate s and ms and then the theorem 4.7:

a := 4433 m := 789310951(
s
ms

)
:= S(a,m) =

(
5
29

)
φ := ϕ(ms) + s = 33

mod(aφ,m)→ 23 · 115 · 132 mod(as,m)→ 23 · 115 · 132 ,

where we have used the programs 4.10 and 4.2.



Chapter 5

Generalization of congruence
theorems

5.1 Notions introductory

Let us consider a positive integer, which we will call modulus. With
its help we introduce in the set Z of integers a binary relation, called of
congruence and denoted ≡, such that:

Definition 5.1. The integers a and b are congruent relative to modulus m
is and only if m divides the difference a− b.

Hence, we have

a ≡ b (mod m) ⇔ a− b = k ·m, where k ∈ Z. (5.1)

Consequence 5.2. a ≡ b (mod m) ⇔ a and b give, by division trough m,
the same residue.

It is known that the congruence relation given by (5.1) is an equiva-
lence relation (is reflexive, symmetric and transitive). It also has following
remarkable properties:

a1 ≡ b1 (mod m) and a2 ≡ b2 (mod m)⇒ ,

75
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(i) a1 + a2 ≡ b1 + b2 (mod m) ,

(ii) a1 − a2 ≡ b1 − b2 (mod m) ,

(iii) a1a2 ≡ b1b2 (mod m) .

More generally, if ai ≡ bi (mod m), for i = 1, 2, . . . , n, and f(x1, x2, . . . , xn)
is a polynomial with integer coefficients, then

(iv) f(a1, a2, . . . , an) ≡ f(b1, b2, . . . , bn) (mod m).

One can also prove following properties of the congruence relations:

(v) a ≡ b (mod m) and c ∈ N∗⇒ ac ≡ bc (mod m) ,

(vi) a ≡ b (mod m) and n ∈ N∗, n divide m⇒ a ≡ b (mod n) ,

(vii) a ≡ b (mod mi), i = 1, s,⇒ a ≡ b (mod m) ,

where m = [m1,m2, . . . ,ms] = lcm(m1,m2, . . . ,ms) is the smallest com-
mon multiple of numbers mi.

(viii) a ≡ b (mod m)⇒ (a,m) = (b,m) ,

where by (x, y) = gcd(x, y) we denote the greatest common divisor of
numbers x and y.

As the relation congruence mod m is an equivalence relation, it divides
the set Z of integers into equivalence classes (classes of congruence mod m).
Two such classes either are disjoint or coincide.

As every integer provides by division through m one of the residues 0,
1, 2, . . . , m− 1, it follows that

C0, C1, . . . , Cm−1

are the m classes of residues mod m, where Ci is the set of all integers
congruent with i (mod m).

Sometimes it is useful to consider, instead of the classes, representa-
tives that satisfy certain conditions. Hereby, following terminology is es-
tablished.
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Definition 5.3. The integers a1, a2, . . . , am compose a complete system of
mod m residues if any two of them are not congruent mod m.

It results that a complete system of mod m residues contains a represen-
tative of each class.

If ϕ is Euler’s totient function (ϕ(n), denoted also ϕn, is the number of
natural numbers smaller than n and prime to n), then we also have:

Definition 5.4. The integers a1, a2, . . . , aϕ(m) build a reduced system of mod
m residues if each is prime with the modulus and if any two of them are
not congruent mod m.

Following result is known:

Theorem 5.5.

1. If a1, a2, . . . , am is a complete system of mod m residues and a is an integer,
prime to m, then the sequence a · a1, a · a2, . . . , a · am is also a complete
system of mod m residues.

2. If a1, a2, . . . , aϕ(m) is a reduced system of mod m residues and a is an
integer, prime to m, then the sequence a · a1, a · a2, . . . , a · aϕ(m) is also a
reduced system of mod m residues.

If we denote by Zm the set of the classes of residues mod m:

Zm = {C0, C1, . . . , Cm−1}

and we define the relations

+ : Zm × Zm → Zm , · : Zm × Zm → Zm ,

by
Ci + Cj = Ck, where k ≡ i+ j (mod m) ,

Ci · Cj = Ch, where h ≡ i · j (mod m) ,

then following result holds:
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Theorem 5.6.

1. (Zm,+) is a commutative group,

2. (Zm,+, ·) is a commutative ring,

3. (Gm, ·) is a commutative group,

where Gm =
{
Cr1 , Cr2 , . . . , Crϕ(m)

}
the set of the classes of residues prime to

the modulus.

Consequence 5.7. The set Zp of the classes of residues relative to a prime
modulus p builds a commutative field relative to the previously defined
operations of addition and multiplication.

5.2 Theorems of congruence of the Number Theory

In this section we will recall some congruence theorems of the Num-
ber Theory (Theorems of Fermat, Euler, Wilson, Gauss, Lagrange, Leib-
niz, Moser and Sierpinski) which we will generalize in the next section.
Equally, we will emphasize a unifying point of view.

In 1640 Fermat states, without proof, the next result:

Theorem 5.8 (Fermat). If integer a is not divisible by the prime number p, then

ap−1 ≡ 1 (mod p) . (5.2)

The first proof of this theorem was given in 1736 by Euler.
As it is known, the reciprocal of Fermat’s Theorem is not true. In an-

other words, the fact that am−1 ≡ 1 (mod m) and m is not divisible by a,
does not necessarily imply that m is a prime number.

It is not even true that, if (5.2) holds for all numbers a prime relative to
m, then m is prime, as one can remark in the following example.

Example 5.9. Letm = 561 = 3 ·11 ·17. If a is an integer that is not divisible
by 3, by 11 or by 17, we surely have:

a2 ≡ 1 (mod 3) , a10 ≡ 1 (mod 11) , a16 ≡ 1 (mod 17) ,
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according to the direct Theorem of Fermat. But, as 560 is divisible by 2 and
10, as well as by 16, we deduce that:

a560 ≡ 1 (mod mi) , i = 1, 2, 3 ,

where m1 = 3, m2 = 11 and m3 = 17.
According to property (vii) of the previous section, it follows that

a560 ≡ 1 (mod m) , for m = 561.

Actually, it is known that 561 is the smallest composite number that satis-
fies (5.2). Next numbers follow: 1105, 1729, 2465, 2821, . . . .

Consequently, the congruence (5.2) can be true for a certain integer a
and a composite number m.

Definition 5.10. If relation (5.2) is satisfied for a composite number m and
an integer a, it is said thatm is pseudoprime relative to a. Ifm is pseudoprime
relative to every integer a, prime to m, it is said that m is a Carmichael
number.

The American mathematician Robert Carmichael was the first who, in
1910 has emphasized such numbers, called fake prime numbers.

Until recently, it was not known if there exists or not an infinity of
Carmichael numbers. In the very first issue of the journal ”What′s Hap-
pening in the Mathematical Sciences”, where, yearly, the most important
recent results in mathematics are emphasized, it is that three mathemati-
cians: Alford, Granville and Pomerance, have proved that there exists an
infinity of Carmichael numbers.

The proof of the trio of American mathematicians is based on an
heuristic remark from 1956 of the internationally known Hungarian math-
ematician P. Erdös. The main idea is to chose a number L for which there
exist a lot of prime numbers p that do not divide L, but having the prop-
erty that p−1 divides L. Afterwards it is shown that these prime numbers
can be multiplied among themselves in several ways such that each prod-
uct is congruent with 1 (mod L). It results that every such product is a
Carmichael number.
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For example, for L = 120, the prime numbers that satisfy the previous
condition are: p1 = 7, p2 = 11, p3 = 13, p4 = 31, p5 = 41, p6 = 61. It follows
that 41041 = 7·11·13·41, 172081 = 7·13·31·61 and 852841 = 11·31·41·61 are
congruent with 1 (mod 120), and, hence, they are Carmichael numbers.

We mention that the heuristic remark of P. Erdös is based on the follow-
ing theorem that characterizes the Carmichael numbers, proved in 1899.

Theorem 5.11 (A. Korselt). The number n is a Carmichael number if and only
if following conditions hold:

(C1) n is squares free,

(C2) p− 1 divides n− 1 as long as p is a prime divisor of n.

The three American mathematicians have proved the following result:

Theorem 5.12 (Alford, Granville, Pomerance). There exist at least x2/7

Carmichael numbers, not greater than x, for x sufficiently big.

By means of the heuristic argument due to P. Erdös it can be proved
that the exponent of Theorem 5.12 can be replaced by any other sub uni-
tary exponent.

Theorem 5.13 (Euler). If (a,m) = 1, then aϕ(m) ≡ 1 (mod m).

The notation (a,m) = 1 means that the greatest common divisor of a
and m is 1, which means that the numbers are relatively prime.

Theorem 5.13 generalizes Theorem 5.8 and was proved by Euler in
1760.

Theorem 5.14 (Wilson). If p is a prime number, then (p−1)!+1 ≡ 0 (mod p).

It is known that the reciprocal of Theorem 5.14 is true, which means
that following result holds

Theorem 5.15. If n > 1 is an integer and (n − 1)! + 1 ≡ 0 (mod n) then n is
prime.
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Theorem 5.14, of Wilson, was published in 1770 by mathematician
Waring (Meditationes Algebraicae), but it was known long before, by Leib-
niz.

Lagrange generalizes Theorem 5.14, of Wilson, as follows:

Theorem 5.16 (Lagrange). If p is a prime number, then ap−1−1 ≡ (a+1)(a+
2) . . . (a+ p− 1) (mod p).

Leibniz states following theorem:

Theorem 5.17 (Leibniz). If p is a prime number, then (p− 2)! ≡ 1 (mod p).

The reciprocal of Theorem 5.17, of Leibniz, is also true, i.e. a natural
number n > 1 is prime if and only if (n− 2)! ≡ 1 (mod p).

Another result concerning congruences with prime numbers is the next
theorem:

Theorem 5.18 (L. Moser). If p is a prime number, then (p − 1)!ap + a ≡
0 (mod p) .

Sierpinski proves that following result holds:

Theorem 5.19 (Sierpinski). If p is a prime number, then ap + (p − 1)! ≡
0 (mod p).

We remark that this statement unify the Theorems 5.8 of Fermat and
5.14 of Wilson.

In the next section we will define a function L : Z × Z → Z, by means
of which we will be able to prove several results that unify all previous
theorems.

5.3 A unifying point of convergence theorems

LetA be the set
{
m ∈ Z/m = ±pβ,±2pβ

}
with p an odd prime, β ∈ N∗,

or m = ±2α, with α = 0, 1, 2, or m = 0.
Let m = εpα1

1 · p
α2
2 · · · pαrr , with ε = ±1, all αi ∈ N∗ and p1, p2, . . . , pr are

distinct positive primes.
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We construct the function L : Z× Z,

L(x,m) = (x+ C1)(x+ C2) · · · (x+ Cϕ(m)) , (5.3)

where C1, C2, . . .Cϕ(m) are all modulo m rests relatively prime to m, and
ϕ is Euler’s function.

If all distinct primes which divide x and m simultaneously are pi1 , pi2 ,
. . .pir , then:

L(x,m) ≡ ±1
(
mod p

αi1
i1
· pαi2i2

· · · pαirir
)

when m ∈ A (5.4)

respectively m /∈ A, and

L(x,m) ≡ 0
(
mod m/

(
p
αi1
i1
· pαi2i2

· · · pαirir
))

. (5.5)

For d = p
αi1
i1
· pαi2i2

· · · pαirir , and m′ = m/d we find

L(x,m) ≡ ±1 + k01d ≡ k02m′ (mod m) , (5.6)

where k01 and k02 constitute a particular integer solution of the Diophantine
equation k2m

′ − k1d = ±1 (the signs are chosen in accordance with the
affiliation of m to A).

This result generalizes Gauss’ theorem, (C1·C2 · · ·Cϕ(m) ≡ ±1 (mod m)
when m ∈ A respectively m /∈ A), see [Dirichlet, 1894], which generalized
in its turn the Wilson’s theorem (if p is prime then (p− 1)! ≡ −1 (mod m)).

Lemma 5.20. If C1, C2, . . . , Cϕ(pα) are all modulo pα rests, relatively prime to
pα, with p an integer and α ∈ N∗, then for k ∈ Z and β ∈ N∗ we have also that
kpβ + C1, kpβ + C2, . . . , kpβ + Cϕ(pα) constitute all modulo pα rests relatively
prime to pα.

Proof. It is sufficient to prove that for 1 ≤ i ≤ ϕ(pα) we have kpβ + Ci
relatively prime to pα, but this is obvious.

Lemma 5.21. If C1, C2, . . . , Cϕ(m) are all modulo m rests relatively prime to m,
pαii divides m and pαi+1

i does not divide m, then C1, C2, . . . , Cϕ(m) constitute
ϕ(m/pαii ) systems of all modulo pαii rests relatively prime to pαii .
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Proof. Proof is obvious.

Lemma 5.22. If C1, C2, . . . , Cϕ(m) are all modulo q rests relatively prime to b
and (b, q) = 1 then b+ C1, b+ C2, . . . , b+ Cϕ(q) contain a representative of the
class 0̂ modulo q.

Proof. Of course, because (b, q − b) = 1 there will be a Ci0 = q − b, whence
b+ Ci0 =Mq (multiple of q).

From this we have:

Theorem 5.23. If
(
x,m/(p

αi1
1 · pαi22 · · · pαirir )

)
= 1 then

L(x,m) = (x+ C1)(x+ C2) · · · (x+ Cϕ(m))

≡ 0
(
mod m/

(
p
αi1
1 · pαi22 · · · pαirir

))
.

Proof. Proof is obvious.

Lemma 5.24. Because C1 · C2 · · ·Cϕ(m) ≡ ±1 (mod m) it results that

C1 · C2 · · ·Cϕ(m) ≡ ±1 (mod pαii ) ,

for all i, when m ∈ A, respectively m /∈ A.

Proof. Proof is obvious.

Lemma 5.25. If pi divides x and m simultaneously, then

(x+ C1)(x+ C2) · · · (x+ Cϕ(m)) ≡ ±1 (mod pαii ) ,

when m ∈ A respectively m /∈ A.

Proof. Of course, from the lemmas 5.21 and 5.20, respectively 5.24, we have

(x+ C1)(x+ C2) · · · (x+ Cϕ(m)) ≡ C1 · C2 · · ·Cϕ(m) ≡ ±1 (mod pαii ) .
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From the lemma 5.25 we obtain:

Theorem 5.26. If pi1 , pi2 , . . . , pir are all primes which divide x and m simulta-
neously then

(x+ C1)(x+ C2) · · · (x+ Cϕ(m)) ≡ ±1
(
mod p

αi1
1 · pαi22 · · · pαiri

)
,

when m ∈ A respectively m /∈ A.

From the theorems 5.23 and 5.26 it results L(x,m) = ±1 + k1 · d =
k2 · m′, where k1, k2 ∈ Z. Because (d,m′) = 1 the Diophantine equation
k2 ·m′ − k1 · d = ±1 admits integer solutions (the unknowns being k1 and
k2). Hence k1 = m′ · t + k01 and k2 = d · t + k02 , with t ∈ Z, and k01, k

0
2

constitute a particular integer solution of our equation. Thus

L(x,m) ≡ ±1 +m′ · d · t+ k01 · d ≡ ±1 + k01 (mod m)

or
L(x,m) ≡ k02 ·m′ (mod m) .

5.4 Applications

1. The theorem Lagrange was extended of Wilson as follows: ”if p is
prime, then xp−1 − 1 ≡ (x + 1)(x + 2) · · · (x + p − 1) (mod p)”; we
shall extend this result in the following way: For any m 6= 0,±4 we
have for x2 + s2 6= 0 that

xϕ(ms)+s − xs ≡ (x+ 1)(x+ 2) · · · (x+ |m| − 1) (mod m) ,

where ms and s are obtained from the algorithm:

Algorthm 5.27.

(0)

(
x = x0d0 ; (x0,m0) = 1
m = m0d0 ; d0 6= 1

,
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(1)

(
d0 = d10d1 ; (d10,m1) = 1
m0 = m1d1 ; d1 6= 1

,

. . . . . . . . .

(s− 1)

(
ds−2 = d1s−2ds−1 ; (d1s−2,ms−1) = 1
ms−2 = ms−1ds−1 ; ds−1 6= 1

,

(s)

(
ds−1 = d1s−1ds ; (d1s−1,ms) = 1
ms−1 = msds ; ds 6= 1

,

[Smarandache, 1981a, 1984].

Form positive prime we havems = m, s = 0 and ϕ(m) = m−1, that
is Lagrange’s theorem.

2. L. Moser enunciated the following theorem: ”if p is prime, then (p −
1)!ap + a = Mp”, and Sierpinski [1966]: ”if p is prime then ap + (p −
1)!a =Mpwhich merges Wilson’s and Fermat’s theorems in a single
one.

The functionL and the algorithm 5.27 will help us to generalize them
too, so: if a and m are integers, m 6= 0, and C1, C2, . . . , Cϕ(m) are all
modulo rests relatively prime to m then

C1 · C2 · · ·Cϕ(m)a
ϕ(ms)+s − L(0,m) · as =Mm ,

respectively

−L(0,m)aϕ(ms)+s + C1 · C2 · · ·Cϕ(m) · as =Mm ,

or more,

(x+ C1)(x+ C2) · · · (x+ Cϕ(m))a
ϕ(ms)+s − L(x,m) · as =Mm

respectively

−L(x,m)aϕ(ms)+s + (x+ C1)(x+ C2) · · · (x+ Cϕ(m) · as =Mm ,

which reunites Fermat, Euler, Wilson, Lagrange and Moser (respec-
tively Sierpinski).
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3. The author also obtained a partial extension of Moser’s and Sier-
pinski’s results, [Smarandache, 1983], so: if m is positive integer,
m 6= 0, 4, and a is an integer, then (am− a)(m− 1)! =Mm, reuniting
Fermat’s and Wilson’s theorem in another way.

4. Leibniz enunciated that: ”if p is prime then (p − 2)! ≡ 1 (mod p)”;
we consider ”Ci < Ci+1 (mod m)” if Ci < Ci+1 where 0 ≤ Ci <
|m|, 0 ≤ Ci+1 < |m| and Ci ≡ Ci (mod m), Ci+1 ≡ Ci+1 (mod m);
one simply gives that if C1, C2, . . . , Cϕ(m) are all modulo m rests
relatively prime to m (Ci < Ci+1 (mod m) for all i, m 6= 0) then
C1 · C2 · · ·Cϕ(m)−1 ≡ ±1 (mod m) if m ∈ A respectively m /∈ A,
because Cϕ(m) ≡ −1 (mod m).



Chapter 6

Analytical solving of
Diophantine equations

6.1 General Diophantine equations

A Diophantine equation is an equation in which only integer solutions
are allowed.

Hilbert’s 10th problem asked if an algorithm existed for determining
whether an arbitrary Diophantine equation has a solution. Such an al-
gorithm does exist for the solution of first-order Diophantine equations.
However, the impossibility of obtaining a general solution was proven by
Matiyasevich [1970], Davis [1973], Davis and Hersh [1973], Davis [1982],
Matiyasevich [1993] by showing that the relation n = F2m (where F2 is the
2m-th Fibonacci number) is Diophantine. More specifically, Matiyasevich
showed that there is a polynomial P in n, m, and a number of other vari-
ables x, y, z, . . . having the property that n = F2m if there exist integers x,
y, z, . . . such that P (n,m, x, y, z, . . .) = 0.

Matiyasevich’s result filled a crucial gap in previous work by Martin
Davis, Hilary Putnam, and Julia Robinson. Subsequent work by Matiya-
sevich and Robinson proved that even for equations in thirteen variables,
no algorithm can exist to determine whether there is a solution. Matiya-

87
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sevich then improved this result to equations in only nine variables Jones
and Matiyasevich [1981].

Ogilvy and Anderson [1988] give a number of Diophantine equations
with known and unknown solutions.

A linear Diophantine equation (in two variables) is an equation of the
general form

m · x+ n · y = ` ,

where solutions are sought with m, n, and ` integers. Such equations can
be solved completely, and the first known solution was constructed by
Brahmagupta, [Weisstein, 2014b]. Consider the equation

m · x+ n · y = 1 .

Now use a variation of the Euclidean algorithm, letting m = r1 and n = r2

r1 = q1 · r2 + r3 ,

r2 = q2 · r3 + r4 ,
...

...
rn−3 = qn−3 · rn−2 + rn−1 ,

rn−2 = qn−2 · rn−1 + 1.

Starting from the bottom gives

1 = rn−2 − qn−2 · rn−1
rn−1 = rn−3 − qn−3 · rn−2,
rn−2 = rn−4 − qn−4 · rn−3 ,

...
...

n = r2 = r4 − q4 · r3 ,
m = r1 = r3 − q3 · r2
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so

1 = rn−2 − qn−2 · rn−1
= rn−2 − qn−2(rn−3 − qn−3 · rn−2)
= −qn−2 · rn−3 + (1 + qn−2 · qn−3)rn−2
= −qn−2 · rn−3 + (1 + qn−2 · qn−3)(rn−4 − qn−4 · rn−3)
= (1 + qn−2 · qn−3)rn−4 − (qn−2 + qn−4 + qn−2 · qn−3 · qn−4)rn−3
= . . . .

Continue this procedure all the way back to the top.

6.2 General linear Diophantine equation

The utility of this section is that it establishes if the number of natural
solutions of a general linear equation is limited or not. We will show also a
method of solving, using integer numbers, the equation ax−by = c (which
represents a generalization of lemmas 1 and 2 of [Andrica and Andreescu,
1981]), an example of solving a linear equation with 3 unknowns in N, and
some considerations on solving, using natural numbers, equations with n
unknowns.

Let’s consider the equation:

a · x = b , (6.1)

where a ∈ Zn, b ∈ Z or in explicit form

n∑
i=1

aixi = b , (6.2)

with all ai, b ∈ Z, ai 6= 0 and the greatest common factor

d = gcf(a1, a2, . . . , an) . (6.3)
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Observation 6.1. The notion of gcd (greatest common divisor) is the same
with the notion of gcf (greatest common factor) for numbers, gcf being
used for algebraic expressions.

1. the notion of gcf refers to numbers and algebraic expressions, for
example: gcf(2abc, 8a2b, 10abc) = 2ab.

2. gcd refers only to numbers, for example: gcd(2, 8, 10) = 2.

Analogously, the notion of lcm (least common multiple) is the same with
the notion of lcf (least common factory) for numbers, lcf being used for
algebraic expressions.

1. the notion of lcf refers to numbers and algebraic expressions, for
example: lcf(2abc, 8a2b, 10abc) = 40a2b.

2. lcm refers only to numbers, for example: lcm(2, 8, 10) = 40.

Lemma 6.2. The equation (6.2) admits at least a solution in the set of integer, if
d, (6.3), divides b.

Proof. This result is classic.

In (6.2), one does not diminish the generality by considering

gcf(a1, a2, . . . , an) = 1 ,

because in the case when d 6= 1, one divides the equation by this number;
if the division is not an integer, then the equation does not admit natural
solutions.

It is obvious that each homogeneous linear equation admits solutions
in N: at least the banal solution!

6.2.1 The number of solutions of equation
a1 · x1 + a2 · x2 + · · ·+ an · xn = b

We will introduce the following definition:
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Definition 6.3. The equation (6.2) has variations of sign if there are at least
two coefficients ai, aj , with 1 ≤ i, j ≤ n, such that sign(ai, aj) = −1.

Lemma 6.4. An equation (6.2) which has sign variations admits an infinity of
natural solutions.

Observation 6.5. Lemma 6.4 generalization of lemma 1 of [Andrica and An-
dreescu, 1981].

Proof. From the hypothesis of the lemma it results that the equation has h
no null positive terms, 1 ≤ h ≤ n, and k = n− h non null negative terms.
We have 1 ≤ k ≤ n; it is supposed that the first h terms are positive and
the following k terms are negative (if not, we rearrange the terms).

We can then write:

h∑
i=1

aixi −
n∑

j=h+1

a′jxj = b where a′j = −aj > 0 .

Let’s consider 0 < M = lcm(a1, a2, . . . , an), the least common multiple,
and ci = |M/ai|, i ∈ In = {1, 2, . . . , n}.

Let’s also consider 0 < P = lcm(h, k), the least common multiple, and
h1 = P/h, and k1 = P/k. Taking{

xt = h1ct · z + x0t , 1 ≤ t ≤ h
xj = k1cj · z + x0j , h+ 1 ≤ j ≤ n

where z ∈ N,

z ≥ max
1≤t≤h<j≤n

{[
−x0t
h1ct

]
,

[
x0j
k1cj

]}
+ 1 ,

where [γ] meaning integer part of γ, i.e. the greatest integer less than or
equal to γ, and x0i , i ∈ In, a particular integer solution (which exists accord-
ing to lemma 6.2), we obtain an infinity of solutions in the set of natural
numbers for the equation (6.2).

Lemma 6.6.
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1. An equation (6.2) which does not have variations of sign has at maximum
a limited number of natural solutions.

2. In this case, for b 6= 0, constant, the equation has the maximum number of
solutions if and only if all ai = 1 for i ∈ In.

Proof.

1. One considers all ai > 0 (otherwise, multiply the equation by −1).

If b < 0, it is obvious that the equation does not have any solu-
tion in N.

If b = 0, the equation admits only the trivial solution.

If b > 0, then each unknown xi, takes positive integer values
between 0 and di = b/ai (finite), and not necessarily all these
values. Thus the maximum number of solutions is lower or
equal to

∏n
i=1(1 + di), which is finite.

2. For b 6= 0, constant,
∏n
i=1(1 + di) is maximum if and only if di are

maximum, i.e. if ai = 1 for all i ∈ In.

Theorem 6.7. The equation (6.2) admits an infinity of natural solutions if and
only if it has variations of sign.

Proof. This naturally follows from the previous results.

6.2.2 Diophantine equation of first order with two unknown

Theorem 6.8. Let’s consider the equation ax− by = c, with integer coefficients,
where a > 0 and b > 0 and (a, b) = gcd(a, b) = 1. Then the general solution in
natural numbers of this equation is:{

x = bk + x0
y = ak + y0

(6.4)
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where (x0, y0) is a particular integer solution of the equation, and

k ≥ max

{⌈
−x0
b

⌉
,

⌈
−y0
a

⌉}
is an integer parameter.

Observation 6.9. The theorem 6.8 generalization of lemma 2 of [Andrica
and Andreescu, 1981].

Proof. It results from [Creangă et al., 1965] that the general integer solution
of the equation is (6.4). Since x and y are natural integers, it is necessary
for us to impose conditions for k such that x ≥ 0 and y ≥ 0, from which it
results the theorem 6.8.

The solve in the set of natural numbers a linear equation with n un-
knowns we will use the previous results in the following way:

(a) If equation does not have variations of sign, because it has a limited
number of natural solutions, the solving is made by tests.

(b) If it has variations of sign and if b is divisible by d, then it admits an
infinity of natural solutions. One finds its general integer solution,
see [Ion and Nit,ă, 1978];

xi =

n−1∑
j=1

αijkj + βj , i ∈ In ,

where all the αij , βj ∈ Z and the kj are integer parameters.

By applying the restriction xi ≥ 0 for i ∈ In, one finds the conditions
which must be satisfied by the parameters kj :

kj ∈ Z, for all j ∈ In−1. (6.5)

The case n = 2 and n = 3 can be done by this method, but when n is
bigger, the conditions (6.5) becomes more and more difficult to find.
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Example 6.10. Solve in N the equation 3x− 7y + 2z = −18.
Solution: In Z one obtains the general integer solution:

x = k1
y = k1 + 2k2
z = 2k1 + 7k2 − 9

,

with k1 and k2 in Z.
From the conditions (6.5) result the inequalities x ≥ 0, y ≥ 0, z ≥ 0. It

results that k1 ≥ 0 and also:

k2 ≥ −
k1
2

if −k1
2
/∈ Z,

or

k2 ≥ −
k1
2

if −k1
2
∈ Z;

and

k2 ≥
9− 2k1

7
+ 1 if

9− 2k1
7

/∈ Z,

or

k2 ≥
9− 2k1

7
if

9− 2k1
7

∈ Z;

that is

k2 ≥
2− 2k1

7
+ 2 if

2− 2k1
7

/∈ Z,

or

k2 ≥
2− 2k1

7
+ 1 if

2− 2k1
7

∈ Z.

With these conditions on k1 and k2 we have the general solution in natural
numbers of the equation.
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Procedure for solving Diophantine equations of first order
with two unknowns

For automatically solving the Diophantine equations of order 1 with 2
unknowns ax− by = c we need the following program.

Program 6.11. Program for finding a solution.

S12(a, b, c) := return ”Error(a, b) 6= 1” if gcd(a, b) 6= 1
m← 106

for x ∈ 1..m
for y ∈ floor(ax−c−1b )..ceil(ax−c+1

b )

return
(
x y

)T
if a · x− b · y − c=0

return ”Not found a solution”

Example 6.12. We consider the Diophantine equation on the set of natural
numbers 1245x− 365y = 4567. This case is solvable, as gcd(a, b) = 1.

a := 124 b := 365 c := 4567 gcd(a, b) = 1

(
x0
y0

)
:= S12(a, b, c) =

(
28
−3

)

k0 := max

((
ceil

(−x0
b

)
ceil

(−y0
a

) )) = 1

x(k) := b · k + x0
y(k) := a · k + y0
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for k := k0..10 we obtain the solutions

x(k)→



393
758

1123
1488
1853
2218
2583
2948
3313
3678


y(k)→



121
245
369
493
617
741
865
989

1113
1237


.

Solving of Diophantine equation a1 · x1 + a2 · x2 + . . .+ an · xn = b

In this section we will present the problem of solving for integers equa-
tions of the form:

a1 · x1 + a2 · x2 + . . .+ an · xn = b (6.6)

where ak, b ∈ Z for k ∈ In.
We suppose that not all the numbers ak, for k ∈ In, are null. Obviously,

to exist an integer solution of the equation (6.6) it is necessary that

d = (a1, a2, . . . , an) = gcd(a1, a2, . . . , an) | b .

We will prove that this condition is also sufficient.
Let a′k = ak/d, k ∈ In and b′ = b/d. We consider following equation

equivalent with (6.6)

a′1 · x1 + a′2 · x2 + . . .+ a′n · xn = b′ (6.7)

then (a′1, a
′
2, . . . , a

′
n) = 1. Let a′k, a′j be non-null numbers with k < j and

|a′k| >
∣∣∣a′j∣∣∣. According to the Theorem of division with remainder, [Burton,

2010], there exist the numbers q and r such that

a′k = a′j · q + r
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and, by substituting a′k in (6.7) equation

a′1 · x1 + . . .+ r · xk + . . .+ a′j(xj + q · xk) + . . .+ a′n · xn = b′ (6.8)

is obtained.
Equation (6.8) can be written as:

a′′1 · x′′1 + . . .+ a′′n · x′′n = b′ (6.9)

where

a′′i =

{
a′i , i 6= k
r , i = k

, x′′i =

{
xi , i 6= k
xj + q · xk , i = k

.

It can be easily observed that there exists a one-to-one correspondence
between the solutions of equations (6.7) and (6.9). Furthermore, knowing
the solutions of equation (6.9) and taking into account the previous trans-
formations, the solutions of equation (6.7) can also be given.

We mention that, for every i, k ∈ In, i 6= k following relations hold:

a′′i = a′i and
∣∣a′′k∣∣ < ∣∣a′k∣∣ .

Additionally, we have

(a′′1, . . . , a
′′
n) = (a′1, . . . , a

′
k − a′j · q, . . . , a′n) = (a′1, . . . , a

′
n) = 1.

After summing all the previous relations, we conclude that equation
(6.7) can be reduced to the form

ã1 · x̃1 + . . .+ ãn · x̃n = b′ (6.10)

after a finite number of steps, where ãi with i ∈ In are non-null numbers,
whose absolute values are pairwise distinct.

Hence, we deduce that the numbers ãi, i ∈ In have only the values 0
or ±1 and are not all null. Without any loss of generality of the problem,
we suppose that ã1 = 1. Then equation (6.10) has following solutions

x̃1 = b′ − ã2 · t2 − . . .− ãn · tn
x̃2 = t2
. . .
x̃n = tn
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where t2, t3, . . . , tn are arbitrary integers. Using the transformations done
along the previous reasonings, the solutions of equation (6.7) are also ob-
tained.

We insist on mentioning that in solving equation (6.10) the fact that
ã1 = 1 was used, and, therefore, if at a certain step of the indicated algo-
rithm an equation with at least one coefficient equal to ±1 is obtained, the
solution of this equation can be written similarly with the solution of the
equation (6.10).

6.3 Solving the Diophantine linear systems

More generally, every system of linear Diophantine equations may be
solved by computing the Smith normal form of its matrix, in a way that is
similar to the use of the reduced row echelon form to solve a system of linear
equations over a field.

ABS algorithm for solving linear Diophantine equations, Gao and
Dong [2008] introduce an algorithm for solving a system of m linear in-
teger inequalities in n variables, m ≤ n, with full rank coefficient matrix.

6.3.1 Procedure of solving with row–reduced echelon form

Echelon form (or row echelon form) is:

1. All nonzero rows are above any rows of all zeros.

2. Each leading entry (i.e. leftmost nonzero entry) of a row is in a col-
umn to the right of leading entry of the row above it.

3. All entries in a column below a leading entry are zero.

Example 6.13. Echelon forms:
� ∗ ∗ ∗ ∗
0 � ∗ ∗ ∗
0 0 0 0 0
0 0 0 0 0

 ,


� ∗ ∗
0 � ∗
0 0 �
0 0 0

 ,
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
0 � ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 � ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 � ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 � ∗ ∗ ∗
0 0 0 0 0 0 0 0 � ∗ ∗

 .

where we noted with � any nonzero integer and with ∗ any integer.

Reduced echelon form: Add the following conditions to conditions 1, 2
and 3 above.

4. The leading entry in each nonzero row is1.

5. Each leading 1 is the only nonzero entry in its column.

A matrix is in reduced row echelon form, also called row canonical form, if
it satisfies the following conditions, [Meyer, 2000].

Example 6.14. Reduced echelon form:
0 1 ∗ 0 0 ∗ ∗ 0 0 ∗ ∗
0 0 0 1 0 ∗ ∗ 0 0 ∗ ∗
0 0 0 0 1 ∗ ∗ 0 0 ∗ ∗
0 0 0 0 0 0 0 1 0 ∗ ∗
0 0 0 0 0 0 0 0 1 ∗ ∗

 .

The theorem uniqueness of the reduced echelon form, [Nakos and
Joyner, 1998, Meyer, 2000]:

Theorem 6.15. Each matrix is row-equivalent to one and only one reduced ech-
elon matrix.

Definition 6.16. Pivot position is a position of a leading entry in an eche-
lon form of the matrix.

Definition 6.17. Pivot is a nonzero number that either is used in a pivot
position to create 0′s or is changed into a leading 1, which in turn is used
to create 0′s.
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Definition 6.18. Pivot column is a column that contains a pivot position.

The theorem existence and uniqueness, [Nakos and Joyner, 1998,
Meyer, 2000].

Theorem 6.19.

1. A linear system is consistent if and only if the rightmost column of aug-
mented matrix is not a pivot column (i.e. if and only if an echelon form of
the augmented matrix has no row of the form [0 0 . . . 0 b], where b 6= 0).

2. If a linear system is consistent, then the solution contains either

(a) a unique solution (when there are no free variables) or

(b) infinitely many solutions (when there is at least one free variable).

Algorthm 6.20. The algorithm using reduced row echelon form to solve
linear system:

1. Write the augmented matrix of the system.

2. Use the row reduction algorithm to obtain equivalent augmented
matrix in echelon form. Decide whether the system is consistent. If
not stop; otherwise go to the next step.

3. Continue row reduction to obtain the reduced echelon form.

4. Write the system of equations corresponding to the matrix obtained
in step 3.

5. State the solution by expressing each basic variable in terms of free
variables and declare the free variables.

Example 6.21. Solving by means of symbolic computation of a Diophan-
tine linear system using the method row reduced echelon form. We consider
the origin of the vectors and matrices equal to 1.

ORIGIN := 1
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We consider the system A · x = b, where

A :=

 0 3 −6 6 4
3 −7 8 −5 8
3 −9 12 −9 6

 b :=

 −5
9

15

 .

We concatenate matrix A to the free term b and we determine the num-
ber of lines and columns of matrix E

E := augment(A, b) n := rows(E)→ 3 cols(E)→ 6 .

By means of the Mathcad function rref we determine the row reduced
echelon form of matrix E.

R := rref(E)→

 1 0 −2 3 0 24
0 1 −2 2 0 −7
0 0 0 0 1 4

 .

According to this matrix, it follows that the main unknowns are x1, x2
and x5, while x3 and x4 are the secondary unknowns.

S(x1, x2, x3, x4, x5) :=

submatrix(R, 1, n, 1,m− 1) ·


x1
x2
x3
x4
x5

−R〈m〉 →
 x1 − 2x3 + 3x4 + 24

x2 − 2x3 + 2x4 + 7
x5 − 4


We determine x1, x2 and x5 relative to x3 and x4.(
x1 x2 x5

)
:=

S(x1, x2, x3, x4, x5)solve
(
x1 x2 x5

)
→(

2x3 − 3x4 − 24 2x3 − 2x4 − 7 4
)
.
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We verify if the obtained solution satisfies the equation

A ·


x1
x2
x3
x4
x5

− b = 0 ,

A ·


2x3 − 3x4 − 24
2x3 − 2x4 − 7

x3
x4
4

− b→
 0

0
0

 .

It is obvious that for different integer values of x3 and x4 there result
integer solutions for the linear system.

Example 6.22. Linear Diophantine system that has a unique solution. We
consider the linear system with

A :=

 3 4
2 5
−2 −3

  −3
5
1

 .

We consider matrix E and we count the number of lines and columns
of matrix E.

E := augment(A, b) n := rows(E)→ 3 cols(E)→ 3 .

The matrix row reduced echelon form is

R := rref(E)→

 1 0 −5
0 1 3
0 0 0

 .
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We compute

S(x1, x2) :=

submatrix(R, 1, n, 1,m− 1) ·
(
x1
x2

)
−R〈m〉 →

 x1 + 5
x2 − 3

0

 .

From this result follows that the main unknowns are x1 and x2 which
do not depend on any other variable and we have x1 = −5 and x2 = 3.

Indeed, it is verified that

A ·
(
−5

3

)
− b =

 0
0
0

 .

Example 6.23. Linear Diophantine system that has no solutions. We con-
sider matrix A and vector b

A :=


1 1 1
1 2 4
1 3 9
1 4 16



−1

3
3
5

 .

Let be matrix E

E := augment(A, b) n := rows(E)→ 4 m := cols(E)→ 4 .

We compute the matrix row-reduced echelon form by means of function
rref

R := rref(E)→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
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Following calculation is done

S(x1, x2, x3) :=

submatrix(R, 1, n, 1,m− 1) ·

 x1
x2
x3

−R〈m〉 →


x1
x2
x3
−1

 .

We try to solve by means of symbolic computation, using function
solve, the equation S(x1, x2, x3)=0 :

S(x1, x2, x3)=0 solve(x1, x2, x3) →
No solution was found

.

The Mathcad’s answer is: No solution was found.

Example 6.24. Linear Diophantine system with matrix A and free term b

A :=


1 2 3 4 5 6
1 4 9 16 25 −36
1 8 27 64 125 216
1 16 81 256 625 −1296
1 32 243 1024 3125 7776

 b :=


104
−140
2750
−7952
87374

 .

Matrix E is obtained by concatenating vector b to matrix A.

E := augment(A, b) n := rows(E)→ 5 m := cols(E)→ 7 .

We compute the matrix row-reduced echelon form by means of function
rref

R := rref(E)→


1 0 0 0 0 1980 17833
0 1 0 0 0 −3465 −31185
0 0 1 0 0 3080 27719
0 0 0 1 0 −1386 −12469
0 0 0 0 1 252 2272

 .
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We compute

S(y1, y2, y3, y4, y5, y6) :=

submatrix(R, 1, n, 1,m− 1) ·



y1
y2
y3
y4
y5
y6

−R
〈m〉 →


y1 + 1980 · y6 − 17833
y2 − 3465 · y6 + 31185
y3 + 3080 · y6 − 27719
y4 − 1386 · y6 + 12469
y5 + 252 · y6 − 2272

 .

We solve by means the symbolic computation, using function solve,
equation S(y1, y2, y3, y4, y5, y6)=0 :

y1
y2
y3
y4
y5

 := S(y1, y2, y3, y4, y5, y6)=0 solve


y1
y2
y3
y4
y5

→


17833− 1980 · y6
−31185 + 3465 · y6

27719− 3080 · y6
−12469 + 1386 · y6

2272− 252 · y6

 .

6.3.2 Solving with Smith normal form

Using matrix notation every system of linear Diophantine equations
may be written

A ·X = C
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where A is a m × n matrix of integers, X is a n × 1 column matrix of
unknowns and C is a m× 1 column matrix of integers.

The computation of the Smith normal form ofA provides two unimod-
ular matrices (that is matrices that are invertible over the integers, which
have±1 as determinant) U and V of respective dimensions mm and n×n,
such that the matrix

B = [bi,j ] = UAV

is such that bi,i is not zero for i not greater than some integer k, and all the
other entries are zero. The system to be solved may thus be rewritten as

B(V −1 ·X) = U · C.

Calling yi the entries of V −1 ·X and di those of D = U ·C, this leads to the
system

bi,i · yi = di for 1 ≤ i ≤ k
0 · yi = di for k < i ≤ n

This system is equivalent to the given one in the following sense: A col-
umn matrix of integers x is a solution of the given system if and only if
x = V · y for some column matrix of integers y such that By = D.

It follows that the system has a solution if and only if bi,i divides di for
i ≤ k and di = 0 for i > k. If this condition is fulfilled, the solutions of the
given system are

V ·



d1
b1,1

...
dk
bk,k

hk+1
...
hn


where hk+1, . . . , hn are arbitrary integers, [Schmidt, 1991, Lazebnik, 1996,
Smart, 1998].
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6.4 Solving the Diophantine equation
of order n with an unknown

The Diophantine equation of order n with a single unknown is

P (x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0 = 0 , (6.11)

where ak ∈ Z, an 6= 0. The problem that arises is to find the solutions
that are rational numbers (Q) or integers (Z) or natural numbers (N). As
it is well known, the Fundamental Theorem of Algebra, [Krantz, 1999],
assures the existence of n complex solutions for the algebraic equation of
order n. Therefore, the Diophantine equation (6.11) can not have more
than n rational, integer or natural solutions.

Leaving from ”Vieta’s formula”, [Viète, 1646, Girard, 1884]:

s1 · s2 · · · sn = (−1)n
a0
an

,

where sk are the roots of polynomial P , which means P (sk) = 0, for k ∈ In,
it results a classic method. This method supposes finding all the divisors of
an and of a0. Afterwards, the set of numbers that divide an/a0 is generated
(finite set,≤ σ0(an)σ0(a0)) and it is tested which of those divisors are roots
of polynomial P .

We give an automatic procedure for finding the rational, integer or nat-
ural solutions which uses following 3 programs.

Program 6.25. Program to find the divisors of a natural number.

Div(m) := j ← 0
dj ← 1
for k ∈ 2..f loor(m2 )
if mod(m, k)=0
j ← j + 1
dj ← k

d← stack(d,m)
return d
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Program 6.26. Program to find the factors (repetition excluded) of the num-
ber a0/an. This program calls the program 6.25.

Factori(a) := d0← Div(|a0|)
dn← Div(

∣∣alast(a)∣∣)
f ← d0
i← last(f) + 1
for k ∈ 0..last(d0)
for j ∈ 1..last(dn)

fi ← d0k
dnj

i← i+ 1
f ← sort(f)
j ← 0
wj ← f0
for k ∈ 1..last(f)
if wj 6= fk
j ← j + 1
wj ← fk

return w

Program 6.27. Program to find the rational solutions for the input param-
eter t = 0, the integer solutions for the input parameter t = 1 and the
natural solutions for the input parameter t = 2. This program calls the
programs 6.26 and 1.26.

Sqzn(a, t) := retur ”Error t 6= 0 ∧ 1 ∧ 2” if t 6= 0 ∧ t 6= 1 ∧ t 6= 2
f ← Factori(a)
fs← sort(f)
f ← stack(−reverse(fs), fs)
w ← f if t=0
if t=1
j ← 0
for k ∈ 0..last(f)
if fk=trunc(fk)
wj ← fk
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j ← j + 1
if t=2
j ← 0
for k ∈ 0..last(f)
if fk=trunc(fk) ∧ fk ≥ 0
wj ← fk
j ← j + 1

i← 0
for k ∈ 0..last(w)
if Horner(a,wk)=0
si ← wk
i← i+ 1

return sT

Example 6.28. We consider the polynomial defined by the vector

a :=
(
−96 776 −1568 134 1620 −359 −466 49 30

)T
,

afterwards we consider the calls

S(a, 2)→
(

3
)
,

S(a, 1)→
(
−4 −2 3

)
,

S(a, 0)→
(
−4 −2

1

5

1

2

2

3
3

)
.

The first call states that the polynomial defined by vector a has a unique
natural solution; the second call tells us that the polynomial has 3 inte-
ger solutions; while the third call shows hat the polynomial has 6 integer
solutions.

The second method supposes finding all the roots of the polynomial
by means of formula for polynomials of order n ≤ 4 and emphasizing the
rational, integer or natural roots.
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As the polynomials of degree n > 4 can not be solved with square roots
(Impossibility Theorem, Abel [1826, 1881, 1988] and Galois 1832, [Artin,
1944], (this was also shown by Ruffini in 1813 [Wells, 1986]), the roots of
the polynomial will be approximated by a numerical method, usually La-
guerre’s method, [Cira, 2005](probably the best numerical method for ap-
proximating the solutions of a algebraic equation. This method is imple-
mented in most of the mathematics softwares, such as Maple, Mathemat-
ica, Matlab, Mathcad.

The approximative roots which are ”close” to rational, integer or natu-
ral numbers are verified by direct computation (Schema of Horner [1819],
the fastest algorithm for computing the values of an algebraic polynomial)
if those numbers are the solutions of the equation P (x) = 0. We give an
example of how this method is applied.

Example 6.29. Let be the algebraic equation P (x) = 0, where polynomial
P is defined by the vector

a := (2074506308666643852, −4170138555243755952,

3708600060698625999, −2371615921694294428,

1144052588009550927, −392768652155202268,

93951730922422481, −15744238825971732,

1864646677195241, −156394532149220,

9205044609900, −370727876000,

9701590000, −148200000, 1000000)T

The call of Mathcad function polyroots will give approximations for the
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solutions of the algebraic equation P (x) = 0

s := polyroots(a)

=



−0.00000000595668852− 2.0000000743130992i
−0.00000000540100408 + 2.00000007346564i

1.0999993750452355
5.097397296153272
5.911537626129313
6.877530938768753
8.128108099781006
9.08388413343586
10.99946985840438
13.00329871837791
16.99735261469869
19.00160713253058
22.99980560963407
29.00000860839862



.

Aside the fist two solution which are complex numbers,the other so-
lutions are ”close” to natural numbers. By direct computation it can be
established which of these ”close” integer are solutions natural numbers.

P (1)→ 72560416394188800 ,
P (5)→ −856324819703808 ,
P (6)→ −202256700445800 ,
P (7)→ 153045758638080 ,
P (8)→ 161732639306700 ,
P (9)→ −274961651328000

P (11)→ 0 ,
P (13)→ 0 ,
P (17)→ 0 ,
P (19)→ 0 ,
P (23)→ 0 ,
P (29)→ 0 .
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The conclusion is that equation P (x) = 0 has following solutions natural
numbers: 11, 13, 17, 19, 23 and 29.

In the case of algebraic equations of order 1, 2, 3 and 4 the solutions are
obtained by means of symbolic calculus, by applying well known formu-
las.

Equation 29x2 − 490x+ 1469 = 0 has the solutions

29x2 − 490x+ 1469 solve

 13

113

29


which implies that there exists a rational solution and a natural solution.

Equation 127x3 − 28829x2 − 12767x+ 2898109 = 0 has the solutions

127x3 − 28829x2 − 12767x+ 2898109 solve→



227

√
1621409

127

−
√

1621409

127


hence, we have a unique solution natural number.

Equation 3x4 − 7x3 + 17x2 − 35x+ 10 = has the solutions

3x4 − 7x3 + 17x2 − 35x+ 10 solve→



2

1

3

√
5i

−
√

5i


therefore we have a solution natural number and a solution rational num-
ber.
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6.5 The Diophantine equation of second order
and with two unknowns

We consider the equation

ax2 − by2 + c = 0 , (6.12)

with a, b ∈ N∗ and c ∈ Z∗. It is a generalization of Pell’s equation
x2 −Dy2 = 1, [Dickson, 2005]. Here, we show that: if the equation has an
integer solution and a · b is not a perfect square, then (6.12) has an infini-
tude of integer solutions; in this case we find a closed expression (xn, yn),
the general positive integer solution, by an original method. More, we
generalize it for any Diophantine equation of second degree and with two
unknowns.

6.5.1 Existence and number of solutions of Diophantine
quadratic equations with two unknowns in Z and N

We study the existence and number of solutions in the set of integers,
Z and the set of natural numbers, N of Diophantine equations of second
degree with two unknowns of the general form (6.12).

Theorem 6.30. The equation x2 − y2 = c admits integer solutions if and only if
c belongs to 4Z or is odd.

Proof. The equation (x − y)(x + y) = c admits solutions in Z if there exist
c1 and c2 in Z such that x− y = c1, x+ y = c2 and c1c2 = c. Therefore

x =
c1 + c2

2
and y =

c2 − c1
2

.

But x and y are integers if and only if c1 + c2 ∈ 2Z, i.e.:

1. or c1 and c2 are odd, then c is odd (and reciprocally),

2. or c1 and c2 are even, then c ∈ 4Z.
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Reciprocally, if c ∈ 4Z, then we can decompose up c into two even
factors c1 and c2, such that c1c2 = c.

Remark 6.31. The theorem 6.30 is true also for solving in N, because we can
suppose c ≥ 0 (in the contrary case, we can multiply the equation by −1),
and we can suppose c2 ≥ c1 ≥ 0, from which x ≥ 0 and y ≥ 0.

Theorem 6.32. The equation x2 − dy2 = c2 (where d is not a perfect square)
admits infinity of solutions in N.

Proof. Let’s consider x = ck1, k1 ∈ N and y = ck2, k2 ∈ N, c ∈ N. It re-
sults that k21 − dk22 = 1, which we can recognize as being the Pell-Fermat’s
equation, which admits an infinity of solutions in N, (un, vn). Therefore
xn = cun, yn = cvn constitute an infinity of natural solutions for our equa-
tion.

Theorem 6.33. The equation (6.12), c 6= 0, where ab = k2, k ∈ Z, admits a
finite number of natural solutions.

Proof. We can consider a, b, c as positive numbers, otherwise, we can mul-
tiply the equation by −1 and we can rename the variables.

Let us multiply the equation by a, then we will have:

z2 − t2 = d with z = ax ∈ N , t = ky ∈ N and d = ac > 0 . (6.13)

We will solve it as in theorem 6.30, which gives z and t. But in (6.13)
there is a finite number of natural solutions, because there is a finite num-
ber of integer divisors for a number in N∗. Because the pairs (z, t) are in a
limited number, it results that the pairs (z/a, t/k) also are in limited num-
ber, and the same for the pairs (x, y).

Theorem 6.34. If the equation (6.2), where ab 6= k2, k ∈ Z, admits a particular
nontrivial solution in N, then it admits an infinity of solutions in N.

Proof. Let’s consider: {
xn = x0 · un + b · y0 · vn ,
yn = y0 · un + a · x0 · vn ,

(6.14)
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for n ∈ N, where (x0, y0) is the particular natural solution for the equation
(6.12), and (un, vn) is the general natural solution for the equation u2 −
abv2 = 1, called the solution Pell, which admits an infinity of solutions.
Then ax2n − by2n = (ax20 − by20)(u2n − abv2n) = c. Therefore (6.14) verifies the
equation (6.12).

6.5.2 Method of solving the Diophantine equation of second or-
der

Suppose (6.12) has many integer solutions. Let (x0, y0), (x1, y1) be the
smallest positive integer solutions for (6.12), with 0 ≤ x0 < x1. We con-
struct the recurrent sequences:{

xn+1 = αxn + βyn
yn+1 = γxn + δyn

(6.15)

putting the condition (6.15) verify (6.12). It results:

aαβ = bγδ (6.16)
aα2 − bγ2 = a (6.17)
aβ2 − bδ2 = −b (6.18)

having the unknowns α, β, γ, δ.
We pull out aα2 and aβ2 from (6.17), respectively (6.18), and replace

them in (6.16) at the square; it obtains

aδ2 − bγ2 = a . (6.19)

We subtract (6.19) from (6.17) and find

α = ±β . (6.20)

Replacing (6.20) in (6.16) it obtains

β = ± b
a
γ . (6.21)
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Afterwards, replacing (6.20) in (6.17), and (6.21) in (6.18) it finds the
same equation:

aα2 − bγ2 = a . (6.22)

Because we work with positive solutions only, we take

xn+1 = α0xn +
b

a
γ0yn (6.23)

yn+1 = γ0xn + α0yn (6.24)

where (α0, γ0) is the smallest, positive integer solution of (6.22) such that
α0γ0 6= 0. Let

A =

(
α0

b

a
γ0

γ0 α0

)
∈M2(Z) . (6.25)

Of course, if (x′, y′) is an integer solution for (6.12), then

A ·
(
x′

y′

)
, A−1 ·

(
x′

y′

)
are another ones, where

A−1 =
1

γ2b− aα2

(
−aα γb
γb −aα

)
is the inverse matrix ofA, i.e. A−1 ·A = A ·A−1 = I (unit matrix). Hence, if
(6.12) has an integer solution it has an infinite ones. Clearly A−1 ∈M2(Z).

The general positive integer solution of the equation (6.12) is (x′n, y
′
n) =

(|xn| , |yn|). (
xn
yn

)
= An ·

(
x0
y0

)
for all n ∈ Z , (6.26)

where by conversion A0 = I and

A−k = A−1 · · ·A−1︸ ︷︷ ︸
k times

.
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In problems it is better to write general solution as(
x′n
y′n

)
= An ·

(
x0
y0

)
n ∈ N (6.27)

and (
x′′n
y′′n

)
= An ·

(
x1
y1

)
n ∈ N∗ . (6.28)

We proof, by reduction ad absurdum, (6.28) is a general positive integer
solution for (6.12).

Let (u, v) be a positive integer particular solution for (6.12). If

∃ k0 ∈ N : (u, v) = Ak0 ·
(
x0
y0

)
or

∃ k1 ∈ N∗ : (u, v) = Ak1 ·
(
x0
y0

)
,

then (u, v) ∈(6.28). Contrary to this, we calculate

(ui+1, vi+1) = A−1 ·
(
ui
vi

)
for i = 0, 1, 2, . . ., where u0 = u, v0 = v. Clearly ui+1 < ui for all i. After a
certain rank x0 < ui0 < x1 it finds either 0ui0 < x0 but that is absurd.

It is clear we can put(
xn
yn

)
= An ·

(
x0
ε · y0

)
n ∈ N , where ε = ±1 . (6.29)

We shall now transform the general solution (6.29) in closed expres-
sion.

Let λ be real number, then det(A − λI) = 0 involves the solutions λ1,2
and the proper vectors v1,2 i.e.

A · vi = λi · vi , for i ∈ I2 .
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Note
P =

(
v1 v2

)
∈M2(R) .

Then

P−1 ·A · P =

(
λ1 0
0 λ2

)
,

whence

An = P ·
(
λn1 0
0 λn2

)
· P−1

and replacing it in (6.29) and doing the calculus we find a closed expres-
sion for (6.29).

6.5.3 Procedure for solving of Diophantine equation
of second order with two unknowns

We will present an automatic procedure for solving Diophantine equa-
tions (6.12). We have two programs that establish the basis matrix (6.25)
and the particular minimal solution. The input variables are the integer
constants a, b and c. Finding the basis matrix and the minimal solution is
done up to a given limit (in our case up to m = 106, obviously this limit
can be augmented).

Program 6.35. Program for finding the basis matrix.

M(a, b) := m← 106

for α ∈ 2..m

q ←
√
b

a
(α− 1)(α+ 1)

break if q=trunc(q) ∧ a
b
q=trunc

(a
b
q
)

return

(
α q
a

b
q α

)
if α < m

return ”Error Matrix A was not found” otherwise

Program 6.36. Program for finding the minimal solutions.
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SM(a, b, c) := m← 106

for y ∈ 1..m

d← b · y2 − c
a

if d ≥ 0

x←
√
d

break if x=trunc(x)

return

(
x x
y −y

)
if y < m

return ”Error S was not found” otherwise

Example 6.37. For the Diophantine equation 2x2 − 3y2 = 5, we give the
sequence of symbolic Mathcad commands which completely solve analyt-
ically the Diophantine equation. Origin indices are considered 1 by using
the command ORIGIN := 1.

We initialize the constants a, b and c

a := 2 b := 3 c := −5

The determine the basis matrix A and the eigenvalues of the matrix by
means of the Mathcad function eigenvals

A := M(a, b) =

(
5 6
4 5

)
λ := eigenvals(A)→

(
5 + 2

√
6

5− 2
√

6

)
We determine the eigenvectors of matrixAwith the aid of the Mathcad

function eigenvec and we build matrix V

V := augment(eigenvec(A, λ1), eigenvec(A, λ2))→

 √6

2
−
√

6

2
1 1


We have matrix P (n) given by formula (where P (n) = An):

P (n) := V ·
(

(λ1)
n 0

0 (λ2)
n

)
· V −1
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We determine the minimal solutions

SM(a, b, c)→
(

2 2
1 −1

)

S0 := SM(a, b, c)〈1〉 →
(

2
1

)
S1 := SM(a, b, c)〈2〉 →

(
2
−1

)

The general solutions of the Diophantine equation are S0(n) and S1(n)

S0(n) := (An · S0)T S1(n) := (An · S1)T

The explicit formulas for the general solutions are T0(n) and T1(n)

T0(n) := P (n) · S0 factor → (
√

6 + 4)(5 + 2
√

6)n − (
√

6− 4)(5− 2
√

6)n

4
(2
√

6− 3)(5− 2
√

6)n − (2
√

6 + 3)(5 + 2
√

6)n

6



T1(n) := P (n) · S1 factor → (
√

6 + 4)(5− 2
√

6)n − (
√

6− 4)(5 + 2
√

6)n

4
(2
√

6 + 3)(5− 2
√

6)n − (2
√

6− 3)(5 + 2
√

6)n

6


Let n = 0, 1, 2, . . . , 10

n := 0..10



6.5. THE DIOPHANTINE EQUATION OF SECOND ORDER 121

We display the solutions for n

S0(n)→



2 1
16 13
158 129
1564 1277
15482 12641
153256 125133
1517078 1238689
15017524 12261757
148658162 121378881
1471564096 1201527053
14566982798 11893891649



S1(n)→



2 −1
4 3
38 31
376 307
3722 3039
36844 30083
364718 297791
3610336 2947827
35738642 29180479
353776084 288856963
3502022198 2859389151


The displayed solutions can be tested if we verify the Diophantine

equation by the aid of the sequences:

a · (S0(n)1)
2 − b · (S0(n)2)

2 + c→(
0 0 0 0 0 0 0 0 0 0 0

)T

a · (S1(n)1)
2 − b · (S1(n)2)

2 + c→(
0 0 0 0 0 0 0 0 0 0 0

)T
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The solutions given by the expressions T0(n) and T1(n) can also be dis-
played, as follows:

(
T0(n)1 T0(n)2

)
→



2 1
16 13
158 129
1564 1277
15482 12641
153256 125133
1517078 1238689
15017524 12261757
148658162 121378881
1471564096 1201527053
14566982798 11893891649



,

(
T1(n)1 T1(n)2

)
→



2 −1
4 3
38 31
376 307
3722 3039
36844 30083
364718 297791
3610336 2947827
35738642 29180479
353776084 288856963
3502022198 2859389151



.

Obviously these solutions are identical with those given by S0(n) and
S1(n).

Basically, any Diophantine equation of the type (6.12) can be com-
pletely solved with this set of commands.

Example 6.38. Let us consider the equation 13x2 − 17y2 + 2636 = 0. The
basis matrix is

A := M(13, 17) =

(
1665 1904
1456 1665

)
.
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The minimal solutions are:

S0 →
(

19
11

)
S1 →

(
19
−11

)
.

the solutions are given by the formulas:

S0(n) := (An · S0)T S1(n) := (An · S1)T .

The values given by S0 for n = 0, 1, 2 and 10 are:

19, 11 , 52579, 45979 , 175088051, 153110059

and

2647342081327033989423041791914721331,

2315033492863349726442025803342919339 ,

and the values provided by S1 for n = 0, 1, 2 and 10 are:

19,−11 , 10691, 9349 , 35601011, 31132181

and

538289472181531211118549596688006131,

470720488200496189286367630993971861 .

The explicit solutions are:

T0(n) := P (n) · S0 factor → (11
√

221 + 247)θn1 − (11
√

221− 247)θn2
26

(19
√

221 + 187)θn1 − (19
√

221− 187)θn2
34


where

θ1 = 1665 + 112
√

221 , θ2 = 1665− 112
√

221
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and

T1(n) := P (n) · S1 factor → (11
√

221 + 247)θn2 − (11
√

221− 247)θn1
26

(19
√

221 + 187)θn2 − (19
√

221− 187)θn1
34

 ,

for n ∈ N.

6.5.4 Generalizations

If f(x, y) = 0 is a Diophantine equation of second degree and with two
unknowns, by linear transformations it becomes (6.12).

If a · b ≥ 0 the equation has at most a finite number of integer solutions
which can be found attempts. It is easier to present an example.

The Diophantine equation

18x2 + 12xy − 26y2 − 12x− 32y + 40 = 0 (6.30)

becomes
2u2 − 7v2 + 45 = 0 , (6.31)

where (unfortunately, finding these substitutions is a difficult problem){
u = 3x+ y − 1 ,
v = 2y + 1 .

(6.32)

The basis matrix for the Diophantine equation (6.31) is

A := M(2, 7) =

(
15 28
8 15

)
and the minimal solutions are S0 = (3 3)T and S1 = (3 − 3)T. In this
conditions we obtain the solutions S0(n) = An · S0 and S1(n) = An · S1.
Formula S1(n) produces as solutions negative integers. Back from the
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solutions obtain with formula S0(n) to variables x and y by means of the
substitutions 

x =
2u− v − 3

6

y =
v − 1

2

we obtain the solution of the Diophantine equation (6.30). The first 11
positive integer solutions are:

1 1
32 34
945 1033

28304 30970
848161 928081

25416512 27811474
761647185 833416153

22823999024 24974673130
683958323521 748406777761

20495925706592 22427228659714
614193812874225 672068453013673



.

We solve (6.31). Thus:{
un+1 = 15un + 28vn ,
vn+1 = 8un + 15vn ,

(6.33)

n ∈ N, with (u0, v0) = (3, 3ε).

First solution

By induction we proof that: for all n ∈ N we have vn is odd, and un
as well as vn are multiple of 3. Clearly v0 = 3ε · u0. For n + 1 we have
vn+1 = 8un + 15vn = even + odd = odd, and of course un+1, vn+1 are
multiples of 3 because un, vn are multiple 3, too.
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Hence, there exist xn, yn, in positive integers for all n ∈ N:
xn =

2un − vn + 3

6
,

yn =
vn − 1

2
,

(6.34)

(from (6.32)). Now we find the (6.29) for (6.31) as closed expression, and by
means of (6.34 it results the general integer solution of the equation (6.30).

Second solution

Another expression of the (6.29) for (6.30) we obtain if we transform
(6.32) as: un = 3xn + yn− 1 and vn = 2yn + 1, for all n ∈ N. Whence, using
(6.33) and doing the calculus, it finds

xn+1 = 11xn +
52

3
yn +

11

3
,

yn+1 = 12xn + 19yn + 3 ,

(6.35)

for n ∈ N, with (x0, y0) = (1, 1) or (2, −2) (two infinitude of integer
solutions). Let

A =


11

52

3

11

3

12 9 3

0 0 1

 .

Then  xn
yn
1

 = An ·

 1
1
1


or  xn

yn
1

 = An ·

 2
−2
1

 , (6.36)
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always n ∈ N.
From (6.35) we have always yn+1 ≡ yn ≡ . . . ≡ y0 ≡ 1 (mod 3), hence

always xn ∈ Z. Of course (6.36) and (6.34) are equivalent as general integer
solution (6.30).

This method can be generalized for Diophantine equations

n∑
i=1

ai · x2i = b , (6.37)

will all ai, b ∈ Z.
It always ai · aj ≥ 0 1 ≤ i ≤ j < n, the equation (6.37) has most finite

number of integer solution.
Now, we suppose ∃i0, j0 ∈ In for which ai0 · aj0 < 0 (the equation

presents at least a variation of sign). Analogously, for n ∈ N. We define
the recurrent sequence:

x
(n+1)
h =

n∑
i=1

aih · x
(n)
i 1h ∈ In (6.38)

considering (x01, x
0
2, . . . , x

0
n) the smallest positive integer solution of (6.37).

It replaces (6.38) in (6.37), it identifies the coefficients and it look for the
n2 unknowns aih, where i, h ∈ In. This calculus is very intricate, but it
can done by means of a computer. The method goes on similarly, but the
calculus becomes more and more intricate – for example to calculate An.
It must computer may be.

Other results referring to Diophantine equations can be found in the
papers [Landau, 1955, Long, 1965, Ogibvy and Anderson, 1966, Mordell,
1969, Hardy and Wright, 1984, Bencze, 1985, Borevich and Shafarevich,
1985, Pérez et al., 2013].

6.6 The Diophantine equation x2 − 2y4 + 1 = 0

In this section we present a method of solving this Diophantine equa-
tion, method which is different from Ljunggren’s, Mordell’s and Guy’s.
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In the book [Guy, 1981, pp. 84-85] to shows that equation x2 = 2y4 − 1
has, in the set of positive integers, only solutions 1, 1 and 239, 13 ; Ljung-
gren [1966] has proved it in a complicated way. But Mordell [1964] gave
an easier proof.

We’ll note t = y2. The general integer solution for x2 − 2t2 + 1 is{
xn+1 = 3xn + 4tn ,
tn+1 = 2xn + 3tn

for all n ∈ N, where (x0, y0) = (1, ε), with ε = ±1 or(
xn
tn

)
=

(
3 4
2 3

)n
·
(

1
ε

)
,

for all n ∈ N, where a matrix to the power zero is equal to the unit matrix
I .

Let’s consider

A =

(
3 4
2 3

)
,

and λ ∈ R. Then det(A− λ · I) = 0 implies λ1,2 = 3±
√

2, whence if v is a
vector of dimension two, then Av = λ1,2 · v.

Let’s consider

P =

(
2 2√
2 −

√
2

)
and

D =

(
3 +
√

2 0

0 3−
√

2

)
.

We have P−1 ·A · P = D, or

An = P ·Dn · P−1 =

 an + bn
2

√
2(an − bn)

2√
2(an − bn)

4

an + bn
2

 .
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where an = (3 + 2
√

2)n and bn = (3− 2
√

2)n. Hence, we find

(
xn
tn

)
=

 1 + ε
√

2

2
an +

1− ε
√

2

2
bn

2ε+
√

2

4
an +

2ε−
√

2

4
bn

 .

for all n ∈ N.
Or y2n = tn, for all n ∈ N. For n = 0, ε = 1 we obtain y20 = 1 (whence

x0 = 1), and for n = 3, ε = 1 we obtain y23 = 169 (whence x3 = 239).

y2n = ε

[n2 ]∑
k=0

C2k
n · 3n−2k · 2k +

[n−1
2 ]∑

k=0

C2k+1
n 3n−2k−1 · 23k+1 . (6.39)

We still prove that y2n is perfect square if and only if n = 0, 3. We can
use a similar method the Diophantine equation x2 = Dy4 ± 1, or more
generally: C ·X2a = DY 2b +E, with a, b ∈ N∗ and C,D,E ∈ Z∗; denoting
xa = U , yb = V , and applying the results from [Smarandache, 1988], the
relation (6.39) becomes very complicated.

May be found following works [Mordell, 1964, Ljunggren, 1966, Cohn,
1978] and [Guy, 1981, pp 84-85].



Chapter 7

Partial empirical solving
of η–Diophantine equations

7.1 Empirical determination of solutions

A method often used to find some solutions of Diophantine equations
is the empirical search, Alanen [1972], of certain numbers that satisfy the
Diophantine equation, [Abraham et al., 2010], [Cohen, 2007, Niven et al.,
1991, Rossen, 1987].

The empirical search or exhaustive search, also known as generating
and testing, is a very general technique of problem solving, which con-
sists in systematically enumerating all possible candidates as solutions
and testing if they verify the problem.

An algorithm of empirical search for finding the divisors of a natural
number n would enumerate all integers from 1 to b

√
nc, and verify each

number if it divides n.
An empirical search is easy to implement, and it will always find a so-

lution in the case that those solutions exist, its cost being proportional with
the number of candidate solutions – which, in may practical problems,
tends to grow very fast along with the problem’s dimension. Therefore,
the empirical search is used when the dimension of the problem is lim-

130
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ited, or when, for specific heuristic causes, the problem can be reduced to
a more manageable dimension. The method is also used when the simplic-
ity of the implementation is more important than the speed of the problem
solving.

For example, this is the case of critical applications, when any error in
the algorithm would have serious consequences; or when a computer is
used to prove a mathematical theorem. The empirical search is also useful
as a basic method when benchmarks or other meta-heuristic algorithm are
used. Indeed, the empirical search can be viewed as the simplest meta-
heuristic algorithm. The empirical search should not be confounded with
the backtracking, where a great number of solutions can be avoided with-
out being explicitly enumerated. The empirical search method is useful for
finding an element in a table – namely, it verifies sequentially all inputs –
that’s why it is a linear search.

A possibility to accelerate the empirical algorithm is to reduce the
search space, that is the set of candidate solutions, by using heuristic tech-
niques that are specific to the problem.

By means of a brief analysis we can often bring dramatic reductions to
the number of candidate solutions, and solving the problem can turn from
a difficult issue into a trivial one.

In some cases, the analysis can reduce the candidate solutions toe a set
of viable solutions. This can be obtained with an algorithm that enumer-
ates directly all candidates, without losing time on testing, and generates
also invalid candidates. For example, for the problem ”find all integers be-
tween 1 and 109, divisible by 571”, a naive solution would generate all in-
tegers, testing afterwards each of them for divisibility by 571. However,
this problem can be solved more efficiently by beginning with la 571 and,
repeatedly, adding 571 up to number 109 – which would necessitate only
1751314 (= 109/571) steps and tests.

7.1.1 Partial empirical solving of Diophantine equations

Examples of problems solved by means of the empirical search:

1. D. Wilson, [Sloane, 2014, A030052], has compiled a list of the smallest
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nth powers of positive integers that are the sums of the nth powers
of distinct smaller positive integers. The first few are:

31 = 11 + 21 ,

52 = 32 + 42 ,

63 = 33 + 43 + 53 ,

154 = 44 + 64 + 84 + 94 + 144 ,

125 = 45 + 55 + 65 + 75 + 95 + 115 ,

256 = 16 + 26 + 36 + 56 + 66 + 76 + 86 + 96 + 106 + 126

+ 136 + 156 + 166 + 176 + 186 + 236 ,

407 = 17 + 37 + 57 + 97 + 127 + 147 + 167 + 177 + 187

+ 207 + 217 + 227 + 257 + 287 + 397 ,

848 = 18 + 28 + 38 + 58 + 78 + 98 + 108 + 118 + 128 + 138

+ 148 + 158 + 168 + 178 + 188 + 198 + 218 + 238

+ 248 + 258 + 268 + 278 + 298 + 328 + 338 + 358

+ 378 + 388 + 398 + 418428 + 438 + 458 + 468

+ 478 + 488 + 498 + 518 + 528 + 538 + 578 + 588

+ 598 + 618 + 638 + 698 + 738 ,

479 = 19 + 29 + 49 + 79 + 119 + 149 + 159 + 189 + +269 + 279

+ 309 + 319 + 329 + 339 + 369 + 389 + 399 + 439 ,

6310 = 110 + 210 + 410 + 510 + 610 + 810 + 1210 + 1510 + 1610

+ 1710 + 2010 + 2110 + 2510 + 2610 + 2710 + 2810 + 3010

+ 3610 + 3710 + 3810 + 4010 + 5110 + 6210 .



7.1. EMPIRICAL DETERMINATION OF SOLUTIONS 133

2. The first prime number with the special property that the result of
the addition to its reverse is also a prime number is 229. We will
call the prime numbers with this property numbers having the 229
property. By means of an empirical search algorithm were found all
50598 prime numbers having the 229 property, for p prime, p < 107,
in approximately 25 seconds on a computer with Intel processor of
2.20GHz with RAM of 4.00GB (3.46GB usable) [Cira, 2014a].

The list of solutions begins with the prime numbers:
229, 239, 241, 257, 269, 271, 277, 281, 439, 443, 463, 467, 479, 499, 613,
641, 653, 661, 673, 677, 683, 691, 811, 823, 839, 863, 881 . . .
and ends with the prime numbers:
8998709, 8998813, 8998919, 8999099, 8999161, 8999183, 8999219,
8999311, 8999323, 8999339, 8999383, 8999651, 8999671, 8999761,
8999899, 8999981 .

3. The natural numbers that satisfy the Diophantine relation
cn−1cn−2 . . . c0 = cnn−1 +cnn−2 + . . .+cn0 , are called narcissistic numbers,
[Cira and Cira, 2010].

(a) Solutions in base 3 numeral system:
i. For n = 1 we have the trivial solutions: 1 = 11, 2 = 21, out

of 2 possible cases, and solution 0 = 01.
ii. For n = 2 we have the solutions:

12 = 12 + 22 = 1 + 11 ,
22 = 22 + 22 = 11 + 11 ,

out of 7 possible cases.
iii. For n = 3 = 103 we have a sole solution:

122 = 110 + 210 + 210 = 1 + 22 + 22 ,

out of 19 possible cases.
(4-7) for n = 4 = 113, n = 5 = 123 n = 6 = 203 and n = 7 = 213

there do not exist solutions, out of, respectively 55, 163, 487
and 1459 possible cases.
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(b) Solutions in base 4 numeral system:

i. For n = 1 we have the trivial solutions: 1 = 11, 2 = 21,
3 = 31, out of 3 possible cases, and solution 0 = 01.

ii. For n = 2 we do not have solutions, out of 13 possible cases.
iii. For n = 3 we have 6 solutions:

130 = 13 + 33 + 03 = 1 + 123 + 0 ,
131 = 13 + 33 + 13 = 1 + 123 + 1 ,
203 = 23 + 03 + 33 = 20 + 0 + 123 ,
223 = 23 + 23 + 33 = 20 + 20 + 123 ,
313 = 33 + 13 + 33 = 123 + 1 + 123 ,
332 = 33 + 33 + 23 = 123 + 123 + 20 ,

out of 49 possible cases.
iv. For n = 4 = 104 we 2 solutions:

1103 = 110 + 110 + 010 + 310 = 1 + 1 + 0 + 1101 ,
3303 = 310 + 310 + 010 + 310 = 1101 + 1101 + 0 + 1101 ,

out of 193 possible cases.
(5-13) For n = 5 = 114, n = 6 = 124, . . . , n = 13 = 314 we do

not have solutions, out of 769, 3073, . . . , 503316493 possible
cases.

(c) etc.

4. Conjecture of Erdös-Straus: for n natural number n ≥ 2 the equation

4

n
=

1

x
+

1

y
+

1

z

admits at least a solution (x, y, z) ∈ N∗×N∗×N∗. Important theoretical
results were obtained by Tao [2011] and Elsholtz and Tao [2012], but
the previous statement was not yet proved. Swett [2006] announced
that he has verified the statement for n ≤ 1014. We give solutions of
this equation in the form x, y, z :
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n=2 1, 2, 2 ;

n=3 1, 4, 12 , 1, 6, 6 , 2, 2, 3 ;

n=4 2, 3, 6 , 2, 4, 4 , 3, 3, 3 ;

n=5 2, 4, 20 , 2, 5, 10 ;

n=6 2, 7, 42 , 2, 8, 24 , 2, 9, 18 , 2, 10, 15 , 2, 12, 12 , 3, 4, 12 ,

3, 6, 6 , 4, 4, 6 ;

n=7 2, 18, 63 , 2, 21, 42 , 2, 28, 28 , 3, 6, 14 , 4, 4, 14 ;

n=8 3, 7, 42 , 3, 8, 24 , 3, 9, 18 , 3, 10, 15 , 3, 12, 12 , 4, 5, 20 ,

4, 6, 12 , 4, 8, 8 , 5, 5, 10 , 6, 6, 6 ;

n=9 3, 10, 90 , 3, 12, 36 , 3, 18, 18 , 4, 6, 36 , 4, 9, 12 , 6, 6, 9 ;

n=10 3, 18, 90 , 3, 20, 60 , 3, 24, 40 , 3, 30, 30 , 4, 8, 40 , 4, 10, 20 ,

4, 12, 15 , 5, 6, 30 , 5, 10, 10 , 6, 6, 15 ;

n=11 3, 66, 66 , 4, 11, 44 , 4, 12, 33 , 6, 6, 33 ;

n=12 4, 14, 84 , 4, 15, 60 , 4, 16, 48, , 4, 18, 36 , 4, 20, 30 , 4, 21, 28 ,

4, 24, 24 , 5, 9, 45 , 5, 10, 30 , 5, 12, 20 , 5, 15, 15 , 6, 7, 42 ,

6, 8, 24 , 6, 9, 18 , 6, 10, 15 , 6, 12, 12 , 7, 7, 21 , 8, 8, 12 ,

9, 9, 9 ;

n=13 4, 26, 52 .

Obviously, these solutions verify the equation, as the solution for
n = 13

4

13
=

1

4
+

1

26
+

1

52
.

7.2 The η–Diophantine equations

Let m,n ∈ N∗ fixed and x and y unknown positive integers. The
Diophantine equations in which function η is involved are called η–
Diophantine. The list of η–Diophantine equations, considered from
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[Smarandache, 1999b], which we have into consideration to solve empiri-
cally are:

(2069) η(m · x+ n) = x ,

(2070) η(m · x+ n) = m+ n · x ,

(2071) η(m · x+ n) = x! ,

(2072) η(xm) = xn ,

(2073) η(x)m = η(xn) ,

(2074) η(m · x+ n) = η(x)y ,

(2075) η(x) + y = x+ η(y) , where x 6= y, x and y are not prime,

(2076) η(x) + η(y) = η(x+ y), where x and y are not siblings prime,

(2077) η(x+ y) = η(x) · η(y) ,

(2078) η(x · y) = η(x) · η(y) ,

(2079) η(m · x+ n) = xy ,

(2080) η(x) · y = x · η(y), where x and y are not prime,

(2081) η(x) · η(y) = x · y , where x and y are not prime,

(2082) η(x)y = xη(y), where x and y are not prime,

(2083) η(x)η(y) = η(xy) ,

(2084) η(xy)− η(zw) = 1, with y 6= 1 6= w,

(2085) η(xy) = y, with y ≥ 2 ,

(2086) η(xx) = yy ,

(2087) η(xy) = yx ,
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(2088) η(x) = y! ,

(2089) η(m · x) = m · η(x), with m ≥ 2 ,

(2090) mη(x) + η(x)n = mn .

(2091) n · η(x2)±m · η(y2) = m · n ,

(2092) η(xy11 + xy22 + . . .+ xyrr ) = η(x1)
y1 + η(x2)

y2 + . . .+ η(xr)
yr ,

(2093) η(x1! + x2! + . . .+ xr!) = η(x1)! + η(x2)! + . . .+ η(xr)! ,

(2094)
(
x, y
)

=
(
η(x), η(y)

)
, where by

(
·, ·
)

we understand is the greatest
common divisor and x and y are not prime,

(2095)
[
x, y
]

=
[
η(x), η(y)

]
, where by

[
·, ·
]

we understand is the smallest
common multiple and x and y are not prime.

7.2.1 Partial empirical solving of η–Diophantine equations

For all Diophantine equations solved in this section the file η.prn
is read, generated by the program 2.9, by means of Mathcad function
READPRN

η := READPRN(”...\η.prn”) last(η) = 106

where the command last(η) indicates the last index of vector η.

7.2.2 The equation 2069

Program 7.1. Given vector η, the equation η(mx + n) = x is equivalent
with the relation ηmx+n = x. The program to find the solutions of equation
(2069) is:

Ed2069(am, bm, an, bn, ax, bx) := S ← (”m” ”n” ”x”)
u← last(η)
for m ∈ am..bm
for n ∈ an..bn
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for x ∈ ax..bx
η ← m · x+ n
q ← η ≤ u ∧ ηη=x
S ← stack[S, (m n x)] if q

return S

The call of the program is done by the sequence:

am := 2 bm := 10 an := 1 bn := 10 ax := 1 bx := 16 ,

hence, the search domain is

Dc = {2, 3, . . . , 10} × {1, 2, . . . , 10} × {1, 2, . . . , 16} .

The total number of verified cases is:

(bm − am + 1)(bn − an + 1)(bx − ax + 1) = 1440 .

The call of the program Ed2069:

t0 : time(0) Sol := Ed2069(am, bm, an, bn, ax, bx) t1 := time(1)

The execution time in seconds and the number of solutions follow from:

(t1 − t0) · s = 0.011 · s rows(Sol)− 1 = 36

For m ∈ {2, 3, . . . , 10}, n ∈ {1, 2, . . . , 10} and x ∈ {1, 2, . . . , 16} the 36
solutions of the Diophantine equation η(m · x+ n) = x, given as m,n, x ,
are:

2, 4, 4 2, 4, 6 2, 5, 5 2, 5, 10 2, 6, 6 2, 7, 7 2, 9, 9 2, 10, 5 ;

3, 5, 5 3, 7, 7 3, 7, 14 3, 8, 8 ;

4, 7, 7 4, 8, 4 4, 10, 5 4, 10, 10 ;

5, 4, 4 5, 5, 5 5, 6, 6 5, 7, 7 5, 9, 9 ;
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6, 9, 6 6, 10, 5 ;

7, 3, 6 7, 5, 5 7, 5, 10 7, 6, 6 7, 7, 7 7, 8, 8 ;

8, 5, 15 8, 7, 7 8, 9, 9 ;

9, 7, 7 9, 10, 10 ;

10, 7, 14 10, 10, 5 .

The maximum value of solutions x is 15.
By a similar call, the program Ed2069 provides the 40 solutions of the

Diophantine equation η(m · x+ n) = x of the search domain

Dc = {97, 98, . . . , 100} × {11, 12, . . . , 99} × {43, 44, . . . , 89}

in the form m,n, x :

97, 43, 43 97, 47, 47 97, 53, 53 97, 59, 59 97, 61, 61 97, 67, 67

97, 71, 71 97, 73, 73 97, 79, 79 97, 83, 83 97, 86, 43 97, 89, 89

97, 94, 47 ;

98, 43, 43 98, 47, 47 98, 53, 53 98, 59, 59 98, 61, 61 98, 67, 67

98, 71, 71 98, 73, 73 98, 79, 79 98, 83, 83 98, 86, 43 98, 89, 89

98, 94, 47 ;

99, 43, 43 99, 47, 47 99, 53, 53 99, 59, 59 99, 61, 61 99, 67, 67

99, 71, 71 99, 73, 73 99, 79, 79 99, 83, 83 99, 89, 89 ;

100, 86, 43 100, 87, 58 100, 94, 47 .

The maximum value of solutions x is 89.
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7.2.3 The equation 2070

Program 7.2. Given vector η, the equation η(mx+n) = m+nx is equivalent
with the relation ηmx+n = m + nx. The program for finding the solutions
of the equation (2070) is:

Ed2070(am, bm, an, bn, ax, bx) := S ← (”m” ”n” ”x”)
u← last(η)
for m ∈ am..bm
for n ∈ an..bn
for x ∈ ax..bx
η ← m · x+ n
q ← η ≤ u ∧ ηη=m+ n · x
S ← stack[S, (m n x)] if q

return S

The call of the program is done by the sequence:

am := 2 bm := 20 an := 1 bn := 20 ax := 1 bx := 16 ,

hence, the search domain is

Dc = {2, 3, . . . , 20} × {1, 2, . . . , 20} × {1, 2, . . . , 16} .

The total number of verified cases is:

(bm − am + 1)(bn − an + 1)(bx − ax + 1) = 7220 .

The call of the program Ed2070:

t0 : time(0) Sol := Ed2070(am, bm, an, bn, ax, bx) t1 := time(1)

The execution time in seconds and the number of solutions follow from:

(t1 − t0) · s = 0.853 · s rows(Sol)− 1 = 14

For m ∈ {2, 3, . . . , 20}, n ∈ {1, 2, . . . , 20} and x ∈ {2, 3, . . . , 20} the 14
solutions of the Diophantine equation η(m · x + n) = m + n · x, given as
m,n, x , are:
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2, 1, 4 ;

4, 1, 2 4, 1, 6 ;

6, 1, 4 6, 1, 8 ;

8, 1, 6 8, 1, 6 ;

10, 1, 12 ;

12, 1, 10 12, 1, 14 ;

14, 1, 12 ;

16, 1, 18 ;

18, 1, 16 18, 1, 20 ;

20, 1, 18 .

The maximum value of solutions x is 20.

7.2.4 The equation 2071

Program 7.3. Given vector η, the equation η(mx + n) = x! is equivalent
with the relation ηmx+n = x!. The program for finding the solutions of the
equation (2071) is:

Ed2071(am, bm, an, bn, ax, bx) := S ← (”m” ”n” ”x”)
u← last(η)
for m ∈ am..bm
for n ∈ an..bn
for x ∈ ax..bx
η ← m · x+ n
q ← η ≤ u ∧ ηη=x!
S ← stack[S, (m n x)] if q
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return S

The call of the program is done by the sequence:

am := 2 bm := 15 an := 1 bn := 15 ax := 1 bx := 19 ,

hence, the search domain is

Dc = {2, 3, . . . , 15} × {1, 2, . . . , 15} × {1, 2, . . . , 19} .

The total number of verified cases is:

(bm − am + 1)(bn − an + 1)(bx − ax + 1) = 3990 .

The call of the program Ed2071:

t0 : time(0) Sol := Ed2071(am, bm, an, bn, ax, bx) t1 := time(1)

The execution time in seconds and the number of solutions follow from:

(t1 − t0) · s = 0.02 · s rows(Sol)− 1 = 24

For m ∈ {2, 3, . . . , 15}, n ∈ {1, 2, . . . , 15} and x ∈ {1, 2, . . . , 19} the 24
solutions of the Diophantine equation η(m · x+ n) = x!, given as m,n, x ,
are:

2, 3, 3 2, 10, 3 2, 12, 3 ;

3, 7, 3 3, 9, 3 ;

4, 4, 3 4, 6, 3 ;

5, 1, 3 5, 3, 3 ;

7, 15, 3 ;

8, 12, 3 ;



7.2. THE η–DIOPHANTINE EQUATIONS 143

9, 9, 3 ;

10, 6, 3 10, 15, 3 ;

11, 3, 3 11, 12, 3 11, 15, 3 ;

12, 9, 3 12, 12, 3 ;

13, 6, 3 13, 9, 3 ;

14, 3, 3 14, 6, 3 ;

15, 3, 3 .

The maximum value of solutions x is 3.

7.2.5 The equation 2072

Program 7.4. Given vector η, the equation η(xm) = xn is equivalent with
the relation ηxm = xn. The program for finding the solutions of the equa-
tion (2072) is:

Ed2072(am, bm, an, bn, ax, bx) := S ← (”m” ”n” ”x”)
u← last(η)
for m ∈ am..bm
for n ∈ an..bn
for x ∈ ax..bx
η ← xm

q ← η ≤ u ∧ ηη=xn

S ← stack[S, (m n x)] if q
return S

The call of the program is done by the sequence:

am := 2 bm := 9 an := 2 bn := 9 ax := 2 bx := 10 ,
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hence, the search domain is

Dc = {2, 3, . . . , 9} × {2, 3, . . . , 9} × {2, 3, . . . , 10} .

The total number of verified cases is:

(bm − am + 1)(bn − an + 1)(bx − ax + 1) = 576 .

The call of the program Ed2072:

t0 : time(0) Sol := Ed2072(am, bm, an, bn, ax, bx) t1 := time(1)

The execution time in seconds and the number of solutions follow from:

(t1 − t0) · s = 0.11 · s rows(Sol)− 1 = 12 .

For m ∈ {2, 3, . . . , 9}, n ∈ {2, 3, . . . , 9} and x ∈ {1, 2, . . . , 10} the 12 solu-
tions of the Diophantine equation η(xm) = xn, given as m,n, x , are:

2, 2, 2 ;

3, 2, 2 3, 2, 3

4, 2, 3 ;

5, 2, 5 5, 3, 2 ;

6, 2, 4 6, 2, 5 6, 3, 2 ;

7, 2, 4 7, 2, 7 7, 3, 2 .

The maximum value of solutions x is 7.



7.2. THE η–DIOPHANTINE EQUATIONS 145

7.2.6 The equation 2073

Program 7.5. Given vector η, the equation η(x)m = η(xn) is equivalent
with the relation (ηx)m = ηxn . The program for finding the solutions of
the equation (2073) is:

Ed2073(am, bm, an, bn, ax, bx) := S ← (”m” ”n” ”x”)
u← last(η)
for m ∈ am..bm
for n ∈ an..bn
for x ∈ ax..bx
q ← xn ≤ u ∧ (ηx)m=ηxn
S ← stack[S, (m n x)] if q

return S

The call of the program is done by the sequence:

am := 2 bm := 9 an := 2 bn := 9 ax := 2 bx := 25 ,

hence, the search domain is

Dc = {2, 3, . . . , 9} × {2, 3, . . . , 9} × {2, 3, . . . , 25} .

The total number of verified cases is:

(bm − am + 1)(bn − an + 1)(bx − ax + 1) = 1536 .

The call of the program Ed2073:

t0 : time(0) Sol := Ed2073(am, bm, an, bn, ax, bx) t1 := time(1)

The execution time in seconds and the number of solutions follow from:

(t1 − t0) · s = 0.014 · s rows(Sol)− 1 = 20

For m ∈ {2, 3, . . . , 9}, n ∈ {2, 3, . . . , 9} and x ∈ {2, 3, . . . , 25} the 20 solu-
tions the Diophantine equation η(x)m = η(xn), in the form m,n, x are:
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2, 2, 2 ;

2, 3, 2 2, 3, 3 2, 3, 6 ;

2, 4, 3 2, 4, 6 2, 4, 8 2, 4, 24 ;

2, 5, 5 2, 5, 8 2, 5, 10 2, 5, 15 ;

2, 6, 4 2, 6, 5 2, 6, 10 ;

2, 7, 4 2, 7, 7 ;

3, 5, 2 3, 6, 2 3, 7, 2 .

The maximum value of solutions x is 24.

7.2.7 The equation 2074

Program 7.6. Given vector η, the equation η(mx+n) = η(x)m is equivalent
with the relation ηmx+n = (ηx)m. The program for finding the solutions of
the equation (2074) is:

Ed2074(am, bm, an, bn, ax, bx) := S ← (”m” ”n” ”x”)
u← last(η)
for m ∈ am..bm
for n ∈ an..bn
for x ∈ ax..bx
η ← m · x+ n
q ← η ≤ u ∧ ηη= (ηx)m

S ← stack[S, (m n x)] if q
return S

The call of the program is done by the sequence:

am := 1 bm := 6 an := 1 bn := 9 ax := 1 bx := 105 ,
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then the search domain is

Dc = {1, 2, . . . , 6} × {1, 2, . . . , 9} ×
{

1, 2, . . . , 105
}
.

The total number of verified cases is:

(bm − am + 1)(bn − an + 1)(bx − ax + 1) = 5400000 .

The call of the program Ed2074:

t0 : time(0) Sol := Ed2074(am, bm, an, bn, ax, bx) t1 := time(1)

The execution time in seconds and the number of solutions follow from:

(t1 − t0) · s = 0.017 · s rows(Sol)− 1 = 24

For m ∈ {1, 2, . . . , 6}, n ∈ {1, 2, . . . , 9} and x ∈
{

1, 2, . . . , 105
}

the 24 solu-
tions of the Diophantine equation η(mx+n) = η(x)m, in the form m,n, x ,
are:

1, 2, 16 ;

1, 3, 3 1, 3, 45 ;

1, 4, 4 1, 4, 8 ;

1, 5, 5 1, 5, 10 1, 5, 15 ;

1, 7, 7 1, 7, 9 1, 7, 14 1, 7, 21 1, 7, 28 1, 7, 35 1, 7, 56 1, 7, 63

1, 7, 105 ;

1, 8, 4 1, 8, 72 1, 8, 1792 ;

1, 9, 9 1, 9, 36 ;

2, 4, 2 2, 8, 2 .
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The maximum value of solutions x is 1792.

The equation (2074) has a similar version in the form of the equation
(2074′) η(mx+ n) = η(x)n.

Program 7.7. Given vector η, the equation η(mx+ n) = η(x)n is equivalent
with the relation ηmx+n = (ηx)n. The program for finding the solutions of
the equation (2074′) is:

Ed20741(am, bm, an, bn, ax, bx) := S ← (”m” ”n” ”x”)
u← last(η)
for m ∈ am..bm
for n ∈ an..bn
for x ∈ ax..bx
η ← m · x+ n
q ← η ≤ u ∧ ηη= (ηx)n

S ← stack[S, (m n x)] if q
return S

The call of the program is done by the sequence:

am := 1 bm := 9 an := 1 bn := 9 ax := 1 bx := 105 ,

hence, the search domain is

Dc = {1, 2, . . . , 9} × {1, 2, . . . , 9} ×
{

1, 2, . . . , 105
}
.

The total number of verified cases is:

(bm − am + 1)(bn − an + 1)(bx − ax + 1) = 8100000 .

The call of the program Ed20741:

t0 : time(0) Sol := Ed20741(am, bm, an, bn, ax, bx) t1 := time(1)

The execution time in seconds and the number of solutions follow from:

(t1 − t0) · s = 7.566 · s rows(Sol)− 1 = 3
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For m ∈ {1, 2, . . . , 6}, n ∈ {1, 2, . . . , 9} and x ∈
{

1, 2, . . . , 105
}

the 3 solu-
tions of the Diophantine equation η(mx+n) = η(x)m, in the form m,n, x ,
are:

1, 2, 2 3, 2, 2 5, 2, 2 .

The maximum value of solutions x is 2.

7.2.8 The equation 2075

Program 7.8. Given vector η, the equation η(x) + y = x + η(y) cu x 6= y,
where x and y are not prime, is equivalent with the relation ηx+y = x+ηy,
with x < y (we consider condition x < y instead of x 6= y for symmetry
reasons of the equation relative to x and y), where x and y are not prime.
The program for finding the solutions of the equation (2075) is:

Ed2075(axy, bxy) := S ← (”x” ”y”)
for x ∈ axy..bxy − 1
for y ∈ x+ 1..bxy
u← Tpη(x) = 0
v ← Tpη(y) = 0
notprime← u ∧ v
q ← ηx + y=x+ ηy
S ← stack[S, (x y)] if notprime ∧ q

return S

The program Ed2075 calls the program 1.8 to run the primality test for x
and y.The call of the program is done by the sequence:

axy := 2 bxy := 1000

hence, the search domain is

Dc = {2, 3, . . . , 999} × {3, 4, . . . , 1000} , with x < y .
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The total number of verified cases is:

999∑
x=2

1000∑
y=x+1

1 = 498501 .

The call of the program Ed2075:

t0 : time(0) Sol := Ed2075(axy, bxy) t1 := time(1)

The execution time in seconds and the number of solutions follow from:

(t1 − t0) · s = 5.765 · s rows(Sol)− 1 = 157

For x ∈ {2, 3, . . . , 999} and y ∈ {3, 4, . . . , 1000} the 157 solutions of the
Diophantine equation η(x) + y = x+ η(y) in the form of pairs x, y are:

6, 9 15, 16 20, 25 40, 42 40, 49 42, 49 45, 52 60, 66 63, 64

72, 77 75, 78 80, 111 84, 88 90, 98 96, 99 ;

108, 110 108, 121 110, 121 120, 138 126, 136 140, 147 140, 152

144, 161 147, 152 154, 156 154, 169 156, 169 160, 171 162, 170

168, 184 175, 176 180, 203 192, 207 195, 196 198, 204 ;

200, 209 210, 232 216, 230 220, 228 225, 258 231, 242 234, 238

243, 245 250, 282 256, 287 260, 266 264, 276 270, 290 272, 289

280, 286 288, 294 ;

300, 319 312, 322 320, 325 320, 338 325, 338 330, 348 336, 376

340, 342 340, 361 342, 361 343, 345 350, 357 352, 363 352, 372

360, 413 363, 372 378, 410 384, 423 390, 406 ;

408, 414 416, 434 420, 472 432, 470 441, 488 448, 450 455, 459

456, 460 462, 492 480, 531 486, 553 ;
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500, 582 504, 568 506, 529 507, 518 510, 522 525, 618 528, 564

540, 590 544, 558 546, 574 560, 632 561, 578 567, 589 570, 580

572, 602 576, 639 588, 615 594, 605 594, 636 ;

600, 649 605, 636 608, 620 616, 625 624, 658 630, 637 630, 712

637, 712 640, 711 648, 710 660, 708 663, 665 672, 747 675, 684

675, 686 684, 686 690, 696 693, 713 ;

702, 742 714, 738 720, 729 735, 824 736, 744 748, 774 756, 830

770, 782 780, 826 792, 852 798, 820 ;

800, 869 810, 890 812, 841 816, 846 819, 837 825, 851 832, 845

836, 860 840, 850 840, 867 850, 867 874, 888 875, 903 880, 948

882, 899 896, 925 ;

900, 979 910, 920 912, 940 918, 954 924, 996 928, 930 928, 961

930, 961 936, 994 966, 984 968, 989 975, 999 .

The maximum value of solutions x is 975 and of y is 999.

7.2.9 The equation 2076

Program 7.9. Given vector η, the equation η(x) + η(y) = η(x+ y) cu x 6= y,
where x and y are not prime, is equivalent with the relation ηx+ηy = ηx+y,
with x < y (we consider condition x < y instead of x 6= y for symmetry
reasons of the equation relative to x and y), where x and y are not prime.
The program for finding the solutions of the equation (2076) is:

Ed2076(axy, bxy) := S ← (”x” ”y”)
for x ∈ axy..bxy − 1
for y ∈ x+ 1..bxy
u← Tpη(x)=0
v ← Tpη(y)=0
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notprime← u ∧ v
q ← ηx + ηy=ηx+y
S ← stack[S, (x y)] if notprime ∧ q

return S

The program Ed2076 calls the program 1.8 to run the primality test for x
and y. The call of the program is done by the sequence:

axy := 4 bxy := 1000

hence, the search domain is

Dc = {4, 5, . . . , 999} × {5, 6, . . . , 1000} , with x < y .

The total number of verified cases is:

999∑
x=4

1000∑
y=x+1

1 = 496506 .

The call of the program Ed2076:

t0 : time(0) Sol := Ed2076(axy, bxy) t1 := time(1)

The execution time in seconds and the number of solutions follow from:

(t1 − t0) · s = 3.877 · s rows(Sol)− 1 = 1277

For x ∈ {4, 5, . . . , 999} and y ∈ {5, 6, . . . , 1000} the 1277 solutions of the
Diophantine equation η(x)+η(y) = η(x+y), with y > x, x and y non-prime
numbers in the form of pairs x, y (the first 96 and the last 75 solutions)
are:

4, 84 4, 234 4, 455 4, 456 ;

6, 8 6, 48 6, 147 6, 150 6, 192 ;
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8, 14 8, 24 8, 26 8, 38 8, 74 8, 86 8, 125 8, 134 8, 135 8, 158

8, 168 8, 194 8, 206 8, 218 8, 254 8, 326 8, 386 8, 446 8, 458

8, 468 8, 475 8, 554 8, 614 8, 626 8, 698 8, 758 8, 794 8, 878

8, 910 8, 912 8, 914 8, 926 8, 974 8, 998 ;

9, 56 9, 110 9, 143 9, 221 9, 297 9, 368 9, 390 9, 420 9, 612

9, 620 9, 851 ;

10, 15 10, 40 10, 45 10, 144 10, 224 10, 294 10, 595 10, 640 ;

12, 15 12, 21 12, 27 12, 39 12, 57 12, 111 12, 129 12, 201

12, 237 12, 252 12, 260 12, 291 12, 309 12, 327 ; 12, 378

12, 381 12, 489 12, 494 12, 579 12, 669 12, 687 12, 702

12, 729 12, 831 12, 921 12, 939 12, 960 ;

14, 35 14, 84 14, 90 14, 280 14, 363 14, 700 ;

...

630, 840 630, 900 636, 637 637, 696 637, 705 640, 767 640, 880

646, 798 650, 702 650, 841 658, 720 660, 792 666, 703 672, 756

672, 924 675, 864 680, 765 684, 760 690, 897 693, 880 696, 986

697, 984 ;

700, 731 700, 851 700, 899 700, 910 702, 819 704, 990 715, 975

720, 749 720, 759 720, 819 720, 840 722, 779 725, 957 726, 840

729, 792 735, 944 738, 943 750, 837 754, 833 754, 928 756, 765

759, 828 768, 798 768, 927 770, 924 777, 810 779, 902 780, 910

782, 805 783, 980 784, 952 ;
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805, 1000 810, 867 810, 900 812, 870 816, 918 819, 896

820, 861 825, 990 832, 858 836, 968 836, 969 845, 918

845, 1000 850, 884 855, 950 860, 989 867, 988 875, 896

884, 972 891, 924 891, 972 ;

903, 946 930, 992 .

The maximum value of solutions x is 930 and of y is 1000.

7.2.10 The equation 2077

Let us consider the Diophantine equation η(x + y) = η(x) · η(y) with
x 6= y on the set

{
1, 2, . . . , 5 · 104 − 1

}
×
{

2, 3, . . . , 5 · 104
}

. Given vector η,
the Diophantine equation (2077) is equivalent with relation ηx+y = ηx · ηy,
with x < y (we use condition x < y instead of x 6= y for symmetry reasons
of the equation relative to x and y). The search of the solutions was done
by means of the program:

Ed2077(axy, bxy) := S ← (”x” ”y”)
for x ∈ axy..bxy − 1
for y ∈ x+ 1..bxy
q ← ηx+y=ηx · ηy
S ← stack[S, (x y)] if q

return S

The search time was of 853.816s of 1249975000 possible cases. There
was no solution found on the search domain

{
1, 2, . . . , 5 · 104 − 1

}
×{

2, 3, . . . , 5 · 104
}

.
Instead of the Diophantine equation (2077), which seems not to have

any solutions, we propose equation η(x · y) = η(x) + η(y) for x 6= y, where
x and y are not prime. Vector η allows us to write the equivalent relation
to the Diophantine equation ηx·y = ηx + ηy for x < y (we use condition
x < y instead of x 6= y for symmetry reasons of the equation relative to x
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and y). The program for finding the solutions of the Diophantine equation
η(x · y) = η(x) + η(y) is:

Ed20771(axy, bxy) := S ← (”x” ”y”)
for x ∈ axy..bxy − 1
for y ∈ x+ 1..bxy
u← Tpη(x)=0
v ← Tpη(y)=0
notprime← u ∧ v
q ← ηx·y=ηx + ηy
S ← stack[S, (x y)] if notprime ∧ q

return S

The program Ed20771 calls the program 1.8 to run the primality test for x
and y. The call of the program is done by the sequence:

axy := 4 bxy := 103

hence, the search domain is

Dc = {4, 5, . . . , 999} × {5, 6, . . . , 1000} , with x < y .

The total number of verified cases is:
999∑
x=4

1000∑
y=x+1

1 = 496506 .

The call of the program Ed20772:

t0 : time(0) Sol := Ed20771(axy, bxy) t1 := time(1)

The execution time in seconds and the number of solutions follow from:

(t1 − t0) · s = 4.979 · s rows(Sol)− 1 = 9659

For x ∈ {4, 5, . . . , 999} and y ∈ {5, 6, . . . , 1000} the 9659 solutions of the
Diophantine equation η(x · y) = η(x) + η(y), with x < y, x and y being
non-prime in the form of pairs x, y (the first 131 and the last 55 solutions)
are:
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4, 8 4, 24 4, 128 4, 384 4, 640 4, 896 ;

6, 9 6, 18 6, 36 6, 45 6, 72 6, 81 6, 90 6, 144 6, 162 6, 180

6, 243 6, 324 6, 360 6, 405 6, 486 6, 567 6, 648 6, 720 6, 729

6, 810 6, 972 ;

8, 12 8, 24 8, 64 8, 128 8, 192 8, 256 8, 320 8, 384 8, 448

8, 512 8, 576 8, 640 8, 768 8, 896 8, 960 ;

9, 81 9, 162 9, 243 9, 324 9, 405 9, 486 9, 567 9, 648 9, 810

9, 972 ;

10, 15 10, 20 10, 25 10, 30 10, 40 10, 50 10, 60 10, 75 10, 100

10, 120 10, 125 10, 150 10, 175 10, 200 10, 225 10, 250

10, 300 10, 350 10, 375 10, 400 10, 450 10, 500 10, 525

10, 600 10, 625 10, 675 10, 700 10, 750 10, 800 10, 875

10, 900 10, 1000 ;

12, 24 12, 128 12, 384 12, 640 12, 896 ;

14, 21 14, 28 14, 35 14, 42 14, 49 14, 56 14, 63 14, 70 14, 84

14, 98 14, 105 14, 112 14, 126 14, 140 14, 147 14, 168 14, 196

14, 210 14, 245 14, 252 14, 280 14, 294 14, 315 14, 336

14, 343 14, 392 14, 420 14, 441 14, 490 14, 504 14, 539

14, 560 14, 588 14, 630 14, 637 14, 686 14, 735 14, 784

14, 840 14, 882 14, 980 ;

...

888, 925 888, 962 888, 999 890, 979 891, 924 891, 968 891, 990

893, 940 893, 987 896, 960 897, 920 897, 966 899, 930 899, 961

899, 992 ;
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900, 1000 901, 954 902, 943 902, 984 903, 946 903, 989

910, 936 910, 975 912, 931 912, 950 912, 969 912, 988 913, 996

915, 976 918, 935 918, 952 920, 966 923, 994 924, 968 924, 990

925, 962 925, 999 928, 957 928, 986 930, 961 930, 992 931, 950

931, 969 931, 988 935, 952 936, 975 940, 987 943, 984 946, 989

950, 969 950, 988 957, 986 961, 992 962, 999 968, 990 ;

7.2.11 The equation 2078

The Diophantine equation η(x · y) = η(x) · η(y) for x ∈{
1, 2, . . . , 103 − 1

}
and y ∈

{
2, 3, . . . , 103

}
with x 6= y has the only the

999 trivial solutions, in the form x, y : 1, 2 1, 3 . . . 1, 1000 .

7.2.12 The equation 2079

Program 7.10. Given vector η, the equation η(mx + n) = xy is equivalent
with the relation ηmx+n = xy. The program for finding the solutions of the
equation (2079) is:

Ed2079(am, bm, an, bn, ax, bx, y) := S ← (”m” ”n” ”x”)
u← last(η)
for m ∈ am..bm
for n ∈ an..bn
for x ∈ ax..bx
η ← m · x+ n
q ← η ≤ u ∧ ηη=xy

S ← stack[S, (m n x)] if q
return S

The call of the program is done by the sequence:

y := 2 am := 1 bm := 10 an := 1 bn := 10 ax := 1 bx := 104 ,
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hence, the search domain is

Dc = {1, 2, . . . , 10} × {1, 2, . . . , 10} ×
{

1, 2, . . . , 104
}
. (7.1)

The total number of verified cases is:

(bm − am + 1)(bn − an + 1)(bx − ax + 1) = 106 .

The call of the program Ed2079:

t0 : time(0) Sol := Ed2079(am, bm, an, bn, ax, bx, y) t1 := time(1)

The execution time in seconds and the number of solutions follow from:

(t1 − t0) · s = 0.834 · s rows(Sol)− 1 = 16

For m ∈ {1, 1, . . . , 10}, n ∈ {1, 2, . . . , 10} and x ∈
{

1, 2, . . . , 104
}

the 16 so-
lutions of the Diophantine equation η(m ·x+n) = x2, in the form m,n, x ,
are:

1, 2, 2 1, 6, 2 1, 10, 2 ;

2, 4, 2 2, 8, 2 ;

3, 2, 2 3, 6, 2 ;

4, 4, 2 ;

5, 2, 2 ;

6, 9, 3 ;

7, 6, 3 7, 10, 2 ;

8, 3, 3 8, 8, 2 ;

9, 6, 2 ;
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10, 4, 2 .

The maximum value of solutions m, n and x is, respectively, 10, 10 and 2.
For y = 3 the Diophantine equation 2079 does not have solutions in

the search domain (7.1).
It should be noted that for y = 1

2 (y is not an integer!) the η–
Diophantine equation η(mx + n) = x1/2 has 8 solutions in the search do-
main (7.1). The η–Diophantine equation η(mx + n) = x1/2 is equivalent
with the relation ηmx+n =

√
x. The call of the program is done by the

sequence:

y :=
1

2
am := 1 bm := 10 an := 1 bn := 10 ax := 1 bx := 104 ,

hence we have the same search domain Dc given by (7.1). The total num-
ber of verified cases is:

(bm − am + 1)(bn − an + 1)(bx − ax + 1) = 106 .

The call of the program Ed2079:

t0 : time(0) Sol := Ed2079(am, bm, an, bn, ax, bx, y) t1 := time(1)

The execution time in seconds and the number of solutions follow from:

(t1 − t0) · s = 0.928 · s rows(Sol)− 1 = 16

For m ∈ {1, 2, . . . , 10}, n ∈ {1, 2, . . . , 10} and x ∈
{

1, 2, . . . , 104
}

the 8

solutions of the Diophantine equation η(m · x + n) = x1/2, in the form
m,n, x , are:

1, 5, 25 1, 7, 49 1, 8, 16 1, 9, 36 ;

2, 7, 49 2, 8, 36 2, 10, 25 ;

5, 7, 49 .

The maximum value of solutions m, n and x is, respectively 5, 10 and 49.
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7.2.13 The equation 2080

Program 7.11. Given vector η, the equation η(x) · y = x · η(y) is equivalent
with the relation ηx · y = x · ηy. The program for finding the solutions of
the equation (2080) is:

Ed2080(axy, bxy) := S ← (”x” ”y”)
for x ∈ axy..bxy − 1

u← Tpη(x) = 0
for y ∈ x+ 1..bxy

q ← u ∧ Tpη(y)=0
S ← stack[S, (x y)] if q ∧ ηx · y=x · ηy

return S

The program calls the subprogram 1.8 of establishing the primality of x
and y. The call of the program is done by axy := 2, bxy := 103 and hereby
it results that we have the search domain

Dc = {2, 3, . . . , 999} × {3, 4, . . . , 1000} ,

with x < y, where x and y are not prime. Hence, we obtain a number of
498501 possible cases. These cases have been ran through by the program
Ed2080 in 5.444 seconds. A number of 13200 solutions was obtained, of
which we present the first 95 and the last 81:

6, 8 6, 10 6, 14 6, 22 6, 26 6, 34 6, 38 6, 46 6, 58 6, 62

6, 74 6, 82 6, 86 6, 94 ;

6, 106 6, 118 6, 122 6, 134 6, 142 6, 146 6, 158 6, 166 6, 178

6, 194 ;

6, 202 6, 206 6, 214 6, 218 6, 226 6, 254 6, 262 6, 274 6, 278

6, 298 ;

6, 302 6, 314 6, 326 6, 334 6, 346 6, 358 6, 362 6, 382 6, 386

6, 394 6, 398 ;
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6, 422 6, 446 6, 454 6, 458 6, 466 6, 478 6, 482 ;

6, 502 6, 514 6, 526 6, 538 6, 542 6, 554 6, 562 6, 566 6, 586 ;

6, 614 6, 622 6, 626 6, 634 6, 662 6, 674 6, 694 6, 698 ;

6, 706 6, 718 6, 734 6, 746 6, 758 6, 766 6, 778 6, 794 ;

6, 802 6, 818 6, 838 6, 842 6, 862 6, 866 6, 878 6, 886 6, 898 ;

6, 914 6, 922 6, 926 6, 934 6, 958 6, 974 6, 982 6, 998 ;

...

900, 990 902, 946 903, 987 905, 955 905, 965 905, 985 905, 995

906, 942 906, 978 908, 916 908, 932 908, 956 908, 964 909, 927

909, 963 909, 981 ;

910, 980 913, 979 914, 922 914, 926 914, 934 914, 958 914, 974

914, 982 914, 998 916, 932 916, 956 916, 964 917, 959

917, 973 ;

921, 933 921, 939 921, 951 921, 993 922, 926 922, 934 922, 958

922, 974 922, 982 922, 998 923, 949 926, 934 926, 958 926, 974

926, 982 926, 998 927, 963 927, 981 928, 992 ;

932, 956 932, 964 933, 939 933, 951 933, 993 934, 958 934, 974

934, 982 934, 998 938, 994 939, 951 939, 993 ;

942, 978 943, 989 944, 976 948, 996 ;

951, 993 955, 965 955, 985 955, 995 956, 964 958, 974 958, 982

958, 998 959, 973 ;
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963, 981 965, 985 965, 995 ;

974, 982 974, 998 ;

982, 998 985, 995 .

Taking into consideration the great number of solu-
tions of equation (2080), we propose the same equation for
x ∈ {ax, ax +mx, ax + 2mx, . . . , bx}, x non-prime and y ∈
{ay, ay +my, ay + 2my, . . . , by}, y non-prime. The program for find-
ing the solutions of the equation (2080) becomes:

Ed20801(ax,mx, bx, ay,my, by) := S ← (”x” ”y”)
for x ∈ ax, ax +mx..bx

u← Tpη(x) = 0
for y ∈ ay, ay +my..by

q ← u ∧ Tpη(y)=0
if q ∧ ηx · y=x · ηy
S ← stack[S, (x y)]

return S

The program calls the subprogram 1.8 for establishing the primality of x
and y. For ax := 2, mx := 111, bx := 3 ·103, ay := 3, my := 203, by := 2 ·104,
then the search set is

{2, 113, 224, 335, 446, 557, 668, 779, 890, . . . , 2999}
× {3, 206, 409, 612, 815, 1018, 1221, 1424, 1627, . . . , 19897}

and the solutions, in the form x, y , are:

335, 815 335, 2845 335, 6905 335, 8935 ;

446, 206 446, 1018 446, 2642 446, 5078 446, 10762 446, 13198

446, 14822 446, 15634 446, 17258 ;

668, 7108 ;
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779, 2033 779, 17461 ;

1112, 6296 1112, 9544 1112, 19288 ;

1334, 8326 ;

1556, 7108 ;

2222, 3454 2222, 12386 ;

2444, 2236 ;

2888, 13604 .

7.2.14 The equation 2081

Program 7.12. Given vector η, the equation η(x) · η(y) = x · y, with x 6= y
and x, y non-prime, is equivalent to the relation ηx ·ηy = x ·y, cu x < y (for
symmetry reasons of the equation relative to x and y, in order to elapse
the equivalent solutions, condition x < y was considered). The program
for finding the solutions of the equation (2081), where x < y, with x and y
non-prime, is:

Ed2081(axy, bxy) := S ← (”x” ”y”)
for x ∈ axy..bxy − 1

u← Tpη(x)=0
for y ∈ x+ 1..bxy

q ← u ∧ Tpη(y)=0
S ← stack(S, (x y)) if q ∧ ηx · ηy=x · y

return S

The program calls the subprogram 1.8 to establish the primality of x and
y. The call of the program is done by the sequence:

axy := 2 bxy := 104 ,
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hence, the search domain is

Dc = {2, 3 . . . , 9999} × {3, 4, . . . , 10000}

cu x < y. The total number of verified cases is:

999∑
x=2

10000∑
y=x+1

= 49985001 ,

and no solution has been found.

7.2.15 The equation 2082

The η–Diophantine equation η(x)y = xη(y), with x and y non-prime, is
equivalent with the relation (ηx)y = xηy , with x and y non-prime, taking
into consideration the meaning of vector η.

The search program is

Ed2082(ax, bx, ay, by) := S ← (”x” ”y”)
for x ∈ ax..bx

u← Tpη(x)=0
for y ∈ ay..by

q ← u ∧ Tpη(y)=0
S ← stack(S, (x y)) if q ∧ (ηx)y=xηy

return S

The program calls the subprogram 1.8 to establish the primality of x and
y.

The solutions of the problem for the search domain defined by ax := 2,
bx := 64, x non-prime and ay := 2, by := 80, y non-prime in the form x, y ,
are:

4, 4 8, 9 27, 9 ;

36, 6 36, 8 36, 10 36, 14 36, 22 36, 26 36, 34 36, 38 36, 46

36, 58 36, 62 36, 74 ;
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64, 6 64, 8 64, 10 64, 14 64, 22 64, 26 64, 34 64, 38 64, 46

64, 58 64, 62 64, 74 ;

The number of ran through cases is 4977, and the execution time is less
then one second.

7.2.16 The equation 2083

The equation η(x)η(y) = η(xy) is equivalent with the relation (ηx)ηy =
ηxy taking into consideration the significance of vector η.

The search program will have to take into consideration the fact that
xy should not be greater then the last index of file η and x < y, as the role
of x and y is symmetric.

Ed2083(ax, bx, ay, by) := S ← (”x” ”y”)
for x ∈ ax..bx − 1

for y ∈ x+ 1..by
u← xy ≤ last(η)
S ← stack[S, (x y)] if u ∧ (ηx)ηy=ηxy

return S

for ax := 2, bx := 100, ay := 2, by : 120, with x < y, the number of
ran trough cases is 6831, with the remark that some cases are excluded,
namely when xy ≥ 106. We have only 2 solutions: 2, 6 and 2, 12 that
satisfy equation (2083)

η(2)η(6) = η(26) and η(2)η(12) = η(212)

or the equivalent relation (ηx)ηy = ηxy

(η2)
η6 = η26 and (η2)

η12 = η212 .

7.2.17 The equation 2084

The η–Diophantine equation η(xy) = η(zw), with x 6= z, is equivalent
with the relation ηxy = ηzw taking into consideration the significance of the
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file η. The program Ed20840(ax, bx, ay, by, az, bz, aw, bw) that run trough all
6561 situations of the search domain

Dc = {2, 3, . . . , 10} × {2, 3, . . . , 10} × {2, 3, . . . , 10} × {2, 3, . . . , 10} , (7.2)

where x 6= z. The real number of cases that have been ran trough is 4033
for reason of restrictions xy ≤ last(η) = 106 and zw ≤ last(η) = 106.

Ed20840(ax, bx, ay, by, az, bz, aw, bw) :=

S ← (”x” ”y” ”z” ”w”)
u← last(η)
for x ∈ ax..bx

for y ∈ ay..by
X ← xy

for z ∈ az..bz
for w ∈ aw..bw
Z ← zw

q ← x 6= z ∧X ≤ u ∧ Z ≤ u
S ← stack[S, (x y z w)] if q ∧ ηX=ηZ

return S

The solution of the Diophantine equation η(xy) = η(zw), in the form
x, y, z, w , are:

2, 5, 4, 3 2, 6, 4, 3 2, 7, 4, 3 2, 9, 3, 5 2, 9, 4, 5 2, 9, 6, 5 2, 9, 8, 3

2, 10, 3, 5 2, 10, 4, 5 2, 10, 6, 5 2, 10, 8, 3 ;

3, 2, 2, 4 3, 3, 6, 4 3, 3, 9, 2 3, 4, 9, 2 3, 5, 2, 9 3, 5, 2, 10 3, 7, 4, 8

3, 7, 9, 4 3, 8, 6, 7 3, 8, 9, 4 3, 10, 9, 5 ;

4, 3, 2, 5 4, 3, 2, 6 4, 3, 2, 7 4, 3, 8, 2 4, 4, 2, 8 4, 4, 5, 2 4, 4, 10, 2

4, 5, 2, 9 4, 5, 2, 10 4, 5, 8, 3 4, 6, 8, 5 4, 7, 8, 5 4, 8, 3, 7 4, 8, 6, 7

4, 9, 8, 6 ;
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5, 2, 2, 8 5, 3, 3, 6 5, 4, 4, 9 5, 4, 8, 6 5, 5, 10, 6 ;

6, 2, 2, 4 6, 3, 3, 4 6, 3, 9, 2 6, 4, 9, 2 6, 5, 2, 9 6, 5, 2, 10 6, 5, 8, 3

6, 6, 5, 3 6, 6, 9, 3 6, 6, 10, 3 6, 7, 3, 8 6, 7, 4, 8 6, 7, 9, 4 ;

7, 3, 3, 9 7, 5, 5, 8 ;

8, 2, 2, 5 8, 2, 2, 6 8, 2, 2, 7 8, 2, 4, 3 8, 3, 2, 9 8, 3, 2, 10 8, 3, 3, 5

8, 3, 4, 5 8, 3, 6, 5 8, 4, 4, 6 8, 4, 4, 7 8, 5, 4, 6 8, 5, 4, 7 8, 6, 4, 9

8, 6, 5, 4 8, 6, 10, 4 ;

9, 2, 3, 4 9, 2, 6, 3 9, 2, 6, 4 9, 3, 3, 6 9, 4, 3, 7 9, 4, 3, 8 9, 4, 4, 8

9, 4, 6, 7 9, 5, 3, 10 ;

10, 2, 2, 8 10, 3, 3, 6 10, 4, 4, 9 10, 4, 8, 6 10, 5, 5, 6 .

We have 87 solutions of the Diophantine equation η(xy) = η(zw) in the
search domain Dc, given by (7.2), with x 6= z, xy ≤ 106 and zw ≤ 106 .

Similarly, we can consider the Diophantine equations η(xy)− η(zw) =
k, where k = 1, 2, 3, 4, 5 . . .. The number of solutions for k = 1 is 61, for
k = 2, 67, for k = 3, 67, for k = 4, 66 and for k = 5 we have 51 solutions,
etc.

For example, the solutions of the equation xy − zw = 23 with x 6= y 6=
z 6= w, x, y, z, w ∈ {2, 3, . . . , 10}4 are:

5, 8, 2, 9 5, 8, 2, 10 7, 5, 2, 9 7, 5, 2, 10 7, 5, 8, 3 9, 6, 2, 3 .

7.2.18 The equation 2085

Instead of the Diophantine equation (2085), η(xy) = y, proposed
in [Smarandache, 1999b], we solve the more general equation η(xy) −
y = k. The solutions of this equation with x, y, k ∈ Dc ∈{

2, 3, . . . , 102
}2 × {0, 1, . . . , 10}

(
where

{
2, 3, . . . , 103

}2
=
{

2, 3, . . . , 103
}
×{

2, 3, . . . , 103
})

are:
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2, 3, 1 2, 7, 1 2, 15, 1 ;

2, 2, 2 2, 4, 2 2, 6, 2 2, 8, 2 2, 10, 2 2, 14, 2 2, 16, 2 2, 18, 2 ;

2, 5, 3 2, 9, 3 2, 11, 3 2, 13, 3 2, 17, 3 2, 19, 3 ;

2, 12, 4 3, 2, 4 4, 2, 4 6, 2, 4 12, 2, 4 ;

3, 4, 5 4, 3, 5 6, 4, 5 ;

3, 3, 6 4, 4, 6 6, 3, 6 8, 2, 6 12, 3, 6 12, 4, 6 24, 2, 6 ;

3, 5, 7 4, 5, 7 6, 5, 7 9, 2, 7 12, 5, 7 18, 2, 7 36, 2, 7 72, 2, 7 ;

5, 2, 8 10, 2, 8 15, 2, 8 16, 2, 8 20, 2, 8 30, 2, 8 40, 2, 8 45, 2, 8

48, 2, 8 60, 2, 8 80, 2, 8 90, 2, 8 ;

3, 6, 9 4, 7, 9 6, 6, 9 8, 3, 9 24, 3, 9 ;

3, 8, 10 4, 6, 10 4, 8, 10 32, 2, 10 96, 2, 10 .

Let us remark that in Dc there exists no solution of equation η(xy) = y.
The number of analyzed cases is 107811 of which only 3047 have satis-

fied the condition xy < last(η) = 106.
Knowing the significance of vector η, the Diophantine equation η(xy)−

y = k is equivalent with the relation ηxy − y = k. In these conditions, the
program for finding the solution is:

Ed2085(ak, bk, ax, bx, ay, by) :=

j ← 0
S ← (”x” ”y” ”k”)
for k ∈ ak..bk

for x ∈ ax..bx
for y ∈ ay..by
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η ← xy

if η ≤ last(η)
j ← j + 1
S ← stack[S, (x y k)] if ηη − y=k

return stack[S, (j j j)]

By means of variable j we count the number of concrete analyzed cases.

7.2.19 The equation 2086

The Diophantine equation η(xx) = yy, which is equivalent with the
relation ηxx = yy, taking into consideration the significance of vector η,
has only the trivial solutions x, y = 1, 1 and x, y = 2, 2 for x, y ∈
Dc =

{
1, 2, . . . , 102

}2 of which there were in fact analyzed only 700 cases
in which xx ≤ last(η) = 106.

7.2.20 The equation 2087

The Diophantine equation η(xy) = yx, equivalent with the relation
ηxy = yx, taking into consideration the significance of vector η, has only
the trivial solutions 1, 1 and 2, 2 for x, y ∈ Dc =

{
1, 2, . . . , 102

}2 of
which there were in fact analyzed only 476 cases in which xy ≤ last(η) =
106.

7.2.21 The equation 2088

The 26 solutions of the η–Diophantine equation η(x) = y!, in the form
x, y , are:

2, 2 ;

9, 3 16, 3 18, 3 36, 3 45, 3 48, 3 72, 3 80, 3 90, 3 144, 3

180, 3 240, 3 360, 3 720, 3 ;
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59049, 4 118098, 4 236196, 4 295245, 4 413343, 4 472392, 4

590490, 4 649539, 4 767637, 4 826686, 4 .

The program for finding the solutions of the equation (2088) is

Ed2088(ax, bx, ay, by) := S ← (”x” ”y”)
for x ∈ ax..bx

for y ∈ ay..by
S ← stack[S, (x y)] if ηx=y!

return S

The search domain is Dc =
{

1, 2, . . . , 106
}
× {1, 2, . . . , 19}, where we

have considered that 19! has 17 significant digits and 20! has 18 significant
digits. Therefore, for y > 19 some errors will be produced, connected to
the representation of the numbers in the intern memory of classic comput-
ers.

7.2.22 The equation 2089

The η–Diophantine equation η(m ·x) = m ·η(x), if we take into consid-
eration the significance of vector η, is equivalent with the relation

ηm·x = m · ηx .

In these conditions, the empirical search program for the solutions of the
η–Diophantine equation is:

Ed2089(am, bm, ax, bx) := j ← 0
S ← (”m” ”x”)
for m ∈ am..bm

for x ∈ ax..bx
if m · x ≤ last(η)
j ← j + 1
S ← stack(S, (m x)) if ηm·x=m · ηx

return stack(S, (j j))
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The search domain is

Dc =
{

2, 3, . . . , 102
}
×
{

2, 3, . . . , 106
}

which imply that the number of cases is 98999901, but, due to conditionm·
x ≤ last(η) = 106, the number of real analyzed cases is 4187241, counted
in the program by means of variable j.

On this search domain the equation has only a sole solution

m,x = 2, 2 .

Obviously, there exist also the trivial solutions where m = 1, x ∈{
1, 2, . . . , 106

}
and m ∈

{
1, 2, . . . , 106

}
and x = 1, but those were avoided

by choosing the search domain.

7.2.23 The equation 2090

The η–Diophantine equation mη(x) + η(x)n = mn is equivalent with
the relation mηx + (ηx)n = mn if we consider vector η which contains all
the values of function η(k) for k ∈

{
1, 2, . . . , 106

}
. Let us consider the next

empirical search domain

Dc = {2, 3, . . . , 100}2 ×
{

2, 3, . . . 104
}

for the triplet (m,n, x). As we have operations to raise at power that
can generate numbers greater than 1017, a condition has been imposed
to avoid the floating overflow errors and the numbers greater than 1017.
The search program is:

Ed2090(am, bm, an, bn, ax, bx) :=

j ← 0
for m ∈ am..bm

for n ∈ an..bn
for x ∈ ax..bx

η ← ηx
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N ←∞ on error N ← mη + ηn

if N ≤ 1017

j ← j + 1
S ← stack[S, (m n x)] if N=mn

return stack[S, (j j j)]

The search domain has 3799620 possible cases but in reality there were
considered 236363 due to restriction mη + ηn ≤ 1017. In these conditions,
the η–Diophantine equation (2090) has no solutions on this search domain.

7.2.24 The equation 2091

The Diophantine equation (2091) is η(x2)/m ± η(y2)/n = 1. The Dio-
phantine equation (2091), variant with +, η(x2)/m + η(y2)/n = 1 has no
solutions on this search domain Dc = {1, 2, . . . , 10}2 ×

{
2, 3, . . . , 103

}2,
with m 6= n and x 6= y. The number of total possible cases is 80838081 of
which, due to restriction m 6= n and x 6= y, the number of real analyzed
cases is 71784144. The search time was 37.397 seconds.

On the contrary, the Diophantine equation η(x2)/m − η(y2)/n = 1,
which is equivalent with equation n · η(x2) −m · η(y2) = m · n, are 54370
de solutions pe search domain Dc = {1, 2, . . . , 10}2 ×

{
2, 3, . . . , 103

}2. The
number of possible cases is 80838081 of which, due to restriction m 6= n
and x 6= y, the number of real analyzed cases is 71784144. The search time
was 169.662 seconds. The first 49 and the last 28 solutions, in the form
m,n, x, y , are:

2, 3, 3, 4 2, 3, 3, 6 2, 3, 3, 12 ;

2, 3, 4, 3 2, 3, 4, 6 2, 3, 4, 12 ;

2, 3, 5, 32 2, 3, 5, 96 2, 3, 5, 160 2, 3, 5, 288 2, 3, 5, 480 ;

2, 3, 6, 3 2, 3, 6, 4 2, 3, 6, 12 ;
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2, 3, 7, 81 2, 3, 7, 162 2, 3, 7, 256 2, 3, 7, 324 2, 3, 7, 405

2, 3, 7, 567 2, 3, 7, 648 2, 3, 7, 768 2, 3, 7, 810 ;

2, 3, 8, 9 2, 3, 8, 18 2, 3, 8, 36 2, 3, 8, 72 ;

2, 3, 10, 32 2, 3, 10, 96 2, 3, 10, 160 2, 3, 10, 288 2, 3, 10, 480 ;

2, 3, 12, 3 2, 3, 12, 4 2, 3, 12, 6 ;

2, 3, 14, 81 2, 3, 14, 162 2, 3, 14, 256 2, 3, 14, 324 2, 3, 14, 405

2, 3, 14, 567 2, 3, 14, 648 2, 3, 14, 768 2, 3, 14, 810 ;

2, 3, 15, 32 2, 3, 15, 96 2, 3, 15, 160 2, 3, 15, 288 2, 3, 15, 480 ;

...

10, 9, 512, 9 10, 9, 512, 18 10, 9, 512, 36 10, 9, 512, 72 ;

10, 9, 525, 9 10, 9, 525, 18 10, 9, 525, 36 10, 9, 525, 72 ;

10, 9, 600, 9 10, 9, 600, 18 10, 9, 600, 36 10, 9, 600, 72 ;

10, 9, 675, 9 10, 9, 675, 18 10, 9, 675, 36 10, 9, 675, 72 ;

10, 9, 700, 9 10, 9, 700, 18 10, 9, 700, 36 10, 9, 700, 72 ;

10, 9, 800, 9 10, 9, 800, 18 10, 9, 800, 36 10, 9, 800, 72 ;

10, 9, 900, 9 10, 9, 900, 18 10, 9, 900, 36 10, 9, 900, 72 .
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7.2.25 The equation 2092

The η–Diophantine equation

η(xy11 + xy22 + . . .+ xyrr ) = η(x1)
y1 + η(x2)

y2 + . . .+ η(xr)
yr ,

is equivalent with the relation

ηxy11
+ ηxy22

+ . . .+ ηxyrr = (ηx1)y1 + (ηx2)y2 + . . .+ (ηxr)
yr ,

if we use vector η that contains all the values of function η(k) for k ∈{
1, 2, . . . , 106

}
. Unfortunately, equation (2092) surpasses slightly our pos-

sibilities of finding the solutions. It is sufficient to chose r > 3 and the
powers y1, y2, . . . , yr to be natural numbers > 2. In the case of this equa-
tion two cases were considered, that have no solutions (except the trivial
solution x1 = 1, x2 = 1, . . . , xr = 1) on the given search domain:

1. Equation (2092), with r = 2, y1 = 2 and y2 = 3

η(x21 + x32) = η(x1)
2 + η(x2)

3

for {x1, x2} ∈ Dc = {2, 3, . . . , 1000} × {2, 3, . . . , 100}.

2. Equation (2092), with r = 3, y1 = 1, y2 = 2 and y3 = 4

η(x1 + x22 + x43) = η(x1) + η(x2)
2 + η(x3)

4 ,

for

{x1, x2, x3} ∈ Dc =
{

2, 3, . . . , 104
}
×
{

2, 3, . . . , 103
}
× {2, 3, . . . , 31} .

7.2.26 The equation 2093

The η–Diophantine equation

η(x1! + x2! + . . .+ xr!) = η(x1)! + η(x2)! + . . .+ η(xr)! ,

is equivalent with the relation

ηx1! + ηx2! + . . .+ ηxr! = ηx1 ! + ηx2 ! + . . .+ ηxr ! ,
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if we use vector η that contains all the values of function η(k) for k ∈{
1, 2, . . . , 106

}
. This equation also surpasses slightly our possibilities of

finding the solutions for r > 2. Let equation η–Diophantine for r = 2

η(x1! + x2!) = η(x1)! + η(x2)! , (7.3)

and equivalent relation

ηx1! + ηx2! = ηx1 ! + ηx2 ! .

As for n = 9, n! = 362880 and for n = 10, n! = 3628800 > 106, Then it
follows that the biggest search domain for x1 and x2 is Dc {2, 3, . . . , 9}2.
Equation (7.3) is symmetric relative to both unknowns. To avoid symmet-
ric solutions we impose also the condition x1 < x2. We have avoided the
values x1 = 1 and x2 = 1 because they lead to the trivial solution. The
program for finding the solutions of the equation (7.3) is:

Program 7.13. Program Ed20932

Ed20932(axy, bxy) := S ← (”x” ”y”)
for x ∈ axy..bxy − 1

for y ∈ x+ 1..bxy
c← ηx! + ηy=ηx! + ηy!
S ← stack[S, (x y)] if c

return S

With this program the solution 2, 6 has be determined on the search do-
main Dc {2, 3, . . . , 9}2, solution for which we have η(2!) + η(6!) = η(2)! +
η(6)!. Obviously, there exist also the trivial solutions 1, 1 and 2, 2 which
verify:

η(1!) + η(1!) = η(1)! + η(1)! and η(2!) + η(2!) = η(2)! + η(2)! .

7.2.27 The equation 2094

The η–Diophantine equation
(
x, y
)

=
(
η(x), η(y)

)
,
(
where by (x,y)

was denoted the greatest common divisor of x and y
)
, is equivalent



176 CHAPTER 7. PARTIAL EMPIRICAL SOLVING

with the relation gcd(x, y) = gcd(ηx, ηy), if we use vector η that con-
tains all values of function η(k) for k ∈

{
1, 2, . . . , 106

}
and Mathcad

function gcd(n1, n2, . . . , n`) for computing the greatest common divisor
of n1, n2, . . . , n` has 4799 solutions. The search domain ales is Dc ={

2, 3, . . . , 103
}2 (with x < y as the role of x and y is symmetric) and

(x, y) 6= 1, i.e. x and y not relative prime. The number of possible cases
is 498501 of which the analyzed ones are 193351 due to restrictions x < y
and (x, y) 6= 1. We give all the solution for x = 4, 6, 8, in the form x, y :

4, 8 4, 12 4, 18 4, 24 4, 32 4, 50 4, 64 4, 90 4, 96 4, 98

4, 128 4, 150 4, 160 4, 192 4, 224 4, 242 4, 288 4, 294 4, 320

4, 338 4, 350 4, 384 4, 448 4, 450 4, 480 4, 490 4, 512 4, 576

4, 578 4, 640 4, 672 4, 722 4, 726 4, 882 4, 896 4, 960 4, 972 ;

6, 9 6, 27 6, 45 6, 81 6, 135 6, 189 6, 243 6, 375 6, 405

6, 567 6, 729 6, 945 ;

8, 12 8, 18 8, 50 8, 90 8, 98 8, 150 8, 242 8, 294 8, 338

8, 350 8, 450 8, 490 8, 578 8, 722 8, 726 8, 882 8, 972 .

For x ≥ 860 we give the solutions on x = 86∗, 87∗, 88∗, 89∗, 90∗, 91∗, 92∗,
93∗, 94∗, 95∗, 96∗, in the same form x, y :

860, 903 860, 989 861, 902 861, 943 867, 884 867, 935 867, 952

868, 899 868, 961 869, 948 ;

871, 938 872, 981 873, 970 874, 897 876, 949 ;

880, 891 882, 968 884, 935 885, 944 888, 925 ;

890, 979 891, 968 893, 940 893, 987 896, 972 897, 920 899, 930

899, 961 899, 992 ;

901, 954 902, 943 903, 946 903, 989 ;
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912, 931 913, 996 915, 976 918, 935 ;

923, 994 925, 962 925, 999 928, 957 ;

930, 961 931, 950 931, 969 931, 988 935, 952 ;

940, 987 943, 984 946, 989 ;

950, 969 957, 986 ;

961, 992 962, 999 969, 988 .

The empirical search domain is:

Ed2094(axy, bxy) := j ← 0
S ← (”x” ”y”)
for x ∈ axy..bxy − 1

u← Tpη(x) = 0
for y ∈ x+ 1..bxy

notprime← u ∧ Tpη(y)=0
q ← gcd(x, y)
if notprime ∧ q 6= 1
j ← j + 1
S ← stack(S, (x y)) if q= gcd(ηx, ηy)

return stack(S, (j j))

The program calls the subprogram 1.8 to establish the primality of x and
y.

7.2.28 The equation 2095

We consider the search domain Dc =
{

2, 3, . . . , 103
}2, x, y non-prime

with x < y and (x, y) 6= 1. The number of possible cases is 498501. Due
to conditions x < y and (x, y) = 1 the number of analyzed cases is in fact verify!

(x, y) 6= 1
or
(x, y) = 1

193351. We have 145 solutions with x = 4 and solution x, y = 6, 12
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that verify the η–Diophantine equation [x, y] = [η(x), η(y)], where by
[n1, n2] was denoted the smallest common multiple of numbers n1 and n2.
This η–Diophantine equation is equivalent with the relation lcm(x, y) =
lcm

(
ηx, ηy

)
, if we use vector η with the values of function η and Mathcad

function lcm(n1, n2, . . . , n`) to compute the the smallest common multiple
of n1, n2, . . .n`. The solutions, in the form x, y , are:

4, 6 4, 10 4, 14 4, 20 4, 22 4, 26 4, 28 4, 34 4, 38 4, 44 4, 46

4, 52 4, 58 4, 62 4, 68 4, 74 4, 76 4, 82 4, 86 4, 92 4, 94 ;

4, 116 4, 118 4, 122 4, 124 4, 134 4, 142 4, 146 4, 148 4, 158

4, 164 4, 166 4, 172 4, 178 4, 188 4, 194 ;

4, 202 4, 206 4, 212 4, 214 4, 218 4, 226 4, 236 4, 244 4, 254

4, 262 4, 268 4, 274 4, 278 4, 284 4, 292 4, 298 ;

4, 302 4, 314 4, 316 4, 326 4, 332 4, 334 4, 346 4, 356 4, 358

4, 362 4, 382 4, 386 4, 388 4, 394 4, 398 ;

4, 404 4, 412 4, 422 4, 428 4, 436 4, 446 4, 452 4, 454 4, 458

4, 466 4, 478 4, 482 ;

4, 502 4, 508 4, 514 4, 524 4, 526 4, 538 4, 542 4, 548 4, 554

4, 556 4, 562 4, 566 4, 586 4, 596 ;

4, 604 4, 614 4, 622 4, 626 4, 628 4, 634 4, 652 4, 662 4, 668

4, 674 4, 692 4, 694 4, 698 ;

4, 706 4, 716 4, 718 4, 724 4, 734 4, 746 4, 758 4, 764 4, 766

4, 772 4, 778 4, 788 4, 794 4, 796 ;

4, 802 4, 818 4, 838 4, 842 4, 844 4, 862 4, 866 4, 878 4, 886

4, 892 4, 898 ;
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4, 908 4, 914 4, 916 4, 922 4, 926 4, 932 4, 934 4, 956 4, 958

4, 964 4, 974 4, 982 4, 998 ;

6, 12 .

The empirical search domain is:

Ed2095(axy, bxy) :=

j ← 0
S ← (”x” ”y”)
for x ∈ axy..bxy − 1

u← Tpη(x) = 0
for y ∈ x+ 1..bxy

notprime← u ∧ Tpη(y)=0
if notprime ∧ gcd(x, y) 6= 1
j ← j + 1
S ← stack(S, (x y)) if lcm(x, y)=lcm(ηx, ηy)

return stack(S, (j j))
verify!
gcd(x, y) 6=
1 or
gcd(x, y) =
1

The program calls the subprogram 1.8 to establish the primality x and y.

7.3 The η–s–Diophantine equations

The function s : N → N, where s(n) is the sum of the divisors of n
without n (the sum of the aliquot parts), for example s(12) = 1 + 2 +
3 + 4 + 6 = 16. The function s(n) can be defined by means of function
σ(n) = σ1(n) which is the sum of the divisors of n, s(n) = σ(n) − n (see
figure 7.1). Keeping the numbering from the paper [Smarandache, 1999b],
the η–s–Diophantine equations are:

(2124) η(x) = s(m · x+ n) ,

(2125) η(x)m = s(xn) ,

(2126) η(x) + y = x+ s(y) ,
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Figure 7.1: The function s
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(2127) η(x) · y = x · s(y) ,

(2128) η(x)/y = x/s(y) ,

(2129) η(x)y = xs(y) ,

(2130) η(x)y = s(y)x ,

7.3.1 Partial empirical solving of η–s–Diophantine equations

To solve empirically the η–s–Diophantine equations (2124–2130), we
will read the files η.prn and s.prn which contain the values of functions
η(n) and s(n) for n = 1, 2, . . . , 106, these files being generated previously.
The files η.prn and s.prnwill be assigned to vectors η and swith by means
of the Mathcad sequences:

η := READPRN(”...\η.prn”) last(η) = 106

s := READPRN(”...\s.prn”) last(s) = 106 ,

where the commands last(η) and last(s) indicate the last index of vectors
η and s. These manoeuvres are necessary to diminish the empirical search
time of the solutions of the Diophantine equations.

7.3.2 The equation 2124

Equation η–s–Diophantine η(x) = s(m·x+n) is equivalent with the re-
lation ηx = sm·x+n if we take into consideration the significance of vectors
η and s. Let be search domain

Dc = {1, 2, . . . , 10}2 ×
{
ax, ax + rx, ax + 2rx, . . . ,

⌊
bx − ax
rx

⌋
· rx
}

(7.4)

with ax = 1, rx = 1, bx = 106 and additional conditions m · x+ n ≤ last(s)
and gcd(m,n) = 1, i.e. m and n are relatively prime numbers. Then,
the number of possible cases is 108. Due to the additional conditions, the
number of analyzed cases is 21271688. The number of found solutions is
554, of which we present the first 80 and the last 85:
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1, 1, 1 1, 1, 3 1, 1, 7 1, 1, 8 1, 1, 26 1, 1, 31 1, 1, 76 1, 1, 124

1, 1, 127 1, 1, 610 1, 1, 1072 1, 1, 2032 1, 1, 2186 1, 1, 4912

1, 1, 8191 1, 1, 16806 1, 1, 23488 1, 1, 25240 1, 1, 49900

1, 1, 50248 1, 1, 68920 1, 1, 78124 1, 1, 99100 1, 1, 131071

1, 1, 142090 1, 1, 205378 1, 1, 213052 1, 1, 357100 1, 1, 357910

1, 1, 371292 1, 1, 516496 1, 1, 524287 1, 1, 545146 1, 1, 704968

1, 1, 791716 1, 1, 929230 ;

1, 2, 1 1, 2, 2289 1, 2, 15947 1, 2, 19337 1, 2, 39447 1, 2, 52395

1, 2, 111045 1, 2, 135795 1, 2, 170255 1, 2, 186801 1, 2, 400449

1, 2, 485225 1, 2, 787461 1, 2, 996495 ;

1, 3, 296 1, 3, 382 1, 3, 1940 1, 3, 5174 1, 3, 7258 1, 3, 12824

1, 3, 101594 1, 3, 133748 1, 3, 210014 1, 3, 336374 1, 3, 441364

1, 3, 576884 1, 3, 855316 ;

1, 4, 1 1, 4, 51 1, 4, 217 1, 4, 22593 1, 4, 33657 1, 4, 34705

1, 4, 95109 1, 4, 205897 1, 4, 348609 1, 4, 355893 1, 4, 383443

1, 4, 433945 1, 4, 510147 1, 4, 578085 1, 4, 684697 1, 4, 926833

1, 4, 950137 ;

...

7, 6, 1 7, 6, 34793 7, 6, 61993 7, 8, 4869 7, 8, 13403 7, 8, 123767

7, 9, 74050 7, 9, 82850 7, 10, 1 7, 10, 843 7, 10, 1477 7, 10, 89851

7, 10, 131679 ;

8, 1, 134 8, 1, 254 8, 1, 614 8, 1, 2936 8, 1, 3155 8, 1, 6281

8, 1, 8615 8, 1, 64562 8, 1, 88121 8, 3, 1 8, 3, 37 8, 3, 1603 8, 5, 1

8, 5, 622 8, 5, 2104 8, 5, 18372 8, 5, 48663 8, 5, 89193
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8, 5, 114132 8, 7, 69023 8, 7, 80450 8, 7, 88187 8, 9, 1 8, 9, 604

8, 9, 4910 8, 9, 23386 8, 9, 36775 ;

9, 2, 1 9, 2, 4383 9, 4, 1 9, 4, 56683 9, 5, 1084 9, 5, 1374

9, 5, 3246 9, 5, 43256 9, 8, 1 9, 8, 1317 9, 8, 3787 9, 8, 13155

9, 8, 23955 9, 8, 46521 9, 8, 81827 9, 10, 1 9, 10, 71 9, 10, 16703

9, 10, 30769 9, 10, 31419 9, 10, 102417 ;

10, 1, 1 10, 1, 61 10, 1, 2524 10, 1, 4990 10, 1, 6892 10, 1, 9910

10, 1, 14209 10, 1, 35710 10, 1, 35791 10, 1, 92923 10, 3, 1

10, 3, 194 10, 7, 1 10, 7, 43 10, 7, 139 10, 7, 11947 10, 7, 25975

10, 7, 26581 10, 7, 64360 10, 9, 1 10, 9, 3928 10, 9, 29420

10, 9, 51835 10, 9, 57995 .

7.3.3 The equation 2125

The η–s–Diophantine equation η(x)m = s(xn), is equivalent with the
relation (ηx)m = sxn if we take into consideration the significance of vec-
tors η and s. On the search domain given by (7.4) with ax = 2, rx = 1,
bx = 106 and additional conditions (ηx)m < 1017 and xn ≤ last(s), the
equation has a sole solution 2, 1, 12 , after having analyzed 4766682 cases
of 99999900 possible situations. Obviously, this solution verifies equation
(2125)

η(12)2 = 42 = 16 s(121) = 1 + 2 + 3 + 4 + 6 = 16 .

7.3.4 The equation 2126

The η–s–Diophantine equation η(x) + y = x + s(y) is equivalent with
the relation ηx + y = x + sy if we take into consideration the significance
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of vectors η and s. Let

Dc =

{
ax, ax + rx, ax + 2rx, . . . ,

⌊
bx − ax
rx

⌋
· rx
}

×
{
ay, ay + ry, ay + 2ry, . . . ,

⌊
by − ay
ry

⌋
· ry
}
. (7.5)

be the search domain. As equation (2126) has a great number of solutions
on the search domain Dc given by (7.5), with ax = 2, rx = 1, bx = 106,
ay = 3, ry = 1 and by = 106, we considered a restricted search domain
with ax = 2, rx = 113, bx = 106, ay = 3, ry = 127, by = 106 and the
additional condition of x and y being relative prime. This domain has
69684900 possible cases and 42366956 cases to be analyzed as the cases
when (x, y) 6= 1 are excluded. On this search domain equation (2126) has
44 de solutions given in the form x, y :

3957, 3305 13449, 288928 21133, 99825 33111, 65662

38309, 76838 43733, 693296 67689, 480190 71757, 143386

93227, 790070 102041, 190503 103849, 653926 108369, 192662

116957, 303914 207357, 276482 239449, 239017 311091, 358397

320131, 832234 321487, 605158 323747, 411229 328267, 601983

332787, 336299 339567, 227333 349737, 237239 357873, 257051

407141, 910593 430871, 369319 431097, 348491 433131, 434089

459573, 310391 471325, 940438 505677, 370843 507259, 822963

508389, 509273 509745, 534673 516299, 696471 517881, 722125

520593, 433835 523983, 533657 567827, 849633 631785, 681739

635627, 637289 737779, 955551 765803, 739397 897561, 897893 .

7.3.5 The equation 2127

The η–s–Diophantine equation η(x) · y = x · s(y) is equivalent with
the relation ηx · y = x · sy if we take into consideration the significance of
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vectors η and s. On the search domain Dc given by (7.5) with ax = 100,
rx = 1, bx = 200, ay = 1, ry = 1, bx = 105 and (x, y) = 1 (i.e. x and
y are relative prime) equation has 83 solutions. The number of possible
cases is 10099798 an the number of analyzed cases is 6151818. We give the
solutions in the form x, y :

101, 6 101, 28 101, 496 101, 8128 ;

103, 6 103, 28 103, 496 103, 8128 ;

107, 6 107, 28 107, 496 107, 8128 ;

109, 6 109, 28 109, 496 109, 8128 ;

...

As it is known, (2.10), for every prime number p we have η(p) = p. The
numbers 6 = P1, 28 = P2, 496 = P3 and 8128 = P4 33550336 = P5 . . . ,
are perfect numbers, [Sloane, 2014, A000396 ], for which we have s(Pk) =

Pk. As the solutions can also be given as pairs p,Pk , where p is a prime
number and Pk is a perfect number, we can propose next theorem to be
proved:

Theorem 7.14. The solutions of the η–s–Diophantine equation η(x)·y = x·s(y)

are the pairs of numbers p,Pk , where p is a prime number and Pk, k = 1, 2, . . .,
is a perfect number.

7.3.6 The equation 2128

The η–s–Diophantine equation η(x)/y = x/s(y) ⇔ η(x) · s(y) = x · y
is equivalent with the relation ηx · sy = x · y if we take into consideration
the significance of vectors η and s. On the search domain Dc given by (7.5)
with ax = 2, rx = 1, bx = 100, ay = 6, ry = 1, bx = 8128 and (x, y) = 1
(i.e. x and y are relative prime) the equation has 93 solutions. The search
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domain has 804177 possible cases, but, due to the additional condition
(x, y) = 1 the number of analyzed cases is 485989. We give the solutions
in the form x, y :

3, 28 3, 496 3, 8128 ;

5, 6 5, 28 5, 496 5, 8128 ;

7, 6 7, 496 7, 8128 ;

11, 6 11, 28 11, 496 11, 8128 ;

13, 6 13, 28 13, 496 13, 8128 ;

17, 617, 28 17, 496 17, 8128 ;

19, 6 19, 28 19, 496 19, 8128 ;

...

By a solutions’ analysis, we remark that we have the same pairs p,Pk ,
where p is a prime and Pk perfect number, as in equation (2127). Also,
it can be observed that there are missing pairs of solutions,due to the ad-
ditional condition (x, y) = 1, for example, the pair 3, 6 is missing, as
(3, 6) = 3.

7.3.7 The equation 2129

The η–s–Diophantine equation η(x)y = xs(y) is equivalent with the re-
lation (ηx)y = xsy , if we take into consideration the significance of vectors
η and s. The solutions of the equation are pairs p,Pk , where p is a prime
number and Pk a perfect number as in equation (2127).
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7.3.8 The equation 2130

The η–s–Diophantine equation η(x)y = s(y)y is equivalent with the
relation (ηx)y = (sy)

x, if we take into consideration the significance of
vectors η and s. This equation has no solutions on the search domainDc ={

2, 3, . . . , 106
}
×
{

1, 2, . . . , 106
}

. which has 999999000000 possible cases
of which only 2190820 where analyzed due to the restrictive conditions
(ηx)y < 10307, (sy)

x < 10307 and (x, y) = 1.

7.4 The η–π–Diophantine equations

Let m,n, k ∈ N∗ be fixed and x and y unknown positive integers. The
Diophantine equation in which function η and π are involved, given by
formula (1.19), are called η–π–Diophantine equations. The list of η–π–
Diophantine equations, as given in [Smarandache, 1999b], which we in-
tend to solve empirically are:

(2152) η(x) = π(m · x+ n) ,

(2153) η(x)m = π(xn) ,

(2154) η(x) + y = x+ π(y) ,

(2155) η(x) · y = x · π(y) ,

(2156) η(x)/y = x/π(y) ,

(2157) η(x)y = xπ(y) ,

(2158) η(x)y = π(y)x ,

7.4.1 Partial empirical solving of η–π–Diophantine equations

To solve empirically the η–π–Diophantine equations (2152–2158) we
will read the file η.prn which contains the values of functions η(n) for n =
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1, 2, . . . , 106, this file being generated previously. The file η.prn will be
attributed to vector η by means of the Mathcad sequence:

η := READPRN(”...\η.prn”) last(η) = 106

where the command last(η) indicates the last index of vectors η. This ma-
noeuver is necessary to reduce a lot the time due to the empirical search
of the solutions of the Diophantine equations.

7.4.2 The equation 2152

The η–π–Diophantine equation η(x) = π(m · x + n) is equivalent with
the relation ηx = π(m ·x+n) if we take into consideration the significance
of vector η and formula (1.19). Let us consider the search domain

Dc = {2, 3, . . . , 20}2 ×
{

1, 2, 3, . . . , 103
}

(7.6)

with (m,n) = 1, m · x + n ≤ last(η) and x non-prime. Then, the number
of possible cases is 361000. Due to the additional conditions, the number
of analyzed cases is 179712.
Program 7.15. The search program is:

Ed2152(am, bm, an, bn, ax, rx, bx) :=

j ← 0
S ← (”m” ”n” ”x”)
for m ∈ am..bm
for n ∈ an..bn
for x ∈ ax, ax + rx..bx
if Tpη(x)=0 ∧m · x+ n ≤ last(η) ∧ gcd(m,n)=1
j ← j + 1
S ← stack[S, (m n x)] if ηx=π(m · x+ n)

return stack[S, (j j j)]

The program calls the subprogram 1.8 for establishing the primality of
x and y. On the search domain Dc given by (7.7) we have 35 solutions,
given in the form m,n, x :
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2, 3, 62 2, 3, 543 2, 5, 62 2, 7, 573 2, 9, 74 2, 9, 573 2, 11, 74

2, 11, 573 2, 13, 74 2, 13, 573 2, 13, 579 2, 15, 82 2, 15, 573

2, 15, 579 2, 17, 579 2, 19, 86 2, 19, 579 2, 19, 591 ;

3, 2, 362 3, 4, 362 3, 7, 382 3, 8, 382 3, 10, 382 3, 11, 382

3, 13, 382 3, 13, 386 3, 14, 382 3, 14, 386 3, 16, 382 3, 16, 386

3, 17, 386 3, 19, 386 3, 19, 394 3, 20, 386 3, 20, 394 .

The necessary time for searching the solutions is of approximately 360
seconds on a computer with an Intel processor of 2.20GHz with RAM of
4.00GB (3.46GB usable).

7.4.3 The equation 2153

The η–π–Diophantine equation η(x)m = π
(
xn
)

is equivalent with the
relation

(
ηx
)m

= π
(
xn
)

if we take into consideration the significance of
vector η and formula (1.19). Fie search domain

Dc = {2, 3, . . . , 10}2 ×
{

1, 2, 3, . . . , 103
}

(7.7)

with xn ≤ last(η). Then, the number of possible cases is 80919. Due to the
additional condition, the number of analyzed cases is 10494.

Program 7.16. The search program is:

Ed2153(am, bm, an, bn, ax, rx, bx) :=

j ← 0
S ← (”m” ”n” ”x”)
for m ∈ am..bm
for n ∈ an..bn
for x ∈ ax, ax + rx..bx
ifxn ≤ last(η)
j ← j + 1
S ← stack[S, (m n x)] if

(
ηx
)m=π

(
xn
)

return stack[S, (j j j)]
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on the search domain Dc given by (7.6) we have 3 de solutions, given
in the form m,n, x : 2, 2, 10 , 2, 3, 2 and 2, 3, 3 . The necessary time for
searching the solutions is of approximately 1580 seconds on a computer
with an Intel processor of 2.20GHz with RAM of 4.00GB (3.46GB usable).

7.4.4 The equation 2154

The η–π–Diophantine equation η(x) + y = x+ π(y) is equivalent with
the relation ηx + y = x+π(y) if we take into consideration the significance
of vector η and formula (1.19). Fie search domain

Dc =

{
ax, ax + rx, ax + 2rx, . . . ,

⌊
bx − ax
rx

⌋
· rx
}

×
{
ay, ay + ry, ay + 2ry, . . . ,

⌊
by − ay
ry

⌋
· ry
}
. (7.8)

with ax = 2, rx = 3, bx = 103, ay = 2, ry = 5 and by = 103. Then, the
number of possible and analyzed cases is 66600. In these conditions we
have 52 solutions given in the form x, y :

14, 12 65, 72 74, 52 95, 102 ;

116, 117 128, 157 140, 172 152, 172 158, 107 176, 212 ;

230, 262 245, 292 290, 327 ;

305, 307 329, 352 350, 422 368, 427 374, 442 380, 447 ;

404, 377 410, 457 416, 497 422, 267 434, 497 455, 542 ;

500, 592 527, 607 533, 602 548, 507 551, 637 572, 682 ;

602, 682 614, 382 623, 652 635, 622 656, 747 668, 612 674, 417

680, 802 689, 772 698, 432 ;
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725, 842 746, 462 779, 892 ;

803, 882 836, 982 848, 957 860, 982 866, 532 ;

917, 947 956, 867 .

The necessary time for searching the solutions is of approximately 112
seconds on a computer with an Intel processor of 2.20GHz with RAM of
4.00GB (3.46GB usable).

7.4.5 The equation 2155

The η–π–Diophantine equation η(x) ·y = x ·π(y) is equivalent with the
relation ηx · y = x · π(y) if we take into consideration the significance of
vector η and formula (1.19). Fie search domain

Dc =

{
ax, ax + rx, ax + 2rx, . . . ,

⌊
bx − ax
rx

⌋
· rx
}

×
{
ay, ay + ry, ay + 2ry, . . . ,

⌊
by − ay
ry

⌋
· ry
}
. (7.9)

with ax = 2, rx = 1, bx = 103, ay = 2, ry = 1 and by = 103. Then, the
number of possible and analyzed cases is 998001. In these conditions we
have 985 solutions of which we give the first 45 and the last 50 solutions
in the form x, y :

6, 4 6, 8 8, 4 8, 6 ;

10, 4 10, 6 10, 8 ;

12, 3 12, 27 12, 30 12, 33 ;

14, 4 14, 6 14, 8 ;

15, 3 15, 27 15, 30 15, 33 ;
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16, 24 ;

18, 3 18, 27 18, 30 18, 33 ;

20, 96 20, 100 20, 120 ;

21, 3 21, 27 21, 30 21, 33 ;

22, 4 22, 6 22, 8 ;

25, 10 25, 15 25, 20 ;

26, 4 26, 6 26, 8 ;

27, 3 27, 30 27, 33 ;

28, 96 28, 100 28, 120 ;

...

951, 3 951, 27 951, 30 951, 33 ;

955, 330 955, 335 955, 340 955, 350 955, 355 955, 360 ;

956, 96 956, 100 956, 120 ;

958, 4 958, 6 958, 8 ;

964, 96 964, 100 964, 120 ;

965, 330 965, 335 965, 340 965, 350 965, 355 965, 360 ;

974, 4 974, 6 974, 8 ;

982, 4 982, 6 982, 8 ;
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985, 330 985, 335 985, 340 985, 350 985, 355 985, 360 ;

993, 3 993, 27 993, 30 993, 33 ;

995, 330 995, 335 995, 340 995, 350 995, 355 995, 360 ;

998, 4 998, 6 998, 8 .

The necessary time for searching the solutions is of approximately 116
seconds on a computer with an Intel processor of 2.20GHz with RAM of
4.00GB (3.46GB usable).

7.4.6 The equation 2156

The η–π–Diophantine equation η(x)/y = x/π(y) is equivalent with the
relation

ηx · π(y) = x · y , (7.10)

if we take into consideration the significance of vector η and formula (1.19).
Fie search domain given by (7.9), with ax = 2, rx = 1, bx = 103, ay = 2,
ry = 1 and by = 103. Then, the number of possible and analyzed cases is
998001. In these conditions, equation (7.10) not has solutions.

7.4.7 The equation 2157

The η–π–Diophantine equation η(x)y = xπ(y) is equivalent with the
relation

(ηx)y = xπ(y) , (7.11)

if we take into consideration the significance of vector η and formula (1.19).
Let us consider the search domain given by (7.9), with ax = 2, rx = 1,
bx = 103, ay = 2, ry = 1 and by = 103 with following restrictions (x, y) = 1,
(ηx)y ≤ 10307 and xπ(y) ≤ 10307. Then, the number of possible cases is
998001 and the number of analyzed cases is 112809. In these conditions,
equation (7.11) has 3 solutions: 32, 5 81, 4 , 81, 8 .

Program 7.17. The search program for the solutions of relation (7.11)
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Ed2157(ax, rx, bx, ay, ry, by) :=
j ← 0
S ← (”x” ”y”)
for x ∈ ax, ax + rx..bx
for y ∈ ay, ay + ry..by
break on error (ηx)y

break on error xπ(y)

if gcd(x, y)=1
j ← j + 1

S ← stack[S, (x y)] if (ηx)y=xπ(y)

return stack[S, (j j)]

7.4.8 The equation 2158

The η–π–Diophantine equation η(x)y = π(y)x is equivalent with the
relation

(ηx)y = π(y)x , (7.12)

considering the meaning of vector η and formula (1.19). Let the search
domain be given by (7.9), with ax = 2, rx = 1, bx = 103, ay = 2, ry = 1
and by = 103 with restrictions (x, y) = 1, (ηx)y ≤ 10307 and π(y)x ≤ 10307.
Then, the number of possible cases is 998001 and the number of analyzed
cases are 35743. In these conditions, equation (7.12) has no solutions.

7.5 The η–σk–Diophantine equations

Let us consider m,n, k ∈ N∗ fixed and x and y unknown positive inte-
gers. The Diophantine equations where functions η and σk are involved,
ar called η–σk–Diophantine equations. The list of η–σk–Diophantine equa-
tions, as in [Smarandache, 1999b], which we intend to solve empirically, is:

(2166) η(x) = σk(m · x+ n) ,

(2167) η(x)m = σk(x
n) ,
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(2168) η(x) + y = x+ σk(y) ,

(2169) η(x) · y = x · σk(y) ,

(2170) η(x)/y = x/σk(y) ,

(2171) η(x)y = xσk(y) ,

(2172) η(x)y = σk(y)x ,

7.5.1 Partial empirical solving of η–σk–Diophantine equations

For every Diophantine equation solved in this section, the file η.prn
is read, generated by the program 2.9, by means of the Mathcad function
READPRN

η := READPRN(”...\η.prn”) last(η) = 106

where the command last(η) indicates the last index of vector η. The read-
ing time is of about 10 seconds, and, therefore, an important saving of the
search time can be remarked.

The file σ0.prn is read and the values will be assigned to vector σ0, by
means of the Mathcad function READPRN , with the sequence:

σ0 := READPRN(”...\σ0.prn”) last(σ0) = 106 ,

where each component σ0k contain the number of divisors of k, for k =
1, 2, . . . , 106. The values were generated with the program 3.3. The time for
generating the file σ0.prnwas 2:4:48.362hhmmss . If we have a Diophantine
equation in which function σ0(x) is involved, we will use vector σ0. The
time saving that results is important.

If we have a Diophantine equation in which function σ(x) is involved
and we proceed to a systematic empirical search for many values x, we
will read the file σ1.prn in vector σ1 with the sequence:

σ1 := READPRN(”...\σ1.prn”) last(σ1) = 106 ,
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where each component σ1k contains the sum of the divisors of k, for
k = 1, 2, . . . , 106. The necessary time for generating the file σ1.prn was
2:5:32.155hhmmss.

By the same reasons as in reading files σ0.prn or σ1.prn, we will read
the file σ2.prn in vector σ2 with the sequence:

σ2 := READPRN(”...\σ2.prn”) last(σ2) = 106 .

where each component σ2k contains the sum of the squares of the divisors
of k, for k = 1, 2, . . . , 106. The necessary time for generating the file σ2.prn
was 2:4:50.197hhmmss. Thereby, an important time saving will be obtained
in the empirical search.

7.5.2 The equation 2166

The Diophantine equation (2166) for k = 0 is η(x) = σ0(m · x+ n) and
is equivalent with the relation ηx = σ0m·x+n, considering the meaning of
files η and σ0. Let

Dc = {1, 2, . . . , 10} × {1, 2, . . . , 10} ×
{

1, 2, . . . , 106
}
, (7.13)

be the search domain. We have 108 possible cases. As the component
σ0m·x+n with m · x+ n > 106 can not be addressed, for the search domain
Dc given by (7.13), we consider the additional condition m · x + n ≤ 106.
With this condition, the number of analyzed cases is 29289486. In these
conditions we have 3869 solutions. We present the first 79 solutions in the
form m,n, x :

1, 1, 2 1, 1, 3 1, 1, 15 1, 1, 63 1, 1, 175 1, 1, 384 1, 1, 896

1, 1, 2240 1, 1, 3024 1, 1, 4095 1, 1, 6720 1, 1, 13824 1, 1, 24255

1, 1, 25920 1, 1, 39375 1, 1, 39424 1, 1, 68607 1, 1, 81920

1, 1, 93555 1, 1, 281600 1, 1, 425984 1, 1, 552500 1, 1, 630784

1, 1, 649539 ;
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1, 2, 4 1, 2, 8 1, 2, 12 1, 2, 16 1, 2, 18 1, 2, 24 1, 2, 48 1, 2, 64

1, 2, 90 1, 2, 128 1, 2, 240 1, 2, 288 1, 2, 320 1, 2, 640 1, 2, 720

1, 2, 960 1, 2, 1440 1, 2, 1470 1, 2, 2240 1, 2, 2688 1, 2, 2880

1, 2, 3150 1, 2, 3402 1, 2, 4800 1, 2, 5346 1, 2, 5632 1, 2, 5760

1, 2, 8064 1, 2, 20160 1, 2, 21384 1, 2, 26730 1, 2, 32768

1, 2, 48750 1, 2, 73728 1, 2, 85050 1, 2, 90112 1, 2, 95550

1, 2, 98304 1, 2, 114688 1, 2, 135168 1, 2, 138240 1, 2, 200704

1, 2, 270336 1, 2, 308750 1, 2, 319488 1, 2, 401408 1, 2, 409600

1, 2, 442368 1, 2, 630784 1, 2, 708750 1, 2, 716800 1, 2, 737280

1, 2, 802816 1, 2, 901120 1, 2, 921600 ;

...

The search time was 108.645 seconds.
As the number of solutions is big, we propose to restrict the search

domain as follows: let m and n be relative prime and x to take the values
of an arithmetic progression with the first term ax = 1, the ratio rx =
113 and the last term ≤ bx = 106. These restrictions are obtained by the
composed condition, written in the Mathcad syntax, gcd(m,n) = 1 and
x ∈ {ax, ax + rx..bx}. In these conditions we have Dc = {1, 2, . . . , 10}2 ×
{1, 14, 27, . . . , 999938} with (m,n) = 1. The number of analyzed cases is
188273 and the number of solutions is 16:

1, 2, 1470 1, 9, 41472 ;

2, 9, 4860 2, 9, 41472 ;

3, 4, 41472 3, 8, 4860 ;

4, 3, 41472 ;

5, 3, 41472 5, 4, 41472 5, 8, 4860 5, 9, 4860 ;
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7, 8, 4860 7, 9, 4860 ;

8, 9, 4860 ;

9, 4, 4860 ;

10, 9, 4860 .

The empirical search domain of the solutions of equation (2166) for k = 0
is:

Ed2166(am, bm, an, bn, ax, rx, bx) :=

j ← 0
S ← (”m” ”n” ”x”)
for m ∈ am..bm

for n ∈ an..bn
for x ∈ ax, ax + rx..bx

if m · x+ n ≤ last(σ0) ∧ gcd(m,n)=1
j ← j + 1
S ← stack[S, (m n x)] if ηx=σ0m·x+n

return stack[S, (j j j)]

For k = 1 and k = 2 equation (2166) has no solutions on the search
domain Dc given by (7.13).

As the values σ1k overpass the values ηk, we have wondered if there
exist solutions for the equation Diophantine

η(m · x+ n) = σ(x) .

The equivalent relation is ηm·x+n = σ1x, considering the meaning of vec-
tors η and σ1. On the search domain

Dc = {1, 2, . . . , 10}2×
{
ax, ax + rx, ax + 2rx, . . . ,

⌊
bx − ax
rx

⌋
· rx
}
, (7.14)
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with ax = 1, rx = 1 and bx = 106 and (m,n) = 1 (i.e. m and n rela-
tive prime), there exist for this equation 29 solutions, given in the form
m,n, x :

1, 1, 2 1, 1, 3 1, 3, 4 1, 4, 2 1, 4, 5 1, 4, 9 1, 5, 3 1, 6, 25 1, 9, 3

1, 10, 4 ;

3, 1, 5 3, 2, 4 3, 10, 13 ;

4, 3, 9 4, 5, 4 ;

5, 1, 4 5, 7, 9 5, 8, 4 5, 9, 3 ;

6, 5, 25 ;

7, 1, 5 7, 2, 9 7, 3, 3 7, 10, 5 ;

8, 3, 4 8, 5, 5 ;

9, 1, 7 9, 10, 9 ;

10, 1, 9 .

The search domain has 108 possible cases, but the analyzed are of only
21271688 due to restrictions m · x+ n ≤ last(η) and gcd(m,n) = 1.

Analogously, the Diophantine equation

η(m · x+ n) = σ2(x) .

was considered, which, on the search domainDc given by (7.14) with ax =
1, rx = 1, bx = 106 and additional conditions m · x + n ≤ last(η) and
gcd(m,n) = 1 has 11 solutions:

1, 3, 2 1, 8, 2 2, 1, 2 3, 4, 2 4, 7, 2 6, 7, 3 7, 1, 2 7, 4, 3 7, 6, 2

8, 1, 3 9, 2, 2 .
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7.5.3 The equation 2167

The Diophantine equation η(x)m = σk(x
n) with k = 0, 1, 2, can be

equivalent with the relation (ηx)m = σkxn , with k = 0, 1, 2, if we consider
the significance of vectors η and σk, with k = 0, 1, 2. If we impose the
condition m 6= n the number of solutions is 22, for k = 0, on the search
domain

Dc = {1, 2, . . . , 10}2 ×
{

2, 3, . . . , 106
}
. (7.15)

The number of possible cases is 99999900, as a consequence of conditions
m 6= n and xn ≤ 106, the number of analyzed cases is 9010449, and the
search time is under one minute. The 22 solutions are presented, in the
form m,n, x ,

1, 2, 3 1, 2, 81 1, 2, 686 1, 4, 5 1, 6, 7 ;

2, 1, 13440 2, 1, 272160 2, 1, 340200 2, 1, 374220 2, 1, 427680

2, 1, 534600 2, 1, 598752 2, 1, 777600 2, 1, 935550 2, 3, 2 2, 3, 96

2, 4, 10 2, 4, 15 2, 5, 8 2, 8, 3 ;

3, 4, 30 3, 7, 2 .

The Diophantine equations η(x)m = σk(x
n), for k = 1, 2 have 90 solu-

tions on the search domain

Dc = {1, 2, . . . , 10}2 ×
{

1, 2, . . . , 106
}

and restriction xn ≤ 106. All solutions are trivial only with x = 1.

7.5.4 The equation 2168

The η–σ0–Diophantine equation η(x)+y = x+σ0(y) has on thee search
domain Dc =

{
2, 3, . . . , 104

}2
99980001 cases to be analyzed. This equa-

tion has 9893 solutions, obtained in approximately 50 seconds, of which
we present the first 26 and the last 26 solutions in the form x, y :
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2, 2 3, 2 4, 2 5, 2 6, 5 7, 2 8, 8 9, 5 ;

10, 7 11, 2 13, 2 15, 14 16, 14 17, 2 18, 18 19, 2 ;

20, 17 21, 20 22, 13 22, 15 22, 16 23, 2 25, 17 27, 22 28, 23

29, 2 ;

...

9971, 9928 9972, 9697 9973, 2 9976, 9937 9977, 9076

9977, 9086 9978, 8317 9978, 8323 ;

9981, 8888 9981, 8904 9982, 9963 9982, 9975 9983, 9838

9983, 9846 9984, 9973 9986, 4997 9987, 6662 9989, 8566

9989, 8570 ;

9990, 9957 9991, 9896 9993, 6668 9994, 9733 9995, 8016

9996, 9983 9999, 9902 .

The search program uses the equivalent relation ηx + y = x + σ0y, taking
into consideration the meaning of vectors η and σ0. The simple search
algorithm can be deduced from the source text of the program:

Ed2168(ax, rx, bx, ay, ry, by) :=

S ← (”x” ”y”)
for x ∈ ax, ax + rx..bx
for y ∈ ay, ay + ry..by
S ← stack[S, (x y)] if ηx + y=x+ σ0y

return S

on the search domain

Dc = {2, 505, 1008, . . . , 999966} × {3, 604, 1205, . . . , 999466} ,
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the Diophantine equation η(x) + y = x + σ0(y) has two solutions
262065, 244610 and 741927, 494626 .

The η–σk–Diophantine equation η(x) + y = x + σk(y), with k = 1, 2

does not have solutions on the search domain Dc =
{

1, 2, . . . , 106
}2, other

than the 78500 trivial solutions when y = 1 and x is a prime number or
x = 4.

7.5.5 The equation 2169

The η–σk–Diophantine equation η(x) · y = x · σk(y) is equivalent with
the relation ηx · y = x · σky if we consider the meaning of vectors η and σk
for k = 0, 1, 2. We consider the search domain

Dc = {ax, ax + rx, ax + 2rx, . . . , bx} × {ay, ay + ry, ay + 2ry, . . . , by} ,
(7.16)

where ax = 2, rx = 113, bx = 106, ay = 3, ry = 127 and by = 106. The
number of possible cases is given by formula(⌊

bx − ax
rx

⌋
+ 1

)(⌊
by − ay
ry

⌋
+ 1

)
,

and, therefore, for the previously given values we have 69684900 possible
cases. The additional condition for the search domain is x 6= y. In this
condition, the number of analyzed cases of the search domain (7.16) is
69684830. We have 81 solutions given in the form x, y :

4296, 384 8816, 8512 15144, 384 20568, 384 22715, 36960

36162, 47628 47688, 384 53112, 384 64525, 52200 80232, 384

82944, 829440 87238, 1908 96504, 384 ;

111194, 1908 145885, 29340 161592, 384 167016, 384

177864, 384 194136, 384 ;

230974, 1908 251766, 61344 264648, 384 291768, 384 ;
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302842, 1908 307588, 12576 324312, 384 326798, 1908

356856, 384 369964, 65408 370755, 623700 372450, 280800

378552, 384 392225, 52200 394824, 384 398666, 1908 ;

405672, 384 421944, 384 427368, 384 459912, 384 476184, 384

478783, 5464 ;

514265, 29340 519576, 384 544436, 12576 573816, 384

590314, 1908 ;

617208, 384 622632, 384 627152, 8512 634158, 47628

649752, 384 653820, 97920 655176, 384 655854, 67440

660939, 494160 662182, 1908 666024, 384 682296, 384

686138, 1908 698455, 29340 ;

703992, 384 718795, 36960 720264, 384 732242, 108080

736536, 384 758006, 1908 779928, 384 787499, 5464 ;

800042, 11052 805918, 1908 823546, 110112 829874, 1908

830552, 236096 833264, 8512 834168, 384 859254, 372240

882984, 384 893832, 384 898352, 122304 ;

923890, 260480 948072, 384 .

The number of solutions for equation (2169) with k = 0 on the search
domain (7.16) with a1 = 1, rx = 1, bx = 106, ay = 1, ry = 1 and by = 106 is
huge.

The search program is:

Ed2169(ax, rx, bx, ay, ry, by) :=

j ← 0
S ← (”x” ”y”)
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for x ∈ ax, ax + rx..bx
for y ∈ ay, ay + ry..by
if x 6= y
j ← j + 1
S ← stack[S, (x y)] if ηx · y=x · σ0y

return stack[S, (j j)]

The Diophantine equation (2169) has, for k = 1 and k = 2, only trivial
solutions in which y = 1.

7.5.6 The equation 2170

The η–σ–Diophantine equation (2170) can be written in the form η(x) ·
σk(y) = x · y, equation which is equivalent with the relation ηx ·σky = x · y
if we take into consideration the significance of vector η and σk for k =
0, 1, 2. The search program for equation η(x) · σ0(y) = x · y is

Ed2170(ax, rx, bx, ay, ry, by) := S ← (”x” ”y”)
for x ∈ ax, ax + rx..bx
for y ∈ ay, ay + ry..by
S ← stack[S, (x y)] if ηx · σ0y=x · y

return S

The search domain is similar with the domain (7.16) in which, in order to
cover all possible cases, we should have ax = 1, rx = 1, bx = 106, ay = 1,
ry = 1 and by = 106. Therefore we will have 1012 possible cases. The
equation η(x) · σ0(y) = x · y does not have solutions on the search domain
Dc given by (7.16), where a=1, rx = 1, bx = 104, ay = 1, ry = 1 and
by = 104.

The Diophantine equation η(x)·σ(y) = x·y on the search domain given
by (7.16), where ax = 2, rx = 1, bx = 104, ay = 3, ry = 1 and by = 104, with
99970002 analyzed cases has 3625 solutions. As the number of solutions
is that big, we intend that, on the same search domain, to consider the
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additional condition (x, y) = 1 (i.e. x and y are relatively prime). Hence,
the number of analyzed cases has decreased to 60769973 and, thereby, we
have found 3 solutions, presented in the form x, y : 25, 24 , 49, 4320 and

49, 4680 .

Program 7.18. The empirical search program is:

Ed2170(ax, rx, bx, ay, ry, by) :=

j ← 0
S ← (”x” ”y”)
for x ∈ ax, ax + rx..bx
for y ∈ ay, ay + ry..by
if gcd(x, y)=1
j ← j + 1
S ← stack[S, (x y)] if ηx · σ1y=x · y

return stack[S, (j j)]

The Diophantine equation η(x) · σ2(y) = x · y on the given search do-
main (7.16), where ax = 2, rx = 1, bx = 104, ay = 3, ry = 1, by = 104 and
(x, y) = 1, with 60769973 analyzed cases, has 211 solutions. We give in the
form x, y the first 60 and the last 57 solutions:

125, 6 ;

221, 10 247, 10 299, 10 377, 10 403, 10 481, 10 533, 10

559, 10 611, 10 689, 10 767, 10 793, 10 871, 10 923, 10

949, 10 1027, 10 1079, 10 1157, 10 1261, 10 1313, 10 1339, 10

1391, 10 1417, 10 1469, 10 1651, 10 1703, 10 1781, 10 1807, 10

1937, 10 1963, 10 1972, 65 2041, 10 2119, 10 2171, 10 2327, 10

2353, 10 2249, 10 2483, 10 2509, 10 2561, 10 2587, 10 2743, 10

2899, 10 ;



206 CHAPTER 7. PARTIAL EMPIRICAL SOLVING

175, 12 245, 12 ;

1547, 60 1729, 60 2093, 60 2639, 60 2821, 60 ;

1292, 65 1564, 65 2108, 65 2312, 65 2516, 65 2788, 65 ;

2125, 84 2375, 84 2875, 84 ;

...

7423, 10 7501, 10 7631, 10 7709, 10 7787, 10 7813, 10 7891, 10

7969, 10 8021, 10 8047, 10 8203, 10 8333, 10 8359, 10 8411, 10

8489, 10 8567, 10 8593, 10 8749, 10 8801, 10 8879, 10 8983, 10

9113, 10 9217, 10 9347, 10 9451, 10 9529, 10 9607, 10 9659, 10

9763, 10 9841, 10 9893, 10 9997, 10 ;

7553, 60 8099, 60 8827, 60 9191, 60 9373, 60 9737, 60

9919, 60 ;

7684, 65 8636, 65 8908, 65 9316, 65 9452, 65 ;

7625, 84 8375, 84 8875, 84 9125, 84 9875, 84 ;

8029, 150 8897, 150 9331, 150 ;

7626, 175 7998, 175 8742, 175 9858, 175 ;

8211, 260 .

The empirical search program is similar with the program 7.18.



7.5. THE η–σK–DIOPHANTINE EQUATIONS 207

7.5.7 The equation 2171

The Diophantine equation η(x)y = xσk(y) is equivalent with the rela-
tion (ηx)y = xσky for k = 0, 1, 2 if we take into consideration the mean-
ing of vectors η and σk, with k = 0, 1, 2. For k = 0 let us consider the
search domain (7.16) where ax = 2, rx = 1, bx = 104, ay = 3, ry = 1 and
by = 104. Then, the number of considered cases is 99970002. Due to condi-
tions (ηx)y > 10307 and xσky > 10307 (upper floating overflow) the number
of analyzed cases is of only 1460765. The number of found solutions is 45
and are presented in the form x, y :

8, 3 8, 6 27, 3 27, 6 36, 8 36, 12 64, 8 64, 12 81, 8 81, 12

100, 8 100, 12 196, 8 196, 12 484, 8 484, 12 676, 8 676, 12

1156, 8 1156, 12 1444, 8 1444, 12 2116, 8 2116, 12 3125, 5

3125, 10 3364, 8 3364, 12 3375, 9 3375, 24 3844, 8 3844, 12

4096, 9 4096, 18 4096, 24 5476, 8 5476, 12 6724, 8 6724, 12

7396, 8 7396, 12 8836, 8 8836, 12 9261, 9 9261, 18 .

For the Diophantine equation η(x)y = xσ(y) on the search domain
(7.16), with ax = 2, rx = 1, bx = 105, ay = 3, ry = 1 and by = 105,
there are 9999700002 possible cases, of which only 2839629 cases were an-
alyzed, by reasons of upper floating overflow generated by the raising to
power η(x)y or xσ(y). The equation has no solutions.

The Diophantine equation η(x)y = xσ2(y), on the search domain (7.16)
with ax = 2, rx = 1, bx = 105, ay = 3, ry = 1 and by = 105 has 9999700002
possible cases, of which only 507015 cases were analyzed, by reasons of
upper floating overflow generated by the raising to power η(x)y or xσ2(y),
has no solutions.

7.5.8 The equation 2172

The equation η(x)y = σk(y)x is equivalent with the relation
(
ηx
)y

=(
σky

)x for k = 0, 1, 2 if we take into consideration the meaning of vectors
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η and σk, with k = 0, 1, 2. For the case k = 0 fie search domain is (7.16),
where ax = 2, rx = 1, bx = 106, ay = 3, ry = 1 and by = 106. Then, the
number of considered cases is 999997000002. Due to conditions (ηx)y >
10307 and xσky > 10307 (upper floating overflow) the number of analyzed
cases is 72776. The solutions found for k = 0 are: 8, 8 , 18, 18 , 45, 45

and 128, 128 .
On the same search domain, for k = 1 the number of analyzed cases

is 38794, for k = 2 the number of analyzed cases is only of 24736 and the
Diophantine equations do not have solutions.

7.6 The η–ϕ–Diophantine equations

Let us consider m,n ∈ N∗ fixed and x and y unknown positive inte-
gers. The Diophantine equations in which functions η and ϕ are involved
are said to be η–ϕ–Diophantine equations. The list of η–ϕ–Diophantine
equation, considered from [Smarandache, 1999b], and which we intend to
solve empirically, is:

(2187) η(x) = ϕ(m · x+ n) ,

(2188) η(x)m = ϕ(xn) ,

(2189) η(x) + y = x+ ϕ(y) ,

(2190) η(x) · y = x · ϕ(y) ,

(2191) η(x)/y = x/ϕ(y) ,

(2192) η(x)y = xϕ(y) ,

(2193) η(x)y = ϕ(y)x .

7.6.1 Partial empirical solving of η–ϕ–Diophantine equations

For all Diophantine equations solved in this section the file η.prn will
be read, generated by the program 2.9, by means of the Mathcad function
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READPRN

η := READPRN(”...\η.prn”) last(η) = 106

where command last(η) indicates the last index of vector η. The reading
time is of about 10 seconds, therefore an important saving for the execution
time of the search is obtained.

The file ϕ.prn will be read and the values will be attributed to vector
ϕ, by means of the Mathcad function READPRN , with the sequence:

ϕ := READPRN(”...\ϕ.prn”) last(ϕ) = 106 ,

where each component ϕ contains the number of factors relatively prime
to k, for k = 1, 2, . . . , 106. The values were generated with the program
4.2. The generating time for the file ϕ.prn was 5:30:33.558hhmmss . If we
have a Diophantine equation in which function ϕ(x) is involved, we will
use the vector ϕ. The time saving that results is important.

7.6.2 The equation 2187

The Diophantine equation η(x) = ϕ(m · x + n) is equivalent with the
relation ηx = ϕm·x+n if we take into account the significance of vectors η
and ϕ. Let the search domain be

Dc = {1, 2, . . . , 10}2 ×
{

1, 2, . . . , 106
}

(7.17)

and additional condition (m,n) = 1. The number of possible cases is 108

and we have only 21271688 analyzed cases. Under these conditions equa-
tion (2187) has 13 solutions given in the form m,n, x :

1, 1, 1 1, 1, 2 1, 1, 4 1, 2, 2 1, 2, 8 1, 2, 16 1, 4, 2 1, 4, 4 1, 4, 8

1, 5, 9 1, 6, 4 1, 8, 4 1, 9, 9 .

We can also consider the Diophantine equation η(m · x + n) = ϕ(x)
which is equivalent with the relation ηm·x+n = ϕx if we take into account
the significance of vectors η and ϕ. On the search domain (7.17) we have
26 solutions:
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1, 2, 7 1, 2, 10 1, 2, 14 1, 2, 30 1, 3, 5 1, 3, 22 1, 4, 8 1, 4, 14

1, 7, 5 1, 7, 9 1, 8, 24 1, 9, 7 1, 9, 9 ;

2, 3, 11 2, 9, 18 3, 4, 20 4, 9, 9 ;

5, 1, 7 5, 2, 14 5, 3, 9 5, 6, 23 5, 8, 24 ;

7, 9, 9 9, 1, 11 9, 2, 22 9, 8, 24 .

7.6.3 The equation 2188

The η–ϕ–Diophantine equation η(x)m = ϕ(xn) is equivalent with the
relation (ηx)m = ϕxn if we take into account the significance of vectors η
and ϕ. Let the search domain be (7.17) with am = 2, an = 2, ax = 2 and
additional conditions xn ≤ last(ϕ), (ηx)n < 1017 and (m,n) = 1. Then
we have 80999919 possible cases and 4362 analyzed cases. Under these
conditions, the Diophantine equation (2188) has 12 solutions:

2, 3, 2 3, 2, 32 3, 2, 50 3, 4, 2 4, 3, 8 4, 5, 2 5, 6, 2 6, 7, 2 7, 5, 8

7, 8, 2 8, 9, 2 9, 10, 2 .

7.6.4 The equation 2189

The η–ϕ–Diophantine equation η(x) + y = x+ ϕ(y) is equivalent with
the relation ηx + y = x + ϕy if we take into account the significance of
vectors η and ϕ. Let the search domain be

Dc =

{
ax, ax + rx, ax + 2rx, . . . , ax +

⌊
bx − ax
rx

⌋
rx

}
×
{
ay, ay + ry, ay + 2ry, . . . , ay +

⌊
by − ay
ry

⌋
ry

}
, (7.18)

where ax = 2, rx = 113, bx = 106, ay = 3, ry = 127 and by = 106. This
search domain has 69684900 possible cases which are also analyzed cases.
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In these conditions, equation (2189) has 60 solutions given in the form
x, y :

2036, 518671 3618, 828551 7234, 907037 8816, 18291

20568, 610111 21585, 35182 25540, 993143 25653, 37722

32094, 575567 33676, 54105 34128, 743969 39552, 276101

47462, 304549 47914, 586997 66672, 695201 67915, 118748

71418, 416563 72435, 131956 81136, 403355 81362, 200409

85656, 217173 91758, 430025 92888, 276609 ;

123624, 864619 129274, 643385 130404, 597665 131421, 241684

135715, 199012 139218, 697487 143173, 271148 144755, 213744

146337, 193678 167355, 299596 184079, 212982 189051, 375542

194814, 828805 196735, 393322 ;

208035, 415928 208939, 273180 212216, 593601 229731, 381130

244647, 366906 246455, 347094 248376, 910085 259789, 426850

277078, 822201 277530, 443360 283745, 564518 293011, 405006 ;

352675, 503304 364427, 533784 370755, 627256 387592, 974855 ;

401491, 710314 430080, 851792 437425, 839854 440137, 702440

453019, 742318 ;

745915, 994540 754503, 838330 .

7.6.5 The equation 2190

The η–ϕ–Diophantine equation η(x) · y = x ·ϕ(y) can be assimilated to
relation ηx · y = x ·ϕy, taking into account the significance of vectors η and
ϕ. On the search domain

{
1, 2, . . . , 106

}2 the equation has many solutions.
Thus, we will consider a restricted search domain. Let us consider the
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search domain (7.18) with ax = 2, rx = 1, bx = 104, ay = 3, ry = 1,
by = 104 and additional condition gcd(x, y) = 1 (i.e. x and y are relatively
prime), then we have 99970002 possible cases, 60769973 analyzed cases
and 0 solutions.

7.6.6 The equation 2191

The η–ϕ–Diophantine equation η(x)/y = x/ϕ(y) is equivalent with re-
lation ηx ·ϕy = x ·y if we take into account the significance of vectors η and
ϕ. The equation does not have solutions on the search domainDc given by
(7.18) with ax = 2, rx = 1, bx = 104, ay = 3, ry = 1 by = 104 and additional
condition (x, y) = 1. The number of possible cases is 99970002 and the
number of analyzed cases is 607699734, due to the additional condition.

7.6.7 The equation 2192

The η–ϕ–Diophantine equation η(x)y = xϕ(y) is equivalent with rela-
tion (ηx)y = xϕy if we take into account the significance of vectors η and ϕ.
Let us consider the search domain Dc given by (7.18) with ax = 2, rx = 1,
bx = 104, ay = 3, ry = 1 by = 104 and additional conditions (x, y) = 1,
(ηx)y < 1017 and xϕy < 1017. The number of possible cases is 99970002
and the number of analyzed cases is 534464, due to the additional condi-
tions. The equation has 11 solutions given as x, y :

8, 3 8, 9 8, 27 8, 81 8, 243 ,

81, 4 81, 8 81, 16 81, 32 81, 64 81, 128 .

7.6.8 The equation 2193

The η–ϕ–Diophantine equation η(x)y = ϕ(y)x is equivalent with rela-
tion (ηx)y = (ϕy)

x if we take into account the significance of vectors η and
ϕ. The equation does not have solutions on the search domain Dc given
by (7.18) with ax = 2, rx = 1, bx = 104, ay = 3, ry = 1 by = 104 and ad-
ditional conditions (x, y) = 1, (ηx)y < 1017 and (ϕy)

x < 1017. The number
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of possible cases is 99970002 and the number of analyzed cases is of only
26936 cases, due to the additional conditions.

7.7 Guy type Diophantine equations

Guy [2004] considered the ϕ–σ–Diophantine equation ϕ(σ(n)) = n. F.
Helenius determined 365 solutions. Similarly, the next Diophantine equa-
tions in which function η is involved were considered:

η(ϕ(x)) =x (7.19)
ϕ(η(x)) =x (7.20)
η(ϕ(x)) =ϕ(η(x)) (7.21)
η(σ0(x)) =x (7.22)
σ0(η(x)) =x (7.23)
η(σ0(x)) =σ0(η(x)) (7.24)
η(σ(x)) =x (7.25)
σ(η(x)) =x (7.26)
η(σ(x)) =σ(η(x)) (7.27)
η(s(x)) =x (7.28)
s(η(x)) =x (7.29)
η(s(x)) =s(η(x)) (7.30)
η(π(x) =x (7.31)
π(η(x) =x (7.32)
η(π(x)) =π(η(x)) (7.33)

7.7.1 Partial empirical solving Guy type Diophantine equations

For solving these equations we will use the files η.prn, ϕ.prn, σ0.prn,
σ1.prn and s.prn which were generated by programs 2.12, 4.3 and 3.4. To
solve a Diophantine equation we will read the files as in the next sequence:

η := READPRN(”...\η.prn”) last(η) = 106 .
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Hence, we will have the vectors η, ϕ, σ0, σ1 and s with the values of the
functions η, ϕ, σ0, σ and s.

Let us consider the search domain

Dc =
{

1, 2, . . . , 106
}
. (7.34)

Equations (7.19), (7.20), (7.25), (7.26) , (7.28) and (7.29) have a sole solution,
the trivial solution x = 1, equations (7.22) and (7.23) have two trivial solu-
tions x = 1 and x = 2. Equations (7.21), (7.24), (7.27) and (7.30) have more
solutions.

7.7.2 The equation 7.21

The η–ϕ–Diophantine equation η(ϕ(x)) = ϕ(η(x)) is equivalent with
relation ηϕx = ϕηx if we take into account the significance of vectors η and
ϕ. In the search domain (7.34) equation (7.21) has 842 solutions. We give
the first 60 solutions and the last 60 solutions.
1, 2, 3, 4, 5, 6, 10, 15, 20, 27, 30, 54, 63, 105, 108, 112, 126, 135, 140, 168, 210,
216, 252, 270, 275, 315, 432, 504, 540, 550, 630, 825, 1100 1650 1925, 2200,
2475, 2783, 2816, 3125, 3159, 3300, 3328, 3520, 3850, 4160, 4224, 4400, 4950,
4992, 5280, 5566, 5775, 6240, 6250, 6318, 6600, 6656, 7371, 7425, . . .
864864, 866320, 868296, 868725, 870205, 875160, 876645, 881280, 884000,
886464, 890560, 891072, 893142, 895068, 897600, 898909, 900000, 900315,
901689, 901692, 904475, 904932, 905177, 914166, 918750, 919931, 926640,
928200, 933504, 934375 935088, 940032, 941868, 942480, 942761, 943488,
944794, 946220, 950000, 951786, 952000, 954569, 954720, 956250, 959616,
960336, 969570, 969657, 972400, 974050, 975000, 976661, 976833, 979200,
980343, 982800, 990080, 992380, 993531, 994520 .

7.7.3 The equation 7.24

The Diophantine equation η(σ0(x)) = σ0(η(x)) has 82655 solutions. In
order to solve empirically the equation, the equivalent relation ησ0x = σ0ηx
is used , taking into account the significance of vectors η and σ0. 120 so-
lutins are listed, the first 60 solutions and the last 60 solutions.
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1, 2, 3, 4, 5, 7, 11, 12, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 72,
73, 79, 83, 89, 90, 96, 97, 101, 103, 107, 109, 113, 125, 127, 128, 131, 137, 139,
149, 150, 151, 157, 160, 163, 167, 173, 179, 181, 191, 193, 197, 199, 200, 211,
223, 224, . . .
999101, 999133, 999149, 999169, 999181, 999199, 999217, 999221, 999233,
999239, 999269, 999287, 999307, 999329, 999331, 999359, 999370, 999371,
999377, 999389, 999431, 999433, 999437, 999451, 999491, 999499, 999521,
999529, 999541, 999553 999563, 999599, 999611, 999613, 999623, 999631,
999653, 999667, 999671, 999683, 999721, 999727, 999749, 999763, 999769,
999773, 999809, 999853, 999863, 999883, 999907, 999917, 999931, 999949,
999953, 999959, 999961, 999979, 999983, 999998 .

7.7.4 The equation 7.27

The Diophantine equation η(σ(x)) = σ(η(x)) has 648 solutions. To
solve empirically the equation, the equivalent relation is used ησ1x = σ1ηx ,
if we take into account the significance of vectors η and σ1. The first 60
solutions were listed:
1, 2, 3, 4, 6, 10, 12, 21, 30, 40, 42, 52, 84, 105, 120, 156, 168, 210, 260, 364, 416,
420, 468, 572, 780, 840, 976, 1092, 1248, 1404, 1525, 1716, 1813, 1820 2080,
2340, 2860, 2912, 2928, 3050, 3125, 3159, 3276, 3626, 3744, 4004, 4477, 4575,
4576, 4880, 5148, 5439, 5460, 6100, 6240, 6250, 6318, 6832, 7020, 7252, . . .
as well as the last 60 solutions:
420616, 425315, 425475, 426512, 436150, 437675, 440176, 440559, 446875,
447811, 452925, 455975, 458689, 459025, 459375, 462315, 470085, 473193,
478125, 486475, 492575, 498575, 501725, 503125, 505827, 507825, 514855,
520025, 523075, 523809 531471, 532763, 542087, 559625, 565775, 571875,
574925, 578347, 581371, 584375, 585599, 589225, 595441, 596275, 614575,
618233, 620675, 629825, 635221, 649165, 653125, 666425, 683501, 687775,
690625, 693935, 708883, 718153, 720797, 730639 .
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x s(x) η(x) s(η(x)) η(s(x))

4 3 4 3 3
64 63 8 7 7
90 144 6 6 6

224 280 8 7 7
441 300 14 10 10

5145 4455 21 11 11
71148 141120 22 14 14

166012 206388 22 14 14

Table 7.1: The check of the solutions of equation 7.30

7.7.5 The equation 7.30

The Diophantine equation η(s(x)) = s(η(x)) is equivalent with relation

ηsx = sηx , (7.35)

if we take into account the significance of vectors η and s. We consider the
search domain Dc given by (7.34). The equation has following solutions:
the 78498 prime numbers< 106 and 8 solutions non-prime numbers: 4, 64,
90, 224, 441, 5145, 71148, 166012 . The check of the non-prime solutions is
presented in table 7.1.

7.7.6 The equations 7.31–7.32

The η–π–Diophantine equations η(π(x)) = x and π(η(x)) = x are
equivalent with the relations ηπ(x) = x and π(ηx) = x if we take into ac-
count the significance of vector η and formula (1.19). These relations do
not have solutions on the search domain Dc =

{
4, 5, . . . , 103

}
.

7.7.7 The equation 7.33

The η–π–Diophantine equation η(π(x)) = π(η(x)) is equivalent with
the relation

ηπ(x) = π(ηx) , (7.36)
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x π(x) η(x) η(π(x)) π(η(x))

4 2 4 2 2
15 6 5 3 3
16 6 6 3 3
21 8 7 4 4
26 9 13 6 6
65 18 13 6 6
96 24 8 4 4

133 32 19 8 8
156 36 13 6 6
176 40 11 5 5
187 42 17 7 7
232 50 29 10 10
236 51 59 17 17
253 54 23 9 9
364 72 13 6 6
416 80 13 6 6
527 99 31 11 11
598 108 23 9 9
660 120 11 5 5
726 128 22 8 8
738 130 41 13 13
744 132 31 11 11
870 150 29 10 10
885 153 59 17 17
899 154 31 11 11
966 162 23 9 9

Table 7.2: The check of the solutions of equation 7.33
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if we take into account the significance of vector η and formula (1.19). Let
Dc =

{
4, 5, . . . , 103

}
be the search domain, then relation (7.36) has 26 solu-

tions: 4, 15, 16, 21, 26, 65, 96, 133, 156, 176, 187, 232, 236, 253, 364, 416, 527,
598, 660, 726, 738, 744, 870, 885, 899, 966 .

In table 7.2 the check of these solutions is presented.



Conclusions

We, the authors, hope that this book offers a valuable insight into a
fascinating range of Number Theory problems. The approaches and al-
gorithms proposed are not intended to just solve proposed problems, but
also to inspire the reader to find better, more efficient or more beautiful so-
lutions that further enrich our understanding of this field of mathematics.

The ”partial results” of over 62 η–Diophantine equations presented in
the last chapter could prove to be an excellent starting point for anyone
motivated to explore more solutions. By simply running the proposed
programs and algorithms on machines with better hardware capabilities,
one can extend the set numbers that verify this equations. The mathemati-
cians interested in analytical solutions are encouraged to explore Chapter 6
where, various analytical approaches into solving Diophantine equations
are presented. At the same time, students or researchers unfamiliar with
the details of such mathematical problems will discover, in the first five
chapters some of the most important concepts, algorithms and tools to
help them in their quest to learn about Diophantine equations.

The content of this book is a result of our collective mathematical and
computing expertise. While the choice of the problems is a subjective one,
our intent was to cover the most interesting Diophantine equations involv-
ing Smarandache’s function η. We encourage anyone to approach us with
comments and observation regarding the content of this book and also
with other fresh problems related to it.
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Index of notations
N = {0, 1, 2, . . .};

N∗ = N \ {0} = {1, 2, . . .};

Z = {. . . ,−2,−1, 0, 1, 2, . . .};

Is = {1, 2, . . . , s} : the set of indexes;

Q =
{

p
q | p, q ∈ Z, q 6= 0

}
;

R : the real numbers;

π(x) : the number of prime numbers up to x;

πm(x) : the function which is the lower bound of function π(x);

πM (x) : the function which is the upper bound of function π(x);

[x] : the integer part of number x;

{x} : the fractional part of x;

σk(n) : the sum of the powers of order k of the divisors of n;

σ(n) : the sum of the divisors of n; σ(n) = σ1(n);

s(n) : the sum of the divisors of n without n; s(n) = σ(n)− n;

bac : the lower integer part of a; the greatest integer, smaller than a;

dae : the upper integer part of a; the smallest integer, greater than a;

220



221

n | m : n divides m;

n - m : n does not divide m;

(m,n) : the greatest common divisor of m and n; (m,n) = gcd(m,n);

[m,n] : the smallest common multiple of m and n; [m,n] = lcd(m,n);

{n1, n2, . . . , nm}k : the cartesian product k times

{n1, n2, . . . , nm}k

= {n1, n2, . . . , nm} × {n1, n2, . . . , nm} × . . .× {n1, n2, . . . , nm}︸ ︷︷ ︸
k ori

=


n1, n1, . . . , n1︸ ︷︷ ︸

k elemente

 ,

n1, n1, . . . , n2︸ ︷︷ ︸
k elemente

 , . . . ,

n1, n1, . . . , nm︸ ︷︷ ︸
k elemente

 ,

n1, n1, . . . , n2, n1︸ ︷︷ ︸
k elemente

 ,

n1, n1, . . . , n2, n2︸ ︷︷ ︸
k elemente

 , . . .

. . . ,

nm, nm, . . . , nm︸ ︷︷ ︸
k elemente

 ;

|f(x)| : the module or the absolute value of f(x);

f(x) ≡ g(x) : f is asymptotic to g if

f(x)

g(x)
→ 1 when x→∞ ;

f(x) = o
(
g(x)

)
:

f(x)

g(x)
→ 0 when x→∞ ;

f(x) = O
(
g(x)

)
: there exists a constant c such that |f(x)| < c · g(x), for all x; this

property is also denoted f(x)� g(x);
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Mathcad functions

augment(M,N) : concatenates matricesM andN that have the same number of
lines;

ceil(x) : the upper integer part function;

cols(M) : the number of columns of matrix M ;

eigenvals(M) : the eigenvalues of matrix M ;

eigenvec(M,λ) : the eigenvector of matrix M relative to the eigenvalue λ;

eigenvecs(M) : the matrix of the eigenvectors of matrix M ;

n factor → : symbolic computation function that factorizes n;

floor(x) : the lower integer part function;

gcd(n1, n2, . . .) : the function which computes the greatest common divisor of
n1, n2, . . .;

last(v) : the last index of vector v;

lcm(n1, n2, . . .) : the function which computes the smallest common multiple of
n1, n2, . . .;

max(v) : the maximum of vector v;

min(v) : the minimum of vector v;

mod(m,n) : the rest of the division of m by n;

ORIGIN : the variable dedicated to the origin of indexes, 0 being an implicit
value;

rref(M) : determines the matrix row-reduced echelon form;

rows(M) : the number of lines of matrix M ;

solve : the function of symbolic solving the equations;

stack(M,N) : concatenates matrices M and N that have the same care number
of columns;
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submatrix(M,kr, jr, kc, jc) : extracts from matrix M , from line kr to line jr and
from column kc to column jc, a submatrix;

trunc(x) : the truncation function;∑
v : the function that sums the components of vector v .



Index of name

Abel N. H., 110
Agrawal M., 23
Akbik S., 47
Alford W. R., 79, 80
Appel K., ii
Ashbacher C., 45
Atkin A. O. L., 2, 10

Bernstein D. J., 13
Boone S., 14
Brahmagupta, xii

Carmichael R., 79, 80
Cooper C., 14

Davis M., 87
De Koninck J.-M., 48
Dickman K., 48
Doyon N., 48

Elvenich H.-M., 14
Eratosthenes, 2, 3, 6, 10, 35
Erdös P., iii, 47, 50, 79, 80
Euclid, 2, 44, 88
Euler L., xiii, xiv, 2, 24, 37, 64, 66, 77, 78,

80, 85

Fermat P., xiv, 20, 23, 24, 37, 78, 79, 81,
85, 114

Ford K., 48

Galois E., 110
Gauss C. F., xiv, 78, 82
Goldbach C., 2
Granville A., 79, 80

Hanken W., ii
Helenius F., 67, 213
Hilbert D., xii
Horner W. G., 110
Horner, W. G., 34

Iverson K. E., 1
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Pépin T., 20
Pell J., xiv, 113–115
Pollard J. M., 33–35, 38
Pomerance C., 79, 80
Pritchard P., 2, 3, 6, 8
Putman H., 87

Rabin M. O., 21
Robinson J., 87
Rosser B. J., 16
Ruffini P., 110
Ruiz S. M., 46
Russo F. A., 45

Saxena N., 23
Schoenfeld L., 16
Sierpinski W., xiv, 78, 81, 85
Smarandache F., i, xii, 40, 42, 46, 51
Smith E., 14
Sondow J., 49, 50
Strassen V., 33–35
Straus E. G., iii
Strindmo O. M., 14
Sundaram S. P., 2, 9
Swett A., iii

Tutescu L., iii, 48

Waring E., 24
Weisstein E. W., iii, 48
Wilson D., 50, 131
Wilson J., xiv, 24, 78, 80–82, 84, 85



Bibliography
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E. Landau. Elementary Number Theory. Celsea, 1955.

arXiv.org$>$math$>$arXiv:math/0311056
arXiv.org$>$math$>$arXiv:math/0311056


BIBLIOGRAPHY 231

E. Landau. Elementary Number Theory, with Exercises by Paul T. Bateman and Eugene
E. Kohlbecker. Chelsea, New york, 1958.

F. Lazebnik. On systems of linear Diophantine equations. Mathematics Magazine,
69(4):261–266, October 1996.

W. Ljunggren. Some remarks on the Diophantine equation x2 − dy4 = 1 and
x4 − dy2 = 1. J. London Math. Soc., 41:542–544, 1966.

C. T. Long. Elementary Introduction to Number Theory. D. C. Heath, Boston, 1965.

E. Lucas. Question nr. 288. Mathesis, 3:232, 1883.

J. S. Madachy. Madachy´s Mathematical Recreations. Dover, New York, 1979.

Y. V. Matiyasevich. Solution of the tenth problem of Hilbert. Mat. Lapok, 21:83–87,
1970.

Y. V. Matiyasevich. Hilbert’s Tenth Problem. MA: MIT Press, Cambridge, 1993.

J. S. McCranie. A study of hyperperfect numbers. J. Integer Sequences, 3(00.1.3),
2000.

C. D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM bookstore, 2000.
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