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Abstract

The exploration of the novel physical consequences of the Extended Theory of
Gravity in C-spaces (Clifford spaces) is continued. One of the most salient physical
feature of the extended gravitational theory in C-spaces is that one can generate an
effective stress energy tensor mimicking the effects of “dark” matter/energy. In
particular, it is found that the presence of the cosmological constant, along with a
plausible mechanism to explain its extremely small value and/or its cancellation, can
be understood entirely from a purely Clifford algebraic and geometric perspective.
For this reason we believe that this theory may have important consequences in
Cosmology and further research in Gravitation and Particle Physics.

Keywords : Clifford algebras; Extended Relativity in Clifford Spaces; Cosmological
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1 Introduction : C-space Relativity

In the past years, the Extended Relativity Theory in C-spaces (Clifford spaces) and
Clifford-Phase spaces were developed [1], [2]. The Extended Relativity theory in Clifford-
spaces (C-spaces) is a natural extension of the ordinary Relativity theory whose general-
ized coordinates are Clifford polyvector-valued quantities which incorporate the lines, ar-
eas, volumes, and hyper-volumes degrees of freedom associated with the collective dynam-
ics of particles, strings, membranes, p-branes (closed p-branes) moving in a D-dimensional
target spacetime background. C-space Relativity permits to study the dynamics of all
(closed) p-branes, for different values of p, on a unified footing.
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Our theory has 2 fundamental parameters : the speed of a light c and a length scale
which can be set equal to the Planck length. The role of “photons” in C-space is played
by tensionless branes. An extensive review of the Extended Relativity Theory in Clifford
spaces can be found in [1]. The polyvector valued coordinates xµ, xµ1µ2 , xµ1µ2µ3 , ... are
now linked to the basis vectors generators γµ, bi-vectors generators γµ ∧ γν , tri-vectors
generators γµ1 ∧ γµ2 ∧ γµ3 , ... of the Clifford algebra, including the Clifford algebra unit
element (associated to a scalar coordinate).

These polyvector valued coordinates can be interpreted as the quenched-degrees of
freedom of an ensemble of p-loops associated with the dynamics of closed p-branes, for
p = 0, 1, 2, ..., D−1, embedded in a target D-dimensional spacetime background. C-space
is parametrized not only by 1-vector coordinates xµ but also by the 2-vector coordinates
xµν , 3-vector coordinates xµνα, ..., called also holographic coordinates, since they describe
the holographic projections of 1-loops, 2-loops, 3-loops,..., onto the coordinate planes .
By p-loop we mean a closed p-brane; in particular, a 1-loop is closed string. When X is
the Clifford-valued coordinate corresponding to the Cl(1, 3) algebra in four-dimensions it
can be decomposed as

X = s 1 + xµ γµ + xµν γµ ∧ γν + xµνρ γµ ∧ γν ∧ γρ + xµνρτ γµ ∧ γν ∧ γρ ∧ γτ (1.1)

where we have omitted combinatorial numerical factors for convenience in the expansion
of eq-(1.1). To avoid introducing powers of a length parameter L (like the Planck scale
Lp), in order to match physical units in the expansion of the polyvector X in eq-(1.1), we
can set it to unity to simplify matters.

The component s is the Clifford scalar component of the polyvector-valued coordinate
and dΣ is the infinitesimal C-space proper “time” interval

(dΣ)2 = (ds)2 + dxµ dx
µ + dxµν dx

µν + . . . (1.2)

that is invariant under Cl(1, 3) transformations and which are the Clifford-algebraic
extensions of the SO(1, 3) Lorentz transformations [1]. One should emphasize that dΣ is
not equal to the proper time Lorentz-invariant interval dτ in ordinary spacetime (dτ)2 =
gµνdx

µdxν = dxµdx
µ. Generalized Lorentz transformations (poly-rotations) in flat C-

spaces were discussed in [1]. A recent extensive analysis of the C-space generalized Lorentz
transformations and their physical implications can be found in [8].

Given X = XAγA, where A is a polyvector-valued index and γA span over all the
generators of the Clifford algebra, the quadratic form is defined as

< X† X > = XA X
A = s2 + Xµ X

µ + Xµ1µ2 X
µ1µ2 + ...... Xµ1µ2.....µD X

µ1µ2....µD (1.3)

where X† denotes the reversal operation obtained by reversing the order of the gamma
generators in the wedge products. The symbol < γA γB > denotes taking the scalar
part in the Clifford geometric product of γA γB. It is the analog of taking the trace of
a product of matrices. Such scalar part can be obtained from the (anti) commutator
relations of the Clifford algebra generators as displayed in the Appendix A. For example
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< γµ γ
ν > = δνµ, < γµ1µ2 γ

ν1ν2 > = − δ ν1ν2
µ1µ2

< γµ1µ2µ3 γ
ν1ν2ν3 > = − δ ν1ν2ν3

µ1µ2µ3
, < γµ1µ2µ3µ4 γ

ν1ν2ν3ν4 > = δ ν1ν2ν3ν4
µ1µ2µ3µ4

, ...... (1.4)

One should note the presence of ± signs in the right hand side of eqs-(1.4). They are
connected to the even/odd behavior of the reversal operation (γC)† = ±γC .

The quadratic form is invariant under the isometry transformations

X′ = R X L†, R† R = 1, L† L = 1 ⇒ < X′
†

X′ > = < X† X > (1.5)

due to the cyclic property of the scalar part projection

< X′
†

X′ > = < L X† R† R X L†, > = < L X† X L† > =

< L† L X† X > = < X† X > (1.6)

where R,L are Clifford-valued rotors acting on the right and left respectively. Let us
write the rotor associated with a “rotation” along the XA−XB directions in C-space with
parameter αAB, after writing the commutation relations [ΓA,ΓB] = f C

AB ΓC , as follows

R = eα
AB [ΓA,ΓB ] = eα

AB fCAB ΓC = eβ
CΓC , βC = αAB f C

AB (1.7)

where f C
AB are the structure constants of the algebra. There is a summation over the C

indices (but not over the A,B indices) in eq-(1.7) and the reversal condition reads

[ΓA, ΓB]† = − [ΓA, ΓB] ⇒ R R† = 1 (1.8)

and which is satisfied in particular when Γ†A = −ΓA; Γ†B = −ΓB giving Γ†C = −ΓC . This
is a result of the relations (ΓAΓB)† = (ΓB)†(ΓA)† = ΓBΓA. In the most general case, for
arbitrary dimensions, due to the summation over the C polyvector indices in eq-(1.7),
the rotor R does not factorize into separate products. For instance, after performing a
Taylor series expansion of the exponentials, one has that

eβ
01γ01 + β023γ023 6=

(
cosh(β01) + γ01 sinh(β01)

) (
cosh(β023) + γ023 sinh(β023)

)
(1.9)

as a result of the Baker-Campbell-Hausdorf formula. Because [γ01, γ023] 6= 0 the left
hand side of eq-(1.9) does not factorize. A detailed study (with several examples) of the
generalized Lorentz transformations in C-space can be found in [8]. In particular when the
polyvector coordinate components of different grades become entangled under the C-space
generalized Lorentz transformations. Having presented this short but concise introduction
of the notion of C-space we proceed with the crux of this work. For references on Clifford
algebras and the Clifford approach to geometry see [3], [4], [5], [6] and references therein.

3



2 The Differential Geometry of Curved C-spaces

In curved C-space one introduces the X-dependent basis generators γM , γ
M defined in

terms of the beins EA
M , inverse beins EM

A and the flat tangent space generators γA, γ
A

as follows γM = EA
M(X)γA, γ

M = EM
A (X)γA. The curved C- space metric expression

gMN = EA
ME

B
NηAB also agrees with taking the scalar part of the Clifford geometric product

< γM γN >= gMN .
From now one we shall denote the curved C-space basis generators γM , γ

M by EM , E
M ,

and the flat tangent space generators γA, γ
A by EA, E

A. The indices A,B,C, ... from the
beginning of the alphabet represent the tangent space indices, while those from the middle
of the alphabet L,M,N, ... represent the base world indices. The covariant derivative of
EA
M(X), EM

A (X) involves the generalized connection and spin connection and are defined
as

∇KE
A
M = ∂KE

A
M − ΓLKM EA

L + ωAKB EB
M (2.1a)

∇KE
M
A = ∂KE

M
A + ΓMKL E

L
A − ω B

KA EM
B (2.1b)

If the nonmetricity is zero then ∇KE
A
M = 0, ∇KE

M
A = 0 in eqs-(2.1).

The coefficients (functions) W N
LM associated to the Clifford geometric product are

defined by

EA EB = W C
AB EC , given EL = EA

L EA, EM = EA
M EA ⇒

EL EM = W N
LM EN ⇒ W N

LM = EA
L EB

M EN
C W C

AB (2.2)

the Clifford algebra structure functions f N
LM , d N

LM are defined by

[EA, EB] = f C
AB EC , [EL, EM ] = f N

LM EN ⇒ f N
LM = EA

L EB
M EN

C f C
AB (2.3)

{EA, EB} = d C
AB EC , {EL, EM} = d N

LM EN ⇒ d N
LM = EA

L EB
M EN

C d C
AB (2.4)

Due to the antisymmetry property ΩKAB = −ΩKBA of the generalized spin connection
one has

∇K(ηAB) = − Ω C
KA ηCB − Ω C

KB ηAC = − (ΩKAB + ΩKBA ) = 0 (2.5)

as expected and such that

∇K(gMN) = ∇K(EA
M EB

N ηAB) = 0 ⇒ ∇KE
A
M = 0 (2.6)

From
∇K(EA

M) = 0 ⇒ ∂K(EA
M) − Γ L

KM EA
L + ΩA

KB EB
M = 0 ⇒
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∂K(EA
M) = Γ L

KM EA
L − ΩA

KB EB
M (2.7)

one obtains the relationship between the connection and the spin connection. Having

∇K(EA
M) = 0 ⇒ ∇K(EM) = ∇K(EA

M EA) = EA
M ∇KEA =

EA
M ( ∂KEA − Ω B

KA EB ) = 0 ⇒

∂K EA = Ω B
KA EB (2.8)

Hence under parallel transport, ∂KEA, the tangent space basis EA generators are ro-
tated as displayed by eq-(2.8). The result ∇K(EM) = 0 is also consistent with the zero
nonmetricity condition

∇K gMN = ∇K < EM EN > = < ∇K(EM) EN > + < EM ∇K(EN) > = 0
(2.9)

therefore, the Clifford algebra basis elements EM in a curved C-space are covariantly
constant with respect to a metric-compatible connection ∇KgMN = 0.

Upon taking derivatives on both sides of the equalities in eqs-(2.2-2.4) and after using
eqs-(2.7, 2.8) gives the covariantly constancy conditions of the structure functions

∇K(fLMN) = 0, ∇K(dLMN) = 0, ∇K(WLMN) = 0 (2.13)

A careful analysis reveals that eqs-(2.13) do not impose any additional constraints on
the generalized connection and spin connection. This result is an improvement over our
prior findings in [10] and is consistent with the fact that performing a derivative operation
on both sides of an equality should not introduce additional constraints on the connection.

For simplicity we shall set the nonmetricity QL
MN to zero. In Appendix B we show

that the torsionless Levi-Civita connection is given by

(lc)ΓLMN = {LMN} +
1

2
gLK ( fMKN + fNKM + fMNK ) (2.14)

where

{LMN} =
1

2
gLK ( ∂N gKM + ∂M gKN − ∂K gMN ) (2.15)

and fMKN are the Clifford algebra structure functions (coefficients). We should notice
that the Levi-Civita connection in eq-(2.14) has a symmetric (lc)ΓL (MN) and antisymmetric
(lc)ΓL [MN ] piece. The symmetric piece is given by the first three terms in (2.14), while
the antisymmetric piece is given by the last term in (2.14).

The Torsion is defined by

T = ∇X Y − ∇Y X − [X,Y] (2.16)

so that by inspection one can see that the LC connection (2.14) is torsionless

(lc)T L
MN ≡ (lc)ΓLMN − (lc)ΓL NM − f L

MN = 0 (2.17)
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The last term −f L
MN in the expression for the torsion (2.17) originates from the non-

vanishing [X,Y] 6= 0 contribution and resulting from the fact that [EM , EN ] = f L
MN EL 6=

0.
The Torsion can be introduced explicitly by the addition of the contorsion term KL

MN

ΓLMN = (lc)ΓLMN + KL
MN (2.18)

The contorsion tensor is defined in terms of the components of the torsion tensor as

KL
MN =

1

2
(T L

M N + T L
N M + TLMN), TLMN = − TLNM (2.19)

so that now the torsion is no longer zero TLMN = ΓLMN − ΓLNM − fLMN 6= 0.
After recurring to the result in eq-(2.7) ∂K(EA

M) = Γ L
KM EA

L − ΩA
KB EB

M and defining
TLMN EA

L = TAMN , one can verify that

TAMN = ∂M EA
N − ∂N EA

M + ΩA
MB EB

N − ΩA
NB EB

M − f L
MN EA

L (2.20)

therefore, TAMN can be written in terms of the generalized spin connection and the gen-
eralized vielbeins . The expression (2.20) bears a resemblance with the Cartan structure
equations for the torsion 2-form Ta = T aµν dx

µ ∧ dxν in ordinary spaces when it is written
in terms of differential forms, exterior derivatives and exterior products

Ta = dΘa + ωa b ∧ Θb, Θa ≡ eaν dx
ν , ωa b = ωa b µ dx

µ (2.21)

The curvature is defined as

R(X,Y) Z = [∇X, ∇Y] Z − ∇[X,Y] Z (2.22)

the explicit curvature components are then given by

R K
MNJ = ∂M Γ K

NJ − ∂N Γ K
MJ − Γ L

MJ Γ K
LN + Γ L

NJ Γ K
LM − f L

MN Γ K
LJ (2.23)

To sum up, because the Clifford algebra structure functions (coefficients) are not zero
f L
MN 6= 0 one must include them into the definitions of the torsion and curvature. In the

curvature case there are terms f L
MN Γ K

LJ as displayed in eq-(2.23). While in the torsion
case we must include the term f L

MN as shown in (2.17, 2.20).
The same-grade C-space metric components obeying gMN = gNM are of the form

g00, gµν , gµ1µ2 ν1ν2 , . . . , gµ1µ2...µD ν1ν2...νD (2.24)

In the most general case the metric does not factorize into antisymmetrized sums of
products of the form

g[µ1µ2] [ν1ν2](x
µ) 6= gµ1ν1(x

µ) gµ2ν2(x
µ) − gµ2ν1(x

µ) gµ1ν2(x
µ)

g[µ1µ2...µk] [ν1ν2...νk](x
µ) 6= det Gµiνj = εj1j2...jk gµ1νj1 gµ2νj2 . . . gµ2νjk , k = 1, 2, 3, . . . D

(2.25)
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The determinant of Gµiνj can be written as

det


gµ1ν1(x

µ) . . . . . . gµ1νk(xµ)
gµ2ν1(x

µ) . . . . . . gµ2νk(xµ)
−−−−−−−−−−− −−−−−−−−−−−−−−

gµkν1(x
µ) . . . . . . gµkνk(xµ)

 , (2.26)

The metric component g00 involving the scalar “directions” in C-space of the Clifford poly-
vectors must also be included. It behaves like a Clifford scalar. The other component
g[µ1µ2...µD] [ν1ν2...νD] involves the pseudo-scalar “directions”. The latter scalar and pseudo-
scalars might bear some connection to the dilaton and axion fields in Cosmology and
particle physics.

The Bianchi identities are

R K
MNJ + R K

NJM + R K
JMN = 0 (2.27)

∇L(R K
MNJ ) + ∇M(R K

NLJ ) + ∇N(R K
LMJ ) = 0 (2.28)

To finalize this section we shall discuss the notion of poly-differential forms. In C-space
one has now that

dxµν 6= dxµ ∧ dxν , dxµνρ 6= dxµ ∧ dxν ∧ dxρ, ..... (2.29)

because the areal-coordinates xµν , volume-coordinates xµνρ, ..... associated with the
world-sheet, world-volume, ..... evolution of a string, membrane, ..... are not related to the
vector coordinates xµ associated with the evolution of a point particle. For this reason the
antisymmetry property of the poly-differential forms is given by dXM∧dXN = − dXN∧
dXM . In particular one has the following combinations

dxµ1µ2...µ2m ∧ dxρ1ρ2...ρ2n = − dxρ1ρ2...ρ2n ∧ dxµ1µ2...µ2m (2.30a)

dxµ1µ2...µ2m−1 ∧ dxρ1ρ2...ρ2n−1 = − dxρ1ρ2...ρ2n−1 ∧ dxµ1µ2...µ2m−1 (2.30b)

dxµ1µ2...µ2m−1 ∧ dxρ1ρ2...ρ2n = − dxρ1ρ2...ρ2n ∧ dxµ1µ2...µ2m−1 (2.30c)

dxµ1µ2...µ2m ∧ dxρ1ρ2...ρ2n−1 = − dxρ1ρ2...ρ2n−1 ∧ dxµ1µ2...µ2m (2.30d)

and which differs from the antisymmetry property of ordinary differential forms. Given
an ordinary p-form Ap and an ordinary q-form Bq one has Ap∧Bq = (−1)pq Bq∧Ap. The
antisymmetry property displayed by the C-space poly-differential forms in eqs-(2.29,2.30)
will ensure that the generalized curvature tensor is antisymmetric under the following
exchange of polyvector-valued indices : R K

MNJ = − R K
NMJ .

The C-space poly-differential forms analogs of the Cartan-structure equations in or-
dinary spacetime are
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TA = dΘA + ΩA
B ∧ ΘB, ΘA ≡ EA

M dXM , ΩA
B = ΩA

B N dXN (2.31)

RAB = dΩAB + ΩA
C ∧ ΩCB, RAB = RAB

MN dXM ∧ dXN (2.32)

where A,B are the tangent space indices and M,N are the base (world) indices.
The above equations are the starting point to formulate a gauge theory of extended

gravity in C-spaces based on the analogs of a vielbein EA
M and spin connection ΩAB

M . The
generalized connection is AM = EA

M PA + ΩAB
M JAB. PA is the translation generator and

JAB is the generalized Lorentz generator. The connection poly-differential one-form is
AM dXM and the poly-differential curvature 2-form is R = (d + A) ∧A. In component
form, the curvature is RMN dXM ∧ dXN = (RA

MNPA + RAB
MNJAB) dXM ∧ dXN . This

gauge theory approach to C-space gravity will be the subject of a future investigation
and is the C-space generalization of the Poincare gauge theory formulation of ordinary
gravity [11].

3 The Generalized Field Equations and the Cosmo-

logical Constant

Before embarking into this final section we shall work with the natural units h̄ = c = G =
LPlanck = 1. Upon performing contractions of the curvature yields the analog of the Ricci
tensor δNK R K

MNJ = RMJ and the Ricci scalar gMJRMJ = R. One may then construct
an Einstein-Hilbert-Cartan like action based on the C-space curvature scalar R

1

2κ2

∫
ds

∏
dxµ

∏
dxµ1µ2 . . . dxµ1µ2...µD µm(gMJ) R ≡

1

2κ2

∫
[DX] µm(gMJ) R (3.1)

where µm(gMJ) is a suitable integration measure and κ2 is the gravitational coupling
constant in the 2D-dimensional C-space.

At this point it is important to remark that the analog of the Ricci tensor RMJ 6= RJM

is no longer symmetric in the indices because RMJ (and R) are defined now in terms
of the non-symmetric connection ΓKMN 6= ΓKNM as displayed in eq-(2.14). There is an
antisymmetric piece in the connection given explicitly by the very last term of eq-(2.14).
The curvature scalar becomes R = gMJRMJ = gMJR(MJ) + gMJR[MJ ] = gMJR(MJ).
Hence, it is the symmetric part of the Ricci tensor analog that appears in the vacuum
field equations below. Torsion can also be added to the connection explicitly in terms of
the contorsion terms as shown in eqs-(2.18,2.19).

In a given coordinate system (a generalized Lorentz frame) the mixed-grade compo-
nents of the metric gMN , g

MN , beins EA
M , inverse beins EM

A , can be set to zero in order to
considerably simplify the calculations; i.e. namely due to the very large diffeomorphism
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symmetry in C-space, one may choose a frame (“diagonal gauge”) such that the mixed
grade components of the metric gMN , beins EA

M , inverse beins EM
A are zero. In this case

the C-space metric components can be chosen to be given by the determinant expressions
in eq-(2.26).

The advantage of having gMN = 0 if the grade of M is not the same as the grade of N
is that the determinant of the C-space metric can be factorized as the product of determi-
nants of matrices which are comprised of entries given themselves by determinants (2.26)
. If an ordering prescription of indices is introduced, µ1 < µ2 < ....µn and ν1 < ν2 < ....νn,
the bivector-bivector components of the C-space metric in D = 4 dimensions gµ1µ2 ν1ν2

can be arranged into an ordered square array of entries given by a 6 × 6 matrix, since
the number of independent bivector components in D = 4 is 4 × 3/2 = 6. For instance,
the entries of the square 6 × 6 matrix gµ1µ2 ν1ν2 are given themselves by determinants :
g12 12 = g11g22− g12g21; g13 13 = g11g33− g13g31, ...... etc, and such that its determinant is
given by the ordinary determinant of an square 6× 6 matrix.

The trivector-trivector components of the C-space metric in D = 4 dimensions
gµ1µ2µ3 ν1ν2ν3 can be arranged into an ordered square array of entries given by a 4× 4 ma-
trix, since the number of independent trivector components in D = 4 is 4×3×2/2×3 = 4.
The entries of this square 4×4 matrix are given themselves by the determinants as shown
in eq-(2.26). Following a similar procedure with the other C-space metric components,
in this way one can write the measure of integration in D = 4 as the square root of the
product of determinants

µm(gMJ) =
√
|g| |det (gµν)| |det (gµ1µ2 ν1ν2)| |det (gµ1µ2µ3 ν1ν2ν3)| |det (gµ1µ2µ3µ4 ν1ν2ν3ν4)|

(3.2)
where g is the scalar-scalar part of the C-space metric. The generalization to other
dimensions is straightforward.

In the most general case one can have a C-space metric with non-vanishing mixed
grade components such that the metric gMJ components can be assembled into arrays
of ordered rectangular matrices. The problem becomes that one cannot longer define a
determinant of a rectangular matrix. One can also view the gMJ as a hyper-matrix but
the construction (if possible) of the hyper-determinant of the C-space metric (a hyper
matrix) is a more difficult problem [13], [14].

Despite that in the most general case the measure µm(gMJ) is not given by eq-(3.2) one
can still assume that µm(gMJ) is a suitable measure of integration obeying the condition

δµm(gMJ) = − 1

2
µm(gMJ) gMJ δg

MJ (3.3)

and which is similar to the variational behavior of the square root of an ordinary deter-

minant of the spacetime metric
√
|det gµν |.

Therefore, when the torsion is set to zero and the measure obeys (3.3), a variation of
the action (3.1) leads to∫

[DX] µm(gMJ)
(

R(MJ) −
1

2
gMJ R

)
δgMJ = 0 (3.4)
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after discarding the total derivative terms that do not contribute to the variation of the
action when the variation of the fields vanishes at the boundaries. These total deriva-
tive terms stem from the variation of the Ricci tensor and which after a lengthy but
straightforward algebra is given by

δ (RMJ) = ∇M(δΓNNJ)−∇N(δΓNMJ) +2 δ( ΓN[LM ] ΓLNJ ) +2 δ( ΓLMJ ΓN[NL] )− δ( f N
LM ΓLNJ )

(3.5a)
when the torsion is zero one has 2ΓN[LM ] = f N

LM and 2ΓN[NL] = f N
NL = 0 resulting from the

total antisymmetry property of the Clifford algebra structure functions. Therefore, there
is a precise cancellation of the δ(f N

LM ΓLNJ) terms and the terms δ(ΓLMJΓN[NL]) = 0 vanish
automatically. Hence, the variation δ (RMJ) in eq-(3.5a) becomes finally

δ (RMJ) = ∇M(δΓNNJ) − ∇N(δΓNMJ) (3.5b)

and which is the analog of the Palatini identity in C-space. The variation (3.5b) con-
tributes to a sum of total derivatives by noticing that one can pull the ∇ derivatives to
the left of all the terms in the integrand because ∇KgMJ = 0 and ∇µm(gMJ) = 0 when
the nonmetricity is zero. This yields finally

∫
∇(µm......δΓ), which is a total derivative

leading then to a boundary term that vanishes, either by imposing a zero variation at the
boundaries and/or by having the fields vanish at infinity.

Finally, the vacuum field equations in C-space are given by

R(MJ) −
1

2
gMJ R = 0 (3.6)

One must supplement the above equations with the variation of the action with respect
to the scalar-scalar component g of the C-space metric δS/δg = 0.

We have arrived at the most salient physical feature of the vacuum field equations. By
inserting the torsionless connection expression in eq-(2.14) of the form ΓLMN = {LMN} +
fLMN ..... terms, and after using the covariantly constancy condition on the curved C-space
Clifford algebra structure functions ∇MfJKL = 0, one can decompose the Ricci tensor
as R(MJ) ∼ RMJ + fKLM fKLJ + fKLJ fKLM , and the Ricci scalar as R ∼ R + fJKLfJKL.
RMJ = RJM , R are the Ricci tensor and Ricci scalar analogs in C-space associated with
the symmetric Christoffel connection {LMN} = {LNM}.

The physical significance of this curvature decomposition is that these extra terms
involving the curved C-space Clifford algebra structure functions can be interpreted as
an effective stress energy tensor which can mimic the effects of “dark” matter/energy.
To see how the cosmological constant Λ emerges, it is straightforward to infer that the
contraction fJKL fJKL involving the Clifford-algebra structure functions in curved C-
space turns out to be equal to fABC fABC ∼ Λ1 = constant, when fABC , fABC are the
tangent space Clifford algebra structure constants. This finding is just a consequence of
the definitions of fJKL and fJKL in terms of the beins EA

J , and inverse beins EJ
A given

by eqs-(2.2-2.4), and obeying EJ
A E

A
M = δJM , ....

Therefore, when the torsion is set to zero, the measure obeys (3.3), and after writing
R(MJ) = R(MJ) + ∆R(MJ), and R = R + Λ1, the vacuum field equations in C-space can
be rewritten as
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R(MJ) + ∆R(MJ) −
1

2
gMJ R −

1

2
gMJ Λ1 = 0 (3.7)

where Λ1 ≡ ∆R ∼ fJKL fJKL = fABC fABC = constant. The other terms

∆R(MJ) ∼ fKLM fKLJ + fKLJ fKLM ∼ Λ2 κMJ (3.8)

are proportional to the curved space Clifford algebra Killing metric κMJ =
EA
ME

D
J f

BC
A fBCD = EA

ME
D
J κAD. If the Killing metric κAD coincides with ηAD then

κMJ = gMJ and the combined effect of the two constants Λ1,Λ2 gives the sought-after
cosmological constant term

1

2
gMJ ( 2Λ2 − Λ1 ) ≡ Λ gMJ , with 2Λ2 − Λ1 ≡ 2 Λ (3.9)

If the Killing metric κAD does not coincide with ηAD then one will have for the ∆R(MJ)

terms the following Λ2 κMJ contribution which can be interpreted as (minus) an effective
stress energy tensor −κ2 TMJ term mimicking the effects of “dark” matter.

To conclude, one of the most salient physical feature of the extended gravitational
theory in C-spaces is that one can generate an effective stress energy tensor mimicking
the effects of “dark” matter/energy. In particular the cosmological constant term. One
could explicitly add a cosmological constant term, by hand, to the original action (3.1)
but the main point of our above argument is that it is not necessary, to do so. The
cosmological constant term is automatically encoded in the fJKL fJKL = fABC fABC ( =
constant) term which naturally forms part of the C-space scalar curvature.

In ordinary Relativity, when the torsion is zero, one can construct the Einstein tensor
by performing two successive contractions of the differential Bianchi identity [12]. It also
leads to the conservation of the stress energy tensor in the right hand side. In C-space the
differential Bianchi identities (2.27) are satisfied when the torsion is zero. By performing
two successive contractions of the differential Bianchi identities one also arrives at the
field equations

∇M ( R(MN) −
1

2
gMN R ) = 0 ⇒ R(MN) −

1

2
gMN R = κ2 TMN , ∇M(TMN) = 0

(3.10)
The advantage of recurring to the differential Bianchi identities in C-space to derive the
field equations (3.10) is that it is not necessary to invoke an action and confront the
subtleties in constructing a suitable measure of integration.

One may introduce a cosmological constant as an integration constant Λ′ in the right
hand side of eq-(3.10) giving the modified field equations

R(MN) −
1

2
gMN R = Λ′ gMN (3.11)

After decomposing the curvature terms of the left hand side of eq-(3.11) in the same form
as in eq-(3.7), and bringing the term Λ′ gMN into the left hand side, one ends up with
an effective cosmological constant term of the form (Λ−Λ′)gMN . Hence a cancellation
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of the effective cosmological constant is possible when Λ − Λ′ = 0. This scenario for a
plausible explanation of the extremely small value of the observed cosmological constant
warrants further investigation.

Let us proceed with the vacuum field equations (3.6). To simplify matters we shall
only consider the action (3.1) whose measure is given by (3.2) involving the C-space metric
components and whose entries are given by the determinant expressions (2.26). Namely,
the C-space metric is being decomposed into antisymmetrized sums of products of the
ordinary metric components of spacetime. Besides the scalar-scalar component g of the
C-space metric (not to be confused with the |det gµν |), the other independent variables
are now given by the ordinary metric components gµν = gνµ , hence a variation of the
action in C-space with respect to gµν leads to the generalized vacuum field equations that
do not coincide with the Einstein vacuum field equations.

Hence, in the torsionless case, and in this simplified case, the vacuum field equations
in D = 4 are obtained from the variation of the action with respect to gµν

∫ (
δL
δgµν

δgµν +
δgµ1µ2 ν1ν2

δgµν
δL

δgµ1µ2 ν1ν2
δgµν +

δgµ1µ2µ3 ν1ν2ν3

δgµν
δL

δgµ1µ2µ3 ν1ν2ν3
δgµν

)
+

∫ δgµ1µ2µ3µ4 ν1ν2ν3ν4

δgµν
δL

δgµ1µ2µ3µ4 ν1ν2ν3ν4
δgµν = 0 (3.12)

The above variation in (3.12) yields the simplified version of the vacuum field equations

R(µν) −
1

2
gµν R +

(
R(M̂N̂) −

1

2
gM̂N̂ R

)
δgM̂N̂

δgµν
= 0 (3.13)

where the contributions of the polyvector-components of the C-space metric are denoted
explicitly by the hatted indices. Clearly, the vacuum field equations (3.13) differ from the
Einstein field equations in ordinary spacetime due to the extra terms stemming from Clif-
ford algebraic structure and polyvector-valued contributions to the C-space metric. These
extra terms, once again, can be interpreted as the contribution of (minus) an effective
stress energy tensor −κ2Teff

µν which could mimic the effects of “dark” matter/energy. As a
reminder, one must also include the equation associated with the scalar-scalar component
g of the C-space metric δS/δg = 0. Such scalar-scalar C-space metric component might
also have cosmological implications like the axion and dilaton.

There are still many challenges ahead to test the viability of the Extended Gravita-
tional Theory in C-spaces. A related question arises, does the Palatini formalism work
also in C-spaces ? Namely, does an independent variation with respect to the C-space
connection (δS/δΓLMN) = 0 yields the torsionless Levi-Civita connection of eq-(2.14) ? We
leave this difficult question for future work. Other physical applications of C-space gravity
were studied in [10] in relationship to higher curvature theories of gravity, like Lanczos-
Lovelock-Cartan gravity (with torsion) [9] and to f(R) extended theories of gravity [15].
Our finding that the presence of the cosmological constant, along with a plausible mech-
anism to explain its extremely small value and/or its cancellation, can be understood
from a purely Clifford algebraic and geometric perspective, alone, is very appealing and
deserves further investigation.
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APPENDIX A

In this Appendix we shall write the (anti) commutator relations [7] for the Clifford
algebra generators.

1

2
{ γa, γb } = gab 1;

1

2
[ γa, γb ] = γab = − γba, a, b = 1, 2, 3, · · · ,m (A.1)

[ γa, γbc ] = 2 gab γc − 2 gac γb, { γa, γbc } = 2 γabc (A.2)

[ γab, γcd ] = − 2 gac γbd + 2 gad γbc − 2 gbd γac + 2 gbc γad (A.3)

In general one has [7]

pq = odd, [γm1m2....mp , γ
n1n2....nq ] = 2 γn1n2....nq

m1m2....mp
− 2p!q!

2!(p− 2)!(q − 2)!
δ

[n1n2

[m1m2
γ
n3....nq ]
m3......mp] +

2p!q!

4!(p− 4)!(q − 4)!
δ

[n1....n4

[m1....m4
γ
n5....nq ]
m5......mp] − ............ (A.4)

pq = even, { γm1m2....mp , γ
n1n2....nq } = 2 γn1n2....nq

m1m2....mp
− 2p!q!

2!(p− 2)!(q − 2)!
δ

[n1n2

[m1m2
γ
n3....nq ]
m3......mp] +

2p!q!

4!(p− 4)!(q − 4)!
δ

[n1....n4

[m1....m4
γ
n5....nq ]
m5......mp] − ............ (A.5)

pq = even, [γm1m2....mp , γ
n1n2....nq ] =

(−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ

[n1

[m1
γ
n2....nq ]
m2....mp] −

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ

[n1n2n3

[m1m2m3
γ
n4....nq ]
m4......mp] + ....... (A.6)

pq = odd, { γm1m2....mp , γ
n1n2....nq } =

(−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ

[n1

[m1
γ
n2....nq ]
m2....mp] −

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ

[n1n2n3

[m1m2m3
γ
n4....nq ]
m4......mp] + ....... (A.7)

The generalized Kronecker delta is defined as the determinant
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δa1a2.....akb1b2.....bk
≡ det


δa1b1 . . . . . . δa1bk
δa2b1 . . . . . . δa2bk

−−−−−−−−−−− −−−−−−−−−−−−−−
δakb1 . . . . . . δakbk

 (A.8)

APPENDIX B

In this appendix we shall derive the expression for the analog of the torsionless Levi-
Civita connection in C-space. Given a symmetric metric gMN = gNM and setting the
nonmetricity QKMN to zero gives

∇KgMN = ∂KgMN − ΓLKM gLN − ΓLKN gML = 0 (B.1)

Performing a cyclic index permutation yields

∇MgNK = ∂MgNK − ΓLMN gLK − ΓLMK gNL = 0 (B.2)

∇NgKM = ∂NgKM − ΓLNK gLM − ΓLNM gKL = 0 (B.3)

adding eqs-(B.2, B.3) and subtracting eq-(B1) leads to

∂MgNK + ∂NgKM − ∂KgMN = 2 ΓL(MN) gLK + 2 ΓL[MK] gLK + 2 ΓL[NK] gLK (B.4)

where

ΓL(MN) ≡
1

2
( ΓLMN + ΓLNM ) (B5)

ΓL[MK] ≡
1

2
( ΓLMK − ΓLKM ), ΓL[NK] ≡

1

2
( ΓLNK − ΓLKN ) (B.6)

when the Torsion is zero one has

TLMK = ΓLMK − ΓLKM − fLMK = 0 ⇒ 2 ΓL[MK] = fLMK (B.7)

such that eq-(B.4) becomes

∂MgNK + ∂NgKM − ∂KgMN = 2 ΓL(MN) gLK + fLMK gLN + fLNK gLM (B.8)

and from eq-(B.8) one can then deduce that the symmetric part of the connection is
given by

ΓL(MN) =
1

2
gLK [ ( ∂MgNK + ∂NgMK − ∂KgMN ) + (fMKN + fNKM ) ] (B.9)
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therefore, by adding the antisymmetric part of the connection ΓL[MN ] = 1
2
fLMN to the sym-

metric part ΓL(MN) one obtains finally the full expression for the analog of the torsionless
Levi-Civita connection in C-space

(lc)ΓLMN = ΓL(MN) + ΓL[MN ] = { LMN } +
1

2
gLK ( fMKN + fNKM + fMNK) (B.10)

where

{ LMN } ≡
1

2
gLK ( ∂MgNK + ∂NgMK − ∂KgMN ) (B.11)
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