An elementary approach to explore possible constraints on the infinite nature of twin primes

Prashanth R. Rao

Abstract: Twin prime conjecture states that there are infinite number of twin primes of the form p and p+2. Remarkable progress has recently been achieved by Y. Zhang to show that infinite primes that differ by large gap (\sim 70 million) exist and this gap has been further narrowed to \sim 600 by others. We use an elementary approach to explore any obvious constraint that could limit the infinite nature of twin primes. Using Fermat's little theorem as a surrogate for primality we derive an equation that suggests but not prove that twin primes can be infinite.

Results:

Consider any pair of large twin primes p and p+2.

It follows from Fermat's little theorem that $2^{p}-2$ is divisible by p $2^{p+2}-2$ is divisible by p+2

Then
$$2^{p}-2=p*a$$
 (I) $2^{p+2}-2=(p+2)*b$ (II)

where a and b are positive integers.

Subtracting I from II

$$2^{p+2}-2-(2^{p}-2)=(p+2)*b - p*a$$

 $2^{p+2}-2^{p}=pb+2b-pa$
 $2^{p}(2^{2}-1)=p(b-a)+2b$
 $3*2^{p}=p(b-a)+2b$ (III)

Since p is a large prime it is odd therefore can be written as p=2k+1

Therefore
$$2^{p}-2=2^{2k+1}-2=2(2^{2k}-1)=2(2^{k}-1)(2^{k}+1)$$

Since 2^{2k} -1,2^k, 2^k +1 are three consecutive numbers and 2^k cannot be divisible by 3, therefore the product $(2^k$ -1)(2^k +1) must be divisible by 3 and using this we can infer that 2^p -2 is divisible by 6.

Similarly 2^{p+2} -2 is divisible by 6.

Since p and p+2 are large twin primes therefore the factors a and b can be expressed as 6x and 6y respectively.

a=6x

b=6y

Substituting these values of a and b in Equation III we get,

$$3*2^{p} = p(6y-6x)+2(6y)$$
 $3*2^{p} = 6[p(y-x)+2y]$
 $6*2^{p-1} = 6[p(y-x)+2y]$
 $2^{p-1} = p(y-x)+2y$
 $p=(2^{p-1}-2y)/(y-x)=2(2^{p-2}-y)/(y-x)......(IV)$

Since p is a large prime therefore (y-x) must be even and can be substituted by 2z in (IV) where z is a positive integer.

Therefore

$$p=2(2^{p-2}-y)/(2z)=(2^{p-2}-y)/z$$

Therefore

$$pz=2^{p-2}-y$$
 or $y=2^{p-2}-pz$

This is the simple equation (of the form n=pq+r) that must be satisfied if p and p+2 should be twin primes where y and z have unique solutions for each prime pair p and p+2. The simplicity of the equation doesn't reveal any obvious constraints that would make large p, p+2 unlikely.

Acknowledgements: I would like to thank Dr. Praveen Rao for his encouragement and advice.