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Abstract

Many signal processing applications require performing statistical inference on

large datasets, where computational and/or memory restrictions become an is-

sue. In this big data setting, computing an exact global centralized estimator is

often either unfeasible or impractical. Hence, several authors have considered

distributed inference approaches, where the data are divided among multiple

workers (cores, machines or a combination of both). The computations are then

performed in parallel and the resulting partial estimators are finally combined

to approximate the intractable global estimator. In this paper, we focus on the

scenario where no communication exists among the workers, deriving efficient

linear fusion rules for the combination of the distributed estimators. Both a

constrained optimization perspective and a Bayesian approach (based on the

Bernstein-von Mises theorem and the asymptotic normality of the estimators)

are provided for the derivation of the proposed linear fusion rules. We concen-

trate on finding the minimum mean squared error (MMSE) global estimator,

but the developed framework is very general and can be used to combine any

type of unbiased partial estimators (not necessarily MMSE partial estimators).

Numerical results show the good performance of the algorithms developed, both

in problems where analytical expressions can be obtained for the partial estima-
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tors, and in a wireless sensor network localization problem where Monte Carlo

methods are used to approximate the partial estimators.

Keywords: distributed estimation, linear fusion, constrained minimization, big

data, minimum mean squared error (MMSE) estimators, statistical inference,

Bayesian estimation, Bernstein-von Mises theorem, Monte Carlo methods

1. Introduction

Estimation theory addresses the problem of inferring a set of unknown variables

of interest given a collection of available data [1, 2]. This is a central problem

in statistical signal processing, where a parametric model for the data is often

assumed and its parameters have to be inferred from the observations [3, 4, 5].5

Indeed, even non-parametric approaches typically have a reduced set of hyper-

parameters that need to be estimated from the data [6, 7, 8]. Unfortunately,

determining the global estimator of these parameters using all the available in-

formation is often unfeasible or impractical for most real-world scenarios. Many

current signal processing applications require performing statistical inference10

on large datasets, where the amount of data at hand imposes computational

and/or storage constraints that impede the global estimation process [9]. Fur-

thermore, even when approximate numerical solutions working directly on the

whole dataset can be computed, they may not provide a satisfactory perfor-

mance either. For example, Monte Carlo (MC) methods are often used to15

attain asymptotically exact estimators when closed-form analytical expressions

cannot be otained [10, 11, 12]. However, large datasets pose a challenge for

MC-based estimators, since the posterior density tends to be concentrated on a

relatively small portion of the state space as the number of data increases [13].

Consequently, MC algorithms may have trouble locating this area (especially20

if the dimension of the state space is also large), and thus can lead to a poor

performance in practice.

An alternative to global estimation consists of dividing the available data

into groups of manageable information, and distributing them among multiple
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workers (cores, machines or a combination of both). The computations are25

then performed in parallel (with or without communication among the differ-

ent workers) and distributed or partial estimators of the unknown parameters

are obtained. In this setting, two extreme situations may arise, namely the

multi-core and the multi-machine scenarios. On the one hand, in the multi-

core case, the estimation is performed using several cores of a single machine30

(e.g., inside a graphics processing unit [GPU]) and communication among the

cores can be considered costless [14, 15]. This approach allows for communica-

tion among workers, can provide significant speed-ups (if synchronization issues

are properly addressed), and solves the computational cost problem, but not

the memory/disk storage bottleneck. On the other hand, in the multi-machine35

case, the estimation is distributed among several machines (typically lying in-

side a large cluster), and the cost of inter-machine communications cannot be

ignored. This approach can alleviate all the issues associated to big data signal

processing (i.e., both computational and memory/storage issues), but requires

each machine to work independently without any communication among work-40

ers (which typically communicate only to the central node at the beginning

and the end of their tasks) [16]. Finally, note that a combination of both sce-

narios often occurs in practice (i.e., a large cluster where each machine may

have several cores), thus resulting in situations where a moderate amount of

communications may be acceptable.45

In this paper, we focus on the scenario where no communication exists among

the workers, deriving efficient linear fusion rules for the combination of the

partial estimators. Our main goal is finding an optimal combination of these

partial estimators that allows us to achieve a performance which is as close as

possible to the performance of the global estimator that has access to all the50

information. We concentrate on minimum mean squared error (MMSE) global

estimators, but the developed framework is very general and can be used to

combine any type of unbiased partial estimators. In the following, we review

related works (Section 1.1), detail our main contributions (Section 1.2) and

summarize the structure of the whole paper (Section 1.3).55
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1.1. Related Works

The fusion of different models or estimators has been studied in many different

areas including control, signal processing, econometrics and digital communica-

tions. The literature on the subject is rather vast, so here we only mention the

most important results related to the problem addressed. On the one hand, a60

related field in the statistical literature is the combination of forecasts [17]. In-

deed, the optimal linear combination for the single parameter case was already

derived in [18, 19], a Bayesian perspective was provided in [20], and a general

procedure to combine estimators in the multiple parameter case has been pro-

posed very recently in [21]. However, there are two important differences with65

respect to the scenario addressed here: (1) each forecaster is assumed to have

access to the whole dataset; (2) the computational complexity issue is not ad-

dressed. Therefore, problems related to the scarcity of data per estimator (when

the number of data is large but the ratio data/workers is not so large), such

as the so-called small sample bias [22], the choice of the appropriate number of70

partial estimators or the feasibility of the optimal combination rules when the

number of parameters to be estimated is also large, have never been investigated

in this context as far as we know.

On the other hand, in wireless sensor networks the focus has been on dis-

tributed learning/estimation under communication constraints [23, 24]. The op-75

timal linear fusion rule for the multi-dimensional case has also been derived in

this context [24, 25], but the focus has been on developing optimal compression

rules to restrict the amount of information being transmitted, rather than on

obtaining efficient fusion schemes. Unfortunately, this compression is of limited

use in the multi-machine learning scenario, since passing messages among multi-80

ple machines is expensive regardless of their size. Distributed fusion approaches,

obtained by adapting methods developed for graphical models, have also been

proposed [26], as well as many different consensus, gossip or diffusion algorithms

[27, 28, 29]. However, all of these methods still require a non-negligible amount

of communication that constitutes a burden for multi-machine signal processing.85
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Finally, there is currently a great deal of interest in parallel Bayesian compu-

tation using MC methods [30], and a few communication-free parallel Markov

chain Monte Carlo (MCMC) algorithms working on disjoint partial datasets

have been developed following the so-called embarrassingly parallel architecture

[31]. In [32], four alternatives were proposed to combine the samples drawn90

from the partial posteriors using either a Gaussian approximation or impor-

tance resampling. Then, [33] derived the optimal linear combination of weights

required to obtain samples approximately from the full posterior, noting that

the approach is optimal when both the full and the partial posteriors are Gaus-

sian. This was followed by [34], where three different approaches to approximate95

the full posterior from the partial posteriors were proposed: a simple paramet-

ric approach, a non-parametric estimator and a semi-parametric method. In

[35], an improvement of the quality of the approximation to the full posterior

was proposed by using the Weierstrass transform. A variational aggregation

approach has been derived in [36], whereas an approach based on space parti-100

tioning and density aggregation has been introduced in [37]. However, none of

these previous works addresses the potentially large dimension of the optimal

combiners in practical problems, which demands the transmission of large ma-

trices across the network. Furthermore, all of the aforementioned works focus on

the generation of valid Monte Carlo samples at the fusion node (thus requiring105

the transmission of all the samples generated in the distributed nodes, which

can be an excessive burden in some environments like wireless sensor networks),

whereas we concentrate on the problem of obtaining a good global estimator

using a single estimate from each distributed node.

1.2. Main Contributions110

The main contribution of this work is the derivation of two novel efficient linear

schemes for the fusion of the partial estimators. Although we focus on mini-

mum mean squared error (MMSE) partial estimators throughout the paper, the

proposed fusion schemes are independent from the specific approach followed to
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obtain those partial estimators (they are only assumed to be unbiased). The115

motivation comes from the optimal linear combination, which involves the cal-

culation of one weighting matrix per partial estimator and thus may be too

computationally demanding for large dimensional systems (both in the number

of unknowns and observations), as it requires as many weighting matrices (whose

size depends quadratically on the number of unknowns) as partial estimators120

(whose number is typically a fraction of the number of observations). For in-

stance, in a setting where the number of parameters to be estimated is D and

the N observations available are equally distributed among L partial estimators,

the optimal linear fusion approach requires computing one D × D matrix per

partial estimator (L matrices and LD2 parameters in total), which must be es-125

timated from the partial dataset composed of N/L samples. In order to reduce

the computational complexity, we propose two linear approaches: the single co-

efficient MMSE (SC-MMSE) fusion rule, that requires only a single weighting

coefficient per partial estimator (i.e., L weights in total), and the independent

linear MMSE (IL-MMSE) fusion, which requires one weighting coefficient per130

parameter and partial estimator (i.e., LD weights in total), respectively.

Another important contribution of the paper is providing both a constrained

optimization perspective and a Bayesian point of view (based on the Bernstein-

von Mises theorem and the asymptotic normality of the estimators) for the

derivation of all the linear fusion rules considered. These two complementary vi-135

sions help to explain the good performance of the derived fusion rules, even when

the normality assumption required by the Bayesian approach is not strictly ful-

filled. The optimal linear combination, derived first, provides the global MMSE

estimator only when the partial MMSE estimators have a Gaussian distribution.

Under certain regularity conditions, this is ensured by the Bernstein-von Mises140

theorem in the large-sample size limit for each partial estimator (i.e., when N/L

is large). However, even when this theorem is not fulfilled and the partial es-

timators do not follow a Gaussian distribution, the optimal linear fusion rule

provides the best linear unbiased estimator (in the sense of minimizing the MSE)

given the unbiased partial estimates, as shown by the constrained optimization145
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formulation. This explains the good performance of the optimal fusion rule even

when the underlying distributions are not Gaussian. The efficient SC-MMSE

and IL-MMSE linear fusion rules, derived next, can then be seen as the optimal

restricted linear fusion rules corresponding to a single coefficient and a diagonal

matrix, respectively. From a Bayesian point of view, this is equivalent to assum-150

ing independence among all the parameters and equal quality in the estimation

of all the parameters, respectively. Again, even if these restrictive conditions

are not fulfilled, the constrained optimization perspective ensures us that the

derived estimators are the best ones that can be obtained given the restrictions.

Moreover, it allows us to see that these fusion rules can still provide a good per-155

formance when the constraints are approximately met (e.g., if the dependence

among the parameters is weak and the quality in the estimation of the different

parameters is similar, respectively).

Finally, we analyze the performance of all the fusion rules on several nu-

merical examples. Firstly, we perform a detailed study on two examples where160

the exact closed-form expressions for the partial and the global estimators can

be obtained: a univariate Gamma distribution and a multi-variate Gaussian

model. This allows us to rule out any approximation effects (e.g., due to slow

convergence and poor mixing in MC methods) and to analyze the effect of the

number of samples, the number of estimators, the prior, and the dimensionality165

of the state space. Then, we apply the proposed algorithms to the problem of

target localization in a wireless sensor network using measurements acquired by

several sensors with different noise characteristics. In this scenario, MC par-

tial estimators (based on parallel chains) are used to deal with the groups of

measurements, showing that the performance of the novel fusion rules is close170

to that of the optimal fusion rule (or even better in some cases) with only a

fraction of its computational cost.

A preliminary version of this work has been published in [38]. In this paper

we elaborate on that work, introducing the following main novel contributions:

• A more extensive and updated review of the literature, which includes a175
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more detailed analysis of the connections with related fields.

• A thorough Bayesian analysis of the different fusion rules and the condi-

tions under which they are optimal: only the asymptotic optimality of the

best linear unbiased fusion rule was justified in [38] (using the Bernstein-

von Mises theorem), whereas here we prove its optimality in the non-180

asymptotic regime for the multi-variate Gaussian model and discuss the

optimality of the other two efficient fusion rules proposed.

• A set of appendices where we provide the technical derivations for the

Bayesian analysis, as well as the solution of the constrained minimization

problems considered for the different fusion rules. Note that none of these185

appendices could be included in [38] due to lack of space.

• Two additional numerical examples, where we show the performance of

the different fusion rules as the dimension of the state space increases (note

that the dimension of the state space in [38] was just D = 2): a multi-

variate Gaussian case (where the dimension of the state space is changed190

from D = 1 up to D = 20), and an extended localization example in

wireless sensor networks (where the dimension of the state space is D = 8).

1.3. Organization

The reminder of the paper is structured as follows. The notation and the prob-

lem statement are provided first in Section 2, which briefly recalls the statistical195

inference framework to derive parameter estimators (Section 2.1), and com-

pares the global and partial estimators (Section 2.2). This is followed by Sec-

tion 3, where the optimal linear combination method is obtained by solving a

constrained minimization problem (Section 3.1), and two novel efficient linear

fusion rules are also derived following this approach (Sections 3.2 and 3.3). An200

alternative approach is then pursued in Section 4, which provides a Bayesian

perspective on linear fusion rules: the best linear unbiased fusion rule (i.e., the

one that minimizes the MMSE) is derived for the Gaussian case (Section 4.1);

8



the asymptotic optimality of this fusion rule in other cases is proved through

the asymptotic normality of the partial MMSE estimators as formulated by205

the Bernstein-von Mises theorem (Section 4.2); and some particular cases that

lead to the proposed efficient fusion rules are finally discussed (Section 4.3).

Several numerical experiments are analyzed and discussed in Section 5: a one-

dimensional problem using Gamma distributions, where analytical expressions

for the partial MMSE estimators can be obtained and we analyze the effect of210

the bias (Section 5.1); a multi-variate Gaussian model, where closed-form es-

timators can still be found and we study the effect of increasing the number

of parameters to be estimated (Section 5.2); and two localization problems in

wireless sensor networks, where MCMC methods have to be used to obtain the

partial and global estimators (Section 5.3). Finally, some concluding remarks215

and future lines are provided in Section 6.

2. Problem Statement

2.1. Statistical Inference

Many applications in statistical signal processing require inferring a set of vari-

ables of interest or unknowns given a collection of observations or measure-220

ments. Let us consider a D-dimensional vector of unknowns, x ∈ X ⊆ RD,

and let y ∈ Y ⊆ RN be a collection of N i.i.d. observed data. The two major

paradigms in statistical inference, the frequentist approach and the Bayesian

perspective [3, 4], are briefly reviewed in the sequel.

2.1.1. Frequentist Parameter Estimation225

From a frequentist point of view, the optimal estimator of x is a function of the

observations, x̂∗ = f(y), that minimizes the expected value of some given loss

or cost function, C(x, x̂), i.e.,

x̂∗ = arg min
x̂

E (C(x, x̂)) , (1)
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where E(·) denotes the mathematical expectation, in this case w.r.t. the PDF

of the data, p(y). Although many different cost functions have been considered,

for statistical estimation the most common one is the squared loss, C(x, x̂) =

(x̂−x)>(x̂−x), which leads to the well-known least squares (LS) or frequentist

minimum mean squared error (MMSE) estimator:

x̂(LS) = arg min
x̂

MSE(x̂), (2)

where

MSE(x̂) = E
(
(x̂− x)>(x̂− x)

)
=

∫
Y

(x̂− x)>(x̂− x)p(y|x)dy. (3)

Note that the MSE in (3) can be expressed as

MSE(x̂) = Tr
(
E
(
(x̂− x)(x̂− x)>

))
= Tr (Cx̂) + b>x̂ bx̂, (4)

with Tr(·) denoting the trace of a matrix (i.e., the sum of the elements along its

main diagonal), Cx̂ = (x̂−E(x̂))(x̂−E(x̂))> indicating the covariance matrix of

x̂, and bx = E(x̂)−x denoting the bias of x̂. Moreover, the estimator x̂ is usually

required to be unbiased (i.e., E(x̂) = x), implying that MSE(x̂) = Tr (Cx̂)

and thus the LS estimator is simply the one that minimizes the trace of the230

covariance matrix of x̂.

2.1.2. Bayesian Inference

From a Bayesian perspective, the problem of finding an optimal estimator can

be formulated as the minimization of the Bayesian Expected Loss,

r(x̂) =

∫
X
C(x, x̂)p(x|y)dx, (5)

where C(x, x̂) is again some suitable cost function, and p(x|y) is the posterior

PDF. In the Bayesian framework, this posterior PDF contains all the informa-

tion available to the user about the unknown variables x, and is given by Bayes
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theorem:

p(x|y) =
p(y|x)p0(x)

p(y)
, (6)

where p(y|x) is the likelihood, p0(x) is the prior PDF, and p(y) is the PDF of the

data. Now, let us consider again the quadratic cost, C(x, x̂) = (x̂−x)>(x̂−x),

which is also the most common cost function for regression problems within the

Bayesian framework. Then, (5) becomes

r(x̂) = MSE(x̂|y) =

∫
X

(x̂− x)>(x̂− x)p(x|y)dx, (7)

where MSE(x̂|y) refers to the conditional Bayesian MSE (i.e., the Bayesian

MSE for a fixed set of data y), that we will also denote in the sequel as MSE

for the sake of simplicity.1 The optimal estimator (i.e., the one that minimizes

Eq. (7)) is the well-known Bayesian minimum mean squared error (MMSE)

estimator, which corresponds to the conditional mean, i.e., the expected value

of x w.r.t. the posterior PDF [1, 3, 4, 5]:

x̂(MMSE) = E(x|y) =

∫
X

x p(x|y)dx. (9)

2.2. Global vs. Distributed Partial Bayesian Estimators

All the estimators discussed in the previous section are global estimators, since

they are assumed to have access to all the available data. Hence, their perfor-235

mance is optimal (from the point of view of minimizing their respective cost

functions) whenever they can be computed exactly. However, in big data prob-

lems we cannot deal with the whole data set globally due to computational

and/or memory restrictions. Furthermore, even when we can work with the

1The full Bayesian MSE is obtained by performing a double integral on both the data and
the parameters of interest using the joint PDF p(x,y) = p(x|y)p(y):

MSE(x̂) =

∫
Y

∫
X

(x̂− x)>(x̂− x)p(x|y)p(y)dxdy. (8)

However, by assuming that the data are fixed (i.e., by conditioning on the data), the outer
integral in (8) vanishes and the only integral remaining is the one on x using p(x|y).
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whole data set globally, splitting it into L data sets may be more efficient and240

lead to a better performance. For instance, in the Bayesian framework it is well-

known that the posterior PDF tends to become more “peaky” as the amount

of available data increases. Consequently, the inference process becomes harder

(especially for high-dimensional scenarios) when closed form expressions for the

Bayesian estimators cannot be found and we have to resort to numerical ap-245

proximations (like Monte Carlo methods [11, 39]).

A natural solution in these cases is splitting the data into L disjoint groups

or clusters, so that the `-th cluster (1 ≤ ` ≤ L) only has access to N` samples.

Then, we can obtain a partial estimator for the `-th cluster (i.e., a partial

estimator of x given only the partial data available within the `-th cluster,

y`), x̂`, by constructing a function of the `-th data set that minimizes the

corresponding cost function.2 For instance, the partial MMSE estimator in the

Bayesian setting would be given by

x̂
(MMSE)
` = E(x|y`) =

∫
X

x p`(x|y`)dx, (10)

where p`(x|y`) is the partial posterior associated to the `-th dataset (see Table

1 for a summary of the notation used throughout the paper). The challenge

now is trying to obtain the exact global MMSE estimator, x̂(MMSE), from the

set of partial MMSE estimators, {x̂(MMSE)
` }L`=1.250

In this paper, we concentrate on a communications-free setup for the partial

estimators, i.e., we assume that the partial estimators can only transmit their

final estimates to the fusion center (FC), altogether with additional side infor-

mation if needed, and are not allowed to communicate with each other during

the estimation process. The FC will then be responsible for combining all the

estimates in an efficient way in order to obtain the global MMSE estimator (if

it is feasible) or at least the best possible approximation. We consider linear

2Note that we use the name partial estimator, instead of distributed or local estimator, to
emphasize the fact that x̂` corresponds to the estimator of the complete set of variables of
interest obtained using only the partial information available to the `-th cluster.
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Table 1: Summary of the Notation.

x Unknown parameters to be estimated.
x̂ Global estimator of x.
D Number of unknowns (i.e., dimension of x).
y Vector of observations.
N Number of observations.
L Number of parallel (partial) estimators.
N` Number of data for the `-th estimator.
y` Data set for the `-th estimator.
x̂` `-th partial estimator of x (` = 1, . . . , L).
Λ` Weighting matrix used to combine the L partial estimators.
p(x|y) Global posterior PDF.
p(y|x) Global likelihood.
p0(x) Global prior PDF.
p`(x|y`) Partial posterior PDF for the `-th estimator.
p`(y`|x) Partial likelihood for the `-th estimator.

p
(`)
0 (x) Local prior PDF for the `-th estimator.

fusion rules, implying that the global estimator is given by the following general

expression:

x̂ =

L∑
`=1

Λ`x̂`, (11)

where the Λ` (` = 1, . . . , L) are D ×D weighting matrices. An important case

where Eq. (11) leads to the exact global MMSE estimator occurs when both

the global and the partial posteriors have Gaussian PDFs, as proved in Sec-

tion 4.1. Indeed, when the conditions for the Bernstein-von Mises theorem are

fulfilled, all the posterior PDFs are Gaussian and (11) becomes asymptotically255

optimal, as discussed in Section 4.2. Furthermore, even if (11) is not the global

MMSE estimator, by choosing the Λ` properly we obtain the best linear un-

biased global estimator of x given the x̂`, as shown in Section 3.1. Imposing

additional restrictions on the weighting matrices leads to the novel efficient lin-

ear fusion rules described in Sections 3.2 and 3.3, which can still be optimal260

under certain conditions (as discussed in Section 4.3) and provide good results

in many other problems (as shown through numerical simulations in Section 5).

In the following sections we discuss all these issues in detail.
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3. Linear Fusion of Partial Estimators: A Con-

strained Minimization Approach265

In this section, we first derive the optimal linear fusion rule (Section 3.1) from a

constrained minimization perspective, and then provide two alternative efficient

fusion rules by restricting the shape of the weighting matrix: the single coeffi-

cient fusion rule in Section 3.2 and the independent fusion rule in Section 3.3.

These derivations are valid regardless of the approach followed to obtain the270

partial estimators, since the only assumption performed is their unbiasedness.

3.1. General Case: Optimal Linear Combination

Let us consider the most general linear fusion rule, which is given by

x̂ =

L∑
`=1

Λ`x̂`, (12)

where x̂` can be any partial estimator (not necessarily the MMSE estimator)

based on the `-th partial dataset, y`, and x̂ is the corresponding global estima-

tor, obtained by linearly combining all those partial estimators. In this case,

assuming that all the partial estimators are unbiased, the mean of the global

estimator is given by

E(x̂) =

L∑
`=1

Λ`E(x̂`) =

(
L∑
`=1

Λ`

)
x. (13)

Thus, in order to obtain an unbiased global estimator (i.e., E(x̂) = x) we need

to impose the following condition:

L∑
`=1

Λ` = I. (14)
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The covariance matrix of the global estimator is now given by

Cx = E
(
(x̂− x)(x̂− x)>

)
= E

( L∑
`=1

Λ`x̂` − x

)(
L∑
`=1

Λ`x̂` − x

)> , (15)

where we have used (12) and assumed that the global estimator is unbiased.

Making use of (14), Eq. (15) can be expressed as

Cx = E

(
L∑
`=1

Λ`(x̂` − x)

L∑
`=1

(x̂` − x)>Λ>`

)

=

L∑
`,k=1

Λ` E
(
(x̂` − x)(x̂k − x)>

)
Λ>k . (16)

Finally, assuming that the partial estimators are independent and taking into

account that C
(`)
x = E((x̂`−x)(x̂`−x)>), Cx can be expressed as a function of

the covariance of the partial estimators, C
(`)
x , and the weighting matrices, Λ`,

as

Cx =

L∑
`=1

Λ`C
(`)
x Λ>` . (17)

The MSE of the global estimator is then given by

MSE(x̂|y) = Tr (Cx) =

L∑
`=1

Tr
(
Λ`C

(`)
x Λ>`

)
, (18)

where Tr(·) denotes the trace of a matrix.

Hence, in order to obtain the best linear unbiased global estimator (i.e., the

linear combination of the partial estimators that minimizes the MSE), we need

to solve the following constrained optimization problem:

Λ∗ =arg min
Λ

L∑
`=1

Tr
(
Λ`C

(`)
x Λ>`

)
, (19a)

s.t.

L∑
`=1

Λ` = I, (19b)
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where Λ = [Λ1, . . . , ΛL]>. Since (19a) and (19b) correspond to a convex

optimization problem [40], by applying the method of the Lagrange multipliers

it can be shown (see Appendix A) that the solution for each of the weighting

matrices is given by

Λ∗` =

[
L∑
k=1

(
C(k)

x

)−1]−1 (
C(`)

x

)−1
. (20)

Substituting this expression in (12), the optimal linear MMSE (L-MMSE) fusion

rule is finally given by

x̂(L-MMSE) =

[
L∑
k=1

(
C(k)

x

)−1]−1 L∑
`=1

(
C(`)

x

)−1
x̂`, (21)

regardless of the approach followed to derive the partial estimators.

3.2. Efficient Fusion Rule: Single Coefficient Fusion275

Let us consider the particular case in which a single coefficient per estimator is

used to construct the global estimator, i.e.,

x̂ =

L∑
`=1

α`x̂`, (22)

which is obtained by setting Λ` = α`I in (12). Clearly, this will provide a

suboptimal solution in general, but it is a fast and low-cost solution for the

combination of estimators, and we can easily obtain a closed-form expression

for the optimal weights.

On the one hand, since the partial estimators are unbiased, it is straightfor-

ward to see that the mean of the global estimator given by (22) is

E(x̂) =

L∑
`=1

α`E(x̂`) =

(
L∑
`=1

α`

)
x. (23)
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Hence, in order to obtain an unbiased global estimator we need to have

L∑
`=1

α` = 1. (24)

On the other hand, the covariance matrix for the global estimator is given by

Cx =

L∑
`=1

α2
`C

(`)
x , (25)

and the MSE can thus be expressed as

MSE(x̂|y) = Tr(Cx) =

L∑
`=1

α2
`Tr

(
C(`)

x

)
, (26)

where Tr(Cx) denotes the trace of the global covariance matrix:

Tr(Cx) =

D∑
d=1

Cx[d, d] =

D∑
d=1

σ2
xd
, (27)

with σ2
xd

= E((x̂d − xd)2), and Tr(C
(`)
x ) denotes the trace of the `-th partial

covariance matrix:

Tr(C(`)
x ) = T` =

D∑
d=1

C(`)
x [d, d] =

D∑
d=1

σ2
`,d, (28)

with σ2
`,d = E((x̂

(`)
d − xd)2).280

The goal is finding the set of α` that minimizes (26), subject to Eq. (24)

in order to obtain an unbiased estimator. Hence, the optimal selection of the

weights can be formulated as the following constrained optimization problem:

α∗ =arg min
α

L∑
`=1

α2
`Tr

(
C(`)

x

)
, (29a)

s.t.

L∑
`=1

α` = 1, (29b)
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with α = [α1, . . . , αL]>. Eqs. (29a) and (29b) correspond again to a convex

optimization problem. Thus, by applying once more the method of the Lagrange

multipliers, it can be shown (see Appendix A) that the optimal value of α` is

α∗` =
[MSE(x̂`|y`)]−1∑L
k=1 [MSE(x̂k|yk)]

−1 =
T−1`∑L
k=1 T

−1
k

, (30)

where we recall that T` = Tr(C
(`)
x ), and the single coefficient MMSE (SC-

MMSE) fusion rule is then given by

x̂(SC-MMSE) =

L∑
`=1

T−1`∑L
k=1 T

−1
k

x̂`. (31)

3.3. Efficient Fusion Rule: Independent Linear Fusion

The SC-MMSE fusion rule has a substantially reduced computational cost w.r.t.

the L-MMSE approach, since it only requires the estimation of L parameters

overall instead of the D2L parameters of the L-MMSE rule. However, noting

that the optimal weights in (31) involve the trace of the partial covariance

matrices, we introduce an independent linear minimum mean squared error (IL-

MMSE) fusion rule, where Λ` = D` = diag(α`,1, . . . , α`,D). This approach

leads to an independent estimation of each of the D unknowns:

x̂d =

L∑
`=1

α`,d x̂`,d, (32)

where 1 ≤ d ≤ D, x̂d denotes the d-th component of the global estimator, and

x̂`,d indicates the d-th component of the `-th partial estimator. The mean of

the d-th component of the global estimator is then given by

E(x̂d) =

L∑
`=1

α`,dE(x̂`,d) =

(
L∑
`=1

α`,d

)
xd, (33)
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and the unbiasedness condition becomes

L∑
`=1

α`,d = 1, (34)

for d = 1, . . . , D. Hence, the covariance matrix for the global estimator is

Cx =

L∑
`=1

D`C
(`)
x D>` , (35)

and the MSE can thus be expressed as

MSE(x̂|y) = Tr(Cx) =

L∑
`=1

Tr
(
D`C

(`)
x D>`

)
=

L∑
`=1

D∑
d=1

α2
`,dσ

2
`,d. (36)

From (34) and (36), it becomes apparent that the weights in (32) can be obtained

by solving D single parameter constrained optimization problems:

α∗d =arg min
αd

L∑
`=1

α2
`,dσ

2
`,d, (37a)

s.t.

L∑
`=1

α`,d = 1, (37b)

where αd = [α1,d, . . . , αL,d]
>, and we recall that σ2

`,d = C
(`)
xd is the d-th element

along the main diagonal of C
(`)
x . The solution (see Appendix A) is now given

by

α∗`,d =

[
MSE(x̂

(MMSE)
`,d |y`)

]−1
∑L
k=1

[
MSE(x̂

(MMSE)
k,d |yk)

]−1 =
σ−2`,d∑L
k=1 σ

−2
k,d

, (38)

and thus the IL-MMSE fusion rule is

x̂
(IL-MMSE)
d =

L∑
`=1

σ−2`,d∑L
k=1 σ

−2
k,d

x̂`,d, (39)

for d = 1, . . . , D. This approach requires the estimation of DL parameters

overall, and thus it can be seen as an intermediate approach between the L-
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MMSE and the SC-MMSE fusion rules, both in terms of computational cost

and performance (as shown in Section 5).285

4. Optimal Linear Fusion: Bayesian Perspective

In this section, we provide an alternative perspective of the optimal linear fusion

problem from a Bayesian point of view. First of all, we derive the optimal fusion

rule for the multi-variate Gaussian model in Section 4.1, and then we show

that this rule is asymptotically optimal under mild conditions in Section 4.2.290

Finally, in Section 4.3 we address two relevant particular cases that correspond

to the SC-MMSE and IL-MMSE fusion rules derived in Sections 3.2 and 3.3,

respectively.

4.1. Gaussian Estimators: Optimal Fusion Rule

Let us consider the derivation of the optimal fusion rule at the Fusion Center

(FC) from a Bayesian point of view. In this case, our observations are the

outputs of each of the L partial estimators, x̂` for ` = 1, . . . , L. Let us assume

that these estimators are independent, unbiased (i.e., E(x̂`) = x), and have

Gaussian PDFs with means equal to the true parameter vector x and covariance

matrices C
(`)
x :

p(x̂`|x) = N (x̂`|x,C(`)
x )

=
(

2π|C(`)
x |
)−D/2

exp

(
−1

2
(x̂` − x)>

[
C(`)

x

]−1
(x̂` − x)

)
. (40)

The full posterior is

p(x|x̂1, . . . , x̂L) ∝ p(x̂1, . . . , x̂L|x)p0(x), (41)
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with the likelihood function given by

p(x̂1, . . . , x̂L|x) =

L∏
`=1

p(x̂`|x) =

L∏
`=1

N (x|x̂`,C(`)
x ), (42)

and a Gaussian prior with mean x̂0 and covariance matrix C
(0)
x ,

p0(x) = N (x|x̂0,C
(0)
x ). (43)

Inserting (42) and (43) into (41), the full posterior can be finally expressed as

p(x|x̂1, . . . , x̂L) ∝
L∏
`=0

N (x|x̂`,C(`)
x )

∝
L∏
`=0

|C(`)
x |−1/2 exp

(
−1

2

L∑
`=1

(x− x̂`)
>
(
C(`)

x

)−1
(x− x̂`)

)
.

(44)

After some algebra (see Appendix B), Eq. (44) can be expressed as a single

multi-variate Gaussian:

p(x|x̂1, . . . , x̂L) = (2π)−D/2|Cx|−1/2 exp

(
−1

2
(x̂− µx)>C−1x (x̂− µx)

)
, (45)

where

Cx =

[
L∑
`=0

(
C(`)

x

)−1]−1
, (46a)

µx = Cx

L∑
`=0

(
C(`)

x

)−1
x̂`. (46b)

Hence, the global MMSE estimator for the multi-variate Gaussian model, that

we denote as the G-MMSE estimator and corresponds to the mean of the full
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posterior in Eq. (45), is finally given by

x̂(G-MMSE) = µx =

L∑
`=0

Λ`x̂`, (47)

with

Λ` = Cx ·
(
C(`)

x

)−1
=

[
L∑
k=0

(
C(k)

x

)−1]−1 (
C(`)

x

)−1
. (48)

Therefore, given any set of partial estimators {x̂`}L`=1, the linear fusion is always295

optimal in the multi-variate Gaussian case, with an optimal weighting matrix

given by Eq. (48). Furthermore, when the x̂` are the partial MMSE estimators

(i.e., when x̂` = x̂
(MMSE)
` for ` = 1, . . . , L), then we have x̂(G-MMSE) = x̂(MMSE),

with x̂(MMSE) denoting the global MMSE estimator that has access to all the

data. Finally, note that the optimal fusion rule derived from the Bayesian300

perspective is equivalent to the optimal fusion rule obtained following the con-

strained optimization approach, since (48) is identical to (20).3

4.2. Asymptotically Optimal Fusion: Bernstein-von Mises

Theorem

The Bernstein-von Mises (a.k.a. Bayesian central limit) theorem states that,

under mild regularity conditions, a posterior PDF converges to a Gaussian PDF

as the number of samples tends to infinity [41, 42]. Applying this result to the

partial posterior PDFs, we have

p`(x|y`)→ N (x|µ(`)
x ,C(`)

x ) as N` →∞, (49)

3Actually, there is a difference between the optimal fusion rules derived from a Bayesian
and a constrained optimization point of view, since the sum in (48) starts at ` = 0, while
the sum in (20) starts at ` = 1. This is due to the fact that the sum in (48) includes the

prior, whose mean and covariance are x̂0 and C
(0)
x , respectively. However, by using a non-

informative prior (i.e., a prior such that both x̂0 = 0 and (C
(0)
x )−1 = 0), (48) and (20) become

identical.
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with N (x|µ(`)
x ,C

(`)
x ) indicating that x has a Gaussian PDF with a mean vector

µ
(`)
x = x̂

(MMSE)
` and a covariance matrix

C(`)
x = E

(
(x− x̂

(MMSE)
` )(x− x̂

(MMSE)
` )>

)
=

∫
X

(x− x̂
(MMSE)
` )(x− x̂

(MMSE)
` )>p`(x|y`)dx. (50)

Assuming that we have independent (though not necessarily identically dis-

tributed) observations and that each of them can only belong to one cluster

(i.e., we have disjoint sets of samples such that N =
∑L
`=1N`), the global

posterior PDF also converges to a Gaussian PDF as N tends to infinity, i.e.,

p(x|y) =

L∏
`=1

p`(x|y`)→ N (x|µx,Cx) as N →∞, (51)

with Cx and µx given by (46a) and (46b), respectively, using x̂` = x̂
(MMSE)
` .305

Eqs. (49) and (51) state that, even if p(x|y) and the p`(x|y`) are not Gaussian,

they will converge to Gaussian PDFs as N` → ∞ for ` = 1, . . . , L (and thus,

N =
∑
`N` → ∞ also). This implies that, when the regularity conditions of

the Bernstein-von Mises theorem are fulfilled, the linear fusion rule derived in

Section 4.1 is asymptotically optimal, i.e., x̂(G-MMSE) → x̂(MMSE) when x̂` =310

x̂
(MMSE)
` and N` →∞ for ` = 1, . . . , L.

4.3. Particular Cases

Note that the fusion rule of Eq. (47) requires the computation of a D × D

weighting matrix, given by Eq. (48), for each of the L estimators. This im-

plies calculating D2L weights overall, which may be unfeasible (or at least very315

costly from a computational/storage point of view) when D and/or L is large.

Moreover, even if the optimal weighting matrix can be computed, the numer-

ical errors that arise in its computation (since it depends on the C
(`)
x , which

are usually unknown and must be estimated from the data) may hinder the

performance of the optimal fusion rule, especially when D is large and D2 is320
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comparable to N`.

In these cases, structured weighting matrices (which require computing a

reduced number of coefficients) can be used to obtain an approximation of the

optimal case. Indeed, in certain cases the optimum weighting matrix may al-

ready contain a reduced number of different elements. As a first example, let us

consider the situation where the parameters to be inferred are not interrelated.

In this scenario, the covariance matrix for the `-th estimator becomes diagonal,

C(`)
x = diag

(
σ2
`,1, . . . , σ

2
`,D

)
, (52)

with

σ2
`,d =

∫
Xd

(x̂`,d − xd)2p(xd|y`)dxd (53)

for d = 1, . . . , D. Hence, the optimal weighting matrix becomes

Λ` = diag (α`,1, . . . , α`,D) , (54)

with

α`,d =
σ−2`,d∑L
k=1 σ

−2
k,d

. (55)

Note that only D parameters are required now for each of the L estimators (i.e.,

DL parameters in total).

As a second example, let us assume that, in addition to having independent

parameters to be inferred, the uncertainty in their estimation is the same for a

given partial estimator, i.e., σ2
`,1 = σ2

`,2 = · · · = σ2
`,D = σ2

` . Then, the covariance

matrix for the `-th partial estimator becomes C
(`)
x = σ2

` I, where I denotes the

D ×D identity matrix, and the optimal weighting matrix is now given by

Λ` = α`I, (56)

with

α` =
σ−2`∑L
k=1 σ

−2
k

. (57)
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Note that this approach only requires a single parameter per estimator (i.e., L

parameters in total), and thus it is very efficient from a computational point of

view. Furthermore, if all the variances are equal (i.e., σ2
1 = σ2

2 = · · · = σ2
L = σ2)

we obtain the so-called equal weights fusion (EWF) rule, which assigns the same

weight to all the partial estimators,

α1 = α2 = · · · = αL =
1

L
, (58)

and thus it does not require the transmission of any coefficient to perform the

fusion at the FC.325

Obviously, in real applications it is very unlikely that all the parameters

to be inferred are completely independent, and even more unlikely that the

uncertainty in their estimation is exactly equal. However, it can be shown (see

Appendix C) that the coefficients in Eqs. (54) and (56) correspond, respectively,

to the best independent and isotropic Gaussian approximations (in terms of330

minimizing the Kullback-Leibler (KL) divergence) to the asymptotic Gaussian

PDFs of the partial estimators, p`(x|x̂`) = N (x|µx,C
(`)
x ). Hence, even if the

independence and/or equal quality assumptions are not fulfilled exactly, Eqs.

(54) and (56) can still lead to good fusion rules (as shown in Section 5) if the

approximations of the partial PDFs are accurate enough.335

5. Numerical Experiments

In this section, we provide three different numerical examples where we compare

the four linear fusion rules derived in the previous two sections:

1. Linear MMSE (L-MMSE) fusion rule, which uses the full weighting

matrix and the global estimator is given by Eq. (21).340

2. Independent Linear MMSE (IL-MMSE) fusion rule, which uses a

diagonal weighting matrix and the global estimator is given by Eq. (31).

3. Single Coefficient MMSE (SC-MMSE) fusion rule, which uses a

scaled identity matrix for the weights and the global estimator is given
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by Eq. (39).345

4. Equal Weights Fusion (EWF), which simply averages the results of

all the partial estimators.

5.1. Univariate Gamma Distributions

Let us consider first a univariate example, where exact calculations may be

performed. This allows us to rule out any potential issue with the underlying350

MC methods typically used to approximate the MMSE estimators (e.g., slow

convergence and poor mixing), and concentrate on the performance of the pro-

posed fusion rules. Let us assume that we have N i.i.d. observations distributed

according to a Gamma PDF with known shape parameter α > 0 and unknown

rate parameter β > 0. Although we do not consider any particular application,355

the Gamma distribution has been used, for instance, to represent the amount

of rainfall in meteorological applications. In this context, the value of the shape

parameter is related to the dryness of the area under study [43]: wet areas cor-

respond to large values of α, while dry areas are associated to small values of

α. Hence, this example might correspond to the estimation of the dryness of an360

area from distributed measurements obtained using a sensor network.

In this scenario, the likelihood is given by

p(y|β) =

N∏
n=1

p(yn|β), (59)

with

p(yn|β) =
βα

Γ(α)
yα−1n exp(−βyn). (60)

The conjugate prior is also a Gamma PDF over β with shape parameter α0 > 0

and rate parameter β0 > 0, and thus the global posterior density is another

Gamma PDF with parameters α∗ = α0 +Nα and β∗ = β0 +
∑N
n=1 yn [44]. The

global MMSE estimator is given by the mean of the posterior PDF,

β̂(MMSE) =
α∗

β∗
=

α0 +Nα

β0 +
∑N
n=1 yn

, (61)
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and its variance is given by

σ2
β =

α∗

(β∗)2
=

α0 +Nα(
β0 +

∑N
n=1 yn

)2 . (62)

For the partial estimators, the MMSE estimates and their variances are still

given by (61) and (62), respectively, but replacing N by N` and taking the sum

only over the N` samples available to each of the ` estimators:

β̂
(MMSE)
` =

α0 +N`α

β0 +
∑
n∈Y`

yn
, (63a)

σ2
` =

α0 +N`α(
β0 +

∑
n∈Y`

yn
)2 , (63b)

where Y` denotes the set of data available to the `-th partial estimator.

We are interested now in analyzing the effect of the sample size, the number

of partial estimators and the number of samples per estimator. Therefore, we

test N ∈ {103, 104, 105, 106, 5 ·106} with an equal number of samples per partial365

estimator ranging from N` = 1 (i.e., as many partial estimators as observations)

up to N` = N (i.e., a single estimator that corresponds to the global estimator).

For each case, 1000 simulations are performed to average the results.

Figure 1 shows the typical performance of the optimal linear fusion rule

(since we only have one parameter, all the fusion rules discussed in the paper370

are equivalent), the EWF rule (that assigns the same weight to all the partial

estimators) and an empirical estimator that combines the optimal and the EWF

estimates at the fusion center, β̂(Avg) = β̂(L-MMSE)+β̂(EWF)

2 . In this example, the

true parameters are α = 2 and β = 5, and an improper prior is used by setting

α0 = β0 = ε with ε → 0.4 First of all, note that the optimal linear fusion375

rule always performs better than the EWF (as expected), especially when the

number of partial estimators (a.k.a. filters) increases. The unexpected result is

that combining the optimal fusion strategy and the EWF approach leads to a

4In practice, we used ε = 0.01 for the simulations.
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Figure 1: Univariate Gamma Example: MSE as a function of L using an improper prior
for the three fusion rules considered: L-MMSE, EWF and their average.

better performance than any of the two individual strategies. The reason for this

good performance can be seen in Figure 2, which shows the estimated posterior380

PDFs of the estimators for the three fusion rules considered (L-MMSE, EWF

and their average), compared to the posterior of the global estimator.5 It can be

seen that the optimal linear fusion rule introduces a negative bias, whereas the

EWF introduces a positive bias with a similar magnitude. Therefore, combining

the two estimators leads to an average estimator with a reduced bias and thus385

a better performance.

The second important issue in Figure 1 is related to the increase of the

MSE as the number of partial estimators increases. This is precisely due to

the fact that the bias increases as the number of samples per partial estimator

decreases (i.e., as the number of partial estimator increases for a fixed number390

5Note that, given the large number of data available to the global estimator, the global
posterior can be considered to be the “ground truth” for the evaluation of the PDFs obtained
using the other fusion rules.
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Figure 2: Univariate Gamma Example: Posterior density of the estimator for the three
fusion rules considered (L-MMSE, EWF and their average), compared to the posterior of the
global estimator.

of data).6 This bias is caused by the mismatch between the “true” prior (in

the simulated scenario, an impulse centered around the true value β = 5) and

the prior assumed by the model (a Gamma PDF with parameters α0 and β0).

In order to see this, Figure 3 shows the evolution of the MSE with the number

of filters using a narrow prior (obtained setting β0 = β
ε and α0 = β × β0 for395

ε = 0.01) centered around the true value of β. In this case, all the estimators

are unbiased and the MSE decreases as we increase the number of partial es-

timators. These results, in an example where the exact MMSE estimator can

be obtained, highlight the importance of the prior in the Bayesian distributed

inference approach. Although this falls outside of the scope of this paper, let us400

remark also that some approaches to reduce the bias in this type of distributed

6Note that we assumed unbiased partial estimators in the derivation of all the fusion rules.
However, when the number of samples per partial estimator is small this is no longer true.
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Figure 3: Univariate Gamma Example: MSE as a function of L using a narrow prior
centered around the true value of β for the three fusion rules considered: L-MMSE, EWF and
their average.

inference problems have been recently proposed [45, 46].

Finally, Table 2 provides the complete picture regarding the evolution of the

MSE with the number of data and the number of data per partial estimator

for all the fusion rules considered. On the one hand, note that a minimum405

amount of samples per estimator are required in order to attain a performance

that decreases linearly as a function of N for the optimal linear fusion and the

EWF. Otherwise, the bias dominates and nothing is gained by increasing N

(e.g., when N` = 10 the MSE of the L-MMSE fusion rule is 0.0637 for N = 103

and 0.0568 for N = 106, implying that the MSE is only lowered by ≈ 10% when410

the total number of data increases by a factor of 1000). On the other hand,

note the excellent behaviour of the average fusion rule for all the cases: a linear

decrease in the MSE as a function of N is already clearly observed for N` = 20.
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Table 2: Univariate Gamma example: Conditional MSE (averaged over 1000 independent
runs) for the three fusion methods considered when N ∈ {103, 104, 105, 106} and N` = N/L ∈
{5, 10, 20, 50, 100, 200, N}.

Experiment N`

N Estimator 5 10 20 50 100 200 N

103
EWF 0.3480 0.1011 0.0369 0.0193 0.0159 0.0148

0.0143L-MMSE 0.2042 0.0637 0.0243 0.0147 0.0141 0.0142
Average 0.0191 0.0152 0.0144 0.0143 0.0143 0.0143

104
EWF 0.3067 0.0695 0.0172 0.0035 0.0017 0.0013

0.0012L-MMSE 0.2104 0.0598 0.0170 0.0038 0.0019 0.0014
Average 0.0034 0.0013 0.0012 0.0012 0.0012 0.0012

105
EWF 0.3086 0.0695 0.0166 0.0027 0.0008 0.0003

0.0001L-MMSE 0.2058 0.0566 0.0149 0.0025 0.0007 0.0003
Average 0.0027 0.0003 0.0002 0.0001 0.0001 0.0001

106
EWF 0.3081 0.0691 0.0164 0.0025 0.0006 0.0002

1.2 · 10−5L-MMSE 0.2069 0.0568 0.0149 0.0025 0.0006 0.0002
Average 0.0025 0.0002 2 · 10−5 1.2 · 10−5 1.2 · 10−5 1.2 · 10−5

5.2. Multi-Variate Gaussian Distributions

Let us assume that we want to estimate a D-dimensional parameter vector,

x ∈ RD×1 for D ≥ 1, from N independent D-dimensional observations that

are divided into L groups, Y = [Y1, . . . ,YL], where Y` = [y
(`)
1 , . . . ,y

(`)
N`

] ∈

RD×N` (with y
(`)
n ∈ RD×1) is the set of observations available to the `-th partial

estimator. Let us consider a linear relationship among the y
(`)
n and x:

y(`)
n = Ax + w(`)

n , (64)

where w
(`)
n follows a multi-variate Gaussian distribution, w

(`)
n ∼ N (w

(`)
n |0,Σ`).

The likelihood is then another multi-variate Gaussian,

p(y
(`)
1 , . . . ,y

(`)
N`
|x) =

N∏̀
n=1

N (y(`)
n |Ax,Σ`) = N (x|µ(`)

y ,C(`)
y ), (65)

where µ
(`)
y = A−1·

(
1
N`

∑N`

n=1 y
(`)
n

)
and C

(`)
y = 1

N`

(
A>Σ`A

)−1
. Let us consider

also a multi-variate Gaussian prior, p0(x) = N (x|µ(0)
x ,C

(0)
x ). The `-th partial
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posterior is then another multi-variate Gaussian:

p(x|y(`)
1 , . . . ,y

(`)
N`

) = N (x|µ(`)
x ,C(`)

x ), (66)

with

C(`)
x =

((
C(0)

x

)−1
+
(
C(`)

y

)−1)−1
, (67a)

µ
(`)
x|y = C(`)

x

((
C(0)

x

)−1
µ(0)

x +
(
C(`)

y

)−1
µ(`)

y

)
. (67b)

Once more, we do not concentrate on any particular application, but this multi-415

variate Gaussian model arises in many statistical signal processing applications.

For the experiments, we set A = I (implying that µ
(`)
y = 1

N`

∑N`

n=1 y
(`)
n

and C
(`)
y = 1

N`
Σ−1` ), and randomly generate the parameter vectors x and the

noise vectors w
(`)
n . On the one hand, the elements of x are randomly and

independently drawn from a zero-mean Gaussian with variance equal to 100,420

i.e., xd ∼ N (0, 100). On the other hand, the covariance matrix for the noise

is given by Σ` = σ2
` I + ρb>` b`, with the elements of b` randomly and in-

dependently drawn from a zero-mean and unit-variance Gaussian, σ` = |ς`|

with ς` ∼ N (0, 10), and ρ ≥ 0 a user-dependent parameter that allows us to

control the correlation among the outputs. In the simulations, we test the425

performance of the different fusion rules (EWF, SC-MMSE, IL-MMSE and

L-MMSE) for different dimensions of the state space (1 ≤ D ≤ 20), cor-

relation factors ρ (ρ ∈ {0, 0.2, 0, 4}), and number of partial estimators (L ∈

{1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000}) in two different scenarios:

Sc1: The matrix C
(`)
y is assumed to be known.430

Sc2: The matrix C
(`)
y is unknown and is substituted by the empirical estimate

obtained from the data.

In all cases, we set µ0 = 0 and C0 = I for the prior, which lead to the following
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expressions for the mean and covariance of the posterior PDF:

C(`)
x =

(
I +

(
C(`)

y

)−1)−1
, (68a)

µ(`)
x = C(`)

x

(
C(`)

y

)−1
µ(`)

y = µ(`)
y −C(`)

y

(
I + C(`)

y

)−1
µ(`)

y , (68b)

where we have used the matrix inversion lemma [6] in order to obtain the final

expression of Eq. (68b).

The results (averaged over 100 realizations for each combination of parame-435

ters tested) are shown in Tables 3 and 4 for Sc1 and Sc2, respectively. The total

number of data generated is N = 105, leading to a number of data per partial

estimator N` ∈ {105, 5 · 104, 2 · 104, 104, 5 · 103, 2 · 103, 103, 500, 200, 100, 50, 20}.

Note that the first case (i.e., L = 1 and thus N` = N = 105) corresponds to the

global estimator that has access to all the data. From these two tables we can440

extract the following conclusions:

• For ρ = 0 the IL-MMSE fusion rule shows the same performance as the

L-MMSE approach when the matrix C
(`)
y is known (Sc1), and even bet-

ter when C
(`)
y is unknown (Sc2), due to the increased robustness in the

estimation of D parameters per partial estimator instead of D2. This445

improvement can be appreciated especially when N` is small (e.g., when

N` = 200 and C
(`)
y has to be estimated from the data, the IL-MMSE

scheme provides an improvement of 2.56 dB w.r.t. the L-MMSE rule).

• Both the IL-MMSE and the L-MMSE fusion rules outperform the SC-

MMSE approach and the EWF substantially for ρ = 0. For example,450

when C
(`)
y is known (Sc1) the L-MMSE provides an improvement w.r.t.

the EWF ranging from 1.25 dB when N` = 5 · 104 up to 6.79 dB for

N` = 500.

• For ρ = 0.2 the performance of all the fusion rules decreases in general, but

the L-MMSE approach still outperforms the EWF by a similar amount455

as before (ranging from 1.41 dB when N` = 5 · 104 up to 6.31 dB for
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N` = 500 in Sc1). The IL-MMSE rule decreases its performance w.r.t.

the L-MMSE scheme, especially in Sc2, but its performance is still better

than the EWF in general (up to 2.66 dB when N` = 200 in Sc1, and up

to 2.25 dB when N` = 104 in Sc2).460

• As the correlation increases (i.e., for ρ = 0.4), the L-MMSE fusion rule

still outperforms the EWF by a similar amount as in the two previous

cases. The performance of the IL-MMSE fusion rule deteriorates w.r.t.

ρ = 0.2, but it can still be advantageous w.r.t. the EWF (e.g., 1.76 dB

are gained in Sc1 when N` = 200 and 1.19 dB are gained in Sc2 when465

N` = 104).

• The SC-MMSE fusion rule attains a worse performance than the EWF in

all cases. However, in Section 5.3 we will show that it outperforms the

EWF in two localization examples.

• Regarding the behavior of the different approaches as the number of data470

per partial estimator (N`) decreases (i.e., the number of partial estimators

(L) increases for a fixed total amount of data N), it seems to be rather

constant for the SC-MMSE and EWF schemes, no pattern can be clearly

seen for the IL-MMSE fusion rule, and there seems to be an optimal value

around N` = 100 (i.e., L = 1000) for the L-MMSE approach.475

Finally, the performance of the different methods as the dimension of the state

space (D) increases is shown in Figures 4 and 5. Note that the performance of

all the methods remains quite stable (after an initial change for small values of

D when ρ = 0.2) as the dimension of the state space increases.

5.3. Localization in a Wireless Sensor Network480

5.3.1. Case 1: Estimation of the Target’s Position

In this section, we address the problem of positioning a static target in the two-

dimensional space of a wireless sensor network using only range measurements.
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Table 3: Multi-variate Gaussian Example: MSE in dB (averaged over 100 independent
runs) for the four fusion methods considered when the matrix Σ` is known, N = 105, L ∈
{2, 10, 50, 200, 1000, 5000} (i.e., N` = N/L ∈ {5 · 104, 104, 2 · 103, 500, 100, 20}), D = 10, and
ρ ∈ {0, 0.2, 0.4}.

Experiment N`

Correlation Estimator 5 · 104 104 2000 500 100 200

ρ = 0

EWF -46.43 -45.98 -46.07 -45.97 -46.07 -45.78
SCMSE -43.97 -41.59 -41.19 -41.07 -40.86 -41.01
ILMSE -47.68 -49.48 -51.59 -52.76 -52.45 -51.32
LMSE -47.68 -49.48 -51.59 -52.76 -52.45 -51.32

ρ = 0.2

EWF -45.09 -45.35 -45.68 -45.61 -45.64 -45.81
SCMSE -42.75 -41.27 -40.89 -40.74 -40.80 -41.23
ILMSE -46.38 -47.60 -46.32 -44.07 -46.62 -48.47
LMSE -46.50 -48.72 -50.83 -51.92 -51.93 -51.15

ρ = 0.4

EWF -45.16 -45.26 -45.45 -45.22 -45.34 -45.31
SCMSE -43.38 -41.21 -41.08 -40.49 -40.78 -40.65
ILMSE -45.77 -46.45 -45.66 -40.47 -44.16 -47.07
LMSE -45.99 -48.92 -50.58 -52.07 -52.12 -50.90

Table 4: Multi-variate Gaussian Example: MSE in dB (averaged over 100 independent
runs) for the four fusion methods considered when the matrix Σ` is unknown, N = 105,
L ∈ {2, 10, 50, 200, 1000, 5000} (i.e., N` = N/L ∈ {5 · 104, 104, 2 · 103, 500, 100, 20}), D = 10,
and ρ ∈ {0, 0.2, 0.4}.

Experiment N`

Correlation Estimator 5 · 104 104 2000 500 100 200

ρ = 0

EWF -46.43 -45.98 -46.07 -45.97 -46.07 -45.78
SCMSE -43.97 -41.59 -41.19 -41.07 -40.83 -40.70
ILMSE -47.68 -49.47 -51.59 -52.84 -53.63 -51.62
LMSE -47.68 -49.45 -51.57 -52.69 -53.15 -49.06

ρ = 0.2

EWF -45.09 -45.35 -45.68 -45.61 -45.64 -45.81
SCMSE -42.75 -41.27 -40.89 -40.74 -40.77 -40.94
ILMSE -46.38 -47.60 -46.22 -42.54 -37.37 -45.20
LMSE -46.50 -48.72 -50.78 -51.84 -52.56 -48.75

ρ = 0.4

EWF -45.16 -45.26 -45.45 -45.22 -45.34 -45.31
SCMSE -43.38 -41.21 -41.08 -40.49 -40.74 -40.21
ILMSE -45.77 -46.45 -45.61 -38.65 -33.75 -42.90
LMSE -45.99 -48.90 -50.56 -52.08 -52.78 -48.22

More specifically, we consider a random vector X = [X1, X2]> to denote the

target’s position in the R2 plane. The position of the target is then a specific

realization x. The measurements are obtained from 6 range sensors located at
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Figure 4: Multi-variate Gaussian Example: MSE as a function of D for ρ = 0, N = 105

and N` = N/L. (a) Σ` known. (b) Σ` estimated from the data.
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Figure 5: Multi-variate Gaussian Example: MSE as a function of D for ρ = 0.2, N = 105

and N` = N/L. (a) Σ` known. (b) Σ` estimated from the data.

37



h1 = [1,−8]>, h2 = [8, 10]>, h3 = [−15,−7]>, h4 = [−8, 1]>, h5 = [10, 0]>,

and h6 = [0, 10]>. The measurement equations are

Yj = −10 log
(
‖x− hj‖22

)
+ Θj , j = 1, . . . , 6, (69)

where Θj ∼ N (θj |0, ω2
j I), with ωj = 5 for j ∈ {1, 2, 3} and ωj = 20 for j ∈

{4, 5, 6}. We simulate N = 6000 observations from the model (N6 = 1000

observations from each sensor) fixing x1 = x2 = 3.5. We consider a varying

number of partial estimators L with N` = N/L for 1 ≤ ` ≤ L, and three485

scenarios for splitting the data:

Sc1: Exactly N
6L measurements from each sensor are provided to each partial

estimator.

Sc2: The first L/2 estimators contain an equal number of observations from

the first 3 sensors (the best ones), whereas the remaining L/2 estimators490

work with measurements from the last 3 sensors (the noisiest ones).

Sc3: Measurements are randomly assigned to the estimators.

For each scenario, we run M
(`)
C = 100 MCMC independent parallel chains with

length T
(`)
C = 5000, compute the MMSE estimates x̂

(`)
1 and x̂

(`)
2 , and fuse these

estimates into the final result. We compare the Equal Weights Fusion (EWF)495

method, where each estimator is given the same weight, 1/L, and the three fu-

sion methods described in the paper. We repeat the experiments 50 times and

average the results. The results, shown in Table 5 and Figures 6–8, confirm the

good performance of the SC-MMSE and IL-MMSE estimators, which outper-

form the naive EWF and show an MSE similar to the optimal and more costly500

L-MMSE. Regarding the three scenarios considered, we note that the best per-

formance is obtained in the second case (with MSE(x̂(L-MMSE)|y) = 0.0021), i.e.,

splitting the data into separate filters according to their quality. This opens up

the possibility of performing a “smart” division of the data in order to optimize

the performance.505

Finally, in order to study the scaling behaviour of the fusion rules as N

increases, we have also simulated the three scenarios for N = 30000, as well
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Table 5: Localization Example (Case 1): MSE (averaged over 50 independent runs)
for the three scenarios and the four fusion methods considered when N = 6000, L ∈
{5, 10, 25, 100, 200, 500, 1000}, and N` = N/L ∈ {6, 12, 30, 60, 240, 600, 1200}.

Experiment N`

Scenario Estimator 6 12 30 60 240 600 1200

Sc1

EWF 0.0041 0.0049 0.0065 0.0090 0.0167 0.0590 0.1192
SCMSE 0.0039 0.0046 0.0063 0.0089 0.0166 0.0587 0.1191
ILMSE 0.0038 0.0046 0.0063 0.0089 0.0166 0.0586 0.1188
LMSE 0.0037 0.0045 0.0062 0.0088 0.0165 0.0584 0.1183

Sc2

EWF 0.0087 0.0053 0.0064 0.0104 0.0343 0.0648 0.1681
SCMSE 0.0057 0.0034 0.0047 0.0092 0.0328 0.0628 0.1623
ILMSE 0.0052 0.0031 0.0043 0.0085 0.0304 0.0588 0.1521
LMSE 0.0037 0.0021 0.0028 0.0057 0.0210 0.0410 0.1107

Sc3

EWF 0.0078 0.0061 0.0068 0.0092 0.0169 0.0587 0.1181
SCMSE 0.0060 0.0053 0.0066 0.0091 0.0168 0.0584 0.1180
ILMSE 0.0055 0.0051 0.0065 0.0090 0.0168 0.0583 0.1177
LMSE 0.0051 0.0048 0.0064 0.0090 0.0167 0.0582 0.1174
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Figure 6: Localization Example (Case 1): MSE as a function of L for Scenario 1 (Sc1)
when N = 6000.

as Scenario 2 for N = 600000. The results, displayed in Table 6 and Figure 9,

respectively, show that the performance of all the fusion rules scales roughly as

a function of the number of samples, N .510
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Figure 7: Localization Example (Case 1): MSE as a function of L for Scenario 2 (Sc2)
when N = 6000.
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Figure 8: Localization Example (Case 1): MSE as a function of L for Scenario 3 (Sc3)
when N = 6000.
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Table 6: Localization Example (Case 1): MSE (averaged over 50 independent runs)
for the three scenarios and the four fusion methods considered when N = 30000, L ∈
{25, 50, 125, 500, 1000, 2500, 5000}, and N` = N/L ∈ {6, 12, 30, 60, 240, 600, 1200}.

Experiment N`

Scenario Estimator 6 12 30 60 240 600 1200

Sc1

EWF 0.0008 0.001 0.0013 0.0018 0.0033 0.0117 0.0231
SC-MMSE 0.0008 0.0009 0.0013 0.0018 0.0033 0.0117 0.0230
IL-MMSE 0.0008 0.0009 0.0013 0.0018 0.0033 0.0117 0.0230
L-MMSE 0.0007 0.0009 0.0012 0.0017 0.0033 0.0116 0.0229

Sc2

EWF 0.0007 0.0009 0.0012 0.0018 0.0036 0.0131 0.0335
SC-MMSE 0.0004 0.0006 0.0009 0.0015 0.0033 0.0125 0.0323
IL-MMSE 0.0004 0.0005 0.0009 0.0014 0.0031 0.0118 0.0304
L-MMSE 0.0003 0.0003 0.0006 0.0009 0.0021 0.0082 0.0214

Sc3

EWF 0.0018 0.0011 0.0013 0.0018 0.0033 0.0118 0.0229
SC-MMSE 0.0014 0.001 0.0013 0.0018 0.0033 0.0118 0.0228
IL-MMSE 0.0013 0.001 0.0013 0.0018 0.0033 0.0118 0.0228
L-MMSE 0.0012 0.001 0.0013 0.0018 0.0033 0.0117 0.0227
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Figure 9: Localization Example (Case 1): Conditional MSE as a function of L for Scenario
3 (Sc2) when N = 600000.

5.3.2. Case 2: Estimation of the Target’s Position and the Sensors’

Noise Variance

In this section, we address a more complicated version of the previous case.

We still consider the localization of a single target (placed at x1 = x2 = 3.5,
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as before), using range-only measurements from 6 sensors placed at the same515

locations as in case 1: h1 = [1,−8]>, h2 = [8, 10]>, h3 = [−15,−7]>, h4 =

[−8, 1]>, h5 = [10, 0]> and h6 = [0, 10]>. However, in addition to the estimation

of the target’s location, now we also estimate the noise variance of the different

sensors, implying that the dimension of the state space in this case is D = 8. The

ground-truth values of the noise variances used in the simulations are ω1 = 1,520

ω2 = 2, ω3 = 1, ω4 = 0.5, ω5 = 3, and ω6 = 0.2. Furthermore, we investigate

the performance of the proposed approaches when a different number of data is

available to each the partial estimators. Namely, we generate 87 data from each

sensor (i.e., N = 87× 6 = 522 data overall) according to the model in Eq. (69)

and split them randomly among L = 5 partial estimators in such a way that525

N1 = 12, N2 = 30, N3 = 60, N4 = 120, and N5 = 300.

We test the performance of the optimal L-MMSE estimator, comparing it

to the EWF approach and the two novel efficient fusion methods proposed (IL-

MMSE and SC-MMSE). Moreover, we also test two heuristic fusion rules that

take into account the unequal number of data available to each of the partial530

estimators: a linearly proportional weights fusion (L-PWF) scheme that assigns

weights to the partial estimates as w` = N`/N (i.e., in our case w1 = 2/87, w2 =

5/87, w3 = 10/87, w4 = 20/87, and w5 = 50/87); and a square root PWF (SR-

PWF) scheme that assigns weights as w` =
√
N`/S, with S =

∑L
`=1

√
N` (i.e.,

in our case, S =
√

2 +
√

5 +
√

10 +
√

20 +
√

50 ≈ 18.3558, w1 =
√

2/S ≈ 0.0770,535

w2 =
√

5/S ≈ 0.1218, w3 =
√

10/S ≈ 0.1723, w4 =
√

20/S ≈ 0.2436, and

w5 =
√

50/S ≈ 0.3852). The rationale behind these two heuristic fusion rules is

that the estimates provided by estimators that have more data available should

be trusted more, since the precision in the estimation is directly proportional to

the number of data (L-PWF implicitly assumes that the precision is proportional540

to N`, whereas SR-PWF assumes that it is proportional to
√
N`).

Figure 10 shows the MSE for all the different fusion rules considered as a

function of the number of samples of the Markov chain. First of all, it is re-

markable the increase in performance as the number of iterations of the chain

increases: around 5 · 103 iterations are required in order to attain a good per-545
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formance in all cases. Then, note the similar performance of the three heuristic

approaches (EWF, L-PWF and SR-PWF), with EWF performing slightly bet-

ter than the other two (showing that having weights directly proportional to N`

or
√
N` is not a good idea in this case). Finally, note also that the IL-MMSE

fusion rule always outperforms the optimal L-MMSE fusion, whereas the SC-550

MMSE approach performs better than the L-MMSE fusion for less than 104

iterations. This shows the increased robustness of the two proposed efficient

fusion rules, which require the estimation of a reduced number of parameters

from the noisy data (in this case, D = 8 parameters per partial estimator for

the IL-MMSE approach and just one parameter for the SC-MMSE fusion rule,555

instead of the D2 = 64 parameters per partial estimator of the L-MMSE rule).

Furthermore, both of the efficient fusion rules proposed are able to provide an

improved performance w.r.t. the naive EWF. For instance, using 5 · 104 itera-

tions of the chain the SC-MMSE fusion rule achieves ≈ 1 dB reduction in MSE

w.r.t. the EWF with the transmission of a single weight per partial estimator,560

whereas the IL-MMSE approach attains a reduction of 1.69 dB by transmitting

D = 8 coefficients per partial estimator.

6. Conclusions

In this paper, we have addressed the linear fusion of unbiased and independent

partial estimators, focusing on the scenario where no communication is allowed565

among them. The best linear fusion rule has been derived and two novel ef-

ficient linear combination schemes, that achieve an excellent trade-off between

the amount of information that has to be transmitted to the fusion center and

the performance in terms of mean squared error (MSE) of the final estima-

tor, have been proposed. Both a constrained optimization point of view and a570

Bayesian perspective have been provided for these three fusion rules, allowing

us to explore their connections and to explain their good performance even in

situations where the assumptions that lead to them are not strictly fulfilled.

All the methods were tested through computer simulations by applying them
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Figure 10: Localization Example (Case 2): MSE as a function of the number of samples
per chain for all the different fusion rules considered.

to three problems. First of all, we considered a univariate problem, where all575

the posterior densities followed a Gamma PDF and all the estimators could be

computed analytically. We use this example to analyze the performance of the

fusion rules as the number of samples per estimator decreases and the partial

estimators cannot be considered unbiased any more. Then, we address a param-

eter estimation problem in a multi-variate Gaussian model, where we increase580

the dimension of the state space up to D = 20, showing the good performance

and robustness of the two efficient fusion rules proposed. Finally, we tackle a

localization problem with one target and six sensors whose measurements were

processed using several parallel filters. Here we consider two cases: localization

of the target when the noise characteristics of the sensors are known (dimension585

of the state space D = 2), and joint localization of the target and estimation

of the noise characteristics of the sensors (dimension of the state space D = 8).

The new fusion methods show a performance equivalent to the optimal linear

44



combination (sometimes even better) with a reduced computational cost. Fur-

thermore, it has been shown that splitting the data can be advantageous in590

terms of attaining a good MSE with a reduced computational cost, but only

when the bias in the partial estimators can be controlled. In future works

we plan to address bias correction approaches, as well as optimal linear fusion

schemes for biased and/or correlated partial estimators. Some other interesting

areas of research are non-linear fusion techniques and the development of fusion595

schemes where the partial Monte Carlo estimators are allowed to exchange a

reduced amount of information.
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Appendices

A. Solution of the Constrained Optimization Prob-

lems

A.1. Single Coefficient MMSE (SC-MMSE) Fusion725

Let us consider first the SC-MMSE fusion rule. From Eqs. (29a) and (29b),

applying the method of the Lagrange multipliers, the cost function that has to

be minimized is

JSC-MMSE =

L∑
k=1

α2
kTk + λ

(
L∑
k=1

αk − 1

)
, (70)

where Tk = Tr(C
(k)
x ). Differentiating w.r.t. α` (` = 1, . . . , L) and equating the

result to zero we obtain a set of L equations,

∂JSC-MMSE

∂α`
= 2α`T` + λ = 0, (71)

whereas differentiating w.r.t. λ and equating the result to zero we obtain one

additional equation:

∂JSC-MMSE

∂λ
=

L∑
k=1

αk − 1 = 0. (72)
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In matrix form, these L+ 1 equations can be expressed compactly as D 1

1> 0

 α

λ

 =

 0

1

 , (73)

with D = diag(T1, . . . , TL), 1 = [1, . . . , 1]>, α = [α1, . . . , αL]>, and 0 =

[0, . . . , 0]>. The optimal values of α and λ can thus be obtained as

 α∗

λ∗

 =

 D 1

1> 0

−1  0

1

 =

 P q

q> r

 0

1

 , (74)

where P, q and r can be obtained from the block matrix inversion lemma [6]:

P = D−1 + D−11 r 1>D−1, (75a)

q = −D−11 r = r ·
[

1

2T1
,

1

2T2
, . . . ,

1

2TL

]
, (75b)

r = −
(
1>D−11

)−1
=

2∑L
k=1 T

−1
k

. (75c)

Finally, from Eq. (74) it is straightforward to see that the optimal solution is

given by λ∗ = r = 2∑L
k=1 T

−1
k

and α∗ = q, implying that

α∗` =
T−1`∑L
k=1 T

−1
k

, (76)

which are the optimal coefficients given in Eq. (30).

A.2. Independent Linear MMSE (IL-MMSE) Fusion

Let us consider now the IL-MMSE fusion rule. Since the weighting matrix is

now given by Λ` = D` = diag(α`,1, . . . , α`,D), the global estimator becomes

x̂ =

L∑
k=1

Dkx̂k =

L∑
k=1

[αk,1x̂k,1, . . . , αk,Dx̂k,D]>. (77)

51



From Eq. (77), it is straightforward to see that the global estimator for the d-th

parameter (d = 1, . . . , D),

x̂d =

L∑
k=1

αk,dx̂k,d, (78)

depends only on the L partial estimates of the d-th parameter and not on any

of the partial estimates of any other parameter. Therefore, from Eqs. (37a) and

(37b) and applying the method of the Lagrange multipliers, the cost function

that has to be minimized can be expressed as

JIL-MMSE =

D∑
d=1

J
(d)
IL-MMSE (79a)

J
(d)
IL-MMSE =

L∑
k=1

α2
k,dσ

2
k,d + λd

(
L∑
k=1

αk,d − 1

)
. (79b)

Noting that Eqs. (79a) and (79b) correspond to D independent optimization

problems and that (79b) is identical to (70) (with αk,d, σ
2
k,d and λd in place of

αk, Tk and λ, respectively), it is obvious that the optimal coefficients for the

IL-MMSE fusion rule are given by (38):

α∗`,d =
σ−2`,d∑L
k=1 σ

−2
k,d

. (80)

A.3. Linear MMSE (L-MMSE) Fusion

Finally, let us consider the optimal L-MMSE fusion rule. From Eqs. (19a) and

(19b), and applying once more the method of the Lagrange multipliers, the cost

function that has to be minimized is now

JL-MMSE =

L∑
k=1

Tr
(
ΛkC

(k)
x Λ>k

)
+ λ

(
L∑
k=1

Λk − I

)
, (81)

52



where I denotes the D × D identity matrix. Differentiating w.r.t. Λ` (` =

1, . . . , L) and equating the result to zero we obtain a set of LD2 equations,

∂JL-MMSE

∂Λ`
= 2C(`)

x Λ>` + λI = 0, (82)

whereas differentiating w.r.t. λ and equating the result to zero we obtain one

additional equation:

∂JL-MMSE

∂λ
=

L∑
k=1

Λk − I = 0. (83)

And now, it can be easily checked that the weighting matrix given by (48),

Λ∗` =

[
L∑
k=1

(
C(k)

x

)−1]−1 (
C(`)

x

)−1
,

and the regularization parameter,

λ∗ = 2

[
L∑
k=1

(
C(k)

x

)−1]−1
,

fulfill both (82) and (83), and are thus the unique solution of the convex opti-

mization problem posed by Eqs. (19a) and (19b).7730

7Note that C
(k)
x = (C

(k)
x )> (for k = 1, . . . , L), since C

(k)
x is a covariance matrix, and thus

[(C
(k)
x )−1]> = (C

(k)
x )−1.
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B. Multivariate Gaussians: Derivation of the Global

Covariance Matrix

Let us concentrate on the sum in the exponential of Eq. (44):

S1 =

L∑
`=1

(x− x̂`)
>
(
C(`)

x

)−1
(x− x̂`)

= x>C−1x x− 2x>
L∑
`=1

(
C(`)

x

)−1
x̂` +

L∑
`=1

x̂>`

(
C(`)

x

)−1
x̂`, (84)

where we have defined Cx as in Eq. (46a):

Cx =

[
L∑
`=1

(
C(`)

x

)−1]−1
.

Now, let us consider the following sum:

S2 = (x− µx)>C−1x (x− µx) = x>C−1x x− 2x>C−1x µx + µ>x C−1x µx. (85)

By defining the mean as in Eq. (46b),

µx = Cx

L∑
`=1

(
C(`)

x

)−1
x̂`,

it is straightforward to see that

S1 = S2 +
L∑
`=1

x̂>`

(
C(`)

x

)−1
x̂` − µ>x C−1x µx. (86)

And finally, since the last two terms in (86) do not depend on x, we have

p(x|x̂1, . . . , x̂L) ∝ exp

(
−1

2
(x− µx)>C−1x (x− µx)

)
= N (x|µx,Cx),

showing that the global posterior PDF in Eq. (44) can be expressed alternatively

as the single Gaussian given in Eq. (45).
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C. Optimal Independent and Isotropic Multivari-735

ate Gaussian Approximations

Let us define p(x) = N (x|x̂`,Σp) and q(x) = N (x|x̂`,Σq). The Kullback-

Leibler (KL) divergence, DKL ≥ 0, is a standard measure of the discrepancy

between two distributions [47]: the larger the value of DKL the more different

the two distributions, with DKL = 0 indicating that they are equal almost

everywhere. The KL divergence between p(x) and q(x) is defined as

DKL(p‖q) =

∫
X
p(x) ln

p(x)

q(x)
dx. (87)

Since both p(x) and q(x) are Gaussian PDFs, we have

ln
p(x)

q(x)
=
D

2
ln |Σq| −

D

2
ln |Σp| −

1

2
(x− x̂`)

>(Σ−1p −Σ−1q )(x− x̂`), (88)

and the KL divergence becomes

DKL(p‖q) = K+
D

2
ln |Σq|+

1

2

∫
X

(x− x̂`)
>Σ−1q (x− x̂`)N (x|x̂`,Σp)dx, (89)

where K is a constant that includes all the terms that do not depend on Σq.

Now, let us consider the two particular cases that we are interested in: the

approximation of an arbitrary multi-variate Gaussian PDF using an independent

and an isotropic Gaussian PDF, respectively.740

C.1. Isotropic Approximation

Let us consider Σp = C
(`)
x and Σq = σ2

` I, so that |Σq| = σ2D
` and Σ−1q = 1

σ2
`
I.

Then, the KL divergence in (89) becomes

DKL(p‖q) = K +
D2

2
ln(σ2

` ) +
1

2σ2
`

Tr
(
C(`)

x

)
. (90)
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In order to minimize the KL divergence in (90), we take the derivative w.r.t. σ2
`

and equate it to zero:

∂DKL(p‖q)
∂σ2

`

=
D2

2σ2
`

− 1

2σ4
`

Tr
(
C(`)

x

)
= 0. (91)

The solution of this equation is

σ2
` =

1

D2
Tr
(
C(`)

x

)
, (92)

and it can be easily checked (by taking the second derivative of DKL(p‖q))

that it corresponds to a minimum. Hence, the best isotropic approximation of

p(x|x̂`) = N (x|x̂`,C(`)
x ) is q(x|x̂`) = N (x|x̂`, σ2

` I), with σ2
` given by Eq. (92).

Using this approximation in the expression of the posterior of Eq. (44), it is

straightforward to see that the weighting matrix for the linear fusion in this case

is Λ` = α`I, with

α` =
Tr
(
C

(`)
x

)−1
∑L
k=1 Tr

(
C

(k)
x

)−1 ==
σ−2`∑L
k=1 σ

−2
k

. (93)

Note that Eq. (93) corresponds to the SC-MMSE fusion rule, obtained as a

solution of a constrained optimization problem in Section 3.2 and given by (30),

and also derived in Section 4.3 from a Bayesian perspective and given by (57).

C.2. Independent Approximation745

Let us consider again Σp = C
(`)
x , but now let us use Σq = diag(σ̂2

`,1, . . . , σ̂
2
`,D).

Then, |Σq| =
∏D
d=1 σ̂

2
`,d, ln |Σq| =

∑D
d=1 ln(σ̂2

`,d), and Σ−1q = diag(σ̂−2`,1 , . . . , σ̂
−2
`,D).

In this scenario, the KL divergence in (89) becomes

DKL(p‖q) = K +
D

2

D∑
d=1

ln(σ̂2
`,d) +

1

2

D∑
d=1

σ̂−2`,dσ
2
`,d, (94)
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where σ2
`,d = C

(`)
x [d, d]. In order to minimize the KL divergence in (94), we take

again the derivative w.r.t. σ̂2
`,d and equate it to zero:

∂DKL(p‖q)
∂σ̂2

`,d

=
D

2σ̂2
`,d

−
σ2
`,d

2σ̂4
`,d

= 0. (95)

The solution of this equation is

σ̂2
`,d =

1

D
σ2
`,d, (96)

and it can be easily checked (by taking the second derivative of DKL(p‖q))

that it corresponds to a minimum. Hence, the best independent approximation

of p(x|x̂`) = N (x|x̂`,C(`)
x ) is q(x|x̂`) = N (x|x̂`,diag(σ̂2

`,1, . . . , σ̂
2
`,D)), with σ̂2

`,d

given by Eq. (96). Using this approximation in the expression of the posterior

of Eq. (44), it is straightforward to see that the weighting matrix for the linear

fusion in this case is Λ` = D` = diag(α`,1, . . . , α`,D), with

α`,d =
σ−2`,d∑L
k=1 σ

−2
k,d

. (97)

Note that Eq. (97) corresponds now to the IL-MMSE fusion rule, obtained as a

solution of a constrained optimization problem in Section 3.3 and given by (38),

and also derived in Section 4.3 from a Bayesian perspective and given by (55).
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