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Abstract

It has for long been been overlooked that, quite easily, infinitely many
ultrapower field extensions [F;; can be constructed for the usual field
R of real numbers, by using only elementary algebra. This allows a
simple and direct access to the benefit of both infinitely small and
infinitely large scalars, without the considerable usual technical diffi-
culties involved in setting up and then using the Transfer Principle in
Nonstandard Analysis. A natural Differential and Integral Calculus -
which extends the usual one on the field R - is set up in these fields
[F;; without any use of the Transfer Principle in Nonstandard Analy-
sis, or of any topological type structure. Instead, in the case of the
Riemann type integrals introduced, three simple and natural axioms
in Set Theory are assumed. The case when these three axioms may
be inconsistent with the Zermelo-Fraenkel Set Theory is discussed in
section 5.

1. The Historically Unique Status of the Usual Field R
of Real Numbers

The historically special, and in fact, unique, and thus natural, or
canonical status of the usual field R of real numbers comes from the
following

Theorem 1.1. [1, p. 30]

There is, up to order isomorphism, exactly one complete ordered field,
namely, the usual field R of real numbers.

OJ
This basic result, well known in mathematics, also settles the closely
interrelated issues of infinitesimals and the Archimedean property,
namely

Theorem 1.2. [1, p. 30]

Every complete ordered field F is Archimedean.



An ordered field F is Archimedean, if and only if it is order isomorphic
with a subfield of R.
O

Now since obviously R, and hence its subfields, do not have nontrivial
infinitesimals, while on the other hand, all ultrapower fields [y, see
section 2 below, do have them, we obtain

Corollary 1.1.

Every ultrapower field Fy; is non-Archimedean.

In fact, the stronger results holds
Corollary 1.2.

Every ordered field F with nontrivial infinitesimals is non-Archimedean.
O

In this way, having nontrivial infinitesimals, and being non-Archimedean
are equivalent in the case of ordered fields.

The definition of the concepts ordered field, complete field, Archimedean
field, order isomorphism, infinitesimals, and eventually other ones
needed, can be found in [17, pp. 26-30].

2. Ultrapower Fields

Detailes related to the sequel can be found [4-24], as well as in any
101 Algebra college course which deals with groups, rings, fields, and
quotient constructions in groups and rings.

Let A be any given infinite set which will be used as indez set, namely,
with indices A € A. A usual particular case is when A = N and
A=neN=A.



Now we denote by
(2.1) RA

the set of all real valued functions defined on A, that is, functions
x : A — R. Sometime it will be convenient to write such a function
as the family of real numbers (z))yep indexed by A € A. Also, in
certain cases we shall have A = N, thus such a family becomes the
usual infinite sequence (x,,)nen.

Clearly, with the usual operations of addition and multiplication of
such functions, as well as the multiplication of such functions with

scalars from R, it follows that R* is a commutative unital algebra on
R.

Now it is easy to see that R? is not a field, since it has zero divisors.
That is, exist elements z,y € Rz # 0,y # 0, such that never-
theless xy = 0. For instance, if we take v,u € A,v # pu, and take
7 = (Tx)rer, ¥ = (Un)rea € RA, such that z, = 1, while zy = 0, for
A€ A, X # v, and similarly, y, = 1, while y\ = 0, for A € A, X # p,
then obviously z # 0, y # 0, and yet zy = 0.

Here we can recall from Algebra that given any ideal T in R*, we have
(2.2) RA/Tisafield <= Zisa maximal ideal

By the way, above, and in the sequel, by an ideal 7 in R®, we under-
stand a proper ideal T, namely, such that {0} & Z & R*.

The issue of identifying maximal ideals Z in R* needed in (2.2), can
be reduced to wultrafilters on A. Namely, there is a simple bijection
between ideals T in R and filters F on A, as follows

T v Fo={ICA|3zecT: Z()CI}
(2.3)
F — Ir={zeR)| Z(z)e F}

in other words, we have



(24) I v+— Fr+— Ir,=I, F v+ Ir +— Fr,=F

where for z € R*, we denoted Z(z) = {\ € A | z(\) = 0}, that is, the
zero set of the function z.

Now it is easy to see that

U ultrafilter on A == 7T;; maximal ideal in R*
(2.5)
7 maximal ideal in R® = F7 ultrafilter on A

Obviously, identifying maximal ideals Zy; in R® is more difficult than
identifying ultrafilters ¢ on A.

In view of that, we start with an ultrafilter &/ on A and associate with
it the maximal ideal Z;;. Now according to (2.2) we obtain the wltra-
power field

(2.6) Ty =R,

Here however, we have to be careful about the fact that there are two
kind of ultrafilters with respect to the quotient fields (2.6). We shall
only be interested in free or non-principal ultrafilters U, namely, those
which satisfy the condition

(2-7) ﬂ[eu I= Cb

The reason is that the alternative kind of ultrafilters U, called prin-
cipal ultrafilters or ultrafilters fixed at some given \g € A, namely, for
which

(2‘8> nfeu I = {)\0} # ¢

are not of interest here, since it is easy to see that their corresponding
quotient fileds (2.6) are isomorphic with R.

Consequently, we shall from now on start with a free ultrafilter U on
A. Then, two essential properties of the ultrapower field Fy; corre-
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sponding to U according to (2.6), are as follows.
First, we have the embedding, that is, injective homomorphism of fields
(29) R37r — *r=ulr)+Zy € Fy

where u(r) € R? is defined by u(r) : A 3 A — r € R, thus u(r) is the
constant function with value r. When there is no confusion, we shall
write *r = r, for r € R, thus (2.9) will be considered as an inclusion
of fields, hence, with R being a strict subfield of Fy;, namely

(210) RGFy,

The second property is that the ultrapower field F;, has the follow-
ing linear order that extends the usual linear order on R. Given
€= (za)ren + Tu, 1= (Ya)ren + Zu € Fy, then

(2.11) ¢ <y n

is defined by the condition

(2.12) {AeA|xx<yr} el

It follows that

(2.13) r<s <= *r <y *s, rseR

also, for &, 7, x € Fy, we have

§ <un = §+x <untx
(2.14)

E<umn x2u0 = x§{ <u xn

And now, to the far more rich structure of the ultrapower fields [,
when compared with the usual field R of real numbers, see [4-24].
This rich structure is due to the presence of infinitesimals, or infinitely
small elements, and then, opposite to them, the presence of infinitely
larger elements. And all that rich structure is contributing to the non-
Archimedean structure of [Fy,.



Let us first extend the absolute value to the ultrapower fields Fy, as
follows. Given & = (x)xea + Zu € Fy, then we define

(2.15) &l = ([zal)rea + Zu € Fy

Now, each ultrapower field F;; has the following three kind of subsets.
The subset of infinitely small, or equivalently, infinitesimal elements
is denoted by Monady(0). The subset of finite elements is denoted
by Galazyy,(0). And at last, the subset of infinitely large elements is
Fy \ Galazy,(0).

We make now explicit the respective properties which define these
three kind of elements, namely, infinitesimal, finite, and infinite.

Given € = (z\)xea + Zu € Fy, then & € Monad(0), if and only if
(2.16) VreR, r>0: [§ <y *r

further, £ € Galazy,(0), if and only if

(2.17)  JreR, r>0: [£ <y *r

Obviously

(2.18)  Monady(0) & Galaxyy(0)

Finally, ¢ is infinitely large, that is, £ € Fy \ Galaxyy,(0), if and only if
(219) VreR, r>0: [ >y *r

It is easy now to see that

Proposition 2.1.

None of the ultrapower fields F;, is complete, thus each of them is
non-Archimedean..



Proof.

Obviously the subset Monady(0) & Ty is bounded both from be-
low and above, since, for instance, we have Monady(0) & [—1,1].
However, Monady/(0) does not have either an infimum, or a supre-
mum in F;,. Assume, on the contrary, that & € [y is a supre-
mum of Monady(0). Let us take any n € Monad(0), such that
0 <y n <y & Now, if & € Monady(0), then obviously & +
n € Monady(0), thus £ is not the supremum of Monady,(0), since
& <y &+ n € Monady(0). On the other hand, if £ ¢ Monad(0),
then clearly & —n ¢ Monady(0), thus again, £ is not the supremum
of Monady(0), as x <y &—n <y &, for all x € Monady/(0).

The rest results from Corollary 1.2.

O

And now, let us define the standard part of ever finite element in [,
by the mapping, [1, p. 6]

(2.20)  Galazryy(0) 3 & — st(é) € R
where

(2.21) € — st(¢) € Monady(0)
Consequently

(2.22)  st(r)=r, reR

3. Differential Calculus in Ultrapower Fields

Fortunately, Differential Calculus in the ultrapower fields IF;; can be
done easily and directly, without the need for any other concepts or
structures, except the algebraic ones which are already present in ev-
ery field, [1, p. 62]. This fact is well known, even if not particularly
stressed in Nonstandard Analysis.

Namely, given a function f : I — R, where I C R is an open interval,
as well as a € I, then S € R is called the slope of f at a, if and only if

8



(3.1) stt<f(a+hf)b_f(a)), h € Monady(0), h #0

And then, the derivative of the function f is the partial function f’ on
I, defined by

S if S is the slope of f at x
32)  [flx)=

undefined otherwise

forx € 1.

4. Infinite Sums in Ultrapower Fields

In order to set up an Integral Calculus in ultrapower extensions [,
of the usual field R of real numbers, and do so without the use of
the Transfer Principle, or a topological type structure on F;,, we shall
- in several steps - define Riemann type integrals for suitable functions

4.1)  f:le,Bly — Fy

where [a, Bly C Ty is an interval in the sense of (2.11), namely,
[, Blu = {€ € Fy | a <y & <y B} and o # . The fact that
the intervals [, By can have infinitely large end points a or 3, may
lead to Riemann sums with infinitely many terms

(4‘2) 2161(51' - %‘)f(fz’)

where o <y v <u & <u 6 <y p, and v; # 6;, while I is an
infinite index set.

It is however convenient to pursue the issue of summation in (4.2)

more generally, namely, to consider sums with infinitely many terms
of the form

(4.3) S=2ier i

thus where I may be an infinite index set, while a; € Fy,, where the a;
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themselves may possibly be infinitely large, in the sense of (2.19).

Obviously, in case the summation index set I in (4.3) is finite, then
S € FFy is always well defined, regardless of the terms a; being in-
finitely large, or not. Indeed, in this case S is simply the finite sum
of certain terms in the field Fy,, and as such it is always well defined,
simply by the commutative group structure of [Fy,.

Thus the problem of summation in (4.3) only arises when the summa-
tion index set [ in (4.3) is infinite.

However, we shall as well refer to the sums in (4.3) in general, that is,
also in the trivial case when the index sets [ are finite.

Let us now start with the particular case of (4.3), when the index set
I is infinite, while we have

(4.4) a,=a, 1€1
for a certain given
(45) a € Fy

Then intuitively, we may expect that in this particular case we would
have S in (4.3) given by some kind of ”product”

(4.6) S = (carl) x a
where carl denotes the cardinal number of the infinite set I.

Obviously, the problem here is that the ”product” in (4.6) is in general
between two rather different entities, since a need not be a cardinal
number, while on the other hand, carl need not be an element of
;. Thus this "product” does not make sense, unless each of its two
factors is made to correspond in a suitable way to the same kind of
entity, an entity which, furthermore, has to posses an operation of
multiplication. And in our case F;; seems to be a natural candidate
in this regard, in view of (4.4), (4.5).
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Further, we can note that even in the yet more particular case when
we would take

(4.7) a=1g, €Fy

in (4.6), thus seemingly eliminating the mentioned problem of ”multi-
plication”, we would still remain with the problem that in the resulting
equality

(4.8) S =carl

the entity S € Fy given by (4.3), is in general supposed to have a
different nature, than that of a cardinal number.

Remark 4.1.

As noted, the problem in ultrapower fields [, with sums (4.3) is ob-
viously as follows. If the index set [ is finite, then the respective sum
- independently of its terms a; € [y, - is always well defined, simply
according to the group structure of Fy.

Therefore, the only problem with such sums is in the case of infinite
index sets .

Now, so far, there have only been two ways to deal with that situation
in the literature.

One is to introduce some convergence, or in general, a topological type
structure on Fy,, and based on that, to define what it means when an
infinite sum (4.3) converges.

The other way, used in Nonstandard Analysis, is to supplement the
simple, elementary, purely algebraic, or more precisely, field structure
of Fy, with a Transfer Principle which will automatically extend a
variety of properties from finite to infinite structures, among them
properties useful in defining Differential and Integral Calculus on Fy,.

Here in this paper, however, we suggest a third way to define infinite
sums (4.3), and do so without either topology, or Transfer Principle,
and instead, we use a simple and natural way to overcome the men-
tioned difficulty inherent in such infinite sums.

O
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We note that the unit element in the ultrapower field [, is given by
(4.9) Ir, = (ux)ren +Zu € Fy

where uy =1 € R, for A € A. Let now

(4.10) Zy, < Fy

be the subring in F;; which consists from all the elements of the form
(4.11) v = (nx)rea +Zu € Fy

where

(4.12) ny€Z, NeA

In view of (2.11), we obviously have the property, see (2.15)

(4.13) Vaely : dvely, : |lof <y v

Let now - as one of the main ideas in the sequel - consider the index
set I in (4.3) to be an interval of the form

(414) I = [iminaimax ]Z/I =
:{VEZFM ’lmzn SZ/{ 14 SZ/{ imam}gZFu
for suitably given #in, tmaz € Zr,s Tmin <u %maz, i1 the sense of the

partial order <;; in (2.11) when restricted to Zg,. Choosing in (4.3)
again the particular case of (4.4), (4.5), (4.7), we obtain, see (4.9)

(4-15) Sp= Zie[ Lr,
Then, regarding (4.14), (4.15), it is natural to accept the following :

Transfer Principle Replacing Convention
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(416) Sp = Ziel 1Fu = lmaz — bmin T 1IFM € ZIFM
0]

We show in the sequel how the seemingly particular assumption (4.16)
can nevertheless have convenient consequences. Among them, it of-
fers the possibility of effective summation for a large variety of sums
(4.3) with infinite index sets I. Thus (4.16) compensates for the fact
that, neither any Transfer Principle, nor any convergence, or in gen-
eral, topological type structures, are considered in this paper on the
ultrapower fields Fy,.

We shall need two further conventions as well.

First, let any sum (4.3) be given with an infinite index set I as in
(4.14), while the terms a; in (4.3), satisfy the boundedness condition

(4.17) Jdd,d"elFy : d <y a <y d’, 1€l
Let us then accept as well the following :
Summation Convention 1
(4.18) a'(Yier Imy) = a'St <u S=3rai <y
<y d"Sr=d"(YLier 1r,)
Remark 4.2.
The relations (4.16) and (4.18) do not necessarily mean that the entity
S =73 . a; isdefined, and even less, that it is defined as an element

of Fu.

In (4.18), the entity S; = >, I, € Fy is defined in view of (4.16),
and therefore, are also defined the entities a'(}_,.; 1r, ) = 'Sy, a"S; =

@"(Ties 15,) € Fu

The meaning of entities such as S =", ;a; in (4.3), (4.16) or (4.18)

will be clarified in section 5 in the sequel.
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Now based on the above, let us denote by
(4.19) Su
the set of finite or infinite sums (4.3) for which condition (4.14) holds.

Clearly, in view of Remark 4.2.; the set &y need not necessarily be a
subset of [y, since it may contain undefined sums like those in (4.3)
and which have infinite index sets 1.
Further, for every such sum S = > ._, a; € &, with finite or infinite
index set I, let us denote by

el

(4.20) Su(S)
the set of corresponding finite families X = (S(I1) = >, o, @i,

3 SUm) = D2 er, Giyy), of sums S(Iy) = >, o a;,, with m € N
and 1 < k < m, such that

(4.21)  each of Iy,..., 1, is an interval of the form (4.14), and they
constitute together a partition of I

Obviously, each I, with 1 < k < m, can be finite or infinite, and we
also have

(422) S([k) = Zikelk Qg € Su, 1 < k <m

Given now a sum S = Zie ; a; € Sy with an infinite index set I, and
a corresponding family of sums ¥ = (S(I1) = >, o7, @iys -, S(Im) =
> i er, Qi) € Su(S), then obviously at least one of the index sets
Iy, C Zy,, is infinite, thus the corresponding sum S(/;) need not nec-
essarily be defined as an element of IF,.

Let us, therefore, accept also the following :

Summation Convention 2
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(4.23) S=8)+...+S(,)
Remark 4.3.

As above in (4.18), the relation (4.23) does not necessarily mean that
the entity S = S([1) + ...+ S(I,,) is defined, and even less, that it is
defined as an element of Fy,. On the other hand, those terms S(1) in
S in (4.23) which correspond to finite index sets I, are well defined
as elements of [y, according to the structure of ¥ in the definition
(4.20).

U

Now suppose given any S = ), a; € Syand ¥ = (S(I1) = >, o/ @i,
s SIm) = 3 cp @i,) € Syu(S). Then for each 1 < k < m, the

sum S(Ij) can be associated with its corresponding particular version
in (4.15), namely

(4.24) Ste =D ier, 1ry

Thus assuming that, see (4.14)

(4.25) I={ve€Zp, | ikmn <u vV <u ikma } C Zp,
then (4.16) implies

(4.26) St = tkmaz — Ukemin + 11, € Fy

and in view of (4.16), (4.23) we obtain the equality of usual two finite
sums computed in Fy,, namely

(4.27) imaz = Gmin + 15y = D _1<pam(Bhmaz — Tkmin + 1r,)
which is correct, due to (4.14), (4.21).

In particular, from (4.14), (4.21), we obviously obtain

(4.28)  ijmar + 1o, = ipsrmm, 1 <k<m—1
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Now, similar with (4.17), let us assume for each 1 < k < m that
(4.29) dap,a) €eFy @ a, <u a, <y aj, ix€ Il

In view of (4.18), (4.20), we obtain for each S(I) = >
with 1 < k < m, that

ikelk aik e SZ/U

(4.30) @ Sr, <u S(Iy) <u @Sy, 1<k<m
hence (4.18), (4.23) give
(4.31) Y i<kem @S, <u S =

=SMh)+ ... +5(In) <u Dichem WSI,

and here, both sums at the left and right extremes, respectively, are
well defined elements of Fy, in view of (4.16).
Let us now consider for every given sum S = »_._;a; € Sy, the cor-
responding sets

i€l

35 =D chem @S, in (4.19) — (4.31) :
LFU(S) =< sely o
s<y s
(4.32)
35" =) e @S, in (4.19) — (4.31) :
R]FU(S) =< selfy o
s <y s

called, respectively, the lower and upper associated approaximations
with the sum S = )., a; € Sy.

Obviously, in view of (4.31), we have
(4.33) Vs e Lg,(S), s" € Rp,(5) : s <y s"
Then, naturally, we can give the following
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Definition 4.1. Riemann Summation

Asum S =3 .,
sumable, if and only if there exist a unique S € Iy, such that

a; in (4.3), which belongs to Sy, is called Riemann

(4.34) Vs € Lp,(S), s €Rp,(S) : & <yS<ys"

in which case S € Fy is called the Riemann sum of the sum S =
Zie 1 a4; € Sy, and one writes

(435) (R)S=(R)Y,.,ai=5

Now let us turn - based on the above treatment of general sums (4.3)
- to the definition of the Riemann Integral itself, in the case of suit-
able functions f in (4.1). For that purpose, we have to specify both
the appropriate functions f in (4.1), and the corresponding families
of sums (4.2), with the latter being obviously particular cases of sums
(4.3), namely

Definition 4.2. Riemann Type Sums

A sum (4.2) is called Riemann type sum, if and only if
(4.36) [, Blu = Uiel[%‘a(sz‘]u

and for 7,7 € I, 1 # j, we have that

(4.37) [ iy 0iJu N [74,6; |u is a set of at most one point
0

Obviously, if [vi,;Ju N [7,6; lu is a set of one point, then it is ei-
ther the one point set { J; } = {7; }, or the one point set { §; } = {7, }

Let us now consider any function f : [«, 8]y — Fy in (4.1). With

the help of (4.32), we consider the following associated lower, respec-
tively, upper sums
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L, (f) = U L, (5)
Rg, (f) = U B, (5)

(4.38)

where each of the two unions is taken over all Reimann type sums S
associated with the function f according to (4.2).

Now of course, we can give
Definition 4.3. Riemann Integral

A function f in (4.1) is Riemann integrable, if and only if there exist
a unique S € [y, such that

(4.39) Vs e Lg,(f), s"€Rp,(f) : 5 <u S <y s

in which case S € [, is called the Riemann integral of the function f,
and one writes

(4.40)  (R) fio g, f(x)de =S
Remark 4.4.

The above, obviously, has to be supplemented with a clarification of
the status of the three conventions, namely, the one in (4.16) replacing
the Transfer Principle, and the two summation conventions in (4.18)
and (4.23).

5. On the Compatibility of the New Axioms

As mentioned in Remark 4.4.; one has to clarify the situation with
what amounts to no less than three azioms introduced in (4.16), (4.18)
and (4.23), and used in an essential manner in the definition of the

Riemann Integral given in Definition 4.3.

One easy way in this regard, although an indirect one, is as follows.
One can try to show to what extent the respective relations (4.16),
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(4.18) and (4.23) may indeed hold in usual Nonstandard Analysis,
[1,2], or in the Internal Set Theory, [3]. And in case they do hold in
either of the mentioned two theories, then clearly, the relations (4.16),
(4.18) and (4.23), seen as axioms, are compatible we the Zermelo-
Fraenkel Set Theory.

Alternatively, there is the possibility that the relations (4.16), (4.18)
and (4.23) are not compatible with the Zermelo-Fraenkel Set Theory.
In such a case however, it is important to note that there is no need,
and even less any obligation to discard them altogether from the very
beginning.

Indeed, all these three relations (4.16), (4.18) and (4.23) appear to be
natural, thus quite likely, not leading too soon to contradictions. And
thus, it makes sense to develop the theory of Riemann Integration
introduced in section 4, and do so according to recent developments
in Inconsistent Mathematics, [26].
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