
SMALL JUMP WITH NEGATION-UTM TRAMPOLINE

KOJI KOBAYASHI

1. Introduction

This paper divide some complexity class by using �xpoint of Decidable Universal
Turing Machine (UTM). Decidable Deterministic Turing Machine (DTM) have �x-
pointless combinator that add no extra resources (like Negation), but UTM makes
some �xpoint in the combinator if UTM Target DTM set close under the combi-
nator. This means that we can jump out of the �xpointless combinator system by
making more complex problem with UTM and diagonal method.

We proof that L is not P as concrete example. We can make Polynomial time
UTM that emulate all Logarithm space DTM (LDTM). LDTM set close under
Negation, therefore UTM does not close under LDTM set. We can proof this
theorem like halting problem and time/space hierarchy theorem. We can extend
this proof to divide time/space limited DTM set. These are new hierarchy that use
UTM and Negation.

As appendix, We proof P is not NP by using P is not L.

2. P is not L

De�nition 1. �DTM � is de�ned as Decidable Deterministic Turing Machine set.
�LDTM � is de�ned as logarithmic space DTM . �pDTM � is de�ned as polynomial
time space DTM . �©DTM � is de�ned as DTM that some resource (time, space)
limited.

�UTM � is de�ned as Universal Turing Machine set that emulate all M ∈ DTM .
�UTM (C)� is de�ned as UTM for C ⊂ DTM . 〈M〉 is de�ned as code number
of a M ∈ DTM that U ∈ UTM emulate. That is, ∀w [U (〈M〉 , w) = M (w)] and
U (〈M〉) = M .

�Negate (C)� is de�ned as minimum Negation system that include C. That is,
∀C [(C ⊂ Negate (C)) ∧ (∀c ∈ Negate (C) [¬c ∈ Negate (C)])].

Theorem 2. ∀r ∈ ©DTM (¬r ∈ ©DTM)

Proof. It is trivial from DTM structure.
If DTM is
M = (Q,Σ,Γ, δ, q0, q1, q2)
then this dual machine
M = (Q,Σ,Γ, δ, q0, q2, q1)
compute ¬M without extra resources.
Therefore negation of ©DTM is also in ©DTM . �

Theorem 3. ∃U ∈ UTM (LDTM) [U ∈ pDTM]

1

SMALL JUMP WITH NEGATION-UTM TRAMPOLINE 2

Proof. It is trivial because some U ′ ∈ UTM can emulate all LDTM in polynomial
time. Therefore, we can make U ∈ pDTM by limiting at polynomial time (if U ′

compute over polynomial time, U reject these input). �

Theorem 4. L (P

Proof. We can proof this theorem like halting problem and time/space hierarchy
theorem.

Because of
∀U ∈ UTM (LDTM) ,M ∈ LDTM [U (〈M〉) = M]
all M ∈ LDTM have index 〈M〉. Mentioned above 2,
∀r ∈ LDTM (¬r ∈ LDTM)
Therefore we can make G that is Negation of diagonalization.
G (〈M〉) = ¬U (〈M〉 , 〈M〉)

〈M0〉 〈M1〉 〈M2〉 〈M3〉 · · ·
M0 = { > > ⊥ > · · ·
M1 = { ⊥ ⊥ > ⊥ · · ·
M2 = { ⊥ ⊥ ⊥ > · · ·
M3 = { > > ⊥ ⊥ · · ·
...

...
...

...
...

...
G = { ⊥ > > > · · ·

G /∈ LDTM because ∀M ∈ LDTM [G (〈M〉) 6= M (〈M〉)]. On the other hand,
G ∈ pDTM because ¬U ∈ pDTM 2 and G input size is at least half of U .

Therefore, G ∈ pDTM (G /∈ LDTM) and L (P . �

We can expand above result to general DTM.

Theorem 5. ∀CC ⊂ DTM [Negate (UTM (Negate (CC))) * Negate (CC)]

Proof. We omit the proof because this proof is same as previous. �

Corollary 6. Negate (UTM (©DTM)) * ©DTM

3. Trampoline Hierarchy between Negation and UTM

This result shows that we can jump over border of asymptotic analysis by using
Negation (�xpointless combinator) and UTM (�xpoint creator). Therefore, combi-
nation of UTM and Negation make new complexity class. That is, there are some
Hierarchy to apply UTM and Negation.

4. Appendix: Divide other complexity class

By using result L (P , we can divide some another complexity class.

De�nition 7. �R (M)� is de�ned as Reversible Deterministic Turing Machine that
can compute M . �R−1 (M)� is de�ned as Inverse Turing Machine of R (M). If
R−1 (M) (t) do not de�ne then R−1 (M) (t) value is ⊥. �{1}� is de�ned as �nite
automata like projection functions.

Lemma 8. TIME (R (M)) = TIME (M)

Proof. 3 tape R (M) can emulate M using same time [1] and single tape Turing
Machine can emulate multi tape Turing Machine at most O

(
t2 (n)

)
| t (n) ≥ n time

[2]. Therefore TIME (R (M)) = TIME (M). �

SMALL JUMP WITH NEGATION-UTM TRAMPOLINE 3

Lemma 9. ∀M ∈ NP − Complete, t ∈ P
[
M ◦R−1 (t) ∈ NP − Complete

]
Proof. It is trivial that M ◦ R−1 (t) ∈ NP because M ∈ NP − Complete and
R−1 (t) ∈ P .

It is also trivial that we can reduce M ◦R−1 (t) → M by using R (t) ∈ P .
M ◦R−1 (t) ◦R (t) = M
Therefore M ◦R−1 (t) ∈ NP − Complete �

Theorem 10. P (NP

Proof. (Proof by contradiction.) Assume to the contrary that P = NP .
This means that
∀p ∈ NP, q ∈ P − Complete ∃r ∈ L [p = q ◦ r]
Let p be M ◦R−1 (t) ∈ NP − Complete | M ∈ NP − Complete, t ∈ P
∀M ∈ NP − Complete, t ∈ P, q ∈ P − Complete ∃r ∈ L

[
M ◦R−1 (t) = q ◦ r

]
Let M be {1} ◦R (M)
∀M ∈ NP−Complete, t ∈ P, q ∈ P−Complete ∃r ∈ L

[
{1} ◦R (M) ◦R−1 (t) = q ◦ r

]
Let t be M under P = NP
∀M ∈ NP−Complete, q ∈ P−Complete ∃r ∈ L

[
{1} ◦R (M) ◦R−1 (M) = {1} = q ◦ r

]
This means L = P , but this result contradicting previously result 4. �

References

[1] Kenichi MORITA, �Reversible Computing�, 2012, p.15
[2] Michael Sipser, �Introduction to the Theory of COMPUTATION Second Edition (Japanese)�,

2008, pp.302-303

	1. Introduction
	2. P is not L
	3. Trampoline Hierarchy between Negation and UTM
	4. Appendix: Divide other complexity class
	References

