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Introduction: The Beal’s Conjecture was discovered by Andrew Beal 

in 1993. Later the conjecture was announced in December 1997 issue of 

the Notices of the American Mathematical Society. Yet, it is still both 

unproved and un-negated a conjecture hitherto.  

Abstract   

First we classify A, B and C according to their respective odevity, and ret 

rid of two kinds from A
X
+B

Y
=C

Z
. Then affirm A

X
+B

Y
=C

Z 
such being the 

case A, B and C have a common prime factor by examples. After that, 

prove A
X
+B

Y
≠C

Z
 under these circumstances that A, B and C have not any 

common prime factor by mathematical analyses with the aid of the 

symmetric law of odd numbers. Finally we have proven that the Beal’s 

conjecture holds water after the comparison between A
X
+B

Y
=C

Z
 and 

A
X
+B

Y
≠C

Z
 under the given requirements.    
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A Proof of the Conjecture  

The Beal’s Conjecture states that if A
X
+B

Y
=C

Z
, where A, B, C, X, Y and 

Z are positive integers, and X, Y and Z are all greater than 2, then A, B 

and C must have a common prime factor.   

We consider limits of values of above-mentioned A, B, C, X, Y and Z as 

given requirements, including their all or some parts in any inequality or 

in any equality, thereinafter.  

First, we classify A, B and C according to their respective odevity, and 

remove following two kinds from A
X
+B

Y
=C

Z
.  

1. If A, B and C all are positive odd numbers, then A
X
+B

Y 
is an even 

number, yet C
Z 

is an odd number, evidently there is only A
X
+B

Y
≠C

Z 

according to an odd number ≠ an even number.   

2. If any two in A, B and C are positive even numbers, and another is a 

positive odd number, then when A
X
+B

Y
 is an even number, C

Z
 is an odd 

number, yet when A
X
+B

Y
 is an odd number, C

Z
 is an even number, so 

there is only A
X
+B

Y
≠C

Z 
according to an odd number ≠ an even number.  

Thus we continue to have merely two kinds of A
X
+B

Y
=C

Z
 under the 

given requirements as listed below.   

1. A, B and C all are positive even numbers.   

2. A, B and C are two positive odd numbers and a positive even number.  

For indefinite equation A
X
+B

Y
=C

Z
 under the given requirements plus 

aforementioned either qualification, in fact, it has many sets of solutions 
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of positive integers. Let us instance four concrete equations to prove such 

a viewpoint, as the follows listed.   

When A, B and C all are positive even numbers, if let A=B=C=2, X=Y=3, 

and Z=4, then indefinite equation A
X
+B

Y
=C

Z
 is exactly equality 2

3
+2

3
=2

4
. 

Evidently A
X
+B

Y
=C

Z
 has a set of solutions of positive integers (2, 2, 2) 

here, and A, B and C have common even prime factor 2.  

In addition, if let A=B=162, C=54, X=Y=3, and Z=4, then indefinite 

equation A
X
+B

Y
=C

Z
 is exactly equality 162

3
+162

3
=54

4
. Evidently 

A
X
+B

Y
=C

Z
 has a set of solutions of positive integers (162, 162, 54) here, 

and A, B and C have two common prime factors, i.e. even 2 and odd 3.  

When A, B and C are two positive odd numbers and a positive even 

number, if let A=C=3, B=6, X=Y=3, and Z=5, then indefinite equation 

A
X
+B

Y
=C

Z
 is exactly equality 3

3
+6

3
=3

5
. Manifestly A

X
+B

Y
=C

Z
 has a set 

of solutions of positive integers (3, 6, 3) here, and A, B and C have 

common prime factor 3.  

In addition, if let A=B=7, C=98, X=6, Y=7, and Z=3, then indefinite 

equation A
X
+B

Y
=C

Z
 is exactly equality 7

6
+7

7
=98

3
. Manifestly A

X
+B

Y
=C

Z
 

has a set of solutions of positive integers (7, 7, 98) here, and A, B and C 

have common prime factor 7.  

Thus it can seen, indefinite equation A
X
+B

Y
=C

Z
 under the given 

requirements plus aforementioned either qualification can hold water 

according to above-mentioned four concrete examples, but A, B and C 
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must have at least one common prime factor >1.   

If we can prove that there is only A
X
+B

Y
≠C

Z
 under the given 

requirements plus the qualification that A, B and C have not any common 

prime factor, then we precisely proved completely that there is only 

A
X
+B

Y
=C

Z 
under the given requirements plus the qualification that A, B 

and C must have a common prime factor >1.    

Since A, B and C have common prime factor 2 where A, B and C all are 

positive even numbers, so these circumstances that A, B and C have not 

any common prime factor can only occur under the prerequisite that A, B 

and C are two positive odd numbers and a positive even number.  

If A, B and C have not any common prime factor, then any two of them 

have not any common prime factor either. Because on the supposition that 

any two of them have a common prime factor, namely A
X
+B

Y
 or C

Z
-A

X
 

or C
Z
-B

Y
 have a common prime factor, yet another has not it, then from 

this it would lead to A
X
+B

Y
≠C

Z 
or C

Z
-A

X
≠B

Y
 or C

Z
-B

Y
≠A

X 
according to 

the unique factorization theorem of natural number.  

Since it is so, if we can prove that there is only inequality A
X
+B

Y
≠C

Z
 

under the given requirements plus the qualification that A, B and C have 

not any common prime factor, then the Beal’s conjecture is surely tenable, 

otherwise it will be negated.  

Unquestionably, let following two inequalities add together, are able to 

replace completely A
X
+B

Y
≠C

Z
 under the given requirements plus the 
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qualification that A, B and C have not any common prime factor.    

1. A
X
+B

Y
≠2

Z
G Z under the given requirements plus the qualification that 

A, B and 2G have not any common prime factor, where 2G=C.   

We divide all positive odd numbers into two kinds of A and B, namely the 

form of A is 1+4n, and the form of B is 3+4n, where n≥0. Odd numbers 

of A plus B from small to great are respectively arranged below.    

A: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61…1+4n …  

B: 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63…3+4n …  

Since a sum of two odd numbers of A divided by 2 is an odd number, i.e. 

(1+4n1)+(1+4n2)=2+4(n1+n2), [2+4(n1+n2)]/2=1+2(n1+n2); also a sum of 

two odd numbers of B divided by 2 is an odd number too, i.e. (3+4n1)+ 

(3+4n2)=6+4(n1+n2), [6+4(n1+n2)]/2=3+2(n1+n2), where n1∊n, n2∊n. 

While 2
 Z

G
Z
 divided by 2 are an even numbers 2

Z-1
G

Z
, consequently A

X
 

and B
Y
 within A

X
+B

Y
≠2

 Z
G

Z
 can only belong to two of A or two of B. In 

this case, there is only A+B=2
 Z

G
Z
.   

2. A
X
+2

Y
D

Y
≠C

Z
 under the given requirements plus the qualification that 

A, 2D and C have not any common prime factor, where 2D=B.  

We again divide all odd numbers of A into two kinds, i.e. A1 and A2, and 

again divide all odd numbers of B into two kinds, i.e. B1 and B2. Or rather, 

the form of A1 is 1+8n; the form of B1 is 3+8n; the form of A2 is 5+8n; 

and the form of B2 is 7+8n, where n≥0. The four kinds of odd numbers 

are all positive odd numbers. They are arranged as follows respectively.  
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A1: 1, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105…1+8n …    

B1: 3, 11, 19, 27, 35, 43, 51, 59, 67, 75, 83, 91, 99, 107…3+8n …   

A2: 5, 13, 21, 29, 37, 45, 53, 61, 69, 77, 85, 93, 101, 109…5+8n …  

B2: 7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 95, 103, 111…7+8n …  

Since a difference between an odd number of A1 and an odd number of A2 

divided by 4 is an odd number, and a difference between an odd number 

of B1 and an odd number of B2 divided by 4 is an odd number, yet 2
Y
D

Y 

divided by 4 is even number 2
Y-2

D
Y
, consequently A

X
 and C

Z 
within A

X
+ 

2
Y
D

Y
≠C

Z 
can only either belong to one of A1 and one of A2, or belong to 

one of B1 and one of B2. In this case, there is only A+2
Y
D

Y
=B or 

B+2
Y
D

Y
=A. Since B and A on the rights of two equalities can be 

substituted by C, and B and A on the lefts of two equalities can substitute 

from each other, so employ A+2
Y
D

Y
=C to express A+2

Y
D

Y
=B and 

B+2
Y
D

Y
=A, thereinafter.   

We shall go a step further to prove that A and B within A+B=2
 Z

G
Z
 are 

not two odd numbers of greater exponents, and C and A within 

A+2
Y
D

Y
=C are not two odd numbers of greater exponents either, where 

greater exponents ≥3, similarly hereinafter.   

In other words, this needs us to prove A
X
+B

Y
≠2

Z
G

Z 
and A

X
+2

Y
D

Y
≠C

Z 

under the given requirements plus the qualification that A, B and C have 

not any common prime factor >1, where 2G=C, 2D=B.  

We again divide A
X
+B

Y
≠2

Z
G

Z 
into two kinds, i.e. (1) A

X
+B

Y
≠2

Z
, when 
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G=1, and (2) A
X
+B

Y
≠2

Z
G

Z
, where G has at least an odd prime factor >1.  

Likewise divide A
X
+2

Y
D

Y
≠C

Z
 into two kinds, i.e. (3) A

X
+2

Y
≠C

Z
, when 

D=1, and (4) A
X
+2

Y
D

Y 
≠C

Z
, where D has at least an odd prime factor >1.  

We list from small to great seriate positive odd numbers and label a 

belongingness of each of them, well then you would discover that 

permutations of four kinds of odd numbers are possessed of a certain law.  

1
k
, A1; 3, B1; 5, A2; 7, B2; (2

3
);9, A1; 11, B1; 13, A2; 15, B2; (2

4
);

 
 

17, A1; 19, B1; 21, A2; 23, B2; 25, A1; 3
3
, B1; 29, A2; 31, B2; (2

5
);

 
 

33, A1; 35, B1; 37, A2; 39, B2; 41, A1; 43, B1; 45, A2; 47, B2;  

49, A1; 51, B1; 53, A2; 55, B2; 57, A1; 59, B1; 61, A2; 63, B2; (2
6
);

 
 

65, A1; 67, B1; 69, A2; 71, B2; 73, A1; 75, B1; 77, A2; 79, B2;  

3
4
, A1; 83, B1; 85, A2; 87, B2; 89, A1; 91, B1; 93, A2; 95, B2;  

97, A1; 99, B1; 101, A2; 103, B2; 105, A1; 107, B1; 109, A2; 111, B2;   

113, A1; 115, B1; 117, A2; 119, B2; 121, A1; 123, B1; 5
3
, A2; 127, B2; (2

7
);

 
 

129, A1; 131, B1; 133, A2; 135, B2; 137, A1; 139, B1; 141, A2; 143, B2;  

145, A1; 147, B1; 149, A2; 151, B2; 153, A1; 155, B1; 157, A2; 159, B2; 

161, A1; 163, B1; 165, A2; 167, B2; 169, A1; 171, B1; 173, A2; 175, B2;  

177, A1; 179, B1; 181, A2; 183, B2; 185, A1; 187, B1; 189, A2; 191, B2;  

193, A1; 195, B1; 197, A2; 199, B2; 201, A1; 203, B1; 205, A2; 207, B2;  

209, A1; 211, B1; 213, A2; 215, B2; 217, A1; 219, B1; 221, A2; 223, B2; 

225, A1; 227, B1; 229, A2; 231, B2; 233, A1; 235, B1; 237, A2; 239, B2;  

241,A1;3
5
,B1;245,A2;247,B2; 249, A 1;251, B1;253, A 2;255, B2;(2

8
);  



 

 8

257,A1;259,B1;261,A2;263,B2; 265, A 1;267, B1;269, A 2;271, B2; …→  

Thus it can seen, permutations of seriate positive odd numbers of from 

small to great are infinitely many cycles of A1B1A2B2.  

To wit: A1B1A2B2A1B1A2B2A1B1A2B2A1B1A2B2 A1B1A2B2A1B1A2B2…→  

We shall set to prove aforementioned four inequalities orderly from the 

sequence of positive odd numbers to proceed, thereinafter.   

 

Firstly, Prove A
X
+B

Y
≠2

Z
, where A and B are positive odd numbers 

without any common prime factor >1, and X, Y and Z are integers ≥3.  

We add 2
Z-1

 and 2
Z
 into the above-listed sequence of odd numbers. If we 

regard 2
Z-1

 as a symmetric center, then 2
Z-1

-1∊B2 with 2
Z-1

+1∊A1, 2
Z-1

-3 

∊A2 with 2
Z-1

+3∊B1, 2
Z-1

-5∊B1 with 2
Z-1

+5∊A2, 2
Z-1

-7∊A1 with 2
Z-1

+7∊B2 

etc are one-to-one bilateral symmetries respectively.  

We consider such permutations of odd numbers as a symmetric law of 

odd numbers whose symmetric center is 2
Z-1

, as follows listed.    

A1B1A2B2…A1B1A2B2A1B1A2B2 (2
Z-1

) A1B1A2B2A1B1A2B2…A1B1A2B2 →  

After regard 2
Z-1

 as a symmetric center, if leave from 2
Z-1

, then there are 

finite cycles of B2A2B1A1 leftwards until 7(B2)5(A2)3(B1)1(A1), and there 

are infinitely many cycles of A1B1A2B2 rightwards up to infinite.  

Under the symmetric law of odd numbers, two distances from 2
Z-1

 to two 

symmetric odd numbers are each other’s equivalent, i.e. B2+(1+8n)=2
Z-1

 

and A1-(1+8n)=2
Z-1

, A2+(3+8n)=2
Z-1 

and B1-(3+8n)= 2
Z-1

, B1+(5+8n)=2
Z-1
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and A2-(5+8n)=2
Z-1

, A1+(7+8n)=2
Z-1

 and B2-(7+8n)=2
Z-1 

at each other’s- 

symmetric places
 
on two sides of 2

Z-1
, where n≥0. 

Consequently, on the one hand, a sum of every two symmetric odd 

numbers is equal to 2
Z
, i.e. A1+B2 =2

Z 
where A1>B2; B1+A2=2

Z 
where 

B1>A2; A2+B1=2
Z 

where A2>B1; and B2+A1=2
Z 

where B2 >A1. On the 

other hand, a sum of any two non-symmetric odd numbers is unequal to 

2
Z
, thus we consider not, even need not to prove these inequalities.    

Moreover all odd numbers on an identical distance which departs from 

2
Z-1

 on the either side of 2
Z-1

 belong within a kind and the same, no matter 

which values of Z-1.    

Since either A
X
 or B

Y
 within

 
A

X
+B

Y
=2

Z
 belongs within A, and another 

belongs within B according to the preceding inference, so A+B=2
Z
, also A 

and B are bilateral symmetry whereby 2
Z-1

 to act as the center of the 

symmetry, then either A or B is greater than 2
Z-1

, yet another is smaller 

than 2
Z-1

.   

By now, we just list odd numbers which have a common base number, 

and label a belongingness of each of them, below.    

1
1
, A1;       3

1
=3, B1;          5

1
=5, A2;         7

1
=7, B2; (2

3
);      

1
2
, A1;       3

2
=9, A1;          5

2
=25, A1;        7

2
=49, A1;         

1
3
, A1;       3

3
=27, B1;         5

3
=125, A2;       7

3
=343, B2;        

1
4
, A1;       3

4
=81, A1;         5

4
=625, A1;       7

4
=2481, A1;       

1
5
, A1;       3

5
=243, B1;        5

5
=3125, A2;      7

5
=16807, B2;      
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1
6
, A1;       3

6
=729, A1;        5

6
=15625, A1;     7

6
=117609, A1;     

…          …               …               …  

9
1
=9, A1;    11

1
=11, B1;      13

1
=13, A2;      15

1
=15, B2; (2

4
);   

9
2
=81, A1;   11

2
=121, A1;     13

2
=169, A1;     15

2
=225, A1;    

9
3
=729, A1;   11

3
=1331, B1;    13

3
=2197, A2;    15

3
=3375, B2;    

9
4
=6561, A1; 11

4
=14641, A1;   13

4
=28561, A1;   15

4
=50625, A1;   

9
5
=59049, A1; 11

5
=161051, B1; 13

5
=371293, A2;   15

5
=759375, B2;   

9
6
=531441, A1; 11

6
=1771561, A1; 13

6
=4826809, A1; 15

6
=11390625, A1;  

…          …              …              …       

17
1
=17, A1;     19

1
=19, B1;     21

1
=21, A2;    23

1
=23; B2…  

17
2
=289, A1;    19

2
=361, A1;    21

2
=441, A1;   23

2
=529; A1…  

17
3
=4193, A1;   19

3
=6859, B1;   21

3
=9261, A2;   23

3
=12167; B2… 

17
4
=83521, A1; 19

4
=130321, A1; 21

4
=194481, A1; 23

4
=279841; A1… 

17
5
=1419857, A1; 19

5
=2476099, B1; 21

5
=4084101, A2; 23

5
=6436343, B2…  

17
6
=24137569,A1;19

6
=47045881,A1;21

6
=85766121,A1;23

6
=148035889,A1..  

…            …             …             …   

From above listed odd numbers, we are not difficult to see, on the one 

hand, all odd numbers whereby A1 to act as a base number belong still 

within A1; all odd numbers whereby B1 to act as a base number belong 

within B1 plus A1, and one B1 alternates with one A1; all odd numbers 

whereby A2 to act as a base number belong within A2 plus A1, and one A2 

alternates with one A1; and all odd numbers whereby B2 to act as a base 
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number belong within B2 plus A1, and one B2 alternates with one A1.  

On the other hand, we classify them into set four kinds according to their 

respective belongingness, well then all odd numbers of even exponents 

and odd numbers 1+8n of odd exponents belong within A1; odd numbers 

3+8n of odd exponents belong within B1; odd numbers 5+8n of odd 

exponents belong within A2; and odd numbers 7+8n of odd exponents 

belong within B2, where n ≥ 0.   

Excepting odd number 1, two adjacent odd numbers which have a 

common base number are an even number ≥6 apart, but also such even 

numbers are getting greater and greater along which exponents of these 

odd numbers are getting greater and greater.    

At all events, whether odd numbers of odd exponents or odd numbers of 

even exponents, all of them are included and dispersed within 

aforementioned four kinds of odd numbers, thus they entirely conform to 

the symmetric law of odd numbers.   

Thereinafter we shall prove A
X
+B

Y
≠2

Z
 by mathematical induction

 
under 

these circumstances that A
X
∊B2 with B

Y
∊A1, A1+B2 =2

Z
; A

X
∊A1 with B

Y
∊

B2, B2+A1=2
Z
; A

X
∊A2 with B

Y
∊B1, A2+B1=2

Z
; and A

X
∊B1 with B

Y
∊A2, 

B1+A2 =2
Z
, where A1, B2, A2, and B1 under their respective definiendum 

are one another’s- different positive odd numbers.   

(1)*When Z-1=3, odd numbers on two sides of 2
3
 are listed below.  

1
3
, 3, 5, 7, (2

3
), 9, 11, 13, 15…→   
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To wit: A1B1A2 B2 (2
3
) A1 B1 A2 B2 …→   

It is clear at a glance, that there are not two odd numbers of greater 

exponents on two places of every bilateral symmetry whereby 2
3
 to act as 

the center of the symmetry.  

When Z-1=4, odd numbers on two sides of 2
4
 are listed below.  

1
4
, 3, 5, 7, 9, 11, 13, 15, (2

4
) 17, 19, 21, 23, 25, 27, 29, 31…→   

To wit: A1B1A2 B2 A1B1A2 B2 (2
4
) A1B1A2 B2 A1B1A2 B2…→    

Evidently there are not two odd numbers of greater exponents on two 

places of every bilateral symmetry whereby 2
4
 to act as the center of the 

symmetry.  

When Z-1=5 and Z-1=6, odd numbers on two sides of 2
6
 including 2

5
 are 

listed below.   

1
6
, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 3

3
, 29, 31, (2

5
), 33, 35, 37, 39, 

41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, (2
6
), 65, 67, 69, 71, 73, 75, 

77, 79, 3
4
, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 

113, 115, 117, 119, 121, 123, 5
3
, 127…→  

To wit: A1B1A2B2A1B1A2B2A1B1A2B2A1B1A2B2 (2
5
) A1B1A2B2A1B1A2B2 

A1B1A2B2A1B1A2B2 (2
6
) A1B1A2B2A1B1A2B2A1B1A2B2A1B1A2B2A1B1A2 

B2 A1B1A2B2A1B1A2B2A1B1A2B2…→   

Likewise there are not two odd numbers of greater exponents on two 

places of every bilateral symmetry whereby 2
6
 including 2

5 
to act as a 

center of either symmetry.  
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From above several cases, we can get A
X
+B

Y
≠2

4
,
 
A

X
+B

Y
≠2

5
, A

X
+B

Y
≠2

6 

and A
X
+B

Y
≠2

7
 such being the case X≥3 and Y≥3.  

(2)*Suppose that when Z-1=K and K≥6, there are not two odd numbers 

of greater exponents on two places of every bilateral symmetry whereby 

2
K 

to act as the center of the symmetry. Namely there is only A
X
+B

Y
≠2

K+1
 

such being the case X≥3 and Y≥3.  

(3)*Prove that when Z-1=K+1, there are not two odd numbers of greater 

exponents either on two places of every bilateral symmetry whereby 2
K+1

 

to act as the center of the symmetry. That is to say, this needs us to prove 

A
X
+B

Y
≠2

K+2
 such being the case X≥3 and Y≥3.  

 
 

Proof * We know that permutations of odd numbers on two sides of 2
Z-1

 

conform to the symmetric law of odd numbers, including odd numbers on 

two sides of 2
K
 and of 2

K+1
, where K≥6. Please, see symmetric 

permutations of odd numbers on two sides of 2
K
 and of 2

K+1 
below.   

A1B1A2B2…B1A2B2A1B1A2B2 (2
K
) A1B1A2B2A1B1A2…A1B1A2B2 →  

A1B1A2B2…B1A2B2A1B1A2B2 (2
K+1

) A1B1A2B2A1B1A2…A1B1A2B2→  

Since either A or B >2
K
 and another < 2

K 
within A+B=2

K+1
, so let B

 
>2

K
 

and A
 
< 2

K
, then each of A1B1A2B2…B1A2B2A1B1A2B2 on the left of 2

K
 

expresses A, and each of symmetry with A on the right of 2
K
 expresses B. 

Since all odd numbers on the left of 2
K+1 

are exactly all odd numbers of 

bilateral symmetry whereby 2
K
 to act as the center of the symmetry, thus 

each of one-to-one symmetric odd numbers whereby 2
K
 to act as a 
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symmetric center expresses A after their symmetric center is changed into 

2
K+1

, and each of symmetry with A on the right of 2
K+1

 expresses B.  

Besides we divide all odd numbers of bilateral symmetry whereby 2
K+1

 to 

act as the center of the symmetry into four equivalent segments per 2
K-1

 

odd numbers by 2
K
, 2

K+1
 and 3×2

K
. And number the ordinal of each 

segment of from left to right as №1, №2, №3 and №4. Then odd numbers 

at №1 segment and odd numbers at №4 segment are one-to-one bilateral 

symmetry whereby 2
K+1

 to act as the center of the symmetry; also odd 

numbers at №2 segment and odd numbers at №3 segment as well.   

When Z-1≤K, there are not two odd numbers of greater exponents on two 

places of every bilateral symmetry whereby 2
Z-1

 to act as the center of the 

symmetry. Of course, there are four kinds of symmetric odd numbers 

always, i.e. A1 and B2 where A1>B2; B1 and A2 where B1>A2; A2 and B1 

where A2>B1; and B2 and A1 where B2>A1.  

A1 and B2 away from 2
K
 is respectively 1+8n where A1>B2, and n ≥ 0; B1 

and A2 away from 2
K
 is respectively 3+8n where B1>A2, and n ≥ 0; A2 

and B1 away from 2
K
 is respectively 5+8n where A2>B1, and n ≥ 0; B2 

and A1 away from 2
K
 is respectively 7+8n where B2>A1, and n ≥ 0.    

When Z-1≤K, there are not two odd numbers of greater exponents on two 

places of every bilateral symmetry whereby 2
Z-1

 to act as the center of the 

symmetry, i.e. there is only A
X
+B

Y
≠2

Z
 such being the case X≥3 and Y≥3. 

 
 

When Z-1=K+1, likewise, there are symmetric permutations of four kinds 
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of odd numbers. In addition, all odd numbers of bilateral symmetries 

whereby 2
K
 to act as the center of symmetry are turned into all odd 

numbers on the left of 2
K+1

, yet on the right of 2
K+1

, odd numbers of 

symmetries with left odd numbers are formed from 2
K+1 

plus each and 

every odd number of bilateral symmetry whereby 2
K
 to act as the center 

of the symmetry. 
 
   

Thus for odd numbers of bilateral symmetries whereby 2
K+1

 to act as the 

center of symmetry, a half of them retained still original places, and the 

half lies on the left of 2
K+1

, yet another half is formed from 2
K+1 

plus each 

and every odd number of bilateral symmetry whereby 2
K
 to act as the 

center of symmetry.    

On the supposition that A
X
 and B

Y
 on the two sides of 2

K
 are any pair of 

bilateral symmetric odd numbers whereby 2
K
 to act as the center of the 

symmetry, then B
Y
 plus 2

K+1
 is B

Y
+2

K+1
, but also A

X 
and B

Y
+2

K+1 
are 

bilateral symmetry whereby 2
K+1

 to act as the center of the symmetry, 

thus there is A
X
+ (B

Y
+2

K+1
) =2

K+2
. After regard 2

K+1
 as the center of the 

symmetry, A
X
 and (B

Y
+2

K+1
) are the very A

X
 and B

Y
, so get A

X
+B

Y 
=2

K+2
.   

Besides, 0 and 2
K+2

 are bilateral symmetry for symmetric center 2
K+1

 too, 

thus there is B
Y
+2

K+1
=2

K+2
-A

X
, and from this to get A

X
+B

Y
=2

K+1
.   

Like that, A
X
 plus 2

K+1
 is A

X
+2

K+1
, but also B

Y 
and A

X
+2

K+1 
are bilateral 

symmetry whereby 2
K+1

 to act as the center of the symmetry, thus there is 

B
Y
+(A

X
+2

K+1
)

 
=2

K+2
. After regard 2

K+1
 as the center of the symmetry, B

Y
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and (A
X
+2

K+1
) are the very A

X
 and B

Y
, so get A

X
+B

Y
=2

K+2
.   

As well, 0 and 2
K+2

 are bilateral symmetry for symmetric center 2
K+1

, thus 

there is A
X
+2

K+1
=2

K+2
-B

Y
, and from this to get A

X
+B

Y
=2

K+1
.  

For above–mentioned two cases, please, see a simple illustration at the 

number axis to express them as follows.   

 

                                        A
X
+2

K+1
               B

Y
+2

K+1
          

1, 3...    A
X
      2

K
      B

Y
      2

K+1     
2

K+2
-B

Y
 

    
 3ⅹ2

K         
2

K+2
-A

X    
  2

K+2   
 

 

If the suppositional pair of odd numbers A
X
 and B

Y
 on the two sides of 2

K
 

is an odd number of greater exponent and an odd number of smaller 

exponent, then there is only A
X
+B

Y
≠2

K+1
 such being the case X≥3 and 

Y≥3 in line with second step of the preceding supposition, where the 

smaller exponent is only 1 or 2, similarly hereinafter. So we deduce 

B
Y
+2

K+1
≠2

K+2
-A

X 
and A

X
+2

K+1
≠2

K+2
-B

Y 
from A

X
+B

Y
 ≠2

K+1
.    

Now that exist only to B
Y
+2

K+1
≠2

K+2
-A

X
 such being the case X≥3 and 

Y≥3, if let B
Y
+2

K+1
=2

K+2
-A

X 
by all means, then precisely speak that at 

least one in “B
Y
+2

K+1
” and “2

K+2
-A

X
” is unable to be turned into an odd 

numbers of greater exponent according to the successive inference.   

Since B
Y
+2

K+1
 and 2

K+2
-A

X
 share a place and the same, so both of them 

are an identical odd number in reality. Consequently B
Y
+2

K+1
 i.e. 2

K+2
-A

X
 

is unable to be turned into an odd numbers of greater exponent, yet it can 

only be an odd number of smaller exponent.    

Like that, conclude that A
X
+2

K+1
 i.e. 2

K+2
-B

Y
 can only be an odd number 
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of smaller exponent too.   

Taken one with another, if either A
X
 or B

Y
 in A

X
+B

Y
=2

K+2
 is an odd 

number of greater exponent, then another is an odd number of smaller 

exponent inevitably, therefore there is only A
X
+B

Y
≠2

K+2
 such being the 

case X≥3 and Y≥3.  

If the suppositional pair of odd numbers A
X
 and B

Y
 on the two sides of 2

K
 

is two odd numbers of smaller exponent, then there is A
X
+B

Y
=2

K+1
 such 

being the case X≤3 and Y≤3. So we deduce B
Y
+2

K+1
=2

K+2
-A

X 
and 

A
X
+2

K+1
=2

K+2
-B

Y 
from A

X
+B

Y
=2

K+1
. This explains that B

Y
+2

K+1
 and 

2
K+2

-A
X 

are an identical odd number on a place and the same; additionally 

A
X
+2

K+1
 and 2

K+2
-B

Y 
as well. Judging from this, B

Y
+2

K+1
 is probably 

either an odd number of greater exponent or an odd number of smaller 

exponent; additionally A
X
+2

K+1
 as well.   

Convert B
Y
+2

K+1 
and A

X
+2

K+1 
into B

Y
 and convert B

Y 
into A

X
 according 

to the preceding stipulate for odd numbers on the two sides of 2
K+1

, well 

then A
X 

and B
Y 

are bilateral symmetry for symmetric center 2
K+1

, and 

there is A
X
+B

Y
=2

K+2
 due to A

X 
is an odd number of smaller exponent.  

But, after A
X
 is turned into an odd numbers of greater exponent, if B

Y
 is 

an odd numbers of greater exponent too, then there is A
X
+B

Y
≠2

K+2
 such 

being the case X≥3 and Y≥3; if turn B
Y 

into an odd number of greater 

exponent though it is originally an odd number of smaller exponent, then 

there is A
X
+B

Y
≠2

K+2
 such being the case X≥3 and Y≥3 as well.   
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Consequently when Z-1=K+1, there are not two odd numbers of greater 

exponents on two places of every bilateral symmetry whereby 2
K+1

 to act 

as the center of the symmetry. In other words, there is only A
X
+B

Y
≠2

K+2 

such being the case X≥3 and Y≥3.  

Apply the above-mentioned way of doing, we can continue to prove that 

when Z-1=K+2, Z-1=K+3…up to Z-1=every integer≥3, there are always 

A
X
+B

Y
≠2

K+3
, A

X
+B

Y
≠2

K+4
…

 
A

X
+B

Y
≠2

Z
, where A and B are positive odd 

numbers without any common prime factor >1, and X, Y and Z are 

integers ≥3.    

 

Secondly, let us successively prove A
X
+B

Y
≠2

Z
G

Z
 under the given 

requirements plus the qualifications that A and B are two positive odd 

numbers, and G has at least an odd prime factor >1, and A, B and 2G 

have not any common prime factor >1.    

We are necessary to use substitutive inequality E
P
+F

V
≠2

M
 according to 

proven A
X
+B

Y
≠2

Z
, where E and F are two positive odd numbers without 

any common prime factor >1, and P, V and M are integers ≥3.  

To begin with, multiply each term of E
P
+F

V
≠2

M
 by G

M
, then we obtain 

E
P
G

M
+F

V
G

M
≠2

M
G

M
, where G has at least an odd prime factor >1.   

For any positive even number, either it is able to be expressed as A
X
+B

Y
, 

or it is unable. Undoubtedly E
P
G

M
+F

V
G

M 
is a positive even number.  

If E
P
G

M
+F

V
G

M
 is able to be expressed as A

X
+B

Y
, then there is 
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A
X
+B

Y
≠2

M
G

M
.   

If E
P
G

M
+F

V
G

M
 is unable to be expressed as A

X
+B

Y
, then the even number 

has nothing to do with proving A
X
+B

Y
≠2

M
G

M
.   

No matter how, there are E
P
G

M
+F

V
G

M
≠A

X
+B

Y 
and E

P
G

M
+F

V
G

M
≠2

M
G

M
 

under these circumstances. So let E
P
G

M
+F

V
G

M
=A

X
+B

Y
+2b or A

X
+B

Y
-2b, 

where b is a positive integer. Also use sign “±” to denote signs “+” and 

“-” hereinafter, then obtain E
P
G

M
+F

V
G

M
=A

X
+B

Y
±2b, so exists A

X
+B

Y
±2b 

≠2
M

G
M

 due to E
P
G

M
+F

V
G

M 
≠2

M
G

M
, i.e. A

X
+B

Y
≠2

M
G

M 
± 2b.  

Since 2b can express every positive even number, then 2
M

G
M

±2b can 

express all positive even numbers except for 2
M

G
M

.   

For a positive even number, either it is able to be expressed as 2
K
N

 K
, or it 

is unable, where K is an integer >2, and N is a positive integer which has 

at least an odd prime factor >1.   

On the one hand, there is A
X
+B

Y
≠2

K
N

K 
where 2

M
G

M
±2b=2

K
N

K
. On the 

other hand, 2
M

G
M

±2b have nothing to do with proving A
X
+B

Y
≠2

K
N

K 

where 2
M

G
M

±2b≠2
K
N

K
.   

That is to say, for E
P
G

M
+F

V
G

M
≠2

M
G

M
, if E

P
G

M
+F

V
G

M
 is unable to be 

expressed
 
as A

X
+B

Y
, we can deduce A

X
+B

Y
≠2

K
N

K
 elsewhere too.    

Hereto, we have proven A
X
+B

Y
≠2

M
G

M
 or A

X
+B

Y
≠2

K
N

K
 on the existence.  

Since either M or K is to express an integer >2, also either G or N is a 

positive integer which has at least an odd prime factor >1, therefore 

A
X
+B

Y
≠2

M
G

M
 and A

X
+B

Y
≠2

K
N

K
 are of the same meaning. Thus let Z 
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expresses M and K, and G expresses N, we get A
X
+B

Y
≠2

Z
G

Z
.   

 

Thirdly, we proceed to prove A
X
+2

Y
≠C

Z
 under the given requirements 

plus the qualification that A and C are two positive odd numbers without 

any common prime factor >1.   

Like that, we use substitutive inequality E
P
+F

V
≠2

M 
once again, also 

supposed F
V 

> E
P
, and let F

V 
=C

Z
, then there is E

P
+C

Z 
≠ 2

M
.   

Moreover, let 2
M 

>2
3
, then there is 2

M 
=2

M-1 
+ 2

M-1
, and 2

M-1 
≥ 3.  

So there is E
P 

+ C
Z 

> 2
M-1

+2
M-1

 or E
P
+C

Z 
< 2

M-1
+2

M-1
.  

Namely there is C
Z
-2

M-1 
> 2

M-1
-E

P
 or C

Z
-2

M-1 
< 2

M-1
-E

P
.    

In addition, there is A
X
+E

P 
≠ 2

M-1
 according to similar E

P
+F

V
≠2

M
.  

Then we deduce 2
M-1

-E
P 

>A
X
 or 2

M-1
-E

P 
< A

X
 from A

X
+E

P 
≠ 2

M-1
.   

Therefore there is C
Z
-2

M-1 
>2

M-1
-E

P 
>A

X
 or C

Z
-2

M-1 
< 2

M-1
-E

P 
< A

X
.  

Consequently there is C
Z
-2

M-1 
>A

X
 or C

Z
-2

M-1 
< A

X
.   

In a word, there is C
Z
-2

M-1 
≠ A

X
, i.e. A

X
+2

M-1 
≠ C

Z
.    

For A
X
+2

M-1 
≠ C

Z
, let 2

M-1 
= 2

Y
, we obtain A

X
+2

Y 
≠ C

Z
.  

  

Fourthly, let us last prove A
X
+2

Y
D

Y
≠C

Z
 under the given requirements 

plus the qualifications that A and C are two positive odd numbers, and D 

has at least an odd prime factor >1, and A, 2D and C have not any 

common prime factor >1.  

Let us use substitutive inequality H
U
+2

Y
≠K

T 
according to proven 

A
X
+2

Y
≠C

Z
, where H and K are two positive odd numbers without any 
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common prime factor >1, and U, Y and T are integers >2.  

Via moving terms of H
U
+2

Y
≠K

T
, we obtain K

T
-H

U
≠2

Y
. Like as the above 

way of Secondly section, first multiply each term of K
T
-H

U
≠2

Y
 by D

Y
 to 

obtain K
T
D

Y
-H

U
D

Y
≠2

Y
D

Y
.   

For any positive even number, either it is able to be expressed as C
Z
-A

X
, 

or it is unable. Unquestionably K
T
D

Y
-H

U
D

Y
 is a positive even number.  

If K
T
D

Y
-H

U
D

Y
 is able to be expressed as C

Z
-A

X
,
 

then
 

there is 

C
Z
-A

X
≠2

Y
D

Y
, i.e. A

X
+2

Y
D

Y
≠C

Z
.  

If K
T
D

Y
-H

U
D

Y
 is unable to be expressed as C

Z
-A

X
, then the even number 

has nothing to do with proving A
X
+2

Y
D

Y
≠C

Z
.  

No matter how, there are K
T
D

Y
-H

U
D

Y
≠C

Z
-A

X 
and K

T
D

Y
-H

U
D

Y
≠2

Y
D

Y
 

under these circumstances.   

Let K
T
D

Y
-H

U
D

Y
=C

Z
-A

X
±2d,

 
where d is a positive integer, well then there 

is C
Z
-A

X
±2d≠2

Y
D

Y
 due to K

T
D

Y
-H

U
D

Y
≠2

Y
D

Y
, i.e. C

Z
-A

X
≠2

Y
D

Y
±2d.  

Since 2d can express every positive even number, then 2
Y
D

Y
±2d can 

express all positive even numbers except for 2
Y
D

Y
.   

For a positive even number, either it is able to be expressed as 2
S
R

S
, or it 

is unable, where S is an integer >2, and R is a positive integer which has 

at least an odd prime factor >1.  

On the one hand, there is C
Z
-A

X
≠2

S
R

S 
where 2

Y
D

Y
±2d=2

S
R

S
, i.e. 

A
X
+2

S
R

S
≠C

Z
. On the other hand, 2

Y
D

Y
±2d have nothing to do with 

proving A
X
+2

S
R

S
≠C

Z 
where 2

Y
D

Y
±2d ≠2

S
R

S
.  
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That is to say, for K
T
D

Y
-H

U
D

Y
≠2

Y
D

Y
, if K

T
D

Y
-H

U
D

Y
 is unable to be 

expressed
 
as C

Z
-A

X
, we can deduce A

X
+2

S
R

S
≠C

Z
 elsewhere too.   

Thus far, we have proven A
X
+2

Y
D

Y
≠C

Z
 or A

X
+2

S
R

S
≠C

Z 
on the existence.  

Since either Y or S is to express an integer >2, also either D or R is a 

positive integer which has at least an odd prime factor >1, therefore 

A
X
+2

Y
D

Y
≠C

Z
 and A

X
+2

S
R

S
≠C

Z
 are of the same meaning. So let D 

expresses R, and Y expresses S, we get A
X
+2

Y
D

Y
≠C

Z
.  

To sun up, we have proven every kind of A
X
+B

Y
≠C

Z 
under the given 

requirements plus the qualification that A, B and C have not any common 

prime factor >1.   

Previous, we have proven that A
X
+B

Y
=C

Z
 has certain sets of solutions of 

positive integers under the given requirements plus the qualification that 

A, B and C have at least a common prime factor >1.    

After the comprehensive comparison between A
X
+B

Y
=C

Z
 and A

X
+B

Y
≠C

Z
 

under the given requirements, we have reached such a conclusion 

inevitably, namely an indispensable prerequisite of the existence of 

A
X
+B

Y
=C

Z
 under the given requirements is that A, B and C must have a 

common prime factor >1.  

The proof was thus brought to a close. As a consequence, the Beal 

conjecture holds water.   


